]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/crypto/n2_core.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-hirsute-kernel.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/scatterwalk.h>
27 #include <crypto/algapi.h>
28
29 #include <asm/hypervisor.h>
30 #include <asm/mdesc.h>
31
32 #include "n2_core.h"
33
34 #define DRV_MODULE_NAME "n2_crypto"
35 #define DRV_MODULE_VERSION "0.2"
36 #define DRV_MODULE_RELDATE "July 28, 2011"
37
38 static const char version[] =
39 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
40
41 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
42 MODULE_DESCRIPTION("Niagara2 Crypto driver");
43 MODULE_LICENSE("GPL");
44 MODULE_VERSION(DRV_MODULE_VERSION);
45
46 #define N2_CRA_PRIORITY 200
47
48 static DEFINE_MUTEX(spu_lock);
49
50 struct spu_queue {
51 cpumask_t sharing;
52 unsigned long qhandle;
53
54 spinlock_t lock;
55 u8 q_type;
56 void *q;
57 unsigned long head;
58 unsigned long tail;
59 struct list_head jobs;
60
61 unsigned long devino;
62
63 char irq_name[32];
64 unsigned int irq;
65
66 struct list_head list;
67 };
68
69 struct spu_qreg {
70 struct spu_queue *queue;
71 unsigned long type;
72 };
73
74 static struct spu_queue **cpu_to_cwq;
75 static struct spu_queue **cpu_to_mau;
76
77 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
78 {
79 if (q->q_type == HV_NCS_QTYPE_MAU) {
80 off += MAU_ENTRY_SIZE;
81 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
82 off = 0;
83 } else {
84 off += CWQ_ENTRY_SIZE;
85 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
86 off = 0;
87 }
88 return off;
89 }
90
91 struct n2_request_common {
92 struct list_head entry;
93 unsigned int offset;
94 };
95 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
96
97 /* An async job request records the final tail value it used in
98 * n2_request_common->offset, test to see if that offset is in
99 * the range old_head, new_head, inclusive.
100 */
101 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
102 unsigned long old_head, unsigned long new_head)
103 {
104 if (old_head <= new_head) {
105 if (offset > old_head && offset <= new_head)
106 return true;
107 } else {
108 if (offset > old_head || offset <= new_head)
109 return true;
110 }
111 return false;
112 }
113
114 /* When the HEAD marker is unequal to the actual HEAD, we get
115 * a virtual device INO interrupt. We should process the
116 * completed CWQ entries and adjust the HEAD marker to clear
117 * the IRQ.
118 */
119 static irqreturn_t cwq_intr(int irq, void *dev_id)
120 {
121 unsigned long off, new_head, hv_ret;
122 struct spu_queue *q = dev_id;
123
124 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
125 smp_processor_id(), q->qhandle);
126
127 spin_lock(&q->lock);
128
129 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
130
131 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
132 smp_processor_id(), new_head, hv_ret);
133
134 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
135 /* XXX ... XXX */
136 }
137
138 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
139 if (hv_ret == HV_EOK)
140 q->head = new_head;
141
142 spin_unlock(&q->lock);
143
144 return IRQ_HANDLED;
145 }
146
147 static irqreturn_t mau_intr(int irq, void *dev_id)
148 {
149 struct spu_queue *q = dev_id;
150 unsigned long head, hv_ret;
151
152 spin_lock(&q->lock);
153
154 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
155 smp_processor_id(), q->qhandle);
156
157 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
158
159 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
160 smp_processor_id(), head, hv_ret);
161
162 sun4v_ncs_sethead_marker(q->qhandle, head);
163
164 spin_unlock(&q->lock);
165
166 return IRQ_HANDLED;
167 }
168
169 static void *spu_queue_next(struct spu_queue *q, void *cur)
170 {
171 return q->q + spu_next_offset(q, cur - q->q);
172 }
173
174 static int spu_queue_num_free(struct spu_queue *q)
175 {
176 unsigned long head = q->head;
177 unsigned long tail = q->tail;
178 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
179 unsigned long diff;
180
181 if (head > tail)
182 diff = head - tail;
183 else
184 diff = (end - tail) + head;
185
186 return (diff / CWQ_ENTRY_SIZE) - 1;
187 }
188
189 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
190 {
191 int avail = spu_queue_num_free(q);
192
193 if (avail >= num_entries)
194 return q->q + q->tail;
195
196 return NULL;
197 }
198
199 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
200 {
201 unsigned long hv_ret, new_tail;
202
203 new_tail = spu_next_offset(q, last - q->q);
204
205 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
206 if (hv_ret == HV_EOK)
207 q->tail = new_tail;
208 return hv_ret;
209 }
210
211 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
212 int enc_type, int auth_type,
213 unsigned int hash_len,
214 bool sfas, bool sob, bool eob, bool encrypt,
215 int opcode)
216 {
217 u64 word = (len - 1) & CONTROL_LEN;
218
219 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
220 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
221 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
222 if (sfas)
223 word |= CONTROL_STORE_FINAL_AUTH_STATE;
224 if (sob)
225 word |= CONTROL_START_OF_BLOCK;
226 if (eob)
227 word |= CONTROL_END_OF_BLOCK;
228 if (encrypt)
229 word |= CONTROL_ENCRYPT;
230 if (hmac_key_len)
231 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
232 if (hash_len)
233 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
234
235 return word;
236 }
237
238 #if 0
239 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
240 {
241 if (this_len >= 64 ||
242 qp->head != qp->tail)
243 return true;
244 return false;
245 }
246 #endif
247
248 struct n2_ahash_alg {
249 struct list_head entry;
250 const u8 *hash_zero;
251 const u32 *hash_init;
252 u8 hw_op_hashsz;
253 u8 digest_size;
254 u8 auth_type;
255 u8 hmac_type;
256 struct ahash_alg alg;
257 };
258
259 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
260 {
261 struct crypto_alg *alg = tfm->__crt_alg;
262 struct ahash_alg *ahash_alg;
263
264 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
265
266 return container_of(ahash_alg, struct n2_ahash_alg, alg);
267 }
268
269 struct n2_hmac_alg {
270 const char *child_alg;
271 struct n2_ahash_alg derived;
272 };
273
274 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
275 {
276 struct crypto_alg *alg = tfm->__crt_alg;
277 struct ahash_alg *ahash_alg;
278
279 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
280
281 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
282 }
283
284 struct n2_hash_ctx {
285 struct crypto_ahash *fallback_tfm;
286 };
287
288 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
289
290 struct n2_hmac_ctx {
291 struct n2_hash_ctx base;
292
293 struct crypto_shash *child_shash;
294
295 int hash_key_len;
296 unsigned char hash_key[N2_HASH_KEY_MAX];
297 };
298
299 struct n2_hash_req_ctx {
300 union {
301 struct md5_state md5;
302 struct sha1_state sha1;
303 struct sha256_state sha256;
304 } u;
305
306 struct ahash_request fallback_req;
307 };
308
309 static int n2_hash_async_init(struct ahash_request *req)
310 {
311 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
312 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
313 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
314
315 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
316 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
317
318 return crypto_ahash_init(&rctx->fallback_req);
319 }
320
321 static int n2_hash_async_update(struct ahash_request *req)
322 {
323 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
324 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
326
327 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
328 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
329 rctx->fallback_req.nbytes = req->nbytes;
330 rctx->fallback_req.src = req->src;
331
332 return crypto_ahash_update(&rctx->fallback_req);
333 }
334
335 static int n2_hash_async_final(struct ahash_request *req)
336 {
337 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
338 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
339 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
340
341 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
342 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
343 rctx->fallback_req.result = req->result;
344
345 return crypto_ahash_final(&rctx->fallback_req);
346 }
347
348 static int n2_hash_async_finup(struct ahash_request *req)
349 {
350 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
351 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
352 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
353
354 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
