]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/n2_core.c
Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / n2_core.c
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2 *
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30
31 #include "n2_core.h"
32
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
36
37 static const char version[] =
38 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44
45 #define N2_CRA_PRIORITY 200
46
47 static DEFINE_MUTEX(spu_lock);
48
49 struct spu_queue {
50 cpumask_t sharing;
51 unsigned long qhandle;
52
53 spinlock_t lock;
54 u8 q_type;
55 void *q;
56 unsigned long head;
57 unsigned long tail;
58 struct list_head jobs;
59
60 unsigned long devino;
61
62 char irq_name[32];
63 unsigned int irq;
64
65 struct list_head list;
66 };
67
68 struct spu_qreg {
69 struct spu_queue *queue;
70 unsigned long type;
71 };
72
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78 if (q->q_type == HV_NCS_QTYPE_MAU) {
79 off += MAU_ENTRY_SIZE;
80 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81 off = 0;
82 } else {
83 off += CWQ_ENTRY_SIZE;
84 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85 off = 0;
86 }
87 return off;
88 }
89
90 struct n2_request_common {
91 struct list_head entry;
92 unsigned int offset;
93 };
94 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
95
96 /* An async job request records the final tail value it used in
97 * n2_request_common->offset, test to see if that offset is in
98 * the range old_head, new_head, inclusive.
99 */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101 unsigned long old_head, unsigned long new_head)
102 {
103 if (old_head <= new_head) {
104 if (offset > old_head && offset <= new_head)
105 return true;
106 } else {
107 if (offset > old_head || offset <= new_head)
108 return true;
109 }
110 return false;
111 }
112
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114 * a virtual device INO interrupt. We should process the
115 * completed CWQ entries and adjust the HEAD marker to clear
116 * the IRQ.
117 */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120 unsigned long off, new_head, hv_ret;
121 struct spu_queue *q = dev_id;
122
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q->qhandle);
125
126 spin_lock(&q->lock);
127
128 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head, hv_ret);
132
133 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134 /* XXX ... XXX */
135 }
136
137 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138 if (hv_ret == HV_EOK)
139 q->head = new_head;
140
141 spin_unlock(&q->lock);
142
143 return IRQ_HANDLED;
144 }
145
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148 struct spu_queue *q = dev_id;
149 unsigned long head, hv_ret;
150
151 spin_lock(&q->lock);
152
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q->qhandle);
155
156 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head, hv_ret);
160
161 sun4v_ncs_sethead_marker(q->qhandle, head);
162
163 spin_unlock(&q->lock);
164
165 return IRQ_HANDLED;
166 }
167
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170 return q->q + spu_next_offset(q, cur - q->q);
171 }
172
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175 unsigned long head = q->head;
176 unsigned long tail = q->tail;
177 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178 unsigned long diff;
179
180 if (head > tail)
181 diff = head - tail;
182 else
183 diff = (end - tail) + head;
184
185 return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190 int avail = spu_queue_num_free(q);
191
192 if (avail >= num_entries)
193 return q->q + q->tail;
194
195 return NULL;
196 }
197
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200 unsigned long hv_ret, new_tail;
201
202 new_tail = spu_next_offset(q, last - q->q);
203
204 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205 if (hv_ret == HV_EOK)
206 q->tail = new_tail;
207 return hv_ret;
208 }
209
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211 int enc_type, int auth_type,
212 unsigned int hash_len,
213 bool sfas, bool sob, bool eob, bool encrypt,
214 int opcode)
215 {
216 u64 word = (len - 1) & CONTROL_LEN;
217
218 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221 if (sfas)
222 word |= CONTROL_STORE_FINAL_AUTH_STATE;
223 if (sob)
224 word |= CONTROL_START_OF_BLOCK;
225 if (eob)
226 word |= CONTROL_END_OF_BLOCK;
227 if (encrypt)
228 word |= CONTROL_ENCRYPT;
229 if (hmac_key_len)
230 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231 if (hash_len)
232 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233
234 return word;
235 }
236
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240 if (this_len >= 64 ||
241 qp->head != qp->tail)
242 return true;
243 return false;
244 }
245 #endif
246
247 struct n2_ahash_alg {
248 struct list_head entry;
249 const u8 *hash_zero;
250 const u32 *hash_init;
251 u8 hw_op_hashsz;
252 u8 digest_size;
253 u8 auth_type;
254 u8 hmac_type;
255 struct ahash_alg alg;
256 };
257
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260 struct crypto_alg *alg = tfm->__crt_alg;
261 struct ahash_alg *ahash_alg;
262
263 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264
265 return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267
268 struct n2_hmac_alg {
269 const char *child_alg;
270 struct n2_ahash_alg derived;
271 };
272
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275 struct crypto_alg *alg = tfm->__crt_alg;
276 struct ahash_alg *ahash_alg;
277
278 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279
280 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282
283 struct n2_hash_ctx {
284 struct crypto_ahash *fallback_tfm;
285 };
286
287 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
288
289 struct n2_hmac_ctx {
290 struct n2_hash_ctx base;
291
292 struct crypto_shash *child_shash;
293
294 int hash_key_len;
295 unsigned char hash_key[N2_HASH_KEY_MAX];
296 };
297
298 struct n2_hash_req_ctx {
299 union {
300 struct md5_state md5;
301 struct sha1_state sha1;
302 struct sha256_state sha256;
303 } u;
304
305 struct ahash_request fallback_req;
306 };
307
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313
314 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316
317 return crypto_ahash_init(&rctx->fallback_req);
318 }
319
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325
326 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328 rctx->fallback_req.nbytes = req->nbytes;
329 rctx->fallback_req.src = req->src;
330
331 return crypto_ahash_update(&rctx->fallback_req);
332 }
333
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339
340 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342 rctx->fallback_req.result = req->result;
343
344 return crypto_ahash_final(&rctx->fallback_req);
345 }
346
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352
353 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355 rctx->fallback_req.nbytes = req->nbytes;
356 rctx->fallback_req.src = req->src;
357 rctx->fallback_req.result = req->result;
358
359 return crypto_ahash_finup(&rctx->fallback_req);
360 }
361
362 static int n2_hash_cra_init(struct crypto_tfm *tfm)
363 {
364 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
365 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
366 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
367 struct crypto_ahash *fallback_tfm;
368 int err;
369
370 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
371 CRYPTO_ALG_NEED_FALLBACK);
372 if (IS_ERR(fallback_tfm)) {
373 pr_warning("Fallback driver '%s' could not be loaded!\n",
374 fallback_driver_name);
375 err = PTR_ERR(fallback_tfm);
376 goto out;
377 }
378
379 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
380 crypto_ahash_reqsize(fallback_tfm)));
381
382 ctx->fallback_tfm = fallback_tfm;
383 return 0;
384
385 out:
386 return err;
387 }
388
389 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
390 {
391 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
392 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
393
394 crypto_free_ahash(ctx->fallback_tfm);
