]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/n2_core.c
crypto: sha - split sha.h into sha1.h and sha2.h
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha1.h>
19 #include <crypto/sha2.h>
20 #include <crypto/aes.h>
21 #include <crypto/internal/des.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/sched.h>
25
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 #include <crypto/algapi.h>
30
31 #include <asm/hypervisor.h>
32 #include <asm/mdesc.h>
33
34 #include "n2_core.h"
35
36 #define DRV_MODULE_NAME "n2_crypto"
37 #define DRV_MODULE_VERSION "0.2"
38 #define DRV_MODULE_RELDATE "July 28, 2011"
39
40 static const char version[] =
41 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
42
43 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
44 MODULE_DESCRIPTION("Niagara2 Crypto driver");
45 MODULE_LICENSE("GPL");
46 MODULE_VERSION(DRV_MODULE_VERSION);
47
48 #define N2_CRA_PRIORITY 200
49
50 static DEFINE_MUTEX(spu_lock);
51
52 struct spu_queue {
53 cpumask_t sharing;
54 unsigned long qhandle;
55
56 spinlock_t lock;
57 u8 q_type;
58 void *q;
59 unsigned long head;
60 unsigned long tail;
61 struct list_head jobs;
62
63 unsigned long devino;
64
65 char irq_name[32];
66 unsigned int irq;
67
68 struct list_head list;
69 };
70
71 struct spu_qreg {
72 struct spu_queue *queue;
73 unsigned long type;
74 };
75
76 static struct spu_queue **cpu_to_cwq;
77 static struct spu_queue **cpu_to_mau;
78
79 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
80 {
81 if (q->q_type == HV_NCS_QTYPE_MAU) {
82 off += MAU_ENTRY_SIZE;
83 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
84 off = 0;
85 } else {
86 off += CWQ_ENTRY_SIZE;
87 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
88 off = 0;
89 }
90 return off;
91 }
92
93 struct n2_request_common {
94 struct list_head entry;
95 unsigned int offset;
96 };
97 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
98
99 /* An async job request records the final tail value it used in
100 * n2_request_common->offset, test to see if that offset is in
101 * the range old_head, new_head, inclusive.
102 */
103 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
104 unsigned long old_head, unsigned long new_head)
105 {
106 if (old_head <= new_head) {
107 if (offset > old_head && offset <= new_head)
108 return true;
109 } else {
110 if (offset > old_head || offset <= new_head)
111 return true;
112 }
113 return false;
114 }
115
116 /* When the HEAD marker is unequal to the actual HEAD, we get
117 * a virtual device INO interrupt. We should process the
118 * completed CWQ entries and adjust the HEAD marker to clear
119 * the IRQ.
120 */
121 static irqreturn_t cwq_intr(int irq, void *dev_id)
122 {
123 unsigned long off, new_head, hv_ret;
124 struct spu_queue *q = dev_id;
125
126 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
127 smp_processor_id(), q->qhandle);
128
129 spin_lock(&q->lock);
130
131 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
132
133 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
134 smp_processor_id(), new_head, hv_ret);
135
136 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
137 /* XXX ... XXX */
138 }
139
140 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
141 if (hv_ret == HV_EOK)
142 q->head = new_head;
143
144 spin_unlock(&q->lock);
145
146 return IRQ_HANDLED;
147 }
148
149 static irqreturn_t mau_intr(int irq, void *dev_id)
150 {
151 struct spu_queue *q = dev_id;
152 unsigned long head, hv_ret;
153
154 spin_lock(&q->lock);
155
156 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
157 smp_processor_id(), q->qhandle);
158
159 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
160
161 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
162 smp_processor_id(), head, hv_ret);
163
164 sun4v_ncs_sethead_marker(q->qhandle, head);
165
166 spin_unlock(&q->lock);
167
168 return IRQ_HANDLED;
169 }
170
171 static void *spu_queue_next(struct spu_queue *q, void *cur)
172 {
173 return q->q + spu_next_offset(q, cur - q->q);
174 }
175
176 static int spu_queue_num_free(struct spu_queue *q)
177 {
178 unsigned long head = q->head;
179 unsigned long tail = q->tail;
180 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
181 unsigned long diff;
182
183 if (head > tail)
184 diff = head - tail;
185 else
186 diff = (end - tail) + head;
187
188 return (diff / CWQ_ENTRY_SIZE) - 1;
189 }
190
191 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
192 {
193 int avail = spu_queue_num_free(q);
194
195 if (avail >= num_entries)
196 return q->q + q->tail;
197
198 return NULL;
199 }
200
201 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
202 {
203 unsigned long hv_ret, new_tail;
204
205 new_tail = spu_next_offset(q, last - q->q);
206
207 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
208 if (hv_ret == HV_EOK)
209 q->tail = new_tail;
210 return hv_ret;
211 }
212
213 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
214 int enc_type, int auth_type,
215 unsigned int hash_len,
216 bool sfas, bool sob, bool eob, bool encrypt,
217 int opcode)
218 {
219 u64 word = (len - 1) & CONTROL_LEN;
220
221 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
222 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
223 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
224 if (sfas)
225 word |= CONTROL_STORE_FINAL_AUTH_STATE;
226 if (sob)
227 word |= CONTROL_START_OF_BLOCK;
228 if (eob)
229 word |= CONTROL_END_OF_BLOCK;
230 if (encrypt)
231 word |= CONTROL_ENCRYPT;
232 if (hmac_key_len)
233 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
234 if (hash_len)
235 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
236
237 return word;
238 }
239
240 #if 0
241 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
242 {
243 if (this_len >= 64 ||
244 qp->head != qp->tail)
245 return true;
246 return false;
247 }
248 #endif
249
250 struct n2_ahash_alg {
251 struct list_head entry;
252 const u8 *hash_zero;
253 const u8 *hash_init;
254 u8 hw_op_hashsz;
255 u8 digest_size;
256 u8 auth_type;
257 u8 hmac_type;
258 struct ahash_alg alg;
259 };
260
261 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
262 {
263 struct crypto_alg *alg = tfm->__crt_alg;
264 struct ahash_alg *ahash_alg;
265
266 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
267
268 return container_of(ahash_alg, struct n2_ahash_alg, alg);
269 }
270
271 struct n2_hmac_alg {
272 const char *child_alg;
273 struct n2_ahash_alg derived;
274 };
275
276 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
277 {
278 struct crypto_alg *alg = tfm->__crt_alg;
279 struct ahash_alg *ahash_alg;
280
281 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
282
283 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
284 }
285
286 struct n2_hash_ctx {
287 struct crypto_ahash *fallback_tfm;
288 };
289
290 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
291
292 struct n2_hmac_ctx {
293 struct n2_hash_ctx base;
294
295 struct crypto_shash *child_shash;
296
297 int hash_key_len;
298 unsigned char hash_key[N2_HASH_KEY_MAX];
299 };
300
301 struct n2_hash_req_ctx {
302 union {
303 struct md5_state md5;
304 struct sha1_state sha1;
305 struct sha256_state sha256;
306 } u;
307
308 struct ahash_request fallback_req;
309 };
310
311 static int n2_hash_async_init(struct ahash_request *req)
312 {