355 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
356 rctx->fallback_req.nbytes = req->nbytes;
357 rctx->fallback_req.src = req->src;
358 rctx->fallback_req.result = req->result;
359
360 return crypto_ahash_finup(&rctx->fallback_req);
361 }
362
363 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
364 {
365 return -ENOSYS;
366 }
367
368 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
369 {
370 return -ENOSYS;
371 }
372
373 static int n2_hash_cra_init(struct crypto_tfm *tfm)
374 {
375 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
376 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
377 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
378 struct crypto_ahash *fallback_tfm;
379 int err;
380
381 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
382 CRYPTO_ALG_NEED_FALLBACK);
383 if (IS_ERR(fallback_tfm)) {
384 pr_warning("Fallback driver '%s' could not be loaded!\n",
385 fallback_driver_name);
386 err = PTR_ERR(fallback_tfm);
387 goto out;
388 }
389
390 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
391 crypto_ahash_reqsize(fallback_tfm)));
392
393 ctx->fallback_tfm = fallback_tfm;
394 return 0;
395
396 out:
397 return err;
398 }
399
400 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
401 {
402 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
403 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
404
405 crypto_free_ahash(ctx->fallback_tfm);
406 }
407
408 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
409 {
410 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
411 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
412 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
413 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
414 struct crypto_ahash *fallback_tfm;
415 struct crypto_shash *child_shash;
416 int err;
417
418 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
419 CRYPTO_ALG_NEED_FALLBACK);
420 if (IS_ERR(fallback_tfm)) {
421 pr_warning("Fallback driver '%s' could not be loaded!\n",
422 fallback_driver_name);
423 err = PTR_ERR(fallback_tfm);
424 goto out;
425 }
426
427 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
428 if (IS_ERR(child_shash)) {
429 pr_warning("Child shash '%s' could not be loaded!\n",
430 n2alg->child_alg);
431 err = PTR_ERR(child_shash);
432 goto out_free_fallback;
433 }
434
435 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
436 crypto_ahash_reqsize(fallback_tfm)));
437
438 ctx->child_shash = child_shash;
439 ctx->base.fallback_tfm = fallback_tfm;
440 return 0;
441
442 out_free_fallback:
443 crypto_free_ahash(fallback_tfm);
444
445 out:
446 return err;
447 }
448
449 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
450 {
451 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
452 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
453
454 crypto_free_ahash(ctx->base.fallback_tfm);
455 crypto_free_shash(ctx->child_shash);
456 }
457
458 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
459 unsigned int keylen)
460 {
461 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
462 struct crypto_shash *child_shash = ctx->child_shash;
463 struct crypto_ahash *fallback_tfm;
464 SHASH_DESC_ON_STACK(shash, child_shash);
465 int err, bs, ds;
466
467 fallback_tfm = ctx->base.fallback_tfm;
468 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469 if (err)
470 return err;
471
472 shash->tfm = child_shash;
473
474 bs = crypto_shash_blocksize(child_shash);
475 ds = crypto_shash_digestsize(child_shash);
476 BUG_ON(ds > N2_HASH_KEY_MAX);
477 if (keylen > bs) {
478 err = crypto_shash_digest(shash, key, keylen,
479 ctx->hash_key);
480 if (err)
481 return err;
482 keylen = ds;
483 } else if (keylen <= N2_HASH_KEY_MAX)
484 memcpy(ctx->hash_key, key, keylen);
485
486 ctx->hash_key_len = keylen;
487
488 return err;
489 }
490
491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493 unsigned long head, hv_ret;
494
495 do {
496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 if (hv_ret != HV_EOK) {
498 pr_err("Hypervisor error on gethead\n");
499 break;
500 }
501 if (head == qp->tail) {
502 qp->head = head;
503 break;
504 }
505 } while (1);
506 return hv_ret;
507 }
508
509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 struct cwq_initial_entry *ent)
511 {
512 unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514 if (hv_ret == HV_EOK)
515 hv_ret = wait_for_tail(qp);
516
517 return hv_ret;
518 }
519
520 static int n2_do_async_digest(struct ahash_request *req,
521 unsigned int auth_type, unsigned int digest_size,
522 unsigned int result_size, void *hash_loc,
523 unsigned long auth_key, unsigned int auth_key_len)
524 {
525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 struct cwq_initial_entry *ent;
527 struct crypto_hash_walk walk;
528 struct spu_queue *qp;
529 unsigned long flags;
530 int err = -ENODEV;
531 int nbytes, cpu;
532
533 /* The total effective length of the operation may not
534 * exceed 2^16.
535 */
536 if (unlikely(req->nbytes > (1 << 16))) {
537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 rctx->fallback_req.base.flags =
542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 rctx->fallback_req.nbytes = req->nbytes;
544 rctx->fallback_req.src = req->src;
545 rctx->fallback_req.result = req->result;
546
547 return crypto_ahash_digest(&rctx->fallback_req);
548 }
549
550 nbytes = crypto_hash_walk_first(req, &walk);
551
552 cpu = get_cpu();
553 qp = cpu_to_cwq[cpu];
554 if (!qp)
555 goto out;
556
557 spin_lock_irqsave(&qp->lock, flags);
558
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
560 * XXX walk, etc.
561 */
562 ent = qp->q + qp->tail;
563
564 ent->control = control_word_base(nbytes, auth_key_len, 0,
565 auth_type, digest_size,
566 false, true, false, false,
567 OPCODE_INPLACE_BIT |
568 OPCODE_AUTH_MAC);
569 ent->src_addr = __pa(walk.data);
570 ent->auth_key_addr = auth_key;
571 ent->auth_iv_addr = __pa(hash_loc);
572 ent->final_auth_state_addr = 0UL;
573 ent->enc_key_addr = 0UL;
574 ent->enc_iv_addr = 0UL;
575 ent->dest_addr = __pa(hash_loc);
576
577 nbytes = crypto_hash_walk_done(&walk, 0);
578 while (nbytes > 0) {
579 ent = spu_queue_next(qp, ent);
580
581 ent->control = (nbytes - 1);
582 ent->src_addr = __pa(walk.data);
583 ent->auth_key_addr = 0UL;
584 ent->auth_iv_addr = 0UL;
585 ent->final_auth_state_addr = 0UL;
586 ent->enc_key_addr = 0UL;
587 ent->enc_iv_addr = 0UL;
588 ent->dest_addr = 0UL;
589
590 nbytes = crypto_hash_walk_done(&walk, 0);
591 }
592 ent->control |= CONTROL_END_OF_BLOCK;
593
594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 err = -EINVAL;
596 else
597 err = 0;
598
599 spin_unlock_irqrestore(&qp->lock, flags);
600
601 if (!err)
602 memcpy(req->result, hash_loc, result_size);
603 out:
604 put_cpu();
605
606 return err;
607 }
608
609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 int ds;
614
615 ds = n2alg->digest_size;
616 if (unlikely(req->nbytes == 0)) {
617 memcpy(req->result, n2alg->hash_zero, ds);
618 return 0;
619 }
620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622 return n2_do_async_digest(req, n2alg->auth_type,
623 n2alg->hw_op_hashsz, ds,
624 &rctx->u, 0UL, 0);
625 }
626
627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 int ds;
634
635 ds = n2alg->derived.digest_size;
636 if (unlikely(req->nbytes == 0) ||
637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 rctx->fallback_req.base.flags =
643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 rctx->fallback_req.nbytes = req->nbytes;
645 rctx->fallback_req.src = req->src;
646 rctx->fallback_req.result = req->result;
647
648 return crypto_ahash_digest(&rctx->fallback_req);
649 }
650 memcpy(&rctx->u, n2alg->derived.hash_init,
651 n2alg->derived.hw_op_hashsz);
652
653 return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 n2alg->derived.hw_op_hashsz, ds,
655 &rctx->u,
656 __pa(&ctx->hash_key),
657 ctx->hash_key_len);
658 }
659
660 struct n2_cipher_context {
661 int key_len;
662 int enc_type;
663 union {
664 u8 aes[AES_MAX_KEY_SIZE];
665 u8 des[DES_KEY_SIZE];
666 u8 des3[3 * DES_KEY_SIZE];
667 u8 arc4[258]; /* S-box, X, Y */
668 } key;
669 };
670
671 #define N2_CHUNK_ARR_LEN 16
672
673 struct n2_crypto_chunk {
674 struct list_head entry;
675 unsigned long iv_paddr : 44;
676 unsigned long arr_len : 20;
677 unsigned long dest_paddr;
678 unsigned long dest_final;
679 struct {
680 unsigned long src_paddr : 44;
681 unsigned long src_len : 20;
682 } arr[N2_CHUNK_ARR_LEN];
683 };
684
685 struct n2_request_context {
686 struct ablkcipher_walk walk;
687 struct list_head chunk_list;
688 struct n2_crypto_chunk chunk;
689 u8 temp_iv[16];
690 };
691
692 /* The SPU allows some level of flexibility for partial cipher blocks
693 * being specified in a descriptor.