395 }
396
397 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
398 {
399 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
400 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
401 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
402 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
403 struct crypto_ahash *fallback_tfm;
404 struct crypto_shash *child_shash;
405 int err;
406
407 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
408 CRYPTO_ALG_NEED_FALLBACK);
409 if (IS_ERR(fallback_tfm)) {
410 pr_warning("Fallback driver '%s' could not be loaded!\n",
411 fallback_driver_name);
412 err = PTR_ERR(fallback_tfm);
413 goto out;
414 }
415
416 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
417 if (IS_ERR(child_shash)) {
418 pr_warning("Child shash '%s' could not be loaded!\n",
419 n2alg->child_alg);
420 err = PTR_ERR(child_shash);
421 goto out_free_fallback;
422 }
423
424 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
425 crypto_ahash_reqsize(fallback_tfm)));
426
427 ctx->child_shash = child_shash;
428 ctx->base.fallback_tfm = fallback_tfm;
429 return 0;
430
431 out_free_fallback:
432 crypto_free_ahash(fallback_tfm);
433
434 out:
435 return err;
436 }
437
438 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
439 {
440 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
441 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
442
443 crypto_free_ahash(ctx->base.fallback_tfm);
444 crypto_free_shash(ctx->child_shash);
445 }
446
447 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
448 unsigned int keylen)
449 {
450 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
451 struct crypto_shash *child_shash = ctx->child_shash;
452 struct crypto_ahash *fallback_tfm;
453 SHASH_DESC_ON_STACK(shash, child_shash);
454 int err, bs, ds;
455
456 fallback_tfm = ctx->base.fallback_tfm;
457 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
458 if (err)
459 return err;
460
461 shash->tfm = child_shash;
462 shash->flags = crypto_ahash_get_flags(tfm) &
463 CRYPTO_TFM_REQ_MAY_SLEEP;
464
465 bs = crypto_shash_blocksize(child_shash);
466 ds = crypto_shash_digestsize(child_shash);
467 BUG_ON(ds > N2_HASH_KEY_MAX);
468 if (keylen > bs) {
469 err = crypto_shash_digest(shash, key, keylen,
470 ctx->hash_key);
471 if (err)
472 return err;
473 keylen = ds;
474 } else if (keylen <= N2_HASH_KEY_MAX)
475 memcpy(ctx->hash_key, key, keylen);
476
477 ctx->hash_key_len = keylen;
478
479 return err;
480 }
481
482 static unsigned long wait_for_tail(struct spu_queue *qp)
483 {
484 unsigned long head, hv_ret;
485
486 do {
487 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
488 if (hv_ret != HV_EOK) {
489 pr_err("Hypervisor error on gethead\n");
490 break;
491 }
492 if (head == qp->tail) {
493 qp->head = head;
494 break;
495 }
496 } while (1);
497 return hv_ret;
498 }
499
500 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
501 struct cwq_initial_entry *ent)
502 {
503 unsigned long hv_ret = spu_queue_submit(qp, ent);
504
505 if (hv_ret == HV_EOK)
506 hv_ret = wait_for_tail(qp);
507
508 return hv_ret;
509 }
510
511 static int n2_do_async_digest(struct ahash_request *req,
512 unsigned int auth_type, unsigned int digest_size,
513 unsigned int result_size, void *hash_loc,
514 unsigned long auth_key, unsigned int auth_key_len)
515 {
516 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
517 struct cwq_initial_entry *ent;
518 struct crypto_hash_walk walk;
519 struct spu_queue *qp;
520 unsigned long flags;
521 int err = -ENODEV;
522 int nbytes, cpu;
523
524 /* The total effective length of the operation may not
525 * exceed 2^16.
526 */
527 if (unlikely(req->nbytes > (1 << 16))) {
528 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
529 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
530
531 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
532 rctx->fallback_req.base.flags =
533 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
534 rctx->fallback_req.nbytes = req->nbytes;
535 rctx->fallback_req.src = req->src;
536 rctx->fallback_req.result = req->result;
537
538 return crypto_ahash_digest(&rctx->fallback_req);
539 }
540
541 nbytes = crypto_hash_walk_first(req, &walk);
542
543 cpu = get_cpu();
544 qp = cpu_to_cwq[cpu];
545 if (!qp)
546 goto out;
547
548 spin_lock_irqsave(&qp->lock, flags);
549
550 /* XXX can do better, improve this later by doing a by-hand scatterlist
551 * XXX walk, etc.
552 */
553 ent = qp->q + qp->tail;
554
555 ent->control = control_word_base(nbytes, auth_key_len, 0,
556 auth_type, digest_size,
557 false, true, false, false,
558 OPCODE_INPLACE_BIT |
559 OPCODE_AUTH_MAC);
560 ent->src_addr = __pa(walk.data);
561 ent->auth_key_addr = auth_key;
562 ent->auth_iv_addr = __pa(hash_loc);
563 ent->final_auth_state_addr = 0UL;
564 ent->enc_key_addr = 0UL;
565 ent->enc_iv_addr = 0UL;
566 ent->dest_addr = __pa(hash_loc);
567
568 nbytes = crypto_hash_walk_done(&walk, 0);
569 while (nbytes > 0) {
570 ent = spu_queue_next(qp, ent);
571
572 ent->control = (nbytes - 1);
573 ent->src_addr = __pa(walk.data);
574 ent->auth_key_addr = 0UL;
575 ent->auth_iv_addr = 0UL;
576 ent->final_auth_state_addr = 0UL;
577 ent->enc_key_addr = 0UL;
578 ent->enc_iv_addr = 0UL;
579 ent->dest_addr = 0UL;
580
581 nbytes = crypto_hash_walk_done(&walk, 0);
582 }
583 ent->control |= CONTROL_END_OF_BLOCK;
584
585 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
586 err = -EINVAL;
587 else
588 err = 0;
589
590 spin_unlock_irqrestore(&qp->lock, flags);
591
592 if (!err)
593 memcpy(req->result, hash_loc, result_size);
594 out:
595 put_cpu();
596
597 return err;
598 }
599
600 static int n2_hash_async_digest(struct ahash_request *req)
601 {
602 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
603 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
604 int ds;
605
606 ds = n2alg->digest_size;
607 if (unlikely(req->nbytes == 0)) {
608 memcpy(req->result, n2alg->hash_zero, ds);
609 return 0;
610 }
611 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
612
613 return n2_do_async_digest(req, n2alg->auth_type,
614 n2alg->hw_op_hashsz, ds,
615 &rctx->u, 0UL, 0);
616 }
617
618 static int n2_hmac_async_digest(struct ahash_request *req)
619 {
620 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
621 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
622 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
623 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
624 int ds;
625
626 ds = n2alg->derived.digest_size;
627 if (unlikely(req->nbytes == 0) ||
628 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
629 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
631
632 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
633 rctx->fallback_req.base.flags =
634 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
635 rctx->fallback_req.nbytes = req->nbytes;
636 rctx->fallback_req.src = req->src;
637 rctx->fallback_req.result = req->result;
638
639 return crypto_ahash_digest(&rctx->fallback_req);
640 }
641 memcpy(&rctx->u, n2alg->derived.hash_init,
642 n2alg->derived.hw_op_hashsz);
643
644 return n2_do_async_digest(req, n2alg->derived.hmac_type,
645 n2alg->derived.hw_op_hashsz, ds,
646 &rctx->u,
647 __pa(&ctx->hash_key),
648 ctx->hash_key_len);
649 }
650
651 struct n2_cipher_context {
652 int key_len;
653 int enc_type;
654 union {
655 u8 aes[AES_MAX_KEY_SIZE];
656 u8 des[DES_KEY_SIZE];
657 u8 des3[3 * DES_KEY_SIZE];
658 u8 arc4[258]; /* S-box, X, Y */
659 } key;
660 };
661
662 #define N2_CHUNK_ARR_LEN 16
663
664 struct n2_crypto_chunk {
665 struct list_head entry;
666 unsigned long iv_paddr : 44;
667 unsigned long arr_len : 20;
668 unsigned long dest_paddr;
669 unsigned long dest_final;
670 struct {
671 unsigned long src_paddr : 44;
672 unsigned long src_len : 20;
673 } arr[N2_CHUNK_ARR_LEN];
674 };
675
676 struct n2_request_context {
677 struct ablkcipher_walk walk;
678 struct list_head chunk_list;
679 struct n2_crypto_chunk chunk;
680 u8 temp_iv[16];
681 };
682
683 /* The SPU allows some level of flexibility for partial cipher blocks
684 * being specified in a descriptor.
