]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/crypto/omap-sham.c
Merge tag 'mfd-next-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[mirror_ubuntu-eoan-kernel.git] / drivers / crypto / omap-sham.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for OMAP SHA1/MD5 HW acceleration.
5 *
6 * Copyright (c) 2010 Nokia Corporation
7 * Author: Dmitry Kasatkin <dmitry.kasatkin@nokia.com>
8 * Copyright (c) 2011 Texas Instruments Incorporated
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as published
12 * by the Free Software Foundation.
13 *
14 * Some ideas are from old omap-sha1-md5.c driver.
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/err.h>
20 #include <linux/device.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/kernel.h>
26 #include <linux/irq.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/of_address.h>
36 #include <linux/of_irq.h>
37 #include <linux/delay.h>
38 #include <linux/crypto.h>
39 #include <linux/cryptohash.h>
40 #include <crypto/scatterwalk.h>
41 #include <crypto/algapi.h>
42 #include <crypto/sha.h>
43 #include <crypto/hash.h>
44 #include <crypto/hmac.h>
45 #include <crypto/internal/hash.h>
46
47 #define MD5_DIGEST_SIZE 16
48
49 #define SHA_REG_IDIGEST(dd, x) ((dd)->pdata->idigest_ofs + ((x)*0x04))
50 #define SHA_REG_DIN(dd, x) ((dd)->pdata->din_ofs + ((x) * 0x04))
51 #define SHA_REG_DIGCNT(dd) ((dd)->pdata->digcnt_ofs)
52
53 #define SHA_REG_ODIGEST(dd, x) ((dd)->pdata->odigest_ofs + (x * 0x04))
54
55 #define SHA_REG_CTRL 0x18
56 #define SHA_REG_CTRL_LENGTH (0xFFFFFFFF << 5)
57 #define SHA_REG_CTRL_CLOSE_HASH (1 << 4)
58 #define SHA_REG_CTRL_ALGO_CONST (1 << 3)
59 #define SHA_REG_CTRL_ALGO (1 << 2)
60 #define SHA_REG_CTRL_INPUT_READY (1 << 1)
61 #define SHA_REG_CTRL_OUTPUT_READY (1 << 0)
62
63 #define SHA_REG_REV(dd) ((dd)->pdata->rev_ofs)
64
65 #define SHA_REG_MASK(dd) ((dd)->pdata->mask_ofs)
66 #define SHA_REG_MASK_DMA_EN (1 << 3)
67 #define SHA_REG_MASK_IT_EN (1 << 2)
68 #define SHA_REG_MASK_SOFTRESET (1 << 1)
69 #define SHA_REG_AUTOIDLE (1 << 0)
70
71 #define SHA_REG_SYSSTATUS(dd) ((dd)->pdata->sysstatus_ofs)
72 #define SHA_REG_SYSSTATUS_RESETDONE (1 << 0)
73
74 #define SHA_REG_MODE(dd) ((dd)->pdata->mode_ofs)
75 #define SHA_REG_MODE_HMAC_OUTER_HASH (1 << 7)
76 #define SHA_REG_MODE_HMAC_KEY_PROC (1 << 5)
77 #define SHA_REG_MODE_CLOSE_HASH (1 << 4)
78 #define SHA_REG_MODE_ALGO_CONSTANT (1 << 3)
79
80 #define SHA_REG_MODE_ALGO_MASK (7 << 0)
81 #define SHA_REG_MODE_ALGO_MD5_128 (0 << 1)
82 #define SHA_REG_MODE_ALGO_SHA1_160 (1 << 1)
83 #define SHA_REG_MODE_ALGO_SHA2_224 (2 << 1)
84 #define SHA_REG_MODE_ALGO_SHA2_256 (3 << 1)
85 #define SHA_REG_MODE_ALGO_SHA2_384 (1 << 0)
86 #define SHA_REG_MODE_ALGO_SHA2_512 (3 << 0)
87
88 #define SHA_REG_LENGTH(dd) ((dd)->pdata->length_ofs)
89
90 #define SHA_REG_IRQSTATUS 0x118
91 #define SHA_REG_IRQSTATUS_CTX_RDY (1 << 3)
92 #define SHA_REG_IRQSTATUS_PARTHASH_RDY (1 << 2)
93 #define SHA_REG_IRQSTATUS_INPUT_RDY (1 << 1)
94 #define SHA_REG_IRQSTATUS_OUTPUT_RDY (1 << 0)
95