313 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
314 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
315 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
316
317 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
318 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
319
320 return crypto_ahash_init(&rctx->fallback_req);
321 }
322
323 static int n2_hash_async_update(struct ahash_request *req)
324 {
325 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
326 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
327 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
328
329 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
330 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
331 rctx->fallback_req.nbytes = req->nbytes;
332 rctx->fallback_req.src = req->src;
333
334 return crypto_ahash_update(&rctx->fallback_req);
335 }
336
337 static int n2_hash_async_final(struct ahash_request *req)
338 {
339 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
340 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
341 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
342
343 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
344 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
345 rctx->fallback_req.result = req->result;
346
347 return crypto_ahash_final(&rctx->fallback_req);
348 }
349
350 static int n2_hash_async_finup(struct ahash_request *req)
351 {
352 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
353 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
354 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
355
356 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
357 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
358 rctx->fallback_req.nbytes = req->nbytes;
359 rctx->fallback_req.src = req->src;
360 rctx->fallback_req.result = req->result;
361
362 return crypto_ahash_finup(&rctx->fallback_req);
363 }
364
365 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
366 {
367 return -ENOSYS;
368 }
369
370 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
371 {
372 return -ENOSYS;
373 }
374
375 static int n2_hash_cra_init(struct crypto_tfm *tfm)
376 {
377 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
378 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
379 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
380 struct crypto_ahash *fallback_tfm;
381 int err;
382
383 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
384 CRYPTO_ALG_NEED_FALLBACK);
385 if (IS_ERR(fallback_tfm)) {
386 pr_warn("Fallback driver '%s' could not be loaded!\n",
387 fallback_driver_name);
388 err = PTR_ERR(fallback_tfm);
389 goto out;
390 }
391
392 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
393 crypto_ahash_reqsize(fallback_tfm)));
394
395 ctx->fallback_tfm = fallback_tfm;
396 return 0;
397
398 out:
399 return err;
400 }
401
402 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
403 {
404 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
405 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
406
407 crypto_free_ahash(ctx->fallback_tfm);
408 }
409
410 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
411 {
412 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
413 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
414 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
415 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
416 struct crypto_ahash *fallback_tfm;
417 struct crypto_shash *child_shash;
418 int err;
419
420 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
421 CRYPTO_ALG_NEED_FALLBACK);
422 if (IS_ERR(fallback_tfm)) {
423 pr_warn("Fallback driver '%s' could not be loaded!\n",
424 fallback_driver_name);
425 err = PTR_ERR(fallback_tfm);
426 goto out;
427 }
428
429 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
430 if (IS_ERR(child_shash)) {
431 pr_warn("Child shash '%s' could not be loaded!\n",
432 n2alg->child_alg);
433 err = PTR_ERR(child_shash);
434 goto out_free_fallback;
435 }
436
437 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
438 crypto_ahash_reqsize(fallback_tfm)));
439
440 ctx->child_shash = child_shash;
441 ctx->base.fallback_tfm = fallback_tfm;
442 return 0;
443
444 out_free_fallback:
445 crypto_free_ahash(fallback_tfm);
446
447 out:
448 return err;
449 }
450
451 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
452 {
453 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
454 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
455
456 crypto_free_ahash(ctx->base.fallback_tfm);
457 crypto_free_shash(ctx->child_shash);
458 }
459
460 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
461 unsigned int keylen)
462 {
463 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
464 struct crypto_shash *child_shash = ctx->child_shash;
465 struct crypto_ahash *fallback_tfm;
466 int err, bs, ds;
467
468 fallback_tfm = ctx->base.fallback_tfm;
469 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470 if (err)
471 return err;
472
473 bs = crypto_shash_blocksize(child_shash);
474 ds = crypto_shash_digestsize(child_shash);
475 BUG_ON(ds > N2_HASH_KEY_MAX);
476 if (keylen > bs) {
477 err = crypto_shash_tfm_digest(child_shash, key, keylen,
478 ctx->hash_key);
479 if (err)
480 return err;
481 keylen = ds;
482 } else if (keylen <= N2_HASH_KEY_MAX)
483 memcpy(ctx->hash_key, key, keylen);
484
485 ctx->hash_key_len = keylen;
486
487 return err;
488 }
489
490 static unsigned long wait_for_tail(struct spu_queue *qp)
491 {
492 unsigned long head, hv_ret;
493
494 do {
495 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
496 if (hv_ret != HV_EOK) {
497 pr_err("Hypervisor error on gethead\n");
498 break;
499 }
500 if (head == qp->tail) {
501 qp->head = head;
502 break;
503 }
504 } while (1);
505 return hv_ret;
506 }
507
508 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
509 struct cwq_initial_entry *ent)
510 {
511 unsigned long hv_ret = spu_queue_submit(qp, ent);
512
513 if (hv_ret == HV_EOK)
514 hv_ret = wait_for_tail(qp);
515
516 return hv_ret;
517 }
518
519 static int n2_do_async_digest(struct ahash_request *req,
520 unsigned int auth_type, unsigned int digest_size,
521 unsigned int result_size, void *hash_loc,
522 unsigned long auth_key, unsigned int auth_key_len)
523 {
524 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
525 struct cwq_initial_entry *ent;
526 struct crypto_hash_walk walk;
527 struct spu_queue *qp;
528 unsigned long flags;
529 int err = -ENODEV;
530 int nbytes, cpu;
531
532 /* The total effective length of the operation may not
533 * exceed 2^16.
534 */
535 if (unlikely(req->nbytes > (1 << 16))) {
536 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
537 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
538
539 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
540 rctx->fallback_req.base.flags =
541 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
542 rctx->fallback_req.nbytes = req->nbytes;
543 rctx->fallback_req.src = req->src;
544 rctx->fallback_req.result = req->result;
545
546 return crypto_ahash_digest(&rctx->fallback_req);
547 }
548
549 nbytes = crypto_hash_walk_first(req, &walk);
550
551 cpu = get_cpu();
552 qp = cpu_to_cwq[cpu];
553 if (!qp)
554 goto out;
555
556 spin_lock_irqsave(&qp->lock, flags);
557
558 /* XXX can do better, improve this later by doing a by-hand scatterlist
559 * XXX walk, etc.