685 *
686 * It merely requires that every descriptor's length field is at least
687 * as large as the cipher block size. This means that a cipher block
688 * can span at most 2 descriptors. However, this does not allow a
689 * partial block to span into the final descriptor as that would
690 * violate the rule (since every descriptor's length must be at lest
691 * the block size). So, for example, assuming an 8 byte block size:
692 *
693 * 0xe --> 0xa --> 0x8
694 *
695 * is a valid length sequence, whereas:
696 *
697 * 0xe --> 0xb --> 0x7
698 *
699 * is not a valid sequence.
700 */
701
702 struct n2_cipher_alg {
703 struct list_head entry;
704 u8 enc_type;
705 struct crypto_alg alg;
706 };
707
708 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
709 {
710 struct crypto_alg *alg = tfm->__crt_alg;
711
712 return container_of(alg, struct n2_cipher_alg, alg);
713 }
714
715 struct n2_cipher_request_context {
716 struct ablkcipher_walk walk;
717 };
718
719 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
720 unsigned int keylen)
721 {
722 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
723 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
724 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
725
726 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
727
728 switch (keylen) {
729 case AES_KEYSIZE_128:
730 ctx->enc_type |= ENC_TYPE_ALG_AES128;
731 break;
732 case AES_KEYSIZE_192:
733 ctx->enc_type |= ENC_TYPE_ALG_AES192;
734 break;
735 case AES_KEYSIZE_256:
736 ctx->enc_type |= ENC_TYPE_ALG_AES256;
737 break;
738 default:
739 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
740 return -EINVAL;
741 }
742
743 ctx->key_len = keylen;
744 memcpy(ctx->key.aes, key, keylen);
745 return 0;
746 }
747
748 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
749 unsigned int keylen)
750 {
751 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
752 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
753 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
754 u32 tmp[DES_EXPKEY_WORDS];
755 int err;
756
757 ctx->enc_type = n2alg->enc_type;
758
759 if (keylen != DES_KEY_SIZE) {
760 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
761 return -EINVAL;
762 }
763
764 err = des_ekey(tmp, key);
765 if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
766 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
767 return -EINVAL;
768 }
769
770 ctx->key_len = keylen;
771 memcpy(ctx->key.des, key, keylen);
772 return 0;
773 }
774
775 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 unsigned int keylen)
777 {
778 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
779 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
780 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
781
782 ctx->enc_type = n2alg->enc_type;
783
784 if (keylen != (3 * DES_KEY_SIZE)) {
785 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
786 return -EINVAL;
787 }
788 ctx->key_len = keylen;
789 memcpy(ctx->key.des3, key, keylen);
790 return 0;
791 }
792
793 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
794 unsigned int keylen)
795 {
796 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
797 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
798 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
799 u8 *s = ctx->key.arc4;
800 u8 *x = s + 256;
801 u8 *y = x + 1;
802 int i, j, k;
803
804 ctx->enc_type = n2alg->enc_type;
805
806 j = k = 0;
807 *x = 0;
808 *y = 0;
809 for (i = 0; i < 256; i++)
810 s[i] = i;
811 for (i = 0; i < 256; i++) {
812 u8 a = s[i];
813 j = (j + key[k] + a) & 0xff;
814 s[i] = s[j];
815 s[j] = a;
816 if (++k >= keylen)
817 k = 0;
818 }
819
820 return 0;
821 }
822
823 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
824 {
825 int this_len = nbytes;
826
827 this_len -= (nbytes & (block_size - 1));
828 return this_len > (1 << 16) ? (1 << 16) : this_len;
829 }
830
831 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
832 struct spu_queue *qp, bool encrypt)
833 {
834 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
835 struct cwq_initial_entry *ent;
836 bool in_place;
837 int i;
838
839 ent = spu_queue_alloc(qp, cp->arr_len);
840 if (!ent) {
841 pr_info("queue_alloc() of %d fails\n",
842 cp->arr_len);
843 return -EBUSY;
844 }
845
846 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848 ent->control = control_word_base(cp->arr[0].src_len,
849 0, ctx->enc_type, 0, 0,
850 false, true, false, encrypt,
851 OPCODE_ENCRYPT |
852 (in_place ? OPCODE_INPLACE_BIT : 0));
853 ent->src_addr = cp->arr[0].src_paddr;
854 ent->auth_key_addr = 0UL;
855 ent->auth_iv_addr = 0UL;
856 ent->final_auth_state_addr = 0UL;
857 ent->enc_key_addr = __pa(&ctx->key);
858 ent->enc_iv_addr = cp->iv_paddr;
859 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861 for (i = 1; i < cp->arr_len; i++) {
862 ent = spu_queue_next(qp, ent);
863
864 ent->control = cp->arr[i].src_len - 1;
865 ent->src_addr = cp->arr[i].src_paddr;
866 ent->auth_key_addr = 0UL;
867 ent->auth_iv_addr = 0UL;
868 ent->final_auth_state_addr = 0UL;
869 ent->enc_key_addr = 0UL;
870 ent->enc_iv_addr = 0UL;
871 ent->dest_addr = 0UL;
872 }
873 ent->control |= CONTROL_END_OF_BLOCK;
874
875 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 }
877
878 static int n2_compute_chunks(struct ablkcipher_request *req)
879 {
880 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
881 struct ablkcipher_walk *walk = &rctx->walk;
882 struct n2_crypto_chunk *chunk;
883 unsigned long dest_prev;
884 unsigned int tot_len;
885 bool prev_in_place;
886 int err, nbytes;
887
888 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
889 err = ablkcipher_walk_phys(req, walk);
890 if (err)
891 return err;
892
893 INIT_LIST_HEAD(&rctx->chunk_list);
894
895 chunk = &rctx->chunk;
896 INIT_LIST_HEAD(&chunk->entry);
897
898 chunk->iv_paddr = 0UL;
899 chunk->arr_len = 0;
900 chunk->dest_paddr = 0UL;
901
902 prev_in_place = false;
903 dest_prev = ~0UL;
904 tot_len = 0;
905
906 while ((nbytes = walk->nbytes) != 0) {
907 unsigned long dest_paddr, src_paddr;
908 bool in_place;
909 int this_len;
910
911 src_paddr = (page_to_phys(walk->src.page) +
912 walk->src.offset);
913 dest_paddr = (page_to_phys(walk->dst.page) +
914 walk->dst.offset);
915 in_place = (src_paddr == dest_paddr);
916 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
917
918 if (chunk->arr_len != 0) {
919 if (in_place != prev_in_place ||
920 (!prev_in_place &&
921 dest_paddr != dest_prev) ||
922 chunk->arr_len == N2_CHUNK_ARR_LEN ||
923 tot_len + this_len > (1 << 16)) {
924 chunk->dest_final = dest_prev;
925 list_add_tail(&chunk->entry,
926 &rctx->chunk_list);
927 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
928 if (!chunk) {
929 err = -ENOMEM;
930 break;
931 }
932 INIT_LIST_HEAD(&chunk->entry);
933 }
934 }
935 if (chunk->arr_len == 0) {
936 chunk->dest_paddr = dest_paddr;
937 tot_len = 0;
938 }
939 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
940 chunk->arr[chunk->arr_len].src_len = this_len;
941 chunk->arr_len++;
942