96 #define SHA_REG_IRQENA 0x11C
97 #define SHA_REG_IRQENA_CTX_RDY (1 << 3)
98 #define SHA_REG_IRQENA_PARTHASH_RDY (1 << 2)
99 #define SHA_REG_IRQENA_INPUT_RDY (1 << 1)
100 #define SHA_REG_IRQENA_OUTPUT_RDY (1 << 0)
101
102 #define DEFAULT_TIMEOUT_INTERVAL HZ
103
104 #define DEFAULT_AUTOSUSPEND_DELAY 1000
105
106 /* mostly device flags */
107 #define FLAGS_BUSY 0
108 #define FLAGS_FINAL 1
109 #define FLAGS_DMA_ACTIVE 2
110 #define FLAGS_OUTPUT_READY 3
111 #define FLAGS_INIT 4
112 #define FLAGS_CPU 5
113 #define FLAGS_DMA_READY 6
114 #define FLAGS_AUTO_XOR 7
115 #define FLAGS_BE32_SHA1 8
116 #define FLAGS_SGS_COPIED 9
117 #define FLAGS_SGS_ALLOCED 10
118 /* context flags */
119 #define FLAGS_FINUP 16
120
121 #define FLAGS_MODE_SHIFT 18
122 #define FLAGS_MODE_MASK (SHA_REG_MODE_ALGO_MASK << FLAGS_MODE_SHIFT)
123 #define FLAGS_MODE_MD5 (SHA_REG_MODE_ALGO_MD5_128 << FLAGS_MODE_SHIFT)
124 #define FLAGS_MODE_SHA1 (SHA_REG_MODE_ALGO_SHA1_160 << FLAGS_MODE_SHIFT)
125 #define FLAGS_MODE_SHA224 (SHA_REG_MODE_ALGO_SHA2_224 << FLAGS_MODE_SHIFT)
126 #define FLAGS_MODE_SHA256 (SHA_REG_MODE_ALGO_SHA2_256 << FLAGS_MODE_SHIFT)
127 #define FLAGS_MODE_SHA384 (SHA_REG_MODE_ALGO_SHA2_384 << FLAGS_MODE_SHIFT)
128 #define FLAGS_MODE_SHA512 (SHA_REG_MODE_ALGO_SHA2_512 << FLAGS_MODE_SHIFT)
129
130 #define FLAGS_HMAC 21
131 #define FLAGS_ERROR 22
132
133 #define OP_UPDATE 1
134 #define OP_FINAL 2
135
136 #define OMAP_ALIGN_MASK (sizeof(u32)-1)
137 #define OMAP_ALIGNED __attribute__((aligned(sizeof(u32))))
138
139 #define BUFLEN SHA512_BLOCK_SIZE
140 #define OMAP_SHA_DMA_THRESHOLD 256
141
142 struct omap_sham_dev;
143
144 struct omap_sham_reqctx {
145 struct omap_sham_dev *dd;
146 unsigned long flags;
147 unsigned long op;
148
149 u8 digest[SHA512_DIGEST_SIZE] OMAP_ALIGNED;
150 size_t digcnt;
151 size_t bufcnt;
152 size_t buflen;
153
154 /* walk state */
155 struct scatterlist *sg;
156 struct scatterlist sgl[2];
157 int offset; /* offset in current sg */
158 int sg_len;
159 unsigned int total; /* total request */
160
161 u8 buffer[0] OMAP_ALIGNED;
162 };
163
164 struct omap_sham_hmac_ctx {
165 struct crypto_shash *shash;
166 u8 ipad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
167 u8 opad[SHA512_BLOCK_SIZE] OMAP_ALIGNED;
168 };
169
170 struct omap_sham_ctx {
171 struct omap_sham_dev *dd;
172
173 unsigned long flags;
174
175 /* fallback stuff */
176 struct crypto_shash *fallback;
177
178 struct omap_sham_hmac_ctx base[0];
179 };
180
181 #define OMAP_SHAM_QUEUE_LENGTH 10
182
183 struct omap_sham_algs_info {
184 struct ahash_alg *algs_list;
185 unsigned int size;
186 unsigned int registered;
187 };
188
189 struct omap_sham_pdata {
190 struct omap_sham_algs_info *algs_info;
191 unsigned int algs_info_size;
192 unsigned long flags;
193 int digest_size;
194
195 void (*copy_hash)(struct ahash_request *req, int out);
196 void (*write_ctrl)(struct omap_sham_dev *dd, size_t length,
197 int final, int dma);
198 void (*trigger)(struct omap_sham_dev *dd, size_t length);
199 int (*poll_irq)(struct omap_sham_dev *dd);