694 *
695 * It merely requires that every descriptor's length field is at least
696 * as large as the cipher block size. This means that a cipher block
697 * can span at most 2 descriptors. However, this does not allow a
698 * partial block to span into the final descriptor as that would
699 * violate the rule (since every descriptor's length must be at lest
700 * the block size). So, for example, assuming an 8 byte block size:
701 *
702 * 0xe --> 0xa --> 0x8
703 *
704 * is a valid length sequence, whereas:
705 *
706 * 0xe --> 0xb --> 0x7
707 *
708 * is not a valid sequence.
709 */
710
711 struct n2_cipher_alg {
712 struct list_head entry;
713 u8 enc_type;
714 struct crypto_alg alg;
715 };
716
717 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
718 {
719 struct crypto_alg *alg = tfm->__crt_alg;
720
721 return container_of(alg, struct n2_cipher_alg, alg);
722 }
723
724 struct n2_cipher_request_context {
725 struct ablkcipher_walk walk;
726 };
727
728 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
729 unsigned int keylen)
730 {
731 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
732 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
733 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
734
735 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
736
737 switch (keylen) {
738 case AES_KEYSIZE_128:
739 ctx->enc_type |= ENC_TYPE_ALG_AES128;
740 break;
741 case AES_KEYSIZE_192:
742 ctx->enc_type |= ENC_TYPE_ALG_AES192;
743 break;
744 case AES_KEYSIZE_256:
745 ctx->enc_type |= ENC_TYPE_ALG_AES256;
746 break;
747 default:
748 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
749 return -EINVAL;
750 }
751
752 ctx->key_len = keylen;
753 memcpy(ctx->key.aes, key, keylen);
754 return 0;
755 }
756
757 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
758 unsigned int keylen)
759 {
760 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
761 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
762 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
763 int err;
764
765 err = verify_ablkcipher_des_key(cipher, key);
766 if (err)
767 return err;
768
769 ctx->enc_type = n2alg->enc_type;
770
771 ctx->key_len = keylen;
772 memcpy(ctx->key.des, key, keylen);
773 return 0;
774 }
775
776 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
777 unsigned int keylen)
778 {
779 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
780 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
781 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
782 int err;
783
784 err = verify_ablkcipher_des3_key(cipher, key);
785 if (err)
786 return err;
787
788 ctx->enc_type = n2alg->enc_type;
789
790 ctx->key_len = keylen;
791 memcpy(ctx->key.des3, key, keylen);
792 return 0;
793 }
794
795 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
796 unsigned int keylen)
797 {
798 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
799 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
800 struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
801 u8 *s = ctx->key.arc4;
802 u8 *x = s + 256;
803 u8 *y = x + 1;
804 int i, j, k;
805
806 ctx->enc_type = n2alg->enc_type;
807
808 j = k = 0;
809 *x = 0;
810 *y = 0;
811 for (i = 0; i < 256; i++)
812 s[i] = i;
813 for (i = 0; i < 256; i++) {
814 u8 a = s[i];
815 j = (j + key[k] + a) & 0xff;
816 s[i] = s[j];
817 s[j] = a;
818 if (++k >= keylen)
819 k = 0;
820 }
821
822 return 0;
823 }
824
825 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
826 {
827 int this_len = nbytes;
828
829 this_len -= (nbytes & (block_size - 1));
830 return this_len > (1 << 16) ? (1 << 16) : this_len;
831 }
832
833 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
834 struct spu_queue *qp, bool encrypt)
835 {
836 struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
837 struct cwq_initial_entry *ent;
838 bool in_place;
839 int i;
840
841 ent = spu_queue_alloc(qp, cp->arr_len);
842 if (!ent) {
843 pr_info("queue_alloc() of %d fails\n",
844 cp->arr_len);
845 return -EBUSY;
846 }
847
848 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
849
850 ent->control = control_word_base(cp->arr[0].src_len,
851 0, ctx->enc_type, 0, 0,
852 false, true, false, encrypt,
853 OPCODE_ENCRYPT |
854 (in_place ? OPCODE_INPLACE_BIT : 0));
855 ent->src_addr = cp->arr[0].src_paddr;
856 ent->auth_key_addr = 0UL;
857 ent->auth_iv_addr = 0UL;
858 ent->final_auth_state_addr = 0UL;
859 ent->enc_key_addr = __pa(&ctx->key);
860 ent->enc_iv_addr = cp->iv_paddr;
861 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
862
863 for (i = 1; i < cp->arr_len; i++) {
864 ent = spu_queue_next(qp, ent);
865
866 ent->control = cp->arr[i].src_len - 1;
867 ent->src_addr = cp->arr[i].src_paddr;
868 ent->auth_key_addr = 0UL;
869 ent->auth_iv_addr = 0UL;
870 ent->final_auth_state_addr = 0UL;
871 ent->enc_key_addr = 0UL;
872 ent->enc_iv_addr = 0UL;
873 ent->dest_addr = 0UL;
874 }
875 ent->control |= CONTROL_END_OF_BLOCK;
876
877 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
878 }
879
880 static int n2_compute_chunks(struct ablkcipher_request *req)
881 {
882 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
883 struct ablkcipher_walk *walk = &rctx->walk;
884 struct n2_crypto_chunk *chunk;
885 unsigned long dest_prev;
886 unsigned int tot_len;
887 bool prev_in_place;
888 int err, nbytes;
889
890 ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
891 err = ablkcipher_walk_phys(req, walk);
892 if (err)
893 return err;
894
895 INIT_LIST_HEAD(&rctx->chunk_list);
896
897 chunk = &rctx->chunk;
898 INIT_LIST_HEAD(&chunk->entry);
899
900 chunk->iv_paddr = 0UL;
901 chunk->arr_len = 0;
902 chunk->dest_paddr = 0UL;
903
904 prev_in_place = false;
905 dest_prev = ~0UL;
906 tot_len = 0;
907
908 while ((nbytes = walk->nbytes) != 0) {
909 unsigned long dest_paddr, src_paddr;
910 bool in_place;
911 int this_len;
912
913 src_paddr = (page_to_phys(walk->src.page) +
914 walk->src.offset);
915 dest_paddr = (page_to_phys(walk->dst.page) +
916 walk->dst.offset);