943 dest_prev = dest_paddr + this_len;
944 prev_in_place = in_place;
945 tot_len += this_len;
946
947 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
948 if (err)
949 break;
950 }
951 if (!err && chunk->arr_len != 0) {
952 chunk->dest_final = dest_prev;
953 list_add_tail(&chunk->entry, &rctx->chunk_list);
954 }
955
956 return err;
957 }
958
959 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
960 {
961 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
962 struct n2_crypto_chunk *c, *tmp;
963
964 if (final_iv)
965 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
966
967 ablkcipher_walk_complete(&rctx->walk);
968 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
969 list_del(&c->entry);
970 if (unlikely(c != &rctx->chunk))
971 kfree(c);
972 }
973
974 }
975
976 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
977 {
978 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
979 struct crypto_tfm *tfm = req->base.tfm;
980 int err = n2_compute_chunks(req);
981 struct n2_crypto_chunk *c, *tmp;
982 unsigned long flags, hv_ret;
983 struct spu_queue *qp;
984
985 if (err)
986 return err;
987
988 qp = cpu_to_cwq[get_cpu()];
989 err = -ENODEV;
990 if (!qp)
991 goto out;
992
993 spin_lock_irqsave(&qp->lock, flags);
994
995 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
996 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
997 if (err)
998 break;
999 list_del(&c->entry);
1000 if (unlikely(c != &rctx->chunk))
1001 kfree(c);
1002 }
1003 if (!err) {
1004 hv_ret = wait_for_tail(qp);
1005 if (hv_ret != HV_EOK)
1006 err = -EINVAL;
1007 }
1008
1009 spin_unlock_irqrestore(&qp->lock, flags);
1010
1011 out:
1012 put_cpu();
1013
1014 n2_chunk_complete(req, NULL);
1015 return err;
1016 }
1017
1018 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1019 {
1020 return n2_do_ecb(req, true);
1021 }
1022
1023 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1024 {
1025 return n2_do_ecb(req, false);
1026 }
1027
1028 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1029 {
1030 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1031 struct crypto_tfm *tfm = req->base.tfm;
1032 unsigned long flags, hv_ret, iv_paddr;
1033 int err = n2_compute_chunks(req);
1034 struct n2_crypto_chunk *c, *tmp;
1035 struct spu_queue *qp;
1036 void *final_iv_addr;
1037
1038 final_iv_addr = NULL;
1039
1040 if (err)
1041 return err;
1042
1043 qp = cpu_to_cwq[get_cpu()];
1044 err = -ENODEV;
1045 if (!qp)
1046 goto out;
1047
1048 spin_lock_irqsave(&qp->lock, flags);
1049
1050 if (encrypt) {
1051 iv_paddr = __pa(rctx->walk.iv);
1052 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1053 entry) {
1054 c->iv_paddr = iv_paddr;
1055 err = __n2_crypt_chunk(tfm, c, qp, true);
1056 if (err)
1057 break;
1058 iv_paddr = c->dest_final - rctx->walk.blocksize;
1059 list_del(&c->entry);
1060 if (unlikely(c != &rctx->chunk))
1061 kfree(c);
1062 }
1063 final_iv_addr = __va(iv_paddr);
1064 } else {
1065 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1066 entry) {
1067 if (c == &rctx->chunk) {
1068 iv_paddr = __pa(rctx->walk.iv);
1069 } else {
1070 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1071 tmp->arr[tmp->arr_len-1].src_len -
1072 rctx->walk.blocksize);
1073 }
1074 if (!final_iv_addr) {
1075 unsigned long pa;
1076
1077 pa = (c->arr[c->arr_len-1].src_paddr +
1078 c->arr[c->arr_len-1].src_len -
1079 rctx->walk.blocksize);
1080 final_iv_addr = rctx->temp_iv;
1081 memcpy(rctx->temp_iv, __va(pa),
1082 rctx->walk.blocksize);
1083 }
1084 c->iv_paddr = iv_paddr;
1085 err = __n2_crypt_chunk(tfm, c, qp, false);
1086 if (err)
1087 break;
1088 list_del(&c->entry);
1089 if (unlikely(c != &rctx->chunk))
1090 kfree(c);
1091 }
1092 }
1093 if (!err) {
1094 hv_ret = wait_for_tail(qp);
1095 if (hv_ret != HV_EOK)
1096 err = -EINVAL;
1097 }
1098
1099 spin_unlock_irqrestore(&qp->lock, flags);
1100
1101 out:
1102 put_cpu();
1103
1104 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1105 return err;
1106 }
1107
1108 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1109 {
1110 return n2_do_chaining(req, true);
1111 }
1112
1113 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1114 {
1115 return n2_do_chaining(req, false);
1116 }
1117
1118 struct n2_cipher_tmpl {
1119 const char *name;
1120 const char *drv_name;
1121 u8 block_size;
1122 u8 enc_type;
1123 struct ablkcipher_alg ablkcipher;
1124 };
1125
1126 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1127 /* ARC4: only ECB is supported (chaining bits ignored) */
1128 { .name = "ecb(arc4)",
1129 .drv_name = "ecb-arc4",
1130 .block_size = 1,
1131 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1132 ENC_TYPE_CHAINING_ECB),
1133 .ablkcipher = {
1134 .min_keysize = 1,
1135 .max_keysize = 256,
1136 .setkey = n2_arc4_setkey,
1137 .encrypt = n2_encrypt_ecb,
1138 .decrypt = n2_decrypt_ecb,
1139 },
1140 },
1141
1142 /* DES: ECB CBC and CFB are supported */
1143 { .name = "ecb(des)",
1144 .drv_name = "ecb-des",
1145 .block_size = DES_BLOCK_SIZE,
1146 .enc_type = (ENC_TYPE_ALG_DES |
1147 ENC_TYPE_CHAINING_ECB),
1148 .ablkcipher = {
1149 .min_keysize = DES_KEY_SIZE,
1150 .max_keysize = DES_KEY_SIZE,
1151 .setkey = n2_des_setkey,
1152 .encrypt = n2_encrypt_ecb,
1153 .decrypt = n2_decrypt_ecb,
1154 },
1155 },
1156 { .name = "cbc(des)",
1157 .drv_name = "cbc-des",
1158 .block_size = DES_BLOCK_SIZE,
1159 .enc_type = (ENC_TYPE_ALG_DES |
1160 ENC_TYPE_CHAINING_CBC),
1161 .ablkcipher = {
1162 .ivsize = DES_BLOCK_SIZE,
1163 .min_keysize = DES_KEY_SIZE,
1164 .max_keysize = DES_KEY_SIZE,
1165 .setkey = n2_des_setkey,
1166 .encrypt = n2_encrypt_chaining,
1167 .decrypt = n2_decrypt_chaining,
1168 },
1169 },
1170 { .name = "cfb(des)",
1171 .drv_name = "cfb-des",
1172 .block_size = DES_BLOCK_SIZE,
1173 .enc_type = (ENC_TYPE_ALG_DES |
1174 ENC_TYPE_CHAINING_CFB),
1175 .ablkcipher = {
1176 .min_keysize = DES_KEY_SIZE,
1177 .max_keysize = DES_KEY_SIZE,
1178 .setkey = n2_des_setkey,
1179 .encrypt = n2_encrypt_chaining,
1180 .decrypt = n2_decrypt_chaining,
1181 },
1182 },
1183
1184 /* 3DES: ECB CBC and CFB are supported */
1185 { .name = "ecb(des3_ede)",
1186 .drv_name = "ecb-3des",
1187 .block_size = DES_BLOCK_SIZE,
1188 .enc_type = (ENC_TYPE_ALG_3DES |
1189 ENC_TYPE_CHAINING_ECB),
1190 .ablkcipher = {
1191 .min_keysize = 3 * DES_KEY_SIZE,
1192 .max_keysize = 3 * DES_KEY_SIZE,
1193 .setkey = n2_3des_setkey,
1194 .encrypt = n2_encrypt_ecb,
1195 .decrypt = n2_decrypt_ecb,
1196 },
1197 },
1198 { .name = "cbc(des3_ede)",
1199 .drv_name = "cbc-3des",
1200 .block_size = DES_BLOCK_SIZE,
1201 .enc_type = (ENC_TYPE_ALG_3DES |
1202 ENC_TYPE_CHAINING_CBC),
1203 .ablkcipher = {
1204 .ivsize = DES_BLOCK_SIZE,
1205 .min_keysize = 3 * DES_KEY_SIZE,
1206 .max_keysize = 3 * DES_KEY_SIZE,
1207 .setkey = n2_3des_setkey,
1208 .encrypt = n2_encrypt_chaining,
1209 .decrypt = n2_decrypt_chaining,
1210 },
1211 },
1212 { .name = "cfb(des3_ede)",
1213 .drv_name = "cfb-3des",
1214 .block_size = DES_BLOCK_SIZE,
1215 .enc_type = (ENC_TYPE_ALG_3DES |
1216 ENC_TYPE_CHAINING_CFB),
