]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/crypto/nx/nx.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / drivers / crypto / nx / nx.c
1 /**
2 * Routines supporting the Power 7+ Nest Accelerators driver
3 *
4 * Copyright (C) 2011-2012 International Business Machines Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 only.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 *
19 * Author: Kent Yoder <yoder1@us.ibm.com>
20 */
21
22 #include <crypto/internal/aead.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/algapi.h>
27 #include <crypto/scatterwalk.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/types.h>
31 #include <linux/mm.h>
32 #include <linux/scatterlist.h>
33 #include <linux/device.h>
34 #include <linux/of.h>
35 #include <linux/types.h>
36 #include <asm/hvcall.h>
37 #include <asm/vio.h>
38
39 #include "nx_csbcpb.h"
40 #include "nx.h"
41
42
43 /**
44 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
45 *
46 * @nx_ctx: the crypto context handle
47 * @op: PFO operation struct to pass in
48 * @may_sleep: flag indicating the request can sleep
49 *
50 * Make the hcall, retrying while the hardware is busy. If we cannot yield
51 * the thread, limit the number of retries to 10 here.
52 */
53 int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
54 struct vio_pfo_op *op,
55 u32 may_sleep)
56 {
57 int rc, retries = 10;
58 struct vio_dev *viodev = nx_driver.viodev;
59
60 atomic_inc(&(nx_ctx->stats->sync_ops));
61
62 do {
63 rc = vio_h_cop_sync(viodev, op);
64 } while (rc == -EBUSY && !may_sleep && retries--);
65
66 if (rc) {
67 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
68 "hcall rc: %ld\n", rc, op->hcall_err);
69 atomic_inc(&(nx_ctx->stats->errors));
70 atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
71 atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
72 }
73
74 return rc;
75 }
76
77 /**
78 * nx_build_sg_list - build an NX scatter list describing a single buffer
79 *
80 * @sg_head: pointer to the first scatter list element to build
81 * @start_addr: pointer to the linear buffer
82 * @len: length of the data at @start_addr
83 * @sgmax: the largest number of scatter list elements we're allowed to create
84 *
85 * This function will start writing nx_sg elements at @sg_head and keep
86 * writing them until all of the data from @start_addr is described or
87 * until sgmax elements have been written. Scatter list elements will be
88 * created such that none of the elements describes a buffer that crosses a 4K
89 * boundary.
90 */
91 struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
92 u8 *start_addr,
93 unsigned int *len,
94 u32 sgmax)
95 {
96 unsigned int sg_len = 0;
97 struct nx_sg *sg;
98 u64 sg_addr = (u64)start_addr;
99 u64 end_addr;
100
101 /* determine the start and end for this address range - slightly
102 * different if this is in VMALLOC_REGION */
103 if (is_vmalloc_addr(start_addr))
104 sg_addr = page_to_phys(vmalloc_to_page(start_addr))
105 + offset_in_page(sg_addr);
106 else
107 sg_addr = __pa(sg_addr);
108
109 end_addr = sg_addr + *len;
110
111 /* each iteration will write one struct nx_sg element and add the
112 * length of data described by that element to sg_len. Once @len bytes
113 * have been described (or @sgmax elements have been written), the
114 * loop ends. min_t is used to ensure @end_addr falls on the same page
115 * as sg_addr, if not, we need to create another nx_sg element for the
116 * data on the next page.
117 *
118 * Also when using vmalloc'ed data, every time that a system page
119 * boundary is crossed the physical address needs to be re-calculated.