917 in_place = (src_paddr == dest_paddr);
918 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
919
920 if (chunk->arr_len != 0) {
921 if (in_place != prev_in_place ||
922 (!prev_in_place &&
923 dest_paddr != dest_prev) ||
924 chunk->arr_len == N2_CHUNK_ARR_LEN ||
925 tot_len + this_len > (1 << 16)) {
926 chunk->dest_final = dest_prev;
927 list_add_tail(&chunk->entry,
928 &rctx->chunk_list);
929 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930 if (!chunk) {
931 err = -ENOMEM;
932 break;
933 }
934 INIT_LIST_HEAD(&chunk->entry);
935 }
936 }
937 if (chunk->arr_len == 0) {
938 chunk->dest_paddr = dest_paddr;
939 tot_len = 0;
940 }
941 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
942 chunk->arr[chunk->arr_len].src_len = this_len;
943 chunk->arr_len++;
944
945 dest_prev = dest_paddr + this_len;
946 prev_in_place = in_place;
947 tot_len += this_len;
948
949 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
950 if (err)
951 break;
952 }
953 if (!err && chunk->arr_len != 0) {
954 chunk->dest_final = dest_prev;
955 list_add_tail(&chunk->entry, &rctx->chunk_list);
956 }
957
958 return err;
959 }
960
961 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
962 {
963 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
964 struct n2_crypto_chunk *c, *tmp;
965
966 if (final_iv)
967 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
968
969 ablkcipher_walk_complete(&rctx->walk);
970 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
971 list_del(&c->entry);
972 if (unlikely(c != &rctx->chunk))
973 kfree(c);
974 }
975
976 }
977
978 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
979 {
980 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
981 struct crypto_tfm *tfm = req->base.tfm;
982 int err = n2_compute_chunks(req);
983 struct n2_crypto_chunk *c, *tmp;
984 unsigned long flags, hv_ret;
985 struct spu_queue *qp;
986
987 if (err)
988 return err;
989
990 qp = cpu_to_cwq[get_cpu()];
991 err = -ENODEV;
992 if (!qp)
993 goto out;
994
995 spin_lock_irqsave(&qp->lock, flags);
996
997 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
998 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
999 if (err)
1000 break;
1001 list_del(&c->entry);
1002 if (unlikely(c != &rctx->chunk))
1003 kfree(c);
1004 }
1005 if (!err) {
1006 hv_ret = wait_for_tail(qp);
1007 if (hv_ret != HV_EOK)
1008 err = -EINVAL;
1009 }
1010
1011 spin_unlock_irqrestore(&qp->lock, flags);
1012
1013 out:
1014 put_cpu();
1015
1016 n2_chunk_complete(req, NULL);
1017 return err;
1018 }
1019
1020 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1021 {
1022 return n2_do_ecb(req, true);
1023 }
1024
1025 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1026 {
1027 return n2_do_ecb(req, false);
1028 }
1029
1030 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1031 {
1032 struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1033 struct crypto_tfm *tfm = req->base.tfm;
1034 unsigned long flags, hv_ret, iv_paddr;
1035 int err = n2_compute_chunks(req);
1036 struct n2_crypto_chunk *c, *tmp;
1037 struct spu_queue *qp;
1038 void *final_iv_addr;
1039
1040 final_iv_addr = NULL;
1041
1042 if (err)
1043 return err;
1044
1045 qp = cpu_to_cwq[get_cpu()];
1046 err = -ENODEV;
1047 if (!qp)
1048 goto out;
1049
1050 spin_lock_irqsave(&qp->lock, flags);
1051
1052 if (encrypt) {
1053 iv_paddr = __pa(rctx->walk.iv);
1054 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1055 entry) {
1056 c->iv_paddr = iv_paddr;
1057 err = __n2_crypt_chunk(tfm, c, qp, true);
1058 if (err)
1059 break;
1060 iv_paddr = c->dest_final - rctx->walk.blocksize;
1061 list_del(&c->entry);
1062 if (unlikely(c != &rctx->chunk))
1063 kfree(c);
1064 }
1065 final_iv_addr = __va(iv_paddr);
1066 } else {
1067 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1068 entry) {
1069 if (c == &rctx->chunk) {
1070 iv_paddr = __pa(rctx->walk.iv);
1071 } else {
1072 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1073 tmp->arr[tmp->arr_len-1].src_len -
1074 rctx->walk.blocksize);
1075 }
1076 if (!final_iv_addr) {
1077 unsigned long pa;
1078
1079 pa = (c->arr[c->arr_len-1].src_paddr +
1080 c->arr[c->arr_len-1].src_len -
1081 rctx->walk.blocksize);
1082 final_iv_addr = rctx->temp_iv;
1083 memcpy(rctx->temp_iv, __va(pa),
1084 rctx->walk.blocksize);
1085 }
1086 c->iv_paddr = iv_paddr;
1087 err = __n2_crypt_chunk(tfm, c, qp, false);
1088 if (err)
1089 break;
1090 list_del(&c->entry);
1091 if (unlikely(c != &rctx->chunk))
1092 kfree(c);
1093 }
1094 }
1095 if (!err) {
1096 hv_ret = wait_for_tail(qp);
1097 if (hv_ret != HV_EOK)
1098 err = -EINVAL;
1099 }
1100
1101 spin_unlock_irqrestore(&qp->lock, flags);
1102
1103 out:
1104 put_cpu();
1105
1106 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1107 return err;
1108 }
1109
1110 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1111 {
1112 return n2_do_chaining(req, true);
1113 }
1114
1115 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1116 {
1117 return n2_do_chaining(req, false);
1118 }
1119
1120 struct n2_cipher_tmpl {
1121 const char *name;
1122 const char *drv_name;
1123 u8 block_size;
1124 u8 enc_type;
1125 struct ablkcipher_alg ablkcipher;
1126 };
1127
1128 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1129 /* ARC4: only ECB is supported (chaining bits ignored) */
1130 { .name = "ecb(arc4)",
1131 .drv_name = "ecb-arc4",
1132 .block_size = 1,
1133 .enc_type = (ENC_TYPE_ALG_RC4_STREAM |
1134 ENC_TYPE_CHAINING_ECB),
1135 .ablkcipher = {
1136 .min_keysize = 1,
1137 .max_keysize = 256,
1138 .setkey = n2_arc4_setkey,
1139 .encrypt = n2_encrypt_ecb,
1140 .decrypt = n2_decrypt_ecb,
1141 },
1142 },
1143
1144 /* DES: ECB CBC and CFB are supported */
1145 { .name = "ecb(des)",
1146 .drv_name = "ecb-des",
1147 .block_size = DES_BLOCK_SIZE,
1148 .enc_type = (ENC_TYPE_ALG_DES |
1149 ENC_TYPE_CHAINING_ECB),
1150 .ablkcipher = {
1151 .min_keysize = DES_KEY_SIZE,
1152 .max_keysize = DES_KEY_SIZE,
1153 .setkey = n2_des_setkey,
1154 .encrypt = n2_encrypt_ecb,
