]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/crypto/nx/nx-sha256.c
Merge branch 'cleanup/blocksize-diet-part2' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-focal-kernel.git] / drivers / crypto / nx / nx-sha256.c
1 /**
2 * SHA-256 routines supporting the Power 7+ Nest Accelerators driver
3 *
4 * Copyright (C) 2011-2012 International Business Machines Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Author: Kent Yoder <yoder1@us.ibm.com>
20 */
21
22 #include <crypto/internal/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/module.h>
25 #include <asm/vio.h>
26 #include <asm/byteorder.h>
27
28 #include "nx_csbcpb.h"
29 #include "nx.h"
30
31
32 static int nx_sha256_init(struct shash_desc *desc)
33 {
34 struct sha256_state *sctx = shash_desc_ctx(desc);
35 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
36 int len;
37 int rc;
38
39 nx_ctx_init(nx_ctx, HCOP_FC_SHA);
40
41 memset(sctx, 0, sizeof *sctx);
42
43 nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
44
45 NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
46
47 len = SHA256_DIGEST_SIZE;
48 rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
49 &nx_ctx->op.outlen,
50 &len,
51 (u8 *) sctx->state,
52 NX_DS_SHA256);
53
54 if (rc)
55 goto out;
56
57 sctx->state[0] = __cpu_to_be32(SHA256_H0);
58 sctx->state[1] = __cpu_to_be32(SHA256_H1);
59 sctx->state[2] = __cpu_to_be32(SHA256_H2);
60 sctx->state[3] = __cpu_to_be32(SHA256_H3);
61 sctx->state[4] = __cpu_to_be32(SHA256_H4);
62 sctx->state[5] = __cpu_to_be32(SHA256_H5);
63 sctx->state[6] = __cpu_to_be32(SHA256_H6);
64 sctx->state[7] = __cpu_to_be32(SHA256_H7);
65 sctx->count = 0;
66
67 out:
68 return 0;
69 }
70
71 static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
72 unsigned int len)
73 {
74 struct sha256_state *sctx = shash_desc_ctx(desc);
75 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
76 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
77 u64 to_process = 0, leftover, total;
78 unsigned long irq_flags;
79 int rc = 0;
80 int data_len;
81 u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
82
83 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
84
85 /* 2 cases for total data len:
86 * 1: < SHA256_BLOCK_SIZE: copy into state, return 0
87 * 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
88 */
89 total = (sctx->count % SHA256_BLOCK_SIZE) + len;
90 if (total < SHA256_BLOCK_SIZE) {
91 memcpy(sctx->buf + buf_len, data, len);
92 sctx->count += len;
93 goto out;
94 }
95
96 memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
97 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
98 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
99
100 do {
101 /*
102 * to_process: the SHA256_BLOCK_SIZE data chunk to process in
103 * this update. This value is also restricted by the sg list
104 * limits.
105 */
106 to_process = total - to_process;
107 to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
108
109 if (buf_len) {
110 data_len = buf_len;
111 rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
112 &nx_ctx->op.inlen,
113 &data_len,
114 (u8 *) sctx->buf,
115 NX_DS_SHA256);
116
117 if (rc || data_len != buf_len)
118 goto out;
119 }
120
121 data_len = to_process - buf_len;
122 rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
123 &nx_ctx->op.inlen,
124 &data_len,
125 (u8 *) data,
126 NX_DS_SHA256);
127
128 if (rc)
129 goto out;
130
131 to_process = (data_len + buf_len);
132 leftover = total - to_process;
133
134 /*
135 * we've hit the nx chip previously and we're updating
136 * again, so copy over the partial digest.
137 */
138 memcpy(csbcpb->cpb.sha256.input_partial_digest,
139 csbcpb->cpb.sha256.message_digest,
140 SHA256_DIGEST_SIZE);
141
142 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
143 rc = -EINVAL;
144 goto out;
145 }
146
147 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
148 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
149 if (rc)
150 goto out;
151
152 atomic_inc(&(nx_ctx->stats->sha256_ops));
153
154 total -= to_process;
155 data += to_process - buf_len;
156 buf_len = 0;
157
158 } while (leftover >= SHA256_BLOCK_SIZE);
159
160 /* copy the leftover back into the state struct */
161 if (leftover)
162 memcpy(sctx->buf, data, leftover);
163
164 sctx->count += len;
165 memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
166 out:
167 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
168 return rc;
169 }
170
171 static int nx_sha256_final(struct shash_desc *desc, u8 *out)
172 {
173 struct sha256_state *sctx = shash_desc_ctx(desc);
174 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
175 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
176 unsigned long irq_flags;
177 int rc;
178 int len;
179
180 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
181
182 /* final is represented by continuing the operation and indicating that
183 * this is not an intermediate operation */
184 if (sctx->count >= SHA256_BLOCK_SIZE) {
185 /* we've hit the nx chip previously, now we're finalizing,
186 * so copy over the partial digest */
187 memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
188 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
189 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
190 } else {
191 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
192 NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
193 }
194
195 csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
196
197 len = sctx->count & (SHA256_BLOCK_SIZE - 1);
198 rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
199 &nx_ctx->op.inlen,
200 &len,
201 (u8 *) sctx->buf,
202 NX_DS_SHA256);
203
204 if (rc || len != (sctx->count & (SHA256_BLOCK_SIZE - 1)))
205 goto out;
206
207 len = SHA256_DIGEST_SIZE;
208 rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
209 &nx_ctx->op.outlen,
210 &len,
211 out,
212 NX_DS_SHA256);
213
214 if (rc || len != SHA256_DIGEST_SIZE)
215 goto out;
216
217 if (!nx_ctx->op.outlen) {
218 rc = -EINVAL;
219 goto out;
220 }
221
222 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
223 desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
224 if (rc)
225 goto out;
226
227 atomic_inc(&(nx_ctx->stats->sha256_ops));
228
229 atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
230 memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
231 out:
232 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
233 return rc;
234 }
235
236 static int nx_sha256_export(struct shash_desc *desc, void *out)
237 {
238 struct sha256_state *sctx = shash_desc_ctx(desc);
239
240 memcpy(out, sctx, sizeof(*sctx));
241
242 return 0;
243 }
244
245 static int nx_sha256_import(struct shash_desc *desc, const void *in)
246 {
247 struct sha256_state *sctx = shash_desc_ctx(desc);
248
249 memcpy(sctx, in, sizeof(*sctx));
250
251 return 0;
252 }
253
254 struct shash_alg nx_shash_sha256_alg = {
255 .digestsize = SHA256_DIGEST_SIZE,
256 .init = nx_sha256_init,
257 .update = nx_sha256_update,
258 .final = nx_sha256_final,
259 .export = nx_sha256_export,
260 .import = nx_sha256_import,
261 .descsize = sizeof(struct sha256_state),
262 .statesize = sizeof(struct sha256_state),
263 .base = {
264 .cra_name = "sha256",
265 .cra_driver_name = "sha256-nx",
266 .cra_priority = 300,
267 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
268 .cra_blocksize = SHA256_BLOCK_SIZE,
269 .cra_module = THIS_MODULE,
270 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
271 .cra_init = nx_crypto_ctx_sha_init,
272 .cra_exit = nx_crypto_ctx_exit,
273 }
274 };