560 */
561 ent = qp->q + qp->tail;
562
563 ent->control = control_word_base(nbytes, auth_key_len, 0,
564 auth_type, digest_size,
565 false, true, false, false,
566 OPCODE_INPLACE_BIT |
567 OPCODE_AUTH_MAC);
568 ent->src_addr = __pa(walk.data);
569 ent->auth_key_addr = auth_key;
570 ent->auth_iv_addr = __pa(hash_loc);
571 ent->final_auth_state_addr = 0UL;
572 ent->enc_key_addr = 0UL;
573 ent->enc_iv_addr = 0UL;
574 ent->dest_addr = __pa(hash_loc);
575
576 nbytes = crypto_hash_walk_done(&walk, 0);
577 while (nbytes > 0) {
578 ent = spu_queue_next(qp, ent);
579
580 ent->control = (nbytes - 1);
581 ent->src_addr = __pa(walk.data);
582 ent->auth_key_addr = 0UL;
583 ent->auth_iv_addr = 0UL;
584 ent->final_auth_state_addr = 0UL;
585 ent->enc_key_addr = 0UL;
586 ent->enc_iv_addr = 0UL;
587 ent->dest_addr = 0UL;
588
589 nbytes = crypto_hash_walk_done(&walk, 0);
590 }
591 ent->control |= CONTROL_END_OF_BLOCK;
592
593 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
594 err = -EINVAL;
595 else
596 err = 0;
597
598 spin_unlock_irqrestore(&qp->lock, flags);
599
600 if (!err)
601 memcpy(req->result, hash_loc, result_size);
602 out:
603 put_cpu();
604
605 return err;
606 }
607
608 static int n2_hash_async_digest(struct ahash_request *req)
609 {
610 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
611 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
612 int ds;
613
614 ds = n2alg->digest_size;
615 if (unlikely(req->nbytes == 0)) {
616 memcpy(req->result, n2alg->hash_zero, ds);
617 return 0;
618 }
619 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
620
621 return n2_do_async_digest(req, n2alg->auth_type,
622 n2alg->hw_op_hashsz, ds,
623 &rctx->u, 0UL, 0);
624 }
625
626 static int n2_hmac_async_digest(struct ahash_request *req)
627 {
628 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
631 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
632 int ds;
633
634 ds = n2alg->derived.digest_size;
635 if (unlikely(req->nbytes == 0) ||
636 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
637 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
638 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
639
640 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
641 rctx->fallback_req.base.flags =
642 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
643 rctx->fallback_req.nbytes = req->nbytes;
644 rctx->fallback_req.src = req->src;
645 rctx->fallback_req.result = req->result;
646
647 return crypto_ahash_digest(&rctx->fallback_req);
648 }
649 memcpy(&rctx->u, n2alg->derived.hash_init,
650 n2alg->derived.hw_op_hashsz);
651
652 return n2_do_async_digest(req, n2alg->derived.hmac_type,
653 n2alg->derived.hw_op_hashsz, ds,
654 &rctx->u,
655 __pa(&ctx->hash_key),
656 ctx->hash_key_len);
657 }
658
659 struct n2_skcipher_context {
660 int key_len;
661 int enc_type;
662 union {
663 u8 aes[AES_MAX_KEY_SIZE];
664 u8 des[DES_KEY_SIZE];
665 u8 des3[3 * DES_KEY_SIZE];
666 } key;
667 };
668
669 #define N2_CHUNK_ARR_LEN 16
670
671 struct n2_crypto_chunk {
672 struct list_head entry;
673 unsigned long iv_paddr : 44;
674 unsigned long arr_len : 20;
675 unsigned long dest_paddr;
676 unsigned long dest_final;
677 struct {
678 unsigned long src_paddr : 44;
679 unsigned long src_len : 20;
680 } arr[N2_CHUNK_ARR_LEN];
681 };
682
683 struct n2_request_context {
684 struct skcipher_walk walk;
685 struct list_head chunk_list;
686 struct n2_crypto_chunk chunk;
687 u8 temp_iv[16];
688 };
689
690 /* The SPU allows some level of flexibility for partial cipher blocks
691 * being specified in a descriptor.
692 *
693 * It merely requires that every descriptor's length field is at least
694 * as large as the cipher block size. This means that a cipher block
695 * can span at most 2 descriptors. However, this does not allow a
696 * partial block to span into the final descriptor as that would
697 * violate the rule (since every descriptor's length must be at lest
698 * the block size). So, for example, assuming an 8 byte block size:
699 *
700 * 0xe --> 0xa --> 0x8
701 *
702 * is a valid length sequence, whereas:
703 *
704 * 0xe --> 0xb --> 0x7
705 *
706 * is not a valid sequence.
707 */
708
709 struct n2_skcipher_alg {
710 struct list_head entry;
711 u8 enc_type;
712 struct skcipher_alg skcipher;
713 };
714
715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716 {
717 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719 return container_of(alg, struct n2_skcipher_alg, skcipher);
720 }
721
722 struct n2_skcipher_request_context {
723 struct skcipher_walk walk;
724 };
725
726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727 unsigned int keylen)
728 {
729 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735 switch (keylen) {
736 case AES_KEYSIZE_128:
737 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738 break;
739 case AES_KEYSIZE_192:
740 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741 break;
742 case AES_KEYSIZE_256:
743 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744 break;
745 default:
746 return -EINVAL;
747 }
748
749 ctx->key_len = keylen;
750 memcpy(ctx->key.aes, key, keylen);
751 return 0;
752 }
753
754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755 unsigned int keylen)
756 {
757 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760 int err;
761
762 err = verify_skcipher_des_key(skcipher, key);
763 if (err)
764 return err;
765
766 ctx->enc_type = n2alg->enc_type;
767
768 ctx->key_len = keylen;
769 memcpy(ctx->key.des, key, keylen);
770 return 0;
771 }
772
773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774 unsigned int keylen)
775 {
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779 int err;
780
781 err = verify_skcipher_des3_key(skcipher, key);
782 if (err)
783 return err;
784
785 ctx->enc_type = n2alg->enc_type;
786
787 ctx->key_len = keylen;
788 memcpy(ctx->key.des3, key, keylen);
789 return 0;
790 }
791
792 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
793 {
794 int this_len = nbytes;
795
796 this_len -= (nbytes & (block_size - 1));
797 return this_len > (1 << 16) ? (1 << 16) : this_len;
798 }
799
800 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
801 struct n2_crypto_chunk *cp,
802 struct spu_queue *qp, bool encrypt)
803 {
804 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
805 struct cwq_initial_entry *ent;
806 bool in_place;
807 int i;
808
809 ent = spu_queue_alloc(qp, cp->arr_len);
810 if (!ent) {
811 pr_info("queue_alloc() of %d fails\n",