1155 .decrypt = n2_decrypt_ecb,
1156 },
1157 },
1158 { .name = "cbc(des)",
1159 .drv_name = "cbc-des",
1160 .block_size = DES_BLOCK_SIZE,
1161 .enc_type = (ENC_TYPE_ALG_DES |
1162 ENC_TYPE_CHAINING_CBC),
1163 .ablkcipher = {
1164 .ivsize = DES_BLOCK_SIZE,
1165 .min_keysize = DES_KEY_SIZE,
1166 .max_keysize = DES_KEY_SIZE,
1167 .setkey = n2_des_setkey,
1168 .encrypt = n2_encrypt_chaining,
1169 .decrypt = n2_decrypt_chaining,
1170 },
1171 },
1172 { .name = "cfb(des)",
1173 .drv_name = "cfb-des",
1174 .block_size = DES_BLOCK_SIZE,
1175 .enc_type = (ENC_TYPE_ALG_DES |
1176 ENC_TYPE_CHAINING_CFB),
1177 .ablkcipher = {
1178 .min_keysize = DES_KEY_SIZE,
1179 .max_keysize = DES_KEY_SIZE,
1180 .setkey = n2_des_setkey,
1181 .encrypt = n2_encrypt_chaining,
1182 .decrypt = n2_decrypt_chaining,
1183 },
1184 },
1185
1186 /* 3DES: ECB CBC and CFB are supported */
1187 { .name = "ecb(des3_ede)",
1188 .drv_name = "ecb-3des",
1189 .block_size = DES_BLOCK_SIZE,
1190 .enc_type = (ENC_TYPE_ALG_3DES |
1191 ENC_TYPE_CHAINING_ECB),
1192 .ablkcipher = {
1193 .min_keysize = 3 * DES_KEY_SIZE,
1194 .max_keysize = 3 * DES_KEY_SIZE,
1195 .setkey = n2_3des_setkey,
1196 .encrypt = n2_encrypt_ecb,
1197 .decrypt = n2_decrypt_ecb,
1198 },
1199 },
1200 { .name = "cbc(des3_ede)",
1201 .drv_name = "cbc-3des",
1202 .block_size = DES_BLOCK_SIZE,
1203 .enc_type = (ENC_TYPE_ALG_3DES |
1204 ENC_TYPE_CHAINING_CBC),
1205 .ablkcipher = {
1206 .ivsize = DES_BLOCK_SIZE,
1207 .min_keysize = 3 * DES_KEY_SIZE,
1208 .max_keysize = 3 * DES_KEY_SIZE,
1209 .setkey = n2_3des_setkey,
1210 .encrypt = n2_encrypt_chaining,
1211 .decrypt = n2_decrypt_chaining,
1212 },
1213 },
1214 { .name = "cfb(des3_ede)",
1215 .drv_name = "cfb-3des",
1216 .block_size = DES_BLOCK_SIZE,
1217 .enc_type = (ENC_TYPE_ALG_3DES |
1218 ENC_TYPE_CHAINING_CFB),
1219 .ablkcipher = {
1220 .min_keysize = 3 * DES_KEY_SIZE,
1221 .max_keysize = 3 * DES_KEY_SIZE,
1222 .setkey = n2_3des_setkey,
1223 .encrypt = n2_encrypt_chaining,
1224 .decrypt = n2_decrypt_chaining,
1225 },
1226 },
1227 /* AES: ECB CBC and CTR are supported */
1228 { .name = "ecb(aes)",
1229 .drv_name = "ecb-aes",
1230 .block_size = AES_BLOCK_SIZE,
1231 .enc_type = (ENC_TYPE_ALG_AES128 |
1232 ENC_TYPE_CHAINING_ECB),
1233 .ablkcipher = {
1234 .min_keysize = AES_MIN_KEY_SIZE,
1235 .max_keysize = AES_MAX_KEY_SIZE,
1236 .setkey = n2_aes_setkey,
1237 .encrypt = n2_encrypt_ecb,
1238 .decrypt = n2_decrypt_ecb,
1239 },
1240 },
1241 { .name = "cbc(aes)",
1242 .drv_name = "cbc-aes",
1243 .block_size = AES_BLOCK_SIZE,
1244 .enc_type = (ENC_TYPE_ALG_AES128 |
1245 ENC_TYPE_CHAINING_CBC),
1246 .ablkcipher = {
1247 .ivsize = AES_BLOCK_SIZE,
1248 .min_keysize = AES_MIN_KEY_SIZE,
1249 .max_keysize = AES_MAX_KEY_SIZE,
1250 .setkey = n2_aes_setkey,
1251 .encrypt = n2_encrypt_chaining,
1252 .decrypt = n2_decrypt_chaining,
1253 },
1254 },
1255 { .name = "ctr(aes)",
1256 .drv_name = "ctr-aes",
1257 .block_size = AES_BLOCK_SIZE,
1258 .enc_type = (ENC_TYPE_ALG_AES128 |
1259 ENC_TYPE_CHAINING_COUNTER),
1260 .ablkcipher = {
1261 .ivsize = AES_BLOCK_SIZE,
1262 .min_keysize = AES_MIN_KEY_SIZE,
1263 .max_keysize = AES_MAX_KEY_SIZE,
1264 .setkey = n2_aes_setkey,
1265 .encrypt = n2_encrypt_chaining,
1266 .decrypt = n2_encrypt_chaining,
1267 },
1268 },
1269
1270 };
1271 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1272
1273 static LIST_HEAD(cipher_algs);
1274
1275 struct n2_hash_tmpl {
1276 const char *name;
1277 const u8 *hash_zero;
1278 const u32 *hash_init;
1279 u8 hw_op_hashsz;
1280 u8 digest_size;
1281 u8 block_size;
1282 u8 auth_type;
1283 u8 hmac_type;
1284 };
1285
1286 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1287 cpu_to_le32(MD5_H0),
1288 cpu_to_le32(MD5_H1),
1289 cpu_to_le32(MD5_H2),
1290 cpu_to_le32(MD5_H3),
1291 };
1292 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1293 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1294 };
1295 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1296 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1297 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1298 };
1299 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1300 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1301 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1302 };
1303
1304 static const struct n2_hash_tmpl hash_tmpls[] = {
1305 { .name = "md5",
1306 .hash_zero = md5_zero_message_hash,
1307 .hash_init = n2_md5_init,
1308 .auth_type = AUTH_TYPE_MD5,
1309 .hmac_type = AUTH_TYPE_HMAC_MD5,
1310 .hw_op_hashsz = MD5_DIGEST_SIZE,
1311 .digest_size = MD5_DIGEST_SIZE,
1312 .block_size = MD5_HMAC_BLOCK_SIZE },
1313 { .name = "sha1",
1314 .hash_zero = sha1_zero_message_hash,
1315 .hash_init = n2_sha1_init,
1316 .auth_type = AUTH_TYPE_SHA1,
1317 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1318 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1319 .digest_size = SHA1_DIGEST_SIZE,
1320 .block_size = SHA1_BLOCK_SIZE },
1321 { .name = "sha256",
1322 .hash_zero = sha256_zero_message_hash,
1323 .hash_init = n2_sha256_init,
1324 .auth_type = AUTH_TYPE_SHA256,
1325 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1326 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1327 .digest_size = SHA256_DIGEST_SIZE,
1328 .block_size = SHA256_BLOCK_SIZE },
1329 { .name = "sha224",
1330 .hash_zero = sha224_zero_message_hash,
1331 .hash_init = n2_sha224_init,
1332 .auth_type = AUTH_TYPE_SHA256,
1333 .hmac_type = AUTH_TYPE_RESERVED,
1334 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1335 .digest_size = SHA224_DIGEST_SIZE,
1336 .block_size = SHA224_BLOCK_SIZE },
1337 };
1338 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1339
1340 static LIST_HEAD(ahash_algs);
1341 static LIST_HEAD(hmac_algs);
1342
1343 static int algs_registered;
1344
1345 static void __n2_unregister_algs(void)
1346 {
1347 struct n2_cipher_alg *cipher, *cipher_tmp;
1348 struct n2_ahash_alg *alg, *alg_tmp;
1349 struct n2_hmac_alg *hmac, *hmac_tmp;
1350