200 irqreturn_t (*intr_hdlr)(int irq, void *dev_id);
201
202 u32 odigest_ofs;
203 u32 idigest_ofs;
204 u32 din_ofs;
205 u32 digcnt_ofs;
206 u32 rev_ofs;
207 u32 mask_ofs;
208 u32 sysstatus_ofs;
209 u32 mode_ofs;
210 u32 length_ofs;
211
212 u32 major_mask;
213 u32 major_shift;
214 u32 minor_mask;
215 u32 minor_shift;
216 };
217
218 struct omap_sham_dev {
219 struct list_head list;
220 unsigned long phys_base;
221 struct device *dev;
222 void __iomem *io_base;
223 int irq;
224 spinlock_t lock;
225 int err;
226 struct dma_chan *dma_lch;
227 struct tasklet_struct done_task;
228 u8 polling_mode;
229 u8 xmit_buf[BUFLEN] OMAP_ALIGNED;
230
231 unsigned long flags;
232 int fallback_sz;
233 struct crypto_queue queue;
234 struct ahash_request *req;
235
236 const struct omap_sham_pdata *pdata;
237 };
238
239 struct omap_sham_drv {
240 struct list_head dev_list;
241 spinlock_t lock;
242 unsigned long flags;
243 };
244
245 static struct omap_sham_drv sham = {
246 .dev_list = LIST_HEAD_INIT(sham.dev_list),
247 .lock = __SPIN_LOCK_UNLOCKED(sham.lock),
248 };
249
250 static inline u32 omap_sham_read(struct omap_sham_dev *dd, u32 offset)
251 {
252 return __raw_readl(dd->io_base + offset);
253 }
254
255 static inline void omap_sham_write(struct omap_sham_dev *dd,
256 u32 offset, u32 value)
257 {
258 __raw_writel(value, dd->io_base + offset);
259 }
260
261 static inline void omap_sham_write_mask(struct omap_sham_dev *dd, u32 address,
262 u32 value, u32 mask)
263 {
264 u32 val;
265
266 val = omap_sham_read(dd, address);
267 val &= ~mask;
268 val |= value;
269 omap_sham_write(dd, address, val);
270 }
271
272 static inline int omap_sham_wait(struct omap_sham_dev *dd, u32 offset, u32 bit)
273 {
274 unsigned long timeout = jiffies + DEFAULT_TIMEOUT_INTERVAL;
275
276 while (!(omap_sham_read(dd, offset) & bit)) {
277 if (time_is_before_jiffies(timeout))
278 return -ETIMEDOUT;
279 }
280
281 return 0;
282 }
283
284 static void omap_sham_copy_hash_omap2(struct ahash_request *req, int out)
285 {
286 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
287 struct omap_sham_dev *dd = ctx->dd;
288 u32 *hash = (u32 *)ctx->digest;
289 int i;
290
291 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
292 if (out)
293 hash[i] = omap_sham_read(dd, SHA_REG_IDIGEST(dd, i));
294 else
295 omap_sham_write(dd, SHA_REG_IDIGEST(dd, i), hash[i]);
296 }
297 }
298
299 static void omap_sham_copy_hash_omap4(struct ahash_request *req, int out)
300 {
301 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
302 struct omap_sham_dev *dd = ctx->dd;
303 int i;
304
305 if (ctx->flags & BIT(FLAGS_HMAC)) {
306 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
307 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
308 struct omap_sham_hmac_ctx *bctx = tctx->base;
309 u32 *opad = (u32 *)bctx->opad;
310
311 for (i = 0; i < dd->pdata->digest_size / sizeof(u32); i++) {
312 if (out)
313 opad[i] = omap_sham_read(dd,
314 SHA_REG_ODIGEST(dd, i));
315 else
316 omap_sham_write(dd, SHA_REG_ODIGEST(dd, i),