1217 .ablkcipher = {
1218 .min_keysize = 3 * DES_KEY_SIZE,
1219 .max_keysize = 3 * DES_KEY_SIZE,
1220 .setkey = n2_3des_setkey,
1221 .encrypt = n2_encrypt_chaining,
1222 .decrypt = n2_decrypt_chaining,
1223 },
1224 },
1225 /* AES: ECB CBC and CTR are supported */
1226 { .name = "ecb(aes)",
1227 .drv_name = "ecb-aes",
1228 .block_size = AES_BLOCK_SIZE,
1229 .enc_type = (ENC_TYPE_ALG_AES128 |
1230 ENC_TYPE_CHAINING_ECB),
1231 .ablkcipher = {
1232 .min_keysize = AES_MIN_KEY_SIZE,
1233 .max_keysize = AES_MAX_KEY_SIZE,
1234 .setkey = n2_aes_setkey,
1235 .encrypt = n2_encrypt_ecb,
1236 .decrypt = n2_decrypt_ecb,
1237 },
1238 },
1239 { .name = "cbc(aes)",
1240 .drv_name = "cbc-aes",
1241 .block_size = AES_BLOCK_SIZE,
1242 .enc_type = (ENC_TYPE_ALG_AES128 |
1243 ENC_TYPE_CHAINING_CBC),
1244 .ablkcipher = {
1245 .ivsize = AES_BLOCK_SIZE,
1246 .min_keysize = AES_MIN_KEY_SIZE,
1247 .max_keysize = AES_MAX_KEY_SIZE,
1248 .setkey = n2_aes_setkey,
1249 .encrypt = n2_encrypt_chaining,
1250 .decrypt = n2_decrypt_chaining,
1251 },
1252 },
1253 { .name = "ctr(aes)",
1254 .drv_name = "ctr-aes",
1255 .block_size = AES_BLOCK_SIZE,
1256 .enc_type = (ENC_TYPE_ALG_AES128 |
1257 ENC_TYPE_CHAINING_COUNTER),
1258 .ablkcipher = {
1259 .ivsize = AES_BLOCK_SIZE,
1260 .min_keysize = AES_MIN_KEY_SIZE,
1261 .max_keysize = AES_MAX_KEY_SIZE,
1262 .setkey = n2_aes_setkey,
1263 .encrypt = n2_encrypt_chaining,
1264 .decrypt = n2_encrypt_chaining,
1265 },
1266 },
1267
1268 };
1269 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1270
1271 static LIST_HEAD(cipher_algs);
1272
1273 struct n2_hash_tmpl {
1274 const char *name;
1275 const u8 *hash_zero;
1276 const u32 *hash_init;
1277 u8 hw_op_hashsz;
1278 u8 digest_size;
1279 u8 block_size;
1280 u8 auth_type;
1281 u8 hmac_type;
1282 };
1283
1284 static const u32 md5_init[MD5_HASH_WORDS] = {
1285 cpu_to_le32(MD5_H0),
1286 cpu_to_le32(MD5_H1),
1287 cpu_to_le32(MD5_H2),
1288 cpu_to_le32(MD5_H3),
1289 };
1290 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1291 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1292 };
1293 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1294 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1295 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1296 };
1297 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1298 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1299 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1300 };
1301
1302 static const struct n2_hash_tmpl hash_tmpls[] = {
1303 { .name = "md5",
1304 .hash_zero = md5_zero_message_hash,
1305 .hash_init = md5_init,
1306 .auth_type = AUTH_TYPE_MD5,
1307 .hmac_type = AUTH_TYPE_HMAC_MD5,
1308 .hw_op_hashsz = MD5_DIGEST_SIZE,
1309 .digest_size = MD5_DIGEST_SIZE,
1310 .block_size = MD5_HMAC_BLOCK_SIZE },
1311 { .name = "sha1",
1312 .hash_zero = sha1_zero_message_hash,
1313 .hash_init = sha1_init,
1314 .auth_type = AUTH_TYPE_SHA1,
1315 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1316 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1317 .digest_size = SHA1_DIGEST_SIZE,
1318 .block_size = SHA1_BLOCK_SIZE },
1319 { .name = "sha256",
1320 .hash_zero = sha256_zero_message_hash,
1321 .hash_init = sha256_init,
1322 .auth_type = AUTH_TYPE_SHA256,
1323 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1324 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1325 .digest_size = SHA256_DIGEST_SIZE,
1326 .block_size = SHA256_BLOCK_SIZE },
1327 { .name = "sha224",
1328 .hash_zero = sha224_zero_message_hash,
1329 .hash_init = sha224_init,
1330 .auth_type = AUTH_TYPE_SHA256,
1331 .hmac_type = AUTH_TYPE_RESERVED,
1332 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1333 .digest_size = SHA224_DIGEST_SIZE,
1334 .block_size = SHA224_BLOCK_SIZE },
1335 };
1336 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1337
1338 static LIST_HEAD(ahash_algs);
1339 static LIST_HEAD(hmac_algs);
1340
1341 static int algs_registered;
1342
1343 static void __n2_unregister_algs(void)
1344 {
1345 struct n2_cipher_alg *cipher, *cipher_tmp;
1346 struct n2_ahash_alg *alg, *alg_tmp;
1347 struct n2_hmac_alg *hmac, *hmac_tmp;
1348
1349 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1350 crypto_unregister_alg(&cipher->alg);
1351 list_del(&cipher->entry);
1352 kfree(cipher);
1353 }
1354 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1355 crypto_unregister_ahash(&hmac->derived.alg);
1356 list_del(&hmac->derived.entry);
1357 kfree(hmac);
1358 }
1359 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1360 crypto_unregister_ahash(&alg->alg);
1361 list_del(&alg->entry);
1362 kfree(alg);
1363 }
1364 }
1365
1366 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1367 {
1368 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1369 return 0;
1370 }
1371
1372 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1373 {
1374 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1375 struct crypto_alg *alg;
1376 int err;
1377
1378 if (!p)
1379 return -ENOMEM;
1380
1381 alg = &p->alg;
1382
1383 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1384 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1385 alg->cra_priority = N2_CRA_PRIORITY;
1386 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1387 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1388 alg->cra_blocksize = tmpl->block_size;
1389 p->enc_type = tmpl->enc_type;
1390 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1391 alg->cra_type = &crypto_ablkcipher_type;
1392 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1393 alg->cra_init = n2_cipher_cra_init;
1394 alg->cra_module = THIS_MODULE;
1395
1396 list_add(&p->entry, &cipher_algs);
1397 err = crypto_register_alg(alg);
1398 if (err) {
1399 pr_err("%s alg registration failed\n", alg->cra_name);
1400 list_del(&p->entry);
1401 kfree(p);
1402 } else {
1403 pr_info("%s alg registered\n", alg->cra_name);
1404 }
1405 return err;
1406 }
1407
1408 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1409 {
1410 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1411 struct ahash_alg *ahash;
1412 struct crypto_alg *base;
1413 int err;
1414
1415 if (!p)
1416 return -ENOMEM;
1417
1418 p->child_alg = n2ahash->alg.halg.base.cra_name;
1419 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1420 INIT_LIST_HEAD(&p->derived.entry);
1421
1422 ahash = &p->derived.alg;
1423 ahash->digest = n2_hmac_async_digest;
1424 ahash->setkey = n2_hmac_async_setkey;
1425
1426 base = &ahash->halg.base;
1427 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1428 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1429
1430 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1431 base->cra_init = n2_hmac_cra_init;
1432 base->cra_exit = n2_hmac_cra_exit;
1433
1434 list_add(&p->derived.entry, &hmac_algs);
1435 err = crypto_register_ahash(ahash);
1436 if (err) {
1437 pr_err("%s alg registration failed\n", base->cra_name);
1438 list_del(&p->derived.entry);
1439 kfree(p);
1440 } else {
1441 pr_info("%s alg registered\n", base->cra_name);
1442 }
1443 return err;