120 */
121 for (sg = sg_head; sg_len < *len; sg++) {
122 u64 next_page;
123
124 sg->addr = sg_addr;
125 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
126 end_addr);
127
128 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
129 sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
130 sg_len += sg->len;
131
132 if (sg_addr >= next_page &&
133 is_vmalloc_addr(start_addr + sg_len)) {
134 sg_addr = page_to_phys(vmalloc_to_page(
135 start_addr + sg_len));
136 end_addr = sg_addr + *len - sg_len;
137 }
138
139 if ((sg - sg_head) == sgmax) {
140 pr_err("nx: scatter/gather list overflow, pid: %d\n",
141 current->pid);
142 sg++;
143 break;
144 }
145 }
146 *len = sg_len;
147
148 /* return the moved sg_head pointer */
149 return sg;
150 }
151
152 /**
153 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
154 *
155 * @nx_dst: pointer to the first nx_sg element to write
156 * @sglen: max number of nx_sg entries we're allowed to write
157 * @sg_src: pointer to the source linux scatterlist to walk
158 * @start: number of bytes to fast-forward past at the beginning of @sg_src
159 * @src_len: number of bytes to walk in @sg_src
160 */
161 struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
162 unsigned int sglen,
163 struct scatterlist *sg_src,
164 unsigned int start,
165 unsigned int *src_len)
166 {
167 struct scatter_walk walk;
168 struct nx_sg *nx_sg = nx_dst;
169 unsigned int n, offset = 0, len = *src_len;
170 char *dst;
171
172 /* we need to fast forward through @start bytes first */
173 for (;;) {
174 scatterwalk_start(&walk, sg_src);
175
176 if (start < offset + sg_src->length)
177 break;
178
179 offset += sg_src->length;
180 sg_src = sg_next(sg_src);
181 }
182
183 /* start - offset is the number of bytes to advance in the scatterlist
184 * element we're currently looking at */
185 scatterwalk_advance(&walk, start - offset);
186
187 while (len && (nx_sg - nx_dst) < sglen) {
188 n = scatterwalk_clamp(&walk, len);
189 if (!n) {
190 /* In cases where we have scatterlist chain sg_next
191 * handles with it properly */
192 scatterwalk_start(&walk, sg_next(walk.sg));
193 n = scatterwalk_clamp(&walk, len);
194 }
195 dst = scatterwalk_map(&walk);
196
197 nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
198 len -= n;
199
200 scatterwalk_unmap(dst);
201 scatterwalk_advance(&walk, n);
202 scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
203 }
204 /* update to_process */
205 *src_len -= len;
206
207 /* return the moved destination pointer */
208 return nx_sg;
209 }
210
211 /**
212 * trim_sg_list - ensures the bound in sg list.
213 * @sg: sg list head
214 * @end: sg lisg end
215 * @delta: is the amount we need to crop in order to bound the list.
216 *
217 */
218 static long int trim_sg_list(struct nx_sg *sg,
219 struct nx_sg *end,
220 unsigned int delta,
221 unsigned int *nbytes)
222 {
223 long int oplen;
224 long int data_back;
225 unsigned int is_delta = delta;
226
227 while (delta && end > sg) {
228 struct nx_sg *last = end - 1;
229
230 if (last->len > delta) {
231 last->len -= delta;
232 delta = 0;
233 } else {
234 end--;
235 delta -= last->len;
236 }
237 }
238
239 /* There are cases where we need to crop list in order to make it
240 * a block size multiple, but we also need to align data. In order to
241 * that we need to calculate how much we need to put back to be
242 * processed
243 */
244 oplen = (sg - end) * sizeof(struct nx_sg);
245 if (is_delta) {
246 data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len;
247 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
248 *nbytes -= data_back;
249 }
250
251 return oplen;
252 }
253
254 /**
255 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
256 * scatterlists based on them.
257 *
258 * @nx_ctx: NX crypto context for the lists we're building
259 * @desc: the block cipher descriptor for the operation
260 * @dst: destination scatterlist
261 * @src: source scatterlist
262 * @nbytes: length of data described in the scatterlists
263 * @offset: number of bytes to fast-forward past at the beginning of
264 * scatterlists.
265 * @iv: destination for the iv data, if the algorithm requires it
266 *
267 * This is common code shared by all the AES algorithms. It uses the block
268 * cipher walk routines to traverse input and output scatterlists, building
269 * corresponding NX scatterlists
270 */
271 int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
272 struct blkcipher_desc *desc,
273 struct scatterlist *dst,
274 struct scatterlist *src,
275 unsigned int *nbytes,
276 unsigned int offset,
277 u8 *iv)
278 {
279 unsigned int delta = 0;
280 unsigned int total = *nbytes;
281 struct nx_sg *nx_insg = nx_ctx->in_sg;
282 struct nx_sg *nx_outsg = nx_ctx->out_sg;
283 unsigned int max_sg_len;
284
285 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
286 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
287 max_sg_len = min_t(u64, max_sg_len,
288 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
289
290 if (iv)
291 memcpy(iv, desc->info, AES_BLOCK_SIZE);
292
293 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
294
295 nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
296 offset, nbytes);
297 nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