1351 list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1352 crypto_unregister_alg(&cipher->alg);
1353 list_del(&cipher->entry);
1354 kfree(cipher);
1355 }
1356 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1357 crypto_unregister_ahash(&hmac->derived.alg);
1358 list_del(&hmac->derived.entry);
1359 kfree(hmac);
1360 }
1361 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1362 crypto_unregister_ahash(&alg->alg);
1363 list_del(&alg->entry);
1364 kfree(alg);
1365 }
1366 }
1367
1368 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1369 {
1370 tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1371 return 0;
1372 }
1373
1374 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1375 {
1376 struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1377 struct crypto_alg *alg;
1378 int err;
1379
1380 if (!p)
1381 return -ENOMEM;
1382
1383 alg = &p->alg;
1384
1385 snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386 snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387 alg->cra_priority = N2_CRA_PRIORITY;
1388 alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1389 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1390 alg->cra_blocksize = tmpl->block_size;
1391 p->enc_type = tmpl->enc_type;
1392 alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1393 alg->cra_type = &crypto_ablkcipher_type;
1394 alg->cra_u.ablkcipher = tmpl->ablkcipher;
1395 alg->cra_init = n2_cipher_cra_init;
1396 alg->cra_module = THIS_MODULE;
1397
1398 list_add(&p->entry, &cipher_algs);
1399 err = crypto_register_alg(alg);
1400 if (err) {
1401 pr_err("%s alg registration failed\n", alg->cra_name);
1402 list_del(&p->entry);
1403 kfree(p);
1404 } else {
1405 pr_info("%s alg registered\n", alg->cra_name);
1406 }
1407 return err;
1408 }
1409
1410 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1411 {
1412 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1413 struct ahash_alg *ahash;
1414 struct crypto_alg *base;
1415 int err;
1416
1417 if (!p)
1418 return -ENOMEM;
1419
1420 p->child_alg = n2ahash->alg.halg.base.cra_name;
1421 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1422 INIT_LIST_HEAD(&p->derived.entry);
1423
1424 ahash = &p->derived.alg;
1425 ahash->digest = n2_hmac_async_digest;
1426 ahash->setkey = n2_hmac_async_setkey;
1427
1428 base = &ahash->halg.base;
1429 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1430 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1431
1432 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1433 base->cra_init = n2_hmac_cra_init;
1434 base->cra_exit = n2_hmac_cra_exit;
1435
1436 list_add(&p->derived.entry, &hmac_algs);
1437 err = crypto_register_ahash(ahash);
1438 if (err) {
1439 pr_err("%s alg registration failed\n", base->cra_name);
1440 list_del(&p->derived.entry);
1441 kfree(p);
1442 } else {
1443 pr_info("%s alg registered\n", base->cra_name);
1444 }
1445 return err;
1446 }
1447
1448 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1449 {
1450 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1451 struct hash_alg_common *halg;
1452 struct crypto_alg *base;
1453 struct ahash_alg *ahash;
1454 int err;
1455
1456 if (!p)
1457 return -ENOMEM;
1458
1459 p->hash_zero = tmpl->hash_zero;
1460 p->hash_init = tmpl->hash_init;
1461 p->auth_type = tmpl->auth_type;
1462 p->hmac_type = tmpl->hmac_type;
1463 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1464 p->digest_size = tmpl->digest_size;
1465
1466 ahash = &p->alg;
1467 ahash->init = n2_hash_async_init;
1468 ahash->update = n2_hash_async_update;
1469 ahash->final = n2_hash_async_final;
1470 ahash->finup = n2_hash_async_finup;
1471 ahash->digest = n2_hash_async_digest;
1472 ahash->export = n2_hash_async_noexport;
1473 ahash->import = n2_hash_async_noimport;
1474
1475 halg = &ahash->halg;
1476 halg->digestsize = tmpl->digest_size;
1477
1478 base = &halg->base;
1479 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1480 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1481 base->cra_priority = N2_CRA_PRIORITY;
1482 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1483 CRYPTO_ALG_NEED_FALLBACK;
1484 base->cra_blocksize = tmpl->block_size;
1485 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1486 base->cra_module = THIS_MODULE;
1487 base->cra_init = n2_hash_cra_init;
1488 base->cra_exit = n2_hash_cra_exit;
1489
1490 list_add(&p->entry, &ahash_algs);
1491 err = crypto_register_ahash(ahash);
1492 if (err) {
1493 pr_err("%s alg registration failed\n", base->cra_name);
1494 list_del(&p->entry);
1495 kfree(p);
1496 } else {
1497 pr_info("%s alg registered\n", base->cra_name);
1498 }
1499 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1500 err = __n2_register_one_hmac(p);
1501 return err;
1502 }
1503
1504 static int n2_register_algs(void)
1505 {
1506 int i, err = 0;
1507
1508 mutex_lock(&spu_lock);
1509 if (algs_registered++)
1510 goto out;
1511
1512 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1513 err = __n2_register_one_ahash(&hash_tmpls[i]);
1514 if (err) {
1515 __n2_unregister_algs();
1516 goto out;
1517 }
1518 }
1519 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1520 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1521 if (err) {
1522 __n2_unregister_algs();
1523 goto out;
1524 }
1525 }
1526
1527 out:
1528 mutex_unlock(&spu_lock);
1529 return err;
1530 }
1531
1532 static void n2_unregister_algs(void)
1533 {
1534 mutex_lock(&spu_lock);
1535 if (!--algs_registered)
1536 __n2_unregister_algs();
1537 mutex_unlock(&spu_lock);
1538 }
1539
1540 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1541 * a devino. This isn't very useful to us because all of the
1542 * interrupts listed in the device_node have been translated to
1543 * Linux virtual IRQ cookie numbers.
1544 *
1545 * So we have to back-translate, going through the 'intr' and 'ino'
1546 * property tables of the n2cp MDESC node, matching it with the OF
1547 * 'interrupts' property entries, in order to to figure out which
1548 * devino goes to which already-translated IRQ.
