]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/crypto/nx/nx-aes-xcbc.c
Merge tag 'tegra-for-4.3-cleanup' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-eoan-kernel.git] / drivers / crypto / nx / nx-aes-xcbc.c
1 /**
2 * AES XCBC routines supporting the Power 7+ Nest Accelerators driver
3 *
4 * Copyright (C) 2011-2012 International Business Machines Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Author: Kent Yoder <yoder1@us.ibm.com>
20 */
21
22 #include <crypto/internal/hash.h>
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/module.h>
26 #include <linux/types.h>
27 #include <linux/crypto.h>
28 #include <asm/vio.h>
29
30 #include "nx_csbcpb.h"
31 #include "nx.h"
32
33
34 struct xcbc_state {
35 u8 state[AES_BLOCK_SIZE];
36 unsigned int count;
37 u8 buffer[AES_BLOCK_SIZE];
38 };
39
40 static int nx_xcbc_set_key(struct crypto_shash *desc,
41 const u8 *in_key,
42 unsigned int key_len)
43 {
44 struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc);
45
46 switch (key_len) {
47 case AES_KEYSIZE_128:
48 nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128];
49 break;
50 default:
51 return -EINVAL;
52 }
53
54 memcpy(nx_ctx->priv.xcbc.key, in_key, key_len);
55
56 return 0;
57 }
58
59 /*
60 * Based on RFC 3566, for a zero-length message:
61 *
62 * n = 1
63 * K1 = E(K, 0x01010101010101010101010101010101)
64 * K3 = E(K, 0x03030303030303030303030303030303)
65 * E[0] = 0x00000000000000000000000000000000
66 * M[1] = 0x80000000000000000000000000000000 (0 length message with padding)
67 * E[1] = (K1, M[1] ^ E[0] ^ K3)
68 * Tag = M[1]
69 */
70 static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
71 {
72 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
73 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
74 struct nx_sg *in_sg, *out_sg;
75 u8 keys[2][AES_BLOCK_SIZE];
76 u8 key[32];
77 int rc = 0;
78 int len;
79
80 /* Change to ECB mode */
81 csbcpb->cpb.hdr.mode = NX_MODE_AES_ECB;
82 memcpy(key, csbcpb->cpb.aes_xcbc.key, AES_BLOCK_SIZE);
83 memcpy(csbcpb->cpb.aes_ecb.key, key, AES_BLOCK_SIZE);
84 NX_CPB_FDM(csbcpb) |= NX_FDM_ENDE_ENCRYPT;
85
86 /* K1 and K3 base patterns */
87 memset(keys[0], 0x01, sizeof(keys[0]));
88 memset(keys[1], 0x03, sizeof(keys[1]));
89
90 len = sizeof(keys);
91 /* Generate K1 and K3 encrypting the patterns */
92 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys, &len,
93 nx_ctx->ap->sglen);
94
95 if (len != sizeof(keys))
96 return -EINVAL;
97
98 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *) keys, &len,
99 nx_ctx->ap->sglen);
100
101 if (len != sizeof(keys))
102 return -EINVAL;
103
104 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
105 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
106
107 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
108 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
109 if (rc)
110 goto out;
111 atomic_inc(&(nx_ctx->stats->aes_ops));
112
113 /* XOr K3 with the padding for a 0 length message */
114 keys[1][0] ^= 0x80;
115
116 len = sizeof(keys[1]);
117
118 /* Encrypt the final result */
119 memcpy(csbcpb->cpb.aes_ecb.key, keys[0], AES_BLOCK_SIZE);
120 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) keys[1], &len,
121 nx_ctx->ap->sglen);
122
123 if (len != sizeof(keys[1]))
124 return -EINVAL;
125
126 len = AES_BLOCK_SIZE;
127 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
128 nx_ctx->ap->sglen);
129
130 if (len != AES_BLOCK_SIZE)
131 return -EINVAL;
132
133 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
134 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
135
136 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
137 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
138 if (rc)
139 goto out;
140 atomic_inc(&(nx_ctx->stats->aes_ops));
141
142 out:
143 /* Restore XCBC mode */
144 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
145 memcpy(csbcpb->cpb.aes_xcbc.key, key, AES_BLOCK_SIZE);
146 NX_CPB_FDM(csbcpb) &= ~NX_FDM_ENDE_ENCRYPT;
147
148 return rc;
149 }
150
151 static int nx_xcbc_init(struct shash_desc *desc)
152 {
153 struct xcbc_state *sctx = shash_desc_ctx(desc);
154 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
155 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
156 struct nx_sg *out_sg;
157 int len;
158
159 nx_ctx_init(nx_ctx, HCOP_FC_AES);
160
161 memset(sctx, 0, sizeof *sctx);
162
163 NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128);
164 csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC;
165
166 memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE);
167 memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key);
168
169 len = AES_BLOCK_SIZE;
170 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
171 &len, nx_ctx->ap->sglen);
172
173 if (len != AES_BLOCK_SIZE)
174 return -EINVAL;
175
176 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
177
178 return 0;
179 }
180
181 static int nx_xcbc_update(struct shash_desc *desc,
182 const u8 *data,
183 unsigned int len)
184 {
185 struct xcbc_state *sctx = shash_desc_ctx(desc);
186 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
187 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
188 struct nx_sg *in_sg;
189 u32 to_process = 0, leftover, total;
190 unsigned int max_sg_len;
191 unsigned long irq_flags;
192 int rc = 0;
193 int data_len;
194
195 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
196
197
198 total = sctx->count + len;
199
200 /* 2 cases for total data len:
201 * 1: <= AES_BLOCK_SIZE: copy into state, return 0
202 * 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
203 */
204 if (total <= AES_BLOCK_SIZE) {
205 memcpy(sctx->buffer + sctx->count, data, len);
206 sctx->count += len;
207 goto out;
208 }
209
210 in_sg = nx_ctx->in_sg;
211 max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
212 nx_ctx->ap->sglen);
213 max_sg_len = min_t(u64, max_sg_len,
214 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
215
216 do {
217 to_process = total - to_process;
218 to_process = to_process & ~(AES_BLOCK_SIZE - 1);
219
220 leftover = total - to_process;
221
222 /* the hardware will not accept a 0 byte operation for this
223 * algorithm and the operation MUST be finalized to be correct.