298 offset, nbytes);
299
300 if (*nbytes < total)
301 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
302
303 /* these lengths should be negative, which will indicate to phyp that
304 * the input and output parameters are scatterlists, not linear
305 * buffers */
306 nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
307 nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
308
309 return 0;
310 }
311
312 /**
313 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
314 *
315 * @nx_ctx: the nx context to initialize
316 * @function: the function code for the op
317 */
318 void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
319 {
320 spin_lock_init(&nx_ctx->lock);
321 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
322 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
323
324 nx_ctx->op.flags = function;
325 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
326 nx_ctx->op.in = __pa(nx_ctx->in_sg);
327 nx_ctx->op.out = __pa(nx_ctx->out_sg);
328
329 if (nx_ctx->csbcpb_aead) {
330 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
331
332 nx_ctx->op_aead.flags = function;
333 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
334 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
335 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
336 }
337 }
338
339 static void nx_of_update_status(struct device *dev,
340 struct property *p,
341 struct nx_of *props)
342 {
343 if (!strncmp(p->value, "okay", p->length)) {
344 props->status = NX_WAITING;
345 props->flags |= NX_OF_FLAG_STATUS_SET;
346 } else {
347 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
348 (char *)p->value);
349 }
350 }
351
352 static void nx_of_update_sglen(struct device *dev,
353 struct property *p,
354 struct nx_of *props)
355 {
356 if (p->length != sizeof(props->max_sg_len)) {
357 dev_err(dev, "%s: unexpected format for "
358 "ibm,max-sg-len property\n", __func__);
359 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
360 "long, expected %zd bytes\n", __func__,
361 p->length, sizeof(props->max_sg_len));
362 return;
363 }
364
365 props->max_sg_len = *(u32 *)p->value;
366 props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
367 }
368
369 static void nx_of_update_msc(struct device *dev,
370 struct property *p,
371 struct nx_of *props)
372 {
373 struct msc_triplet *trip;
374 struct max_sync_cop *msc;
375 unsigned int bytes_so_far, i, lenp;
376
377 msc = (struct max_sync_cop *)p->value;
378 lenp = p->length;
379
380 /* You can't tell if the data read in for this property is sane by its
381 * size alone. This is because there are sizes embedded in the data
382 * structure. The best we can do is check lengths as we parse and bail
383 * as soon as a length error is detected. */
384 bytes_so_far = 0;
385
386 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
387 bytes_so_far += sizeof(struct max_sync_cop);
388
389 trip = msc->trip;
390
391 for (i = 0;
392 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
393 i < msc->triplets;
394 i++) {
395 if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
396 dev_err(dev, "unknown function code/mode "
397 "combo: %d/%d (ignored)\n", msc->fc,
398 msc->mode);
399 goto next_loop;
400 }
401
402 if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
403 dev_warn(dev, "bogus sglen/databytelen: "
404 "%u/%u (ignored)\n", trip->sglen,
405 trip->databytelen);
406 goto next_loop;
407 }
408
409 switch (trip->keybitlen) {
410 case 128:
411 case 160:
412 props->ap[msc->fc][msc->mode][0].databytelen =
413 trip->databytelen;
414 props->ap[msc->fc][msc->mode][0].sglen =
415 trip->sglen;
416 break;
417 case 192:
418 props->ap[msc->fc][msc->mode][1].databytelen =
419 trip->databytelen;
420 props->ap[msc->fc][msc->mode][1].sglen =
421 trip->sglen;
422 break;
423 case 256:
424 if (msc->fc == NX_FC_AES) {
425 props->ap[msc->fc][msc->mode][2].
426 databytelen = trip->databytelen;
427 props->ap[msc->fc][msc->mode][2].sglen =
428 trip->sglen;
429 } else if (msc->fc == NX_FC_AES_HMAC ||
430 msc->fc == NX_FC_SHA) {
431 props->ap[msc->fc][msc->mode][1].
432 databytelen = trip->databytelen;
433 props->ap[msc->fc][msc->mode][1].sglen =
434 trip->sglen;
435 } else {
436 dev_warn(dev, "unknown function "
437 "code/key bit len combo"
438 ": (%u/256)\n", msc->fc);
439 }
440 break;
441 case 512:
442 props->ap[msc->fc][msc->mode][2].databytelen =
443 trip->databytelen;
444 props->ap[msc->fc][msc->mode][2].sglen =
445 trip->sglen;
446 break;
447 default:
448 dev_warn(dev, "unknown function code/key bit "
449 "len combo: (%u/%u)\n", msc->fc,
450 trip->keybitlen);
451 break;
452 }
453 next_loop:
454 bytes_so_far += sizeof(struct msc_triplet);
455 trip++;
456 }
457
458 msc = (struct max_sync_cop *)trip;
459 }
460
461 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
462 }
463
464 /**
465 * nx_of_init - read openFirmware values from the device tree
466 *
467 * @dev: device handle
468 * @props: pointer to struct to hold the properties values
469 *
470 * Called once at driver probe time, this function will read out the
471 * openFirmware properties we use at runtime. If all the OF properties are
472 * acceptable, when we exit this function props->flags will indicate that
473 * we're ready to register our crypto algorithms.