1549 */
1550 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1551 unsigned long dev_ino)
1552 {
1553 const unsigned int *dev_intrs;
1554 unsigned int intr;
1555 int i;
1556
1557 for (i = 0; i < ip->num_intrs; i++) {
1558 if (ip->ino_table[i].ino == dev_ino)
1559 break;
1560 }
1561 if (i == ip->num_intrs)
1562 return -ENODEV;
1563
1564 intr = ip->ino_table[i].intr;
1565
1566 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1567 if (!dev_intrs)
1568 return -ENODEV;
1569
1570 for (i = 0; i < dev->archdata.num_irqs; i++) {
1571 if (dev_intrs[i] == intr)
1572 return i;
1573 }
1574
1575 return -ENODEV;
1576 }
1577
1578 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1579 const char *irq_name, struct spu_queue *p,
1580 irq_handler_t handler)
1581 {
1582 unsigned long herr;
1583 int index;
1584
1585 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1586 if (herr)
1587 return -EINVAL;
1588
1589 index = find_devino_index(dev, ip, p->devino);
1590 if (index < 0)
1591 return index;
1592
1593 p->irq = dev->archdata.irqs[index];
1594
1595 sprintf(p->irq_name, "%s-%d", irq_name, index);
1596
1597 return request_irq(p->irq, handler, 0, p->irq_name, p);
1598 }
1599
1600 static struct kmem_cache *queue_cache[2];
1601
1602 static void *new_queue(unsigned long q_type)
1603 {
1604 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1605 }
1606
1607 static void free_queue(void *p, unsigned long q_type)
1608 {
1609 kmem_cache_free(queue_cache[q_type - 1], p);
1610 }
1611
1612 static int queue_cache_init(void)
1613 {
1614 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1615 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1616 kmem_cache_create("mau_queue",
1617 (MAU_NUM_ENTRIES *
1618 MAU_ENTRY_SIZE),
1619 MAU_ENTRY_SIZE, 0, NULL);
1620 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1621 return -ENOMEM;
1622
1623 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1624 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1625 kmem_cache_create("cwq_queue",
1626 (CWQ_NUM_ENTRIES *
1627 CWQ_ENTRY_SIZE),
1628 CWQ_ENTRY_SIZE, 0, NULL);
1629 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1630 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1631 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1632 return -ENOMEM;
1633 }
1634 return 0;
1635 }
1636
1637 static void queue_cache_destroy(void)
1638 {
1639 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1640 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1641 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1642 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1643 }
1644
1645 static long spu_queue_register_workfn(void *arg)
1646 {
1647 struct spu_qreg *qr = arg;
1648 struct spu_queue *p = qr->queue;
1649 unsigned long q_type = qr->type;
1650 unsigned long hv_ret;
1651
1652 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1653 CWQ_NUM_ENTRIES, &p->qhandle);
1654 if (!hv_ret)
1655 sun4v_ncs_sethead_marker(p->qhandle, 0);
1656
1657 return hv_ret ? -EINVAL : 0;
1658 }
1659
1660 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1661 {
1662 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1663 struct spu_qreg qr = { .queue = p, .type = q_type };
1664
1665 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1666 }
1667
1668 static int spu_queue_setup(struct spu_queue *p)
1669 {
1670 int err;
1671
1672 p->q = new_queue(p->q_type);
1673 if (!p->q)
1674 return -ENOMEM;
1675
1676 err = spu_queue_register(p, p->q_type);
1677 if (err) {
1678 free_queue(p->q, p->q_type);
1679 p->q = NULL;
1680 }
1681
1682 return err;
1683 }
1684
1685 static void spu_queue_destroy(struct spu_queue *p)
1686 {
1687 unsigned long hv_ret;
1688
1689 if (!p->q)
1690 return;
1691
1692 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1693
1694 if (!hv_ret)
1695 free_queue(p->q, p->q_type);
1696 }
1697
1698 static void spu_list_destroy(struct list_head *list)
1699 {
1700 struct spu_queue *p, *n;
1701
1702 list_for_each_entry_safe(p, n, list, list) {
1703 int i;
1704
1705 for (i = 0; i < NR_CPUS; i++) {
1706 if (cpu_to_cwq[i] == p)
1707 cpu_to_cwq[i] = NULL;
1708 }
1709
1710 if (p->irq) {
1711 free_irq(p->irq, p);
1712 p->irq = 0;
1713 }
1714 spu_queue_destroy(p);
1715 list_del(&p->list);
1716 kfree(p);
1717 }
1718 }
1719
1720 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1721 * gathering cpu membership information.
1722 */
1723 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1724 struct platform_device *dev,
1725 u64 node, struct spu_queue *p,
1726 struct spu_queue **table)
1727 {
1728 u64 arc;
1729
1730 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1731 u64 tgt = mdesc_arc_target(mdesc, arc);
1732 const char *name = mdesc_node_name(mdesc, tgt);
1733 const u64 *id;
1734
1735 if (strcmp(name, "cpu"))
1736 continue;
1737 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1738 if (table[*id] != NULL) {
1739 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1740 dev->dev.of_node);
1741 return -EINVAL;
1742 }
1743 cpumask_set_cpu(*id, &p->sharing);
1744 table[*id] = p;
1745 }
1746 return 0;
1747 }
1748
1749 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1750 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1751 struct platform_device *dev, struct mdesc_handle *mdesc,
1752 u64 node, const char *iname, unsigned long q_type,
1753 irq_handler_t handler, struct spu_queue **table)
1754 {
1755 struct spu_queue *p;
1756 int err;
1757
1758 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1759 if (!p) {
1760 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1761 dev->dev.of_node);
1762 return -ENOMEM;
1763 }
1764
1765 cpumask_clear(&p->sharing);
1766 spin_lock_init(&p->lock);
1767 p->q_type = q_type;
1768 INIT_LIST_HEAD(&p->jobs);
1769 list_add(&p->list, list);
1770
1771 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1772 if (err)
1773 return err;
1774
1775 err = spu_queue_setup(p);
1776 if (err)
1777 return err;
1778
1779 return spu_map_ino(dev, ip, iname, p, handler);
1780 }
1781
1782 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1783 struct spu_mdesc_info *ip, struct list_head *list,
1784 const char *exec_name, unsigned long q_type,
1785 irq_handler_t handler, struct spu_queue **table)
1786 {
1787 int err = 0;
1788 u64 node;
1789
1790 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1791 const char *type;
1792
1793 type = mdesc_get_property(mdesc, node, "type", NULL);
1794 if (!type || strcmp(type, exec_name))
1795 continue;
1796
1797 err = handle_exec_unit(ip, list, dev, mdesc, node,
1798 exec_name, q_type, handler, table);
1799 if (err) {
1800 spu_list_destroy(list);
1801 break;
1802 }
1803 }
1804
1805 return err;
1806 }
1807
1808 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1809 struct spu_mdesc_info *ip)
1810 {
1811 const u64 *ino;
1812 int ino_len;
1813 int i;
1814
1815 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1816 if (!ino) {
1817 printk("NO 'ino'\n");
1818 return -ENODEV;
1819 }
1820
1821 ip->num_intrs = ino_len / sizeof(u64);
1822 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1823 ip->num_intrs),
1824 GFP_KERNEL);
1825 if (!ip->ino_table)
1826 return -ENOMEM;
1827
1828 for (i = 0; i < ip->num_intrs; i++) {
1829 struct ino_blob *b = &ip->ino_table[i];
1830 b->intr = i + 1;
1831 b->ino = ino[i];
1832 }
1833
1834 return 0;
1835 }
1836
1837 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1838 struct platform_device *dev,
1839 struct spu_mdesc_info *ip,
1840 const char *node_name)
1841 {
1842 const unsigned int *reg;
1843 u64 node;
1844
1845 reg = of_get_property(dev->dev.of_node, "reg", NULL);
1846 if (!reg)
1847 return -ENODEV;
1848
1849 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1850 const char *name;
1851 const u64 *chdl;
1852
1853 name = mdesc_get_property(mdesc, node, "name", NULL);
1854 if (!name || strcmp(name, node_name))
1855 continue;
1856 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1857 if (!chdl || (*chdl != *reg))
1858 continue;
1859 ip->cfg_handle = *chdl;
1860 return get_irq_props(mdesc, node, ip);
1861 }
1862
1863 return -ENODEV;