1444 }
1445
1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1447 {
1448 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1449 struct hash_alg_common *halg;
1450 struct crypto_alg *base;
1451 struct ahash_alg *ahash;
1452 int err;
1453
1454 if (!p)
1455 return -ENOMEM;
1456
1457 p->hash_zero = tmpl->hash_zero;
1458 p->hash_init = tmpl->hash_init;
1459 p->auth_type = tmpl->auth_type;
1460 p->hmac_type = tmpl->hmac_type;
1461 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1462 p->digest_size = tmpl->digest_size;
1463
1464 ahash = &p->alg;
1465 ahash->init = n2_hash_async_init;
1466 ahash->update = n2_hash_async_update;
1467 ahash->final = n2_hash_async_final;
1468 ahash->finup = n2_hash_async_finup;
1469 ahash->digest = n2_hash_async_digest;
1470
1471 halg = &ahash->halg;
1472 halg->digestsize = tmpl->digest_size;
1473
1474 base = &halg->base;
1475 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1476 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1477 base->cra_priority = N2_CRA_PRIORITY;
1478 base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1479 CRYPTO_ALG_KERN_DRIVER_ONLY |
1480 CRYPTO_ALG_NEED_FALLBACK;
1481 base->cra_blocksize = tmpl->block_size;
1482 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483 base->cra_module = THIS_MODULE;
1484 base->cra_init = n2_hash_cra_init;
1485 base->cra_exit = n2_hash_cra_exit;
1486
1487 list_add(&p->entry, &ahash_algs);
1488 err = crypto_register_ahash(ahash);
1489 if (err) {
1490 pr_err("%s alg registration failed\n", base->cra_name);
1491 list_del(&p->entry);
1492 kfree(p);
1493 } else {
1494 pr_info("%s alg registered\n", base->cra_name);
1495 }
1496 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497 err = __n2_register_one_hmac(p);
1498 return err;
1499 }
1500
1501 static int n2_register_algs(void)
1502 {
1503 int i, err = 0;
1504
1505 mutex_lock(&spu_lock);
1506 if (algs_registered++)
1507 goto out;
1508
1509 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510 err = __n2_register_one_ahash(&hash_tmpls[i]);
1511 if (err) {
1512 __n2_unregister_algs();
1513 goto out;
1514 }
1515 }
1516 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1518 if (err) {
1519 __n2_unregister_algs();
1520 goto out;
1521 }
1522 }
1523
1524 out:
1525 mutex_unlock(&spu_lock);
1526 return err;
1527 }
1528
1529 static void n2_unregister_algs(void)
1530 {
1531 mutex_lock(&spu_lock);
1532 if (!--algs_registered)
1533 __n2_unregister_algs();
1534 mutex_unlock(&spu_lock);
1535 }
1536
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538 * a devino. This isn't very useful to us because all of the
1539 * interrupts listed in the device_node have been translated to
1540 * Linux virtual IRQ cookie numbers.
1541 *
1542 * So we have to back-translate, going through the 'intr' and 'ino'
1543 * property tables of the n2cp MDESC node, matching it with the OF
1544 * 'interrupts' property entries, in order to to figure out which
1545 * devino goes to which already-translated IRQ.
1546 */
1547 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548 unsigned long dev_ino)
1549 {
1550 const unsigned int *dev_intrs;
1551 unsigned int intr;
1552 int i;
1553
1554 for (i = 0; i < ip->num_intrs; i++) {
1555 if (ip->ino_table[i].ino == dev_ino)
1556 break;
1557 }
1558 if (i == ip->num_intrs)
1559 return -ENODEV;
1560
1561 intr = ip->ino_table[i].intr;
1562
1563 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564 if (!dev_intrs)
1565 return -ENODEV;
1566
1567 for (i = 0; i < dev->archdata.num_irqs; i++) {
1568 if (dev_intrs[i] == intr)
1569 return i;
1570 }
1571
1572 return -ENODEV;
1573 }
1574
1575 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576 const char *irq_name, struct spu_queue *p,
1577 irq_handler_t handler)
1578 {
1579 unsigned long herr;
1580 int index;
1581
1582 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583 if (herr)
1584 return -EINVAL;
1585
1586 index = find_devino_index(dev, ip, p->devino);
1587 if (index < 0)
1588 return index;
1589
1590 p->irq = dev->archdata.irqs[index];
1591
1592 sprintf(p->irq_name, "%s-%d", irq_name, index);
1593
1594 return request_irq(p->irq, handler, 0, p->irq_name, p);
1595 }
1596
1597 static struct kmem_cache *queue_cache[2];
1598
1599 static void *new_queue(unsigned long q_type)
1600 {
1601 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602 }
1603
1604 static void free_queue(void *p, unsigned long q_type)
1605 {
1606 kmem_cache_free(queue_cache[q_type - 1], p);
1607 }
1608
1609 static int queue_cache_init(void)
1610 {
1611 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613 kmem_cache_create("mau_queue",
1614 (MAU_NUM_ENTRIES *
1615 MAU_ENTRY_SIZE),
1616 MAU_ENTRY_SIZE, 0, NULL);
1617 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618 return -ENOMEM;
1619
1620 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622 kmem_cache_create("cwq_queue",
1623 (CWQ_NUM_ENTRIES *
1624 CWQ_ENTRY_SIZE),
1625 CWQ_ENTRY_SIZE, 0, NULL);
1626 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628 return -ENOMEM;
1629 }
1630 return 0;
1631 }
1632
1633 static void queue_cache_destroy(void)
1634 {
1635 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1636 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1637 }
1638
1639 static long spu_queue_register_workfn(void *arg)
1640 {
1641 struct spu_qreg *qr = arg;
1642 struct spu_queue *p = qr->queue;
1643 unsigned long q_type = qr->type;
1644 unsigned long hv_ret;
1645
1646 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1647 CWQ_NUM_ENTRIES, &p->qhandle);
1648 if (!hv_ret)
1649 sun4v_ncs_sethead_marker(p->qhandle, 0);
1650
1651 return hv_ret ? -EINVAL : 0;
1652 }
1653
1654 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1655 {
1656 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1657 struct spu_qreg qr = { .queue = p, .type = q_type };
1658
1659 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1660 }
1661
1662 static int spu_queue_setup(struct spu_queue *p)
1663 {
1664 int err;
1665
1666 p->q = new_queue(p->q_type);
1667 if (!p->q)
1668 return -ENOMEM;
1669
1670 err = spu_queue_register(p, p->q_type);
1671 if (err) {
1672 free_queue(p->q, p->q_type);
1673 p->q = NULL;
1674 }
1675
1676 return err;
1677 }
1678
1679 static void spu_queue_destroy(struct spu_queue *p)
1680 {
1681 unsigned long hv_ret;
1682
1683 if (!p->q)
1684 return;
1685
1686 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1687
1688 if (!hv_ret)
1689 free_queue(p->q, p->q_type);
1690 }
1691
1692 static void spu_list_destroy(struct list_head *list)
1693 {
1694 struct spu_queue *p, *n;
1695
1696 list_for_each_entry_safe(p, n, list, list) {
1697 int i;
1698
1699 for (i = 0; i < NR_CPUS; i++) {
1700 if (cpu_to_cwq[i] == p)
1701 cpu_to_cwq[i] = NULL;
1702 }
1703
1704 if (p->irq) {
1705 free_irq(p->irq, p);
1706 p->irq = 0;
1707 }
1708 spu_queue_destroy(p);
1709 list_del(&p->list);
1710 kfree(p);
1711 }
1712 }
1713
1714 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1715 * gathering cpu membership information.