474 */
475 static void nx_of_init(struct device *dev, struct nx_of *props)
476 {
477 struct device_node *base_node = dev->of_node;
478 struct property *p;
479
480 p = of_find_property(base_node, "status", NULL);
481 if (!p)
482 dev_info(dev, "%s: property 'status' not found\n", __func__);
483 else
484 nx_of_update_status(dev, p, props);
485
486 p = of_find_property(base_node, "ibm,max-sg-len", NULL);
487 if (!p)
488 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
489 __func__);
490 else
491 nx_of_update_sglen(dev, p, props);
492
493 p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
494 if (!p)
495 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
496 __func__);
497 else
498 nx_of_update_msc(dev, p, props);
499 }
500
501 static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
502 {
503 struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
504
505 if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
506 if (dev)
507 dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
508 "%u/%u (ignored)\n", fc, mode, slot,
509 props->sglen, props->databytelen);
510 return false;
511 }
512
513 return true;
514 }
515
516 static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
517 {
518 int i;
519
520 for (i = 0; i < 3; i++)
521 if (!nx_check_prop(dev, fc, mode, i))
522 return false;
523
524 return true;
525 }
526
527 static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
528 {
529 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
530 crypto_register_alg(alg) : 0;
531 }
532
533 static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
534 {
535 return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
536 crypto_register_aead(alg) : 0;
537 }
538
539 static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
540 {
541 return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
542 fc, mode, slot) :
543 nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
544 crypto_register_shash(alg) : 0;
545 }
546
547 static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
548 {
549 if (nx_check_props(NULL, fc, mode))
550 crypto_unregister_alg(alg);
551 }
552
553 static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
554 {
555 if (nx_check_props(NULL, fc, mode))
556 crypto_unregister_aead(alg);
557 }
558
559 static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
560 int slot)
561 {
562 if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
563 nx_check_props(NULL, fc, mode))
564 crypto_unregister_shash(alg);
565 }
566
567 /**
568 * nx_register_algs - register algorithms with the crypto API
569 *
570 * Called from nx_probe()
571 *
572 * If all OF properties are in an acceptable state, the driver flags will
573 * indicate that we're ready and we'll create our debugfs files and register
574 * out crypto algorithms.
575 */
576 static int nx_register_algs(void)
577 {
578 int rc = -1;
579
580 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
581 goto out;
582
583 memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
584
585 rc = NX_DEBUGFS_INIT(&nx_driver);
586 if (rc)
587 goto out;
588
589 nx_driver.of.status = NX_OKAY;
590
591 rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
592 if (rc)
593 goto out;
594
595 rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
596 if (rc)
597 goto out_unreg_ecb;
598
599 rc = nx_register_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
600 if (rc)
601 goto out_unreg_cbc;
602
603 rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
604 if (rc)
605 goto out_unreg_ctr;
606
607 rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
608 if (rc)
609 goto out_unreg_ctr3686;
610
611 rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
612 if (rc)
613 goto out_unreg_gcm;
614
615 rc = nx_register_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
616 if (rc)
617 goto out_unreg_gcm4106;
618
619 rc = nx_register_alg(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
620 if (rc)
621 goto out_unreg_ccm;
622
623 rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
624 NX_PROPS_SHA256);
625 if (rc)
626 goto out_unreg_ccm4309;
627
628 rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
629 NX_PROPS_SHA512);
630 if (rc)
631 goto out_unreg_s256;
632
633 rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
634 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
635 if (rc)
636 goto out_unreg_s512;
637
638 goto out;
639
640 out_unreg_s512:
641 nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
642 NX_PROPS_SHA512);
643 out_unreg_s256:
644 nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
645 NX_PROPS_SHA256);
646 out_unreg_ccm4309:
647 nx_unregister_alg(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
648 out_unreg_ccm:
649 nx_unregister_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
650 out_unreg_gcm4106:
651 nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
652 out_unreg_gcm:
653 nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
654 out_unreg_ctr3686:
655 nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
656 out_unreg_ctr:
657 nx_unregister_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
658 out_unreg_cbc:
659 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
660 out_unreg_ecb:
661 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
662 out:
663 return rc;
664 }
665
666 /**
667 * nx_crypto_ctx_init - create and initialize a crypto api context
668 *
669 * @nx_ctx: the crypto api context
670 * @fc: function code for the context
671 * @mode: the function code specific mode for this context
672 */
673 static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
674 {