812 cp->arr_len);
813 return -EBUSY;
814 }
815
816 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
817
818 ent->control = control_word_base(cp->arr[0].src_len,
819 0, ctx->enc_type, 0, 0,
820 false, true, false, encrypt,
821 OPCODE_ENCRYPT |
822 (in_place ? OPCODE_INPLACE_BIT : 0));
823 ent->src_addr = cp->arr[0].src_paddr;
824 ent->auth_key_addr = 0UL;
825 ent->auth_iv_addr = 0UL;
826 ent->final_auth_state_addr = 0UL;
827 ent->enc_key_addr = __pa(&ctx->key);
828 ent->enc_iv_addr = cp->iv_paddr;
829 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
830
831 for (i = 1; i < cp->arr_len; i++) {
832 ent = spu_queue_next(qp, ent);
833
834 ent->control = cp->arr[i].src_len - 1;
835 ent->src_addr = cp->arr[i].src_paddr;
836 ent->auth_key_addr = 0UL;
837 ent->auth_iv_addr = 0UL;
838 ent->final_auth_state_addr = 0UL;
839 ent->enc_key_addr = 0UL;
840 ent->enc_iv_addr = 0UL;
841 ent->dest_addr = 0UL;
842 }
843 ent->control |= CONTROL_END_OF_BLOCK;
844
845 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
846 }
847
848 static int n2_compute_chunks(struct skcipher_request *req)
849 {
850 struct n2_request_context *rctx = skcipher_request_ctx(req);
851 struct skcipher_walk *walk = &rctx->walk;
852 struct n2_crypto_chunk *chunk;
853 unsigned long dest_prev;
854 unsigned int tot_len;
855 bool prev_in_place;
856 int err, nbytes;
857
858 err = skcipher_walk_async(walk, req);
859 if (err)
860 return err;
861
862 INIT_LIST_HEAD(&rctx->chunk_list);
863
864 chunk = &rctx->chunk;
865 INIT_LIST_HEAD(&chunk->entry);
866
867 chunk->iv_paddr = 0UL;
868 chunk->arr_len = 0;
869 chunk->dest_paddr = 0UL;
870
871 prev_in_place = false;
872 dest_prev = ~0UL;
873 tot_len = 0;
874
875 while ((nbytes = walk->nbytes) != 0) {
876 unsigned long dest_paddr, src_paddr;
877 bool in_place;
878 int this_len;
879
880 src_paddr = (page_to_phys(walk->src.phys.page) +
881 walk->src.phys.offset);
882 dest_paddr = (page_to_phys(walk->dst.phys.page) +
883 walk->dst.phys.offset);
884 in_place = (src_paddr == dest_paddr);
885 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
886
887 if (chunk->arr_len != 0) {
888 if (in_place != prev_in_place ||
889 (!prev_in_place &&
890 dest_paddr != dest_prev) ||
891 chunk->arr_len == N2_CHUNK_ARR_LEN ||
892 tot_len + this_len > (1 << 16)) {
893 chunk->dest_final = dest_prev;
894 list_add_tail(&chunk->entry,
895 &rctx->chunk_list);
896 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
897 if (!chunk) {
898 err = -ENOMEM;
899 break;
900 }
901 INIT_LIST_HEAD(&chunk->entry);
902 }
903 }
904 if (chunk->arr_len == 0) {
905 chunk->dest_paddr = dest_paddr;
906 tot_len = 0;
907 }
908 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
909 chunk->arr[chunk->arr_len].src_len = this_len;
910 chunk->arr_len++;
911
912 dest_prev = dest_paddr + this_len;
913 prev_in_place = in_place;
914 tot_len += this_len;
915
916 err = skcipher_walk_done(walk, nbytes - this_len);
917 if (err)
918 break;
919 }
920 if (!err && chunk->arr_len != 0) {
921 chunk->dest_final = dest_prev;
922 list_add_tail(&chunk->entry, &rctx->chunk_list);
923 }
924
925 return err;
926 }
927
928 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
929 {
930 struct n2_request_context *rctx = skcipher_request_ctx(req);
931 struct n2_crypto_chunk *c, *tmp;
932
933 if (final_iv)
934 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
935
936 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
937 list_del(&c->entry);
938 if (unlikely(c != &rctx->chunk))
939 kfree(c);
940 }
941
942 }
943
944 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
945 {
946 struct n2_request_context *rctx = skcipher_request_ctx(req);
947 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
948 int err = n2_compute_chunks(req);
949 struct n2_crypto_chunk *c, *tmp;
950 unsigned long flags, hv_ret;
951 struct spu_queue *qp;
952
953 if (err)
954 return err;
955
956 qp = cpu_to_cwq[get_cpu()];
957 err = -ENODEV;
958 if (!qp)
959 goto out;
960
961 spin_lock_irqsave(&qp->lock, flags);
962
963 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
964 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
965 if (err)
966 break;
967 list_del(&c->entry);
968 if (unlikely(c != &rctx->chunk))
969 kfree(c);
970 }
971 if (!err) {
972 hv_ret = wait_for_tail(qp);
973 if (hv_ret != HV_EOK)
974 err = -EINVAL;
975 }
976
977 spin_unlock_irqrestore(&qp->lock, flags);
978
979 out:
980 put_cpu();
981
982 n2_chunk_complete(req, NULL);
983 return err;
984 }
985
986 static int n2_encrypt_ecb(struct skcipher_request *req)
987 {
988 return n2_do_ecb(req, true);
989 }
990
991 static int n2_decrypt_ecb(struct skcipher_request *req)
992 {
993 return n2_do_ecb(req, false);
994 }
995
996 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
997 {
998 struct n2_request_context *rctx = skcipher_request_ctx(req);
999 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1000 unsigned long flags, hv_ret, iv_paddr;
1001 int err = n2_compute_chunks(req);
1002 struct n2_crypto_chunk *c, *tmp;
1003 struct spu_queue *qp;
1004 void *final_iv_addr;
1005
1006 final_iv_addr = NULL;
1007
1008 if (err)
1009 return err;
1010
1011 qp = cpu_to_cwq[get_cpu()];
1012 err = -ENODEV;
1013 if (!qp)
1014 goto out;
1015
1016 spin_lock_irqsave(&qp->lock, flags);
1017
1018 if (encrypt) {
1019 iv_paddr = __pa(rctx->walk.iv);
1020 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1021 entry) {
1022 c->iv_paddr = iv_paddr;
1023 err = __n2_crypt_chunk(tfm, c, qp, true);
1024 if (err)
1025 break;
1026 iv_paddr = c->dest_final - rctx->walk.blocksize;
1027 list_del(&c->entry);
1028 if (unlikely(c != &rctx->chunk))
1029 kfree(c);
1030 }
1031 final_iv_addr = __va(iv_paddr);
1032 } else {
1033 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1034 entry) {
1035 if (c == &rctx->chunk) {
1036 iv_paddr = __pa(rctx->walk.iv);
1037 } else {
1038 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1039 tmp->arr[tmp->arr_len-1].src_len -
1040 rctx->walk.blocksize);
1041 }
1042 if (!final_iv_addr) {
1043 unsigned long pa;
1044
1045 pa = (c->arr[c->arr_len-1].src_paddr +
1046 c->arr[c->arr_len-1].src_len -
1047 rctx->walk.blocksize);
1048 final_iv_addr = rctx->temp_iv;
1049 memcpy(rctx->temp_iv, __va(pa),
1050 rctx->walk.blocksize);
1051 }
1052 c->iv_paddr = iv_paddr;
1053 err = __n2_crypt_chunk(tfm, c, qp, false);
1054 if (err)
1055 break;
1056 list_del(&c->entry);
1057 if (unlikely(c != &rctx->chunk))
1058 kfree(c);
1059 }
1060 }
1061 if (!err) {
1062 hv_ret = wait_for_tail(qp);