224 * So if we happen to get an update that falls on a block sized
225 * boundary, we must save off the last block to finalize with
226 * later. */
227 if (!leftover) {
228 to_process -= AES_BLOCK_SIZE;
229 leftover = AES_BLOCK_SIZE;
230 }
231
232 if (sctx->count) {
233 data_len = sctx->count;
234 in_sg = nx_build_sg_list(nx_ctx->in_sg,
235 (u8 *) sctx->buffer,
236 &data_len,
237 max_sg_len);
238 if (data_len != sctx->count)
239 return -EINVAL;
240 }
241
242 data_len = to_process - sctx->count;
243 in_sg = nx_build_sg_list(in_sg,
244 (u8 *) data,
245 &data_len,
246 max_sg_len);
247
248 if (data_len != to_process - sctx->count)
249 return -EINVAL;
250
251 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
252 sizeof(struct nx_sg);
253
254 /* we've hit the nx chip previously and we're updating again,
255 * so copy over the partial digest */
256 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
257 memcpy(csbcpb->cpb.aes_xcbc.cv,
258 csbcpb->cpb.aes_xcbc.out_cv_mac,
259 AES_BLOCK_SIZE);
260 }
261
262 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
263 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
264 rc = -EINVAL;
265 goto out;
266 }
267
268 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
269 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
270 if (rc)
271 goto out;
272
273 atomic_inc(&(nx_ctx->stats->aes_ops));
274
275 /* everything after the first update is continuation */
276 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
277
278 total -= to_process;
279 data += to_process - sctx->count;
280 sctx->count = 0;
281 in_sg = nx_ctx->in_sg;
282 } while (leftover > AES_BLOCK_SIZE);
283
284 /* copy the leftover back into the state struct */
285 memcpy(sctx->buffer, data, leftover);
286 sctx->count = leftover;
287
288 out:
289 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
290 return rc;
291 }
292
293 static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
294 {
295 struct xcbc_state *sctx = shash_desc_ctx(desc);
296 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
297 struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
298 struct nx_sg *in_sg, *out_sg;
299 unsigned long irq_flags;
300 int rc = 0;
301 int len;
302
303 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
304
305 if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
306 /* we've hit the nx chip previously, now we're finalizing,
307 * so copy over the partial digest */
308 memcpy(csbcpb->cpb.aes_xcbc.cv,
309 csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
310 } else if (sctx->count == 0) {
311 /*
312 * we've never seen an update, so this is a 0 byte op. The
313 * hardware cannot handle a 0 byte op, so just ECB to
314 * generate the hash.
315 */
316 rc = nx_xcbc_empty(desc, out);
317 goto out;
318 }
319
320 /* final is represented by continuing the operation and indicating that
321 * this is not an intermediate operation */
322 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
323
324 len = sctx->count;
325 in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
326 &len, nx_ctx->ap->sglen);
327
328 if (len != sctx->count)
329 return -EINVAL;
330
331 len = AES_BLOCK_SIZE;
332 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
333 nx_ctx->ap->sglen);
334
335 if (len != AES_BLOCK_SIZE)
336 return -EINVAL;
337
338 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
339 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
340
341 if (!nx_ctx->op.outlen) {
342 rc = -EINVAL;
343 goto out;
344 }
345
346 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
347 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
348 if (rc)
349 goto out;
350
351 atomic_inc(&(nx_ctx->stats->aes_ops));
352
353 memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
354 out:
355 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
356 return rc;
357 }
358
359 struct shash_alg nx_shash_aes_xcbc_alg = {
360 .digestsize = AES_BLOCK_SIZE,
361 .init = nx_xcbc_init,
362 .update = nx_xcbc_update,
363 .final = nx_xcbc_final,
364 .setkey = nx_xcbc_set_key,
365 .descsize = sizeof(struct xcbc_state),
366 .statesize = sizeof(struct xcbc_state),
367 .base = {
368 .cra_name = "xcbc(aes)",
369 .cra_driver_name = "xcbc-aes-nx",
370 .cra_priority = 300,
371 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
372 .cra_blocksize = AES_BLOCK_SIZE,
373 .cra_module = THIS_MODULE,
374 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
375 .cra_init = nx_crypto_ctx_aes_xcbc_init,
376 .cra_exit = nx_crypto_ctx_exit,
377 }
378 };