675 if (nx_driver.of.status != NX_OKAY) {
676 pr_err("Attempt to initialize NX crypto context while device "
677 "is not available!\n");
678 return -ENODEV;
679 }
680
681 /* we need an extra page for csbcpb_aead for these modes */
682 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
683 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
684 sizeof(struct nx_csbcpb);
685 else
686 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
687 sizeof(struct nx_csbcpb);
688
689 nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
690 if (!nx_ctx->kmem)
691 return -ENOMEM;
692
693 /* the csbcpb and scatterlists must be 4K aligned pages */
694 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
695 (u64)NX_PAGE_SIZE));
696 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
697 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
698
699 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
700 nx_ctx->csbcpb_aead =
701 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
702 NX_PAGE_SIZE);
703
704 /* give each context a pointer to global stats and their OF
705 * properties */
706 nx_ctx->stats = &nx_driver.stats;
707 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
708 sizeof(struct alg_props) * 3);
709
710 return 0;
711 }
712
713 /* entry points from the crypto tfm initializers */
714 int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
715 {
716 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
717 NX_MODE_AES_CCM);
718 }
719
720 int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
721 {
722 return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
723 NX_MODE_AES_GCM);
724 }
725
726 int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
727 {
728 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
729 NX_MODE_AES_CTR);
730 }
731
732 int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
733 {
734 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
735 NX_MODE_AES_CBC);
736 }
737
738 int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
739 {
740 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
741 NX_MODE_AES_ECB);
742 }
743
744 int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
745 {
746 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
747 }
748
749 int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
750 {
751 return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
752 NX_MODE_AES_XCBC_MAC);
753 }
754
755 /**
756 * nx_crypto_ctx_exit - destroy a crypto api context
757 *
758 * @tfm: the crypto transform pointer for the context
759 *
760 * As crypto API contexts are destroyed, this exit hook is called to free the
761 * memory associated with it.
762 */
763 void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
764 {
765 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
766
767 kzfree(nx_ctx->kmem);
768 nx_ctx->csbcpb = NULL;
769 nx_ctx->csbcpb_aead = NULL;
770 nx_ctx->in_sg = NULL;
771 nx_ctx->out_sg = NULL;
772 }
773
774 void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
775 {
776 struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
777
778 kzfree(nx_ctx->kmem);
779 }
780
781 static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
782 {
783 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
784 viodev->name, viodev->resource_id);
785
786 if (nx_driver.viodev) {
787 dev_err(&viodev->dev, "%s: Attempt to register more than one "
788 "instance of the hardware\n", __func__);
789 return -EINVAL;
790 }
791
792 nx_driver.viodev = viodev;
793
794 nx_of_init(&viodev->dev, &nx_driver.of);
795
796 return nx_register_algs();
797 }
798
799 static int nx_remove(struct vio_dev *viodev)
800 {
801 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
802 viodev->unit_address);
803
804 if (nx_driver.of.status == NX_OKAY) {
805 NX_DEBUGFS_FINI(&nx_driver);
806
807 nx_unregister_shash(&nx_shash_aes_xcbc_alg,
808 NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
809 nx_unregister_shash(&nx_shash_sha512_alg,
810 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
811 nx_unregister_shash(&nx_shash_sha256_alg,
812 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
813 nx_unregister_alg(&nx_ccm4309_aes_alg,
814 NX_FC_AES, NX_MODE_AES_CCM);
815 nx_unregister_alg(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
816 nx_unregister_aead(&nx_gcm4106_aes_alg,
817 NX_FC_AES, NX_MODE_AES_GCM);
818 nx_unregister_aead(&nx_gcm_aes_alg,
819 NX_FC_AES, NX_MODE_AES_GCM);
820 nx_unregister_alg(&nx_ctr3686_aes_alg,
821 NX_FC_AES, NX_MODE_AES_CTR);
822 nx_unregister_alg(&nx_ctr_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
823 nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
824 nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
825 }
826
827 return 0;
828 }
829
830
831 /* module wide initialization/cleanup */
832 static int __init nx_init(void)
833 {
834 return vio_register_driver(&nx_driver.viodriver);
835 }
836
837 static void __exit nx_fini(void)
838 {
839 vio_unregister_driver(&nx_driver.viodriver);
840 }
841
842 static struct vio_device_id nx_crypto_driver_ids[] = {
843 { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
844 { "", "" }
845 };
846 MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
847
848 /* driver state structure */
849 struct nx_crypto_driver nx_driver = {
850 .viodriver = {
851 .id_table = nx_crypto_driver_ids,
852 .probe = nx_probe,
853 .remove = nx_remove,
854 .name = NX_NAME,
855 },
856 };
857
858 module_init(nx_init);
859 module_exit(nx_fini);
860
861 MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
862 MODULE_DESCRIPTION(NX_STRING);
863 MODULE_LICENSE("GPL");
864 MODULE_VERSION(NX_VERSION);