1063 if (hv_ret != HV_EOK)
1064 err = -EINVAL;
1065 }
1066
1067 spin_unlock_irqrestore(&qp->lock, flags);
1068
1069 out:
1070 put_cpu();
1071
1072 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1073 return err;
1074 }
1075
1076 static int n2_encrypt_chaining(struct skcipher_request *req)
1077 {
1078 return n2_do_chaining(req, true);
1079 }
1080
1081 static int n2_decrypt_chaining(struct skcipher_request *req)
1082 {
1083 return n2_do_chaining(req, false);
1084 }
1085
1086 struct n2_skcipher_tmpl {
1087 const char *name;
1088 const char *drv_name;
1089 u8 block_size;
1090 u8 enc_type;
1091 struct skcipher_alg skcipher;
1092 };
1093
1094 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1095 /* DES: ECB CBC and CFB are supported */
1096 { .name = "ecb(des)",
1097 .drv_name = "ecb-des",
1098 .block_size = DES_BLOCK_SIZE,
1099 .enc_type = (ENC_TYPE_ALG_DES |
1100 ENC_TYPE_CHAINING_ECB),
1101 .skcipher = {
1102 .min_keysize = DES_KEY_SIZE,
1103 .max_keysize = DES_KEY_SIZE,
1104 .setkey = n2_des_setkey,
1105 .encrypt = n2_encrypt_ecb,
1106 .decrypt = n2_decrypt_ecb,
1107 },
1108 },
1109 { .name = "cbc(des)",
1110 .drv_name = "cbc-des",
1111 .block_size = DES_BLOCK_SIZE,
1112 .enc_type = (ENC_TYPE_ALG_DES |
1113 ENC_TYPE_CHAINING_CBC),
1114 .skcipher = {
1115 .ivsize = DES_BLOCK_SIZE,
1116 .min_keysize = DES_KEY_SIZE,
1117 .max_keysize = DES_KEY_SIZE,
1118 .setkey = n2_des_setkey,
1119 .encrypt = n2_encrypt_chaining,
1120 .decrypt = n2_decrypt_chaining,
1121 },
1122 },
1123 { .name = "cfb(des)",
1124 .drv_name = "cfb-des",
1125 .block_size = DES_BLOCK_SIZE,
1126 .enc_type = (ENC_TYPE_ALG_DES |
1127 ENC_TYPE_CHAINING_CFB),
1128 .skcipher = {
1129 .min_keysize = DES_KEY_SIZE,
1130 .max_keysize = DES_KEY_SIZE,
1131 .setkey = n2_des_setkey,
1132 .encrypt = n2_encrypt_chaining,
1133 .decrypt = n2_decrypt_chaining,
1134 },
1135 },
1136
1137 /* 3DES: ECB CBC and CFB are supported */
1138 { .name = "ecb(des3_ede)",
1139 .drv_name = "ecb-3des",
1140 .block_size = DES_BLOCK_SIZE,
1141 .enc_type = (ENC_TYPE_ALG_3DES |
1142 ENC_TYPE_CHAINING_ECB),
1143 .skcipher = {
1144 .min_keysize = 3 * DES_KEY_SIZE,
1145 .max_keysize = 3 * DES_KEY_SIZE,
1146 .setkey = n2_3des_setkey,
1147 .encrypt = n2_encrypt_ecb,
1148 .decrypt = n2_decrypt_ecb,
1149 },
1150 },
1151 { .name = "cbc(des3_ede)",
1152 .drv_name = "cbc-3des",
1153 .block_size = DES_BLOCK_SIZE,
1154 .enc_type = (ENC_TYPE_ALG_3DES |
1155 ENC_TYPE_CHAINING_CBC),
1156 .skcipher = {
1157 .ivsize = DES_BLOCK_SIZE,
1158 .min_keysize = 3 * DES_KEY_SIZE,
1159 .max_keysize = 3 * DES_KEY_SIZE,
1160 .setkey = n2_3des_setkey,
1161 .encrypt = n2_encrypt_chaining,
1162 .decrypt = n2_decrypt_chaining,
1163 },
1164 },
1165 { .name = "cfb(des3_ede)",
1166 .drv_name = "cfb-3des",
1167 .block_size = DES_BLOCK_SIZE,
1168 .enc_type = (ENC_TYPE_ALG_3DES |
1169 ENC_TYPE_CHAINING_CFB),
1170 .skcipher = {
1171 .min_keysize = 3 * DES_KEY_SIZE,
1172 .max_keysize = 3 * DES_KEY_SIZE,
1173 .setkey = n2_3des_setkey,
1174 .encrypt = n2_encrypt_chaining,
1175 .decrypt = n2_decrypt_chaining,
1176 },
1177 },
1178 /* AES: ECB CBC and CTR are supported */
1179 { .name = "ecb(aes)",
1180 .drv_name = "ecb-aes",
1181 .block_size = AES_BLOCK_SIZE,
1182 .enc_type = (ENC_TYPE_ALG_AES128 |
1183 ENC_TYPE_CHAINING_ECB),
1184 .skcipher = {
1185 .min_keysize = AES_MIN_KEY_SIZE,
1186 .max_keysize = AES_MAX_KEY_SIZE,
1187 .setkey = n2_aes_setkey,
1188 .encrypt = n2_encrypt_ecb,
1189 .decrypt = n2_decrypt_ecb,
1190 },
1191 },
1192 { .name = "cbc(aes)",
1193 .drv_name = "cbc-aes",
1194 .block_size = AES_BLOCK_SIZE,
1195 .enc_type = (ENC_TYPE_ALG_AES128 |
1196 ENC_TYPE_CHAINING_CBC),
1197 .skcipher = {
1198 .ivsize = AES_BLOCK_SIZE,
1199 .min_keysize = AES_MIN_KEY_SIZE,
1200 .max_keysize = AES_MAX_KEY_SIZE,
1201 .setkey = n2_aes_setkey,
1202 .encrypt = n2_encrypt_chaining,
1203 .decrypt = n2_decrypt_chaining,
1204 },
1205 },
1206 { .name = "ctr(aes)",
1207 .drv_name = "ctr-aes",
1208 .block_size = AES_BLOCK_SIZE,
1209 .enc_type = (ENC_TYPE_ALG_AES128 |
1210 ENC_TYPE_CHAINING_COUNTER),
1211 .skcipher = {
1212 .ivsize = AES_BLOCK_SIZE,
1213 .min_keysize = AES_MIN_KEY_SIZE,
1214 .max_keysize = AES_MAX_KEY_SIZE,
1215 .setkey = n2_aes_setkey,
1216 .encrypt = n2_encrypt_chaining,
1217 .decrypt = n2_encrypt_chaining,
1218 },
1219 },
1220
1221 };
1222 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1223
1224 static LIST_HEAD(skcipher_algs);
1225
1226 struct n2_hash_tmpl {
1227 const char *name;
1228 const u8 *hash_zero;
1229 const u8 *hash_init;
1230 u8 hw_op_hashsz;
1231 u8 digest_size;
1232 u8 block_size;
1233 u8 auth_type;
1234 u8 hmac_type;
1235 };
1236
1237 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1238 cpu_to_le32(MD5_H0),
1239 cpu_to_le32(MD5_H1),
1240 cpu_to_le32(MD5_H2),
1241 cpu_to_le32(MD5_H3),
1242 };
1243 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1244 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1245 };
1246 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1247 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1248 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1249 };
1250 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1251 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1252 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1253 };
1254
1255 static const struct n2_hash_tmpl hash_tmpls[] = {
1256 { .name = "md5",
1257 .hash_zero = md5_zero_message_hash,
1258 .hash_init = (u8 *)n2_md5_init,
1259 .auth_type = AUTH_TYPE_MD5,
1260 .hmac_type = AUTH_TYPE_HMAC_MD5,
1261 .hw_op_hashsz = MD5_DIGEST_SIZE,
1262 .digest_size = MD5_DIGEST_SIZE,
1263 .block_size = MD5_HMAC_BLOCK_SIZE },
1264 { .name = "sha1",
1265 .hash_zero = sha1_zero_message_hash,
1266 .hash_init = (u8 *)n2_sha1_init,
1267 .auth_type = AUTH_TYPE_SHA1,
1268 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1269 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1270 .digest_size = SHA1_DIGEST_SIZE,
1271 .block_size = SHA1_BLOCK_SIZE },
1272 { .name = "sha256",
1273 .hash_zero = sha256_zero_message_hash,
1274 .hash_init = (u8 *)n2_sha256_init,
1275 .auth_type = AUTH_TYPE_SHA256,
1276 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1277 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1278 .digest_size = SHA256_DIGEST_SIZE,
1279 .block_size = SHA256_BLOCK_SIZE },
1280 { .name = "sha224",
1281 .hash_zero = sha224_zero_message_hash,
1282 .hash_init = (u8 *)n2_sha224_init,
1283 .auth_type = AUTH_TYPE_SHA256,