1716 */
1717 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1718 struct platform_device *dev,
1719 u64 node, struct spu_queue *p,
1720 struct spu_queue **table)
1721 {
1722 u64 arc;
1723
1724 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1725 u64 tgt = mdesc_arc_target(mdesc, arc);
1726 const char *name = mdesc_node_name(mdesc, tgt);
1727 const u64 *id;
1728
1729 if (strcmp(name, "cpu"))
1730 continue;
1731 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1732 if (table[*id] != NULL) {
1733 dev_err(&dev->dev, "%s: SPU cpu slot already set.\n",
1734 dev->dev.of_node->full_name);
1735 return -EINVAL;
1736 }
1737 cpumask_set_cpu(*id, &p->sharing);
1738 table[*id] = p;
1739 }
1740 return 0;
1741 }
1742
1743 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1744 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1745 struct platform_device *dev, struct mdesc_handle *mdesc,
1746 u64 node, const char *iname, unsigned long q_type,
1747 irq_handler_t handler, struct spu_queue **table)
1748 {
1749 struct spu_queue *p;
1750 int err;
1751
1752 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1753 if (!p) {
1754 dev_err(&dev->dev, "%s: Could not allocate SPU queue.\n",
1755 dev->dev.of_node->full_name);
1756 return -ENOMEM;
1757 }
1758
1759 cpumask_clear(&p->sharing);
1760 spin_lock_init(&p->lock);
1761 p->q_type = q_type;
1762 INIT_LIST_HEAD(&p->jobs);
1763 list_add(&p->list, list);
1764
1765 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1766 if (err)
1767 return err;
1768
1769 err = spu_queue_setup(p);
1770 if (err)
1771 return err;
1772
1773 return spu_map_ino(dev, ip, iname, p, handler);
1774 }
1775
1776 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1777 struct spu_mdesc_info *ip, struct list_head *list,
1778 const char *exec_name, unsigned long q_type,
1779 irq_handler_t handler, struct spu_queue **table)
1780 {
1781 int err = 0;
1782 u64 node;
1783
1784 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1785 const char *type;
1786
1787 type = mdesc_get_property(mdesc, node, "type", NULL);
1788 if (!type || strcmp(type, exec_name))
1789 continue;
1790
1791 err = handle_exec_unit(ip, list, dev, mdesc, node,
1792 exec_name, q_type, handler, table);
1793 if (err) {
1794 spu_list_destroy(list);
1795 break;
1796 }
1797 }
1798
1799 return err;
1800 }
1801
1802 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1803 struct spu_mdesc_info *ip)
1804 {
1805 const u64 *ino;
1806 int ino_len;
1807 int i;
1808
1809 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1810 if (!ino) {
1811 printk("NO 'ino'\n");
1812 return -ENODEV;
1813 }
1814
1815 ip->num_intrs = ino_len / sizeof(u64);
1816 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1817 ip->num_intrs),
1818 GFP_KERNEL);
1819 if (!ip->ino_table)
1820 return -ENOMEM;
1821
1822 for (i = 0; i < ip->num_intrs; i++) {
1823 struct ino_blob *b = &ip->ino_table[i];
1824 b->intr = i + 1;
1825 b->ino = ino[i];
1826 }
1827
1828 return 0;
1829 }
1830
1831 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1832 struct platform_device *dev,
1833 struct spu_mdesc_info *ip,
1834 const char *node_name)
1835 {
1836 const unsigned int *reg;
1837 u64 node;
1838
1839 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1840 if (!reg)
1841 return -ENODEV;
1842
1843 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1844 const char *name;
1845 const u64 *chdl;
1846
1847 name = mdesc_get_property(mdesc, node, "name", NULL);
1848 if (!name || strcmp(name, node_name))
1849 continue;
1850 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1851 if (!chdl || (*chdl != *reg))
1852 continue;
1853 ip->cfg_handle = *chdl;
1854 return get_irq_props(mdesc, node, ip);
1855 }
1856
1857 return -ENODEV;
1858 }
1859
1860 static unsigned long n2_spu_hvapi_major;
1861 static unsigned long n2_spu_hvapi_minor;
1862
1863 static int n2_spu_hvapi_register(void)
1864 {
1865 int err;
1866
1867 n2_spu_hvapi_major = 2;
1868 n2_spu_hvapi_minor = 0;
1869
1870 err = sun4v_hvapi_register(HV_GRP_NCS,
1871 n2_spu_hvapi_major,
1872 &n2_spu_hvapi_minor);
1873
1874 if (!err)
1875 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1876 n2_spu_hvapi_major,
1877 n2_spu_hvapi_minor);
1878
1879 return err;
1880 }
1881
1882 static void n2_spu_hvapi_unregister(void)
1883 {
1884 sun4v_hvapi_unregister(HV_GRP_NCS);
1885 }
1886
1887 static int global_ref;
1888
1889 static int grab_global_resources(void)
1890 {
1891 int err = 0;
1892
1893 mutex_lock(&spu_lock);
1894
1895 if (global_ref++)
1896 goto out;
1897
1898 err = n2_spu_hvapi_register();
1899 if (err)
1900 goto out;
1901
1902 err = queue_cache_init();
1903 if (err)
1904 goto out_hvapi_release;
1905
1906 err = -ENOMEM;
1907 cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1908 GFP_KERNEL);
1909 if (!cpu_to_cwq)
1910 goto out_queue_cache_destroy;
1911
1912 cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1913 GFP_KERNEL);
1914 if (!cpu_to_mau)
1915 goto out_free_cwq_table;
1916
1917 err = 0;
1918
1919 out:
1920 if (err)
1921 global_ref--;
1922 mutex_unlock(&spu_lock);
1923 return err;
1924
1925 out_free_cwq_table:
1926 kfree(cpu_to_cwq);
1927 cpu_to_cwq = NULL;
1928
1929 out_queue_cache_destroy:
1930 queue_cache_destroy();
1931
1932 out_hvapi_release:
1933 n2_spu_hvapi_unregister();
1934 goto out;
1935 }
1936
1937 static void release_global_resources(void)
1938 {
1939 mutex_lock(&spu_lock);
1940 if (!--global_ref) {
1941 kfree(cpu_to_cwq);
1942 cpu_to_cwq = NULL;
1943
1944 kfree(cpu_to_mau);
1945 cpu_to_mau = NULL;
1946
1947 queue_cache_destroy();
1948 n2_spu_hvapi_unregister();
1949 }
1950 mutex_unlock(&spu_lock);
1951 }
1952
1953 static struct n2_crypto *alloc_n2cp(void)
1954 {
1955 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1956
1957 if (np)
1958 INIT_LIST_HEAD(&np->cwq_list);
1959
1960 return np;
1961 }
1962
1963 static void free_n2cp(struct n2_crypto *np)
1964 {
1965 if (np->cwq_info.ino_table) {
1966 kfree(np->cwq_info.ino_table);