317 opad[i]);
318 }
319 }
320
321 omap_sham_copy_hash_omap2(req, out);
322 }
323
324 static void omap_sham_copy_ready_hash(struct ahash_request *req)
325 {
326 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
327 u32 *in = (u32 *)ctx->digest;
328 u32 *hash = (u32 *)req->result;
329 int i, d, big_endian = 0;
330
331 if (!hash)
332 return;
333
334 switch (ctx->flags & FLAGS_MODE_MASK) {
335 case FLAGS_MODE_MD5:
336 d = MD5_DIGEST_SIZE / sizeof(u32);
337 break;
338 case FLAGS_MODE_SHA1:
339 /* OMAP2 SHA1 is big endian */
340 if (test_bit(FLAGS_BE32_SHA1, &ctx->dd->flags))
341 big_endian = 1;
342 d = SHA1_DIGEST_SIZE / sizeof(u32);
343 break;
344 case FLAGS_MODE_SHA224:
345 d = SHA224_DIGEST_SIZE / sizeof(u32);
346 break;
347 case FLAGS_MODE_SHA256:
348 d = SHA256_DIGEST_SIZE / sizeof(u32);
349 break;
350 case FLAGS_MODE_SHA384:
351 d = SHA384_DIGEST_SIZE / sizeof(u32);
352 break;
353 case FLAGS_MODE_SHA512:
354 d = SHA512_DIGEST_SIZE / sizeof(u32);
355 break;
356 default:
357 d = 0;
358 }
359
360 if (big_endian)
361 for (i = 0; i < d; i++)
362 hash[i] = be32_to_cpu(in[i]);
363 else
364 for (i = 0; i < d; i++)
365 hash[i] = le32_to_cpu(in[i]);
366 }
367
368 static int omap_sham_hw_init(struct omap_sham_dev *dd)
369 {
370 int err;
371
372 err = pm_runtime_get_sync(dd->dev);
373 if (err < 0) {
374 dev_err(dd->dev, "failed to get sync: %d\n", err);
375 return err;
376 }
377
378 if (!test_bit(FLAGS_INIT, &dd->flags)) {
379 set_bit(FLAGS_INIT, &dd->flags);
380 dd->err = 0;
381 }
382
383 return 0;
384 }
385
386 static void omap_sham_write_ctrl_omap2(struct omap_sham_dev *dd, size_t length,
387 int final, int dma)
388 {
389 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
390 u32 val = length << 5, mask;
391
392 if (likely(ctx->digcnt))
393 omap_sham_write(dd, SHA_REG_DIGCNT(dd), ctx->digcnt);
394
395 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
396 SHA_REG_MASK_IT_EN | (dma ? SHA_REG_MASK_DMA_EN : 0),
397 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
398 /*
399 * Setting ALGO_CONST only for the first iteration
400 * and CLOSE_HASH only for the last one.
401 */
402 if ((ctx->flags & FLAGS_MODE_MASK) == FLAGS_MODE_SHA1)
403 val |= SHA_REG_CTRL_ALGO;
404 if (!ctx->digcnt)
405 val |= SHA_REG_CTRL_ALGO_CONST;
406 if (final)
407 val |= SHA_REG_CTRL_CLOSE_HASH;
408
409 mask = SHA_REG_CTRL_ALGO_CONST | SHA_REG_CTRL_CLOSE_HASH |
410 SHA_REG_CTRL_ALGO | SHA_REG_CTRL_LENGTH;
411
412 omap_sham_write_mask(dd, SHA_REG_CTRL, val, mask);
413 }
414
415 static void omap_sham_trigger_omap2(struct omap_sham_dev *dd, size_t length)
416 {
417 }
418
419 static int omap_sham_poll_irq_omap2(struct omap_sham_dev *dd)
420 {
421 return omap_sham_wait(dd, SHA_REG_CTRL, SHA_REG_CTRL_INPUT_READY);
422 }
423
424 static int get_block_size(struct omap_sham_reqctx *ctx)
425 {
426 int d;
427
428 switch (ctx->flags & FLAGS_MODE_MASK) {
429 case FLAGS_MODE_MD5:
430 case FLAGS_MODE_SHA1:
431 d = SHA1_BLOCK_SIZE;
432 break;
433 case FLAGS_MODE_SHA224:
434 case FLAGS_MODE_SHA256:
435