1284 .hmac_type = AUTH_TYPE_RESERVED,
1285 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1286 .digest_size = SHA224_DIGEST_SIZE,
1287 .block_size = SHA224_BLOCK_SIZE },
1288 };
1289 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1290
1291 static LIST_HEAD(ahash_algs);
1292 static LIST_HEAD(hmac_algs);
1293
1294 static int algs_registered;
1295
1296 static void __n2_unregister_algs(void)
1297 {
1298 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1299 struct n2_ahash_alg *alg, *alg_tmp;
1300 struct n2_hmac_alg *hmac, *hmac_tmp;
1301
1302 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1303 crypto_unregister_skcipher(&skcipher->skcipher);
1304 list_del(&skcipher->entry);
1305 kfree(skcipher);
1306 }
1307 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1308 crypto_unregister_ahash(&hmac->derived.alg);
1309 list_del(&hmac->derived.entry);
1310 kfree(hmac);
1311 }
1312 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1313 crypto_unregister_ahash(&alg->alg);
1314 list_del(&alg->entry);
1315 kfree(alg);
1316 }
1317 }
1318
1319 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1320 {
1321 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1322 return 0;
1323 }
1324
1325 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1326 {
1327 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1328 struct skcipher_alg *alg;
1329 int err;
1330
1331 if (!p)
1332 return -ENOMEM;
1333
1334 alg = &p->skcipher;
1335 *alg = tmpl->skcipher;
1336
1337 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1338 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1339 alg->base.cra_priority = N2_CRA_PRIORITY;
1340 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1341 CRYPTO_ALG_ALLOCATES_MEMORY;
1342 alg->base.cra_blocksize = tmpl->block_size;
1343 p->enc_type = tmpl->enc_type;
1344 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1345 alg->base.cra_module = THIS_MODULE;
1346 alg->init = n2_skcipher_init_tfm;
1347
1348 list_add(&p->entry, &skcipher_algs);
1349 err = crypto_register_skcipher(alg);
1350 if (err) {
1351 pr_err("%s alg registration failed\n", alg->base.cra_name);
1352 list_del(&p->entry);
1353 kfree(p);
1354 } else {
1355 pr_info("%s alg registered\n", alg->base.cra_name);
1356 }
1357 return err;
1358 }
1359
1360 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1361 {
1362 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1363 struct ahash_alg *ahash;
1364 struct crypto_alg *base;
1365 int err;
1366
1367 if (!p)
1368 return -ENOMEM;
1369
1370 p->child_alg = n2ahash->alg.halg.base.cra_name;
1371 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1372 INIT_LIST_HEAD(&p->derived.entry);
1373
1374 ahash = &p->derived.alg;
1375 ahash->digest = n2_hmac_async_digest;
1376 ahash->setkey = n2_hmac_async_setkey;
1377
1378 base = &ahash->halg.base;
1379 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1380 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1381
1382 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1383 base->cra_init = n2_hmac_cra_init;
1384 base->cra_exit = n2_hmac_cra_exit;
1385
1386 list_add(&p->derived.entry, &hmac_algs);
1387 err = crypto_register_ahash(ahash);
1388 if (err) {
1389 pr_err("%s alg registration failed\n", base->cra_name);
1390 list_del(&p->derived.entry);
1391 kfree(p);
1392 } else {
1393 pr_info("%s alg registered\n", base->cra_name);
1394 }
1395 return err;
1396 }
1397
1398 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1399 {
1400 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1401 struct hash_alg_common *halg;
1402 struct crypto_alg *base;
1403 struct ahash_alg *ahash;
1404 int err;
1405
1406 if (!p)
1407 return -ENOMEM;
1408
1409 p->hash_zero = tmpl->hash_zero;
1410 p->hash_init = tmpl->hash_init;
1411 p->auth_type = tmpl->auth_type;
1412 p->hmac_type = tmpl->hmac_type;
1413 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1414 p->digest_size = tmpl->digest_size;
1415
1416 ahash = &p->alg;
1417 ahash->init = n2_hash_async_init;
1418 ahash->update = n2_hash_async_update;
1419 ahash->final = n2_hash_async_final;
1420 ahash->finup = n2_hash_async_finup;
1421 ahash->digest = n2_hash_async_digest;
1422 ahash->export = n2_hash_async_noexport;
1423 ahash->import = n2_hash_async_noimport;
1424
1425 halg = &ahash->halg;
1426 halg->digestsize = tmpl->digest_size;
1427
1428 base = &halg->base;
1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1431 base->cra_priority = N2_CRA_PRIORITY;
1432 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1433 CRYPTO_ALG_NEED_FALLBACK;
1434 base->cra_blocksize = tmpl->block_size;
1435 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1436 base->cra_module = THIS_MODULE;
1437 base->cra_init = n2_hash_cra_init;
1438 base->cra_exit = n2_hash_cra_exit;
1439
1440 list_add(&p->entry, &ahash_algs);
1441 err = crypto_register_ahash(ahash);
1442 if (err) {
1443 pr_err("%s alg registration failed\n", base->cra_name);
1444 list_del(&p->entry);
1445 kfree(p);
1446 } else {
1447 pr_info("%s alg registered\n", base->cra_name);
1448 }
1449 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1450 err = __n2_register_one_hmac(p);
1451 return err;
1452 }
1453
1454 static int n2_register_algs(void)
1455 {
1456 int i, err = 0;
1457
1458 mutex_lock(&spu_lock);
1459 if (algs_registered++)
1460 goto out;
1461
1462 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1463 err = __n2_register_one_ahash(&hash_tmpls[i]);
1464 if (err) {
1465 __n2_unregister_algs();
1466 goto out;
1467 }
1468 }
1469 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1470 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1471 if (err) {
1472 __n2_unregister_algs();
1473 goto out;
1474 }
1475 }
1476
1477 out:
1478 mutex_unlock(&spu_lock);
1479 return err;
1480 }
1481
1482 static void n2_unregister_algs(void)
1483 {
1484 mutex_lock(&spu_lock);
1485 if (!--algs_registered)
1486 __n2_unregister_algs();
1487 mutex_unlock(&spu_lock);
1488 }
1489
1490 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1491 * a devino. This isn't very useful to us because all of the
1492 * interrupts listed in the device_node have been translated to
1493 * Linux virtual IRQ cookie numbers.
1494 *
1495 * So we have to back-translate, going through the 'intr' and 'ino'
1496 * property tables of the n2cp MDESC node, matching it with the OF
1497 * 'interrupts' property entries, in order to to figure out which
1498 * devino goes to which already-translated IRQ.