1967 np->cwq_info.ino_table = NULL;
1968 }
1969
1970 kfree(np);
1971 }
1972
1973 static void n2_spu_driver_version(void)
1974 {
1975 static int n2_spu_version_printed;
1976
1977 if (n2_spu_version_printed++ == 0)
1978 pr_info("%s", version);
1979 }
1980
1981 static int n2_crypto_probe(struct platform_device *dev)
1982 {
1983 struct mdesc_handle *mdesc;
1984 const char *full_name;
1985 struct n2_crypto *np;
1986 int err;
1987
1988 n2_spu_driver_version();
1989
1990 full_name = dev->dev.of_node->full_name;
1991 pr_info("Found N2CP at %s\n", full_name);
1992
1993 np = alloc_n2cp();
1994 if (!np) {
1995 dev_err(&dev->dev, "%s: Unable to allocate n2cp.\n",
1996 full_name);
1997 return -ENOMEM;
1998 }
1999
2000 err = grab_global_resources();
2001 if (err) {
2002 dev_err(&dev->dev, "%s: Unable to grab "
2003 "global resources.\n", full_name);
2004 goto out_free_n2cp;
2005 }
2006
2007 mdesc = mdesc_grab();
2008
2009 if (!mdesc) {
2010 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2011 full_name);
2012 err = -ENODEV;
2013 goto out_free_global;
2014 }
2015 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2016 if (err) {
2017 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2018 full_name);
2019 mdesc_release(mdesc);
2020 goto out_free_global;
2021 }
2022
2023 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2024 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2025 cpu_to_cwq);
2026 mdesc_release(mdesc);
2027
2028 if (err) {
2029 dev_err(&dev->dev, "%s: CWQ MDESC scan failed.\n",
2030 full_name);
2031 goto out_free_global;
2032 }
2033
2034 err = n2_register_algs();
2035 if (err) {
2036 dev_err(&dev->dev, "%s: Unable to register algorithms.\n",
2037 full_name);
2038 goto out_free_spu_list;
2039 }
2040
2041 dev_set_drvdata(&dev->dev, np);
2042
2043 return 0;
2044
2045 out_free_spu_list:
2046 spu_list_destroy(&np->cwq_list);
2047
2048 out_free_global:
2049 release_global_resources();
2050
2051 out_free_n2cp:
2052 free_n2cp(np);
2053
2054 return err;
2055 }
2056
2057 static int n2_crypto_remove(struct platform_device *dev)
2058 {
2059 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2060
2061 n2_unregister_algs();
2062
2063 spu_list_destroy(&np->cwq_list);
2064
2065 release_global_resources();
2066
2067 free_n2cp(np);
2068
2069 return 0;
2070 }
2071
2072 static struct n2_mau *alloc_ncp(void)
2073 {
2074 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2075
2076 if (mp)
2077 INIT_LIST_HEAD(&mp->mau_list);
2078
2079 return mp;
2080 }
2081
2082 static void free_ncp(struct n2_mau *mp)
2083 {
2084 if (mp->mau_info.ino_table) {
2085 kfree(mp->mau_info.ino_table);
2086 mp->mau_info.ino_table = NULL;
2087 }
2088
2089 kfree(mp);
2090 }
2091
2092 static int n2_mau_probe(struct platform_device *dev)
2093 {
2094 struct mdesc_handle *mdesc;
2095 const char *full_name;
2096 struct n2_mau *mp;
2097 int err;
2098
2099 n2_spu_driver_version();
2100
2101 full_name = dev->dev.of_node->full_name;
2102 pr_info("Found NCP at %s\n", full_name);
2103
2104 mp = alloc_ncp();
2105 if (!mp) {
2106 dev_err(&dev->dev, "%s: Unable to allocate ncp.\n",
2107 full_name);
2108 return -ENOMEM;
2109 }
2110
2111 err = grab_global_resources();
2112 if (err) {
2113 dev_err(&dev->dev, "%s: Unable to grab "
2114 "global resources.\n", full_name);
2115 goto out_free_ncp;
2116 }
2117
2118 mdesc = mdesc_grab();
2119
2120 if (!mdesc) {
2121 dev_err(&dev->dev, "%s: Unable to grab MDESC.\n",
2122 full_name);
2123 err = -ENODEV;
2124 goto out_free_global;
2125 }
2126
2127 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2128 if (err) {
2129 dev_err(&dev->dev, "%s: Unable to grab IRQ props.\n",
2130 full_name);
2131 mdesc_release(mdesc);
2132 goto out_free_global;
2133 }
2134
2135 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2136 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2137 cpu_to_mau);
2138 mdesc_release(mdesc);
2139
2140 if (err) {
2141 dev_err(&dev->dev, "%s: MAU MDESC scan failed.\n",
2142 full_name);
2143 goto out_free_global;
2144 }
2145
2146 dev_set_drvdata(&dev->dev, mp);
2147
2148 return 0;
2149
2150 out_free_global:
2151 release_global_resources();
2152
2153 out_free_ncp:
2154 free_ncp(mp);
2155
2156 return err;
2157 }
2158
2159 static int n2_mau_remove(struct platform_device *dev)
2160 {
2161 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2162
2163 spu_list_destroy(&mp->mau_list);
2164
2165 release_global_resources();
2166
2167 free_ncp(mp);
2168
2169 return 0;
2170 }
2171
2172 static struct of_device_id n2_crypto_match[] = {
2173 {
2174 .name = "n2cp",
2175 .compatible = "SUNW,n2-cwq",
2176 },
2177 {
2178 .name = "n2cp",
2179 .compatible = "SUNW,vf-cwq",
2180 },
2181 {
2182 .name = "n2cp",
2183 .compatible = "SUNW,kt-cwq",
2184 },
2185 {},
2186 };
2187
2188 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2189
2190 static struct platform_driver n2_crypto_driver = {
2191 .driver = {
2192 .name = "n2cp",
2193 .of_match_table = n2_crypto_match,
2194 },
2195 .probe = n2_crypto_probe,
2196 .remove = n2_crypto_remove,
2197 };
2198
2199 static struct of_device_id n2_mau_match[] = {
2200 {
2201 .name = "ncp",
2202 .compatible = "SUNW,n2-mau",
2203 },
2204 {
2205 .name = "ncp",
2206 .compatible = "SUNW,vf-mau",
2207 },
2208 {
2209 .name = "ncp",
2210 .compatible = "SUNW,kt-mau",
2211 },
2212 {},
2213 };
2214
2215 MODULE_DEVICE_TABLE(of, n2_mau_match);
2216
2217 static struct platform_driver n2_mau_driver = {
2218 .driver = {
2219 .name = "ncp",
2220 .of_match_table = n2_mau_match,
2221 },
2222 .probe = n2_mau_probe,
2223 .remove = n2_mau_remove,
2224 };
2225
2226 static struct platform_driver * const drivers[] = {
2227 &n2_crypto_driver,
2228 &n2_mau_driver,
2229 };
2230
2231 static int __init n2_init(void)
2232 {
2233 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2234 }
2235
2236 static void __exit n2_exit(void)
2237 {
2238 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2239 }
2240
2241 module_init(n2_init);
2242 module_exit(n2_exit);