1864 }
1865
1866 static unsigned long n2_spu_hvapi_major;
1867 static unsigned long n2_spu_hvapi_minor;
1868
1869 static int n2_spu_hvapi_register(void)
1870 {
1871 int err;
1872
1873 n2_spu_hvapi_major = 2;
1874 n2_spu_hvapi_minor = 0;
1875
1876 err = sun4v_hvapi_register(HV_GRP_NCS,
1877 n2_spu_hvapi_major,
1878 &n2_spu_hvapi_minor);
1879
1880 if (!err)
1881 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1882 n2_spu_hvapi_major,
1883 n2_spu_hvapi_minor);
1884
1885 return err;
1886 }
1887
1888 static void n2_spu_hvapi_unregister(void)
1889 {
1890 sun4v_hvapi_unregister(HV_GRP_NCS);
1891 }
1892
1893 static int global_ref;
1894
1895 static int grab_global_resources(void)
1896 {
1897 int err = 0;
1898
1899 mutex_lock(&spu_lock);
1900
1901 if (global_ref++)
1902 goto out;
1903
1904 err = n2_spu_hvapi_register();
1905 if (err)
1906 goto out;
1907
1908 err = queue_cache_init();
1909 if (err)
1910 goto out_hvapi_release;
1911
1912 err = -ENOMEM;
1913 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914 GFP_KERNEL);
1915 if (!cpu_to_cwq)
1916 goto out_queue_cache_destroy;
1917
1918 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1919 GFP_KERNEL);
1920 if (!cpu_to_mau)
1921 goto out_free_cwq_table;
1922
1923 err = 0;
1924
1925 out:
1926 if (err)
1927 global_ref--;
1928 mutex_unlock(&spu_lock);
1929 return err;
1930
1931 out_free_cwq_table:
1932 kfree(cpu_to_cwq);
1933 cpu_to_cwq = NULL;
1934
1935 out_queue_cache_destroy:
1936 queue_cache_destroy();
1937
1938 out_hvapi_release:
1939 n2_spu_hvapi_unregister();
1940 goto out;
1941 }
1942
1943 static void release_global_resources(void)
1944 {
1945 mutex_lock(&spu_lock);
1946 if (!--global_ref) {
1947 kfree(cpu_to_cwq);
1948 cpu_to_cwq = NULL;
1949
1950 kfree(cpu_to_mau);
1951 cpu_to_mau = NULL;
1952
1953 queue_cache_destroy();
1954 n2_spu_hvapi_unregister();
1955 }
1956 mutex_unlock(&spu_lock);
1957 }
1958
1959 static struct n2_crypto *alloc_n2cp(void)
1960 {
1961 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1962
1963 if (np)
1964 INIT_LIST_HEAD(&np->cwq_list);
1965
1966 return np;
1967 }
1968
1969 static void free_n2cp(struct n2_crypto *np)
1970 {
1971 kfree(np->cwq_info.ino_table);
1972 np->cwq_info.ino_table = NULL;
1973
1974 kfree(np);
1975 }
1976
1977 static void n2_spu_driver_version(void)
1978 {
1979 static int n2_spu_version_printed;
1980
1981 if (n2_spu_version_printed++ == 0)
1982 pr_info("%s", version);
1983 }
1984
1985 static int n2_crypto_probe(struct platform_device *dev)
1986 {
1987 struct mdesc_handle *mdesc;
1988 struct n2_crypto *np;
1989 int err;
1990
1991 n2_spu_driver_version();
1992
1993 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1994
1995 np = alloc_n2cp();
1996 if (!np) {
1997 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1998 dev->dev.of_node);
1999 return -ENOMEM;
2000 }
2001
2002 err = grab_global_resources();
2003 if (err) {
2004 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2005 dev->dev.of_node);
2006 goto out_free_n2cp;
2007 }
2008
2009 mdesc = mdesc_grab();
2010
2011 if (!mdesc) {
2012 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2013 dev->dev.of_node);
2014 err = -ENODEV;
2015 goto out_free_global;
2016 }
2017 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2018 if (err) {
2019 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2020 dev->dev.of_node);
2021 mdesc_release(mdesc);
2022 goto out_free_global;
2023 }
2024
2025 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2026 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2027 cpu_to_cwq);
2028 mdesc_release(mdesc);
2029
2030 if (err) {
2031 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2032 dev->dev.of_node);
2033 goto out_free_global;
2034 }
2035
2036 err = n2_register_algs();
2037 if (err) {
2038 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2039 dev->dev.of_node);
2040 goto out_free_spu_list;
2041 }
2042
2043 dev_set_drvdata(&dev->dev, np);
2044
2045 return 0;
2046
2047 out_free_spu_list:
2048 spu_list_destroy(&np->cwq_list);
2049
2050 out_free_global:
2051 release_global_resources();
2052
2053 out_free_n2cp:
2054 free_n2cp(np);
2055
2056 return err;
2057 }
2058
2059 static int n2_crypto_remove(struct platform_device *dev)
2060 {
2061 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2062
2063 n2_unregister_algs();
2064
2065 spu_list_destroy(&np->cwq_list);
2066
2067 release_global_resources();
2068
2069 free_n2cp(np);
2070
2071 return 0;
2072 }
2073
2074 static struct n2_mau *alloc_ncp(void)
2075 {
2076 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2077
2078 if (mp)
2079 INIT_LIST_HEAD(&mp->mau_list);
2080
2081 return mp;
2082 }
2083
2084 static void free_ncp(struct n2_mau *mp)
2085 {
2086 kfree(mp->mau_info.ino_table);
2087 mp->mau_info.ino_table = NULL;
2088
2089 kfree(mp);
2090 }
2091
2092 static int n2_mau_probe(struct platform_device *dev)
2093 {
2094 struct mdesc_handle *mdesc;
2095 struct n2_mau *mp;
2096 int err;
2097
2098 n2_spu_driver_version();
2099
2100 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2101
2102 mp = alloc_ncp();
2103 if (!mp) {
2104 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2105 dev->dev.of_node);
2106 return -ENOMEM;
2107 }
2108
2109 err = grab_global_resources();
2110 if (err) {
2111 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2112 dev->dev.of_node);
2113 goto out_free_ncp;
2114 }
2115
2116 mdesc = mdesc_grab();
2117
2118 if (!mdesc) {
2119 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2120 dev->dev.of_node);
2121 err = -ENODEV;
2122 goto out_free_global;
2123 }
2124
2125 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2126 if (err) {
2127 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2128 dev->dev.of_node);
2129 mdesc_release(mdesc);
2130 goto out_free_global;
2131 }
2132
2133 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2134 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2135 cpu_to_mau);
2136 mdesc_release(mdesc);
2137
2138 if (err) {
2139 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2140 dev->dev.of_node);
2141 goto out_free_global;
2142 }
2143
2144 dev_set_drvdata(&dev->dev, mp);
2145
2146 return 0;
2147
2148 out_free_global:
2149 release_global_resources();
2150
2151 out_free_ncp:
2152 free_ncp(mp);
2153
2154 return err;
2155 }
2156
2157 static int n2_mau_remove(struct platform_device *dev)
2158 {
2159 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2160
2161 spu_list_destroy(&mp->mau_list);
2162
2163 release_global_resources();
2164
2165 free_ncp(mp);
2166
2167 return 0;
2168 }
2169
2170 static const struct of_device_id n2_crypto_match[] = {
2171 {
2172 .name = "n2cp",
2173 .compatible = "SUNW,n2-cwq",
2174 },
2175 {
2176 .name = "n2cp",
2177 .compatible = "SUNW,vf-cwq",
2178 },
2179 {
2180 .name = "n2cp",
2181 .compatible = "SUNW,kt-cwq",
2182 },
2183 {},
2184 };
2185
2186 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2187
2188 static struct platform_driver n2_crypto_driver = {
2189 .driver = {
2190 .name = "n2cp",
2191 .of_match_table = n2_crypto_match,
2192 },
2193 .probe = n2_crypto_probe,
2194 .remove = n2_crypto_remove,
2195 };
2196
2197 static const struct of_device_id n2_mau_match[] = {
2198 {
2199 .name = "ncp",
2200 .compatible = "SUNW,n2-mau",
2201 },
2202 {
2203 .name = "ncp",
2204 .compatible = "SUNW,vf-mau",
2205 },
2206 {
2207 .name = "ncp",
2208 .compatible = "SUNW,kt-mau",
2209 },
2210 {},
2211 };
2212
2213 MODULE_DEVICE_TABLE(of, n2_mau_match);
2214
2215 static struct platform_driver n2_mau_driver = {
2216 .driver = {
2217 .name = "ncp",
2218 .of_match_table = n2_mau_match,
2219 },
2220 .probe = n2_mau_probe,
2221 .remove = n2_mau_remove,
2222 };
2223
2224 static struct platform_driver * const drivers[] = {
2225 &n2_crypto_driver,
2226 &n2_mau_driver,
2227 };
2228
2229 static int __init n2_init(void)
2230 {
2231 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2232 }
2233
2234 static void __exit n2_exit(void)
2235 {
2236 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2237 }
2238
2239 module_init(n2_init);
2240 module_exit(n2_exit);