1499 */
1500 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1501 unsigned long dev_ino)
1502 {
1503 const unsigned int *dev_intrs;
1504 unsigned int intr;
1505 int i;
1506
1507 for (i = 0; i < ip->num_intrs; i++) {
1508 if (ip->ino_table[i].ino == dev_ino)
1509 break;
1510 }
1511 if (i == ip->num_intrs)
1512 return -ENODEV;
1513
1514 intr = ip->ino_table[i].intr;
1515
1516 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1517 if (!dev_intrs)
1518 return -ENODEV;
1519
1520 for (i = 0; i < dev->archdata.num_irqs; i++) {
1521 if (dev_intrs[i] == intr)
1522 return i;
1523 }
1524
1525 return -ENODEV;
1526 }
1527
1528 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1529 const char *irq_name, struct spu_queue *p,
1530 irq_handler_t handler)
1531 {
1532 unsigned long herr;
1533 int index;
1534
1535 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1536 if (herr)
1537 return -EINVAL;
1538
1539 index = find_devino_index(dev, ip, p->devino);
1540 if (index < 0)
1541 return index;
1542
1543 p->irq = dev->archdata.irqs[index];
1544
1545 sprintf(p->irq_name, "%s-%d", irq_name, index);
1546
1547 return request_irq(p->irq, handler, 0, p->irq_name, p);
1548 }
1549
1550 static struct kmem_cache *queue_cache[2];
1551
1552 static void *new_queue(unsigned long q_type)
1553 {
1554 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1555 }
1556
1557 static void free_queue(void *p, unsigned long q_type)
1558 {
1559 kmem_cache_free(queue_cache[q_type - 1], p);
1560 }
1561
1562 static int queue_cache_init(void)
1563 {
1564 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1565 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1566 kmem_cache_create("mau_queue",
1567 (MAU_NUM_ENTRIES *
1568 MAU_ENTRY_SIZE),
1569 MAU_ENTRY_SIZE, 0, NULL);
1570 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1571 return -ENOMEM;
1572
1573 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1574 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1575 kmem_cache_create("cwq_queue",
1576 (CWQ_NUM_ENTRIES *
1577 CWQ_ENTRY_SIZE),
1578 CWQ_ENTRY_SIZE, 0, NULL);
1579 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1580 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1581 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1582 return -ENOMEM;
1583 }
1584 return 0;
1585 }
1586
1587 static void queue_cache_destroy(void)
1588 {
1589 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1590 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1591 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1592 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1593 }
1594
1595 static long spu_queue_register_workfn(void *arg)
1596 {
1597 struct spu_qreg *qr = arg;
1598 struct spu_queue *p = qr->queue;
1599 unsigned long q_type = qr->type;
1600 unsigned long hv_ret;
1601
1602 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1603 CWQ_NUM_ENTRIES, &p->qhandle);
1604 if (!hv_ret)
1605 sun4v_ncs_sethead_marker(p->qhandle, 0);
1606
1607 return hv_ret ? -EINVAL : 0;
1608 }
1609
1610 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1611 {
1612 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1613 struct spu_qreg qr = { .queue = p, .type = q_type };
1614
1615 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1616 }
1617
1618 static int spu_queue_setup(struct spu_queue *p)
1619 {
1620 int err;
1621
1622 p->q = new_queue(p->q_type);
1623 if (!p->q)
1624 return -ENOMEM;
1625
1626 err = spu_queue_register(p, p->q_type);
1627 if (err) {
1628 free_queue(p->q, p->q_type);
1629 p->q = NULL;
1630 }
1631
1632 return err;
1633 }
1634
1635 static void spu_queue_destroy(struct spu_queue *p)
1636 {
1637 unsigned long hv_ret;
1638
1639 if (!p->q)
1640 return;
1641
1642 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1643
1644 if (!hv_ret)
1645 free_queue(p->q, p->q_type);
1646 }
1647
1648 static void spu_list_destroy(struct list_head *list)
1649 {
1650 struct spu_queue *p, *n;
1651
1652 list_for_each_entry_safe(p, n, list, list) {
1653 int i;
1654
1655 for (i = 0; i < NR_CPUS; i++) {
1656 if (cpu_to_cwq[i] == p)
1657 cpu_to_cwq[i] = NULL;
1658 }
1659
1660 if (p->irq) {
1661 free_irq(p->irq, p);
1662 p->irq = 0;
1663 }
1664 spu_queue_destroy(p);
1665 list_del(&p->list);
1666 kfree(p);
1667 }
1668 }
1669
1670 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1671 * gathering cpu membership information.
1672 */
1673 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1674 struct platform_device *dev,
1675 u64 node, struct spu_queue *p,
1676 struct spu_queue **table)
1677 {
1678 u64 arc;
1679
1680 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1681 u64 tgt = mdesc_arc_target(mdesc, arc);
1682 const char *name = mdesc_node_name(mdesc, tgt);
1683 const u64 *id;
1684
1685 if (strcmp(name, "cpu"))
1686 continue;
1687 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1688 if (table[*id] != NULL) {
1689 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1690 dev->dev.of_node);
1691 return -EINVAL;
1692 }
1693 cpumask_set_cpu(*id, &p->sharing);
1694 table[*id] = p;
1695 }
1696 return 0;
1697 }
1698
1699 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1700 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1701 struct platform_device *dev, struct mdesc_handle *mdesc,
1702 u64 node, const char *iname, unsigned long q_type,
1703 irq_handler_t handler, struct spu_queue **table)
1704 {
1705 struct spu_queue *p;
1706 int err;
1707
1708 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1709 if (!p) {
1710 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1711 dev->dev.of_node);
1712 return -ENOMEM;
1713 }
1714
1715 cpumask_clear(&p->sharing);
1716 spin_lock_init(&p->lock);
1717 p->q_type = q_type;
1718 INIT_LIST_HEAD(&p->jobs);
1719 list_add(&p->list, list);
1720
1721 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1722 if (err)
1723 return err;
1724
1725 err = spu_queue_setup(p);
1726 if (err)
1727 return err;
1728
1729 return spu_map_ino(dev, ip, iname, p, handler);
1730 }
1731
1732 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1733 struct spu_mdesc_info *ip, struct list_head *list,
1734 const char *exec_name, unsigned long q_type,
1735 irq_handler_t handler, struct spu_queue **table)
1736 {
1737 int err = 0;
1738 u64 node;
1739
1740 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1741 const char *type;
1742
1743 type = mdesc_get_property(mdesc, node, "type", NULL);
1744 if (!type || strcmp(type, exec_name))
1745 continue;
1746
1747 err = handle_exec_unit(ip, list, dev, mdesc, node,
1748 exec_name, q_type, handler, table);
1749 if (err) {
1750 spu_list_destroy(list);
1751 break;
1752 }
1753 }
1754
1755 return err;
1756 }
1757
1758 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1759 struct spu_mdesc_info *ip)
1760 {
1761 const u64 *ino;
1762 int ino_len;
1763 int i;
1764
1765 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1766 if (!ino) {
1767 printk("NO 'ino'\n");
1768 return -ENODEV;
1769 }
1770
1771 ip->num_intrs = ino_len / sizeof(u64);
1772 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1773 ip->num_intrs),
1774 GFP_KERNEL);
1775 if (!ip->ino_table)
1776 return -ENOMEM;
1777
1778 for (i = 0; i < ip->num_intrs; i++) {
1779 struct ino_blob *b = &ip->ino_table[i];
1780 b->intr = i + 1;
1781 b->ino = ino[i];
1782 }
1783
1784 return 0;
1785 }
1786
1787 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1788 struct platform_device *dev,
1789 struct spu_mdesc_info *ip,
1790 const char *node_name)
1791 {
1792 const unsigned int *reg;
1793 u64 node;
1794
1795 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1796 if (!reg)
1797 return -ENODEV;
1798
1799 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1800 const char *name;
1801 const u64 *chdl;
1802
1803 name = mdesc_get_property(mdesc, node, "name", NULL);
1804 if (!name || strcmp(name, node_name))
1805 continue;
1806 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1807 if (!chdl || (*chdl != *reg))
1808 continue;
1809 ip->cfg_handle = *chdl;
1810 return get_irq_props(mdesc, node, ip);
1811 }
1812
1813 return -ENODEV;
1814 }
1815
1816 static unsigned long n2_spu_hvapi_major;
1817 static unsigned long n2_spu_hvapi_minor;
1818
1819 static int n2_spu_hvapi_register(void)
1820 {
1821 int err;
1822
1823 n2_spu_hvapi_major = 2;
1824 n2_spu_hvapi_minor = 0;
1825
1826 err = sun4v_hvapi_register(HV_GRP_NCS,
1827 n2_spu_hvapi_major,
1828 &n2_spu_hvapi_minor);
1829
1830 if (!err)
1831 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1832 n2_spu_hvapi_major,
1833 n2_spu_hvapi_minor);
1834
1835 return err;
1836 }
1837
1838 static void n2_spu_hvapi_unregister(void)
1839 {
1840 sun4v_hvapi_unregister(HV_GRP_NCS);
1841 }
1842
1843 static int global_ref;
1844
1845 static int grab_global_resources(void)
1846 {
1847 int err = 0;
1848
1849 mutex_lock(&spu_lock);
1850
1851 if (global_ref++)
1852 goto out;
1853
1854 err = n2_spu_hvapi_register();
1855 if (err)
1856 goto out;
1857
1858 err = queue_cache_init();
1859 if (err)
1860 goto out_hvapi_release;
1861
1862 err = -ENOMEM;
1863 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1864 GFP_KERNEL);
1865 if (!cpu_to_cwq)
1866 goto out_queue_cache_destroy;
1867
1868 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869 GFP_KERNEL);
1870 if (!cpu_to_mau)
1871 goto out_free_cwq_table;
1872
1873 err = 0;
1874
1875 out:
1876 if (err)
1877 global_ref--;
1878 mutex_unlock(&spu_lock);
1879 return err;
1880
1881 out_free_cwq_table:
1882 kfree(cpu_to_cwq);
1883 cpu_to_cwq = NULL;
1884
1885 out_queue_cache_destroy:
1886 queue_cache_destroy();
1887
1888 out_hvapi_release:
1889 n2_spu_hvapi_unregister();
1890 goto out;
1891 }
1892
1893 static void release_global_resources(void)
1894 {
1895 mutex_lock(&spu_lock);
1896 if (!--global_ref) {
1897 kfree(cpu_to_cwq);
1898 cpu_to_cwq = NULL;
1899
1900 kfree(cpu_to_mau);
1901 cpu_to_mau = NULL;
1902
1903 queue_cache_destroy();
1904 n2_spu_hvapi_unregister();
1905 }
1906 mutex_unlock(&spu_lock);
1907 }
1908
1909 static struct n2_crypto *alloc_n2cp(void)
1910 {
1911 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1912
1913 if (np)
1914 INIT_LIST_HEAD(&np->cwq_list);
1915
1916 return np;
1917 }
1918
1919 static void free_n2cp(struct n2_crypto *np)
1920 {
1921 kfree(np->cwq_info.ino_table);
1922 np->cwq_info.ino_table = NULL;
1923
1924 kfree(np);
1925 }
1926
1927 static void n2_spu_driver_version(void)
1928 {
1929 static int n2_spu_version_printed;
1930
1931 if (n2_spu_version_printed++ == 0)
1932 pr_info("%s", version);
1933 }
1934
1935 static int n2_crypto_probe(struct platform_device *dev)
1936 {
1937 struct mdesc_handle *mdesc;
1938 struct n2_crypto *np;
1939 int err;
1940
1941 n2_spu_driver_version();
1942
1943 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1944
1945 np = alloc_n2cp();
1946 if (!np) {
1947 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1948 dev->dev.of_node);
1949 return -ENOMEM;
1950 }
1951
1952 err = grab_global_resources();
1953 if (err) {
1954 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1955 dev->dev.of_node);
1956 goto out_free_n2cp;
1957 }
1958
1959 mdesc = mdesc_grab();
1960
1961 if (!mdesc) {
1962 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1963 dev->dev.of_node);
1964 err = -ENODEV;
1965 goto out_free_global;
1966 }
1967 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1968 if (err) {
1969 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1970 dev->dev.of_node);
1971 mdesc_release(mdesc);
1972 goto out_free_global;
1973 }
1974
1975 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1976 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1977 cpu_to_cwq);
1978 mdesc_release(mdesc);
1979
1980 if (err) {
1981 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1982 dev->dev.of_node);
1983 goto out_free_global;
1984 }
1985
1986 err = n2_register_algs();
1987 if (err) {
1988 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1989 dev->dev.of_node);
1990 goto out_free_spu_list;
1991 }
1992
1993 dev_set_drvdata(&dev->dev, np);
1994
1995 return 0;
1996
1997 out_free_spu_list:
1998 spu_list_destroy(&np->cwq_list);
1999
2000 out_free_global:
2001 release_global_resources();
2002
2003 out_free_n2cp:
2004 free_n2cp(np);
2005
2006 return err;
2007 }
2008
2009 static int n2_crypto_remove(struct platform_device *dev)
2010 {
2011 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2012
2013 n2_unregister_algs();
2014
2015 spu_list_destroy(&np->cwq_list);
2016
2017 release_global_resources();
2018
2019 free_n2cp(np);
2020
2021 return 0;
2022 }
2023
2024 static struct n2_mau *alloc_ncp(void)
2025 {
2026 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2027
2028 if (mp)
2029 INIT_LIST_HEAD(&mp->mau_list);
2030
2031 return mp;
2032 }
2033
2034 static void free_ncp(struct n2_mau *mp)
2035 {
2036 kfree(mp->mau_info.ino_table);
2037 mp->mau_info.ino_table = NULL;
2038
2039 kfree(mp);
2040 }
2041
2042 static int n2_mau_probe(struct platform_device *dev)
2043 {
2044 struct mdesc_handle *mdesc;
2045 struct n2_mau *mp;
2046 int err;
2047
2048 n2_spu_driver_version();
2049
2050 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2051
2052 mp = alloc_ncp();
2053 if (!mp) {
2054 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2055 dev->dev.of_node);
2056 return -ENOMEM;
2057 }
2058
2059 err = grab_global_resources();
2060 if (err) {
2061 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2062 dev->dev.of_node);
2063 goto out_free_ncp;
2064 }
2065
2066 mdesc = mdesc_grab();
2067
2068 if (!mdesc) {
2069 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2070 dev->dev.of_node);
2071 err = -ENODEV;
2072 goto out_free_global;
2073 }
2074
2075 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2076 if (err) {
2077 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2078 dev->dev.of_node);
2079 mdesc_release(mdesc);
2080 goto out_free_global;
2081 }
2082
2083 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2084 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2085 cpu_to_mau);
2086 mdesc_release(mdesc);
2087
2088 if (err) {
2089 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2090 dev->dev.of_node);
2091 goto out_free_global;
2092 }
2093
2094 dev_set_drvdata(&dev->dev, mp);
2095
2096 return 0;
2097
2098 out_free_global:
2099 release_global_resources();
2100
2101 out_free_ncp:
2102 free_ncp(mp);
2103
2104 return err;
2105 }
2106
2107 static int n2_mau_remove(struct platform_device *dev)
2108 {
2109 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2110
2111 spu_list_destroy(&mp->mau_list);
2112
2113 release_global_resources();
2114
2115 free_ncp(mp);
2116
2117 return 0;
2118 }
2119
2120 static const struct of_device_id n2_crypto_match[] = {
2121 {
2122 .name = "n2cp",
2123 .compatible = "SUNW,n2-cwq",
2124 },
2125 {
2126 .name = "n2cp",
2127 .compatible = "SUNW,vf-cwq",
2128 },
2129 {
2130 .name = "n2cp",
2131 .compatible = "SUNW,kt-cwq",
2132 },
2133 {},
2134 };
2135
2136 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2137
2138 static struct platform_driver n2_crypto_driver = {
2139 .driver = {
2140 .name = "n2cp",
2141 .of_match_table = n2_crypto_match,
2142 },
2143 .probe = n2_crypto_probe,
2144 .remove = n2_crypto_remove,
2145 };
2146
2147 static const struct of_device_id n2_mau_match[] = {
2148 {
2149 .name = "ncp",
2150 .compatible = "SUNW,n2-mau",
2151 },
2152 {
2153 .name = "ncp",
2154 .compatible = "SUNW,vf-mau",
2155 },
2156 {
2157 .name = "ncp",
2158 .compatible = "SUNW,kt-mau",
2159 },
2160 {},
2161 };
2162
2163 MODULE_DEVICE_TABLE(of, n2_mau_match);
2164
2165 static struct platform_driver n2_mau_driver = {
2166 .driver = {
2167 .name = "ncp",
2168 .of_match_table = n2_mau_match,
2169 },
2170 .probe = n2_mau_probe,
2171 .remove = n2_mau_remove,
2172 };
2173
2174 static struct platform_driver * const drivers[] = {
2175 &n2_crypto_driver,
2176 &n2_mau_driver,
2177 };
2178
2179 static int __init n2_init(void)
2180 {
2181 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2182 }
2183
2184 static void __exit n2_exit(void)
2185 {
2186 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2187 }
2188
2189 module_init(n2_init);
2190 module_exit(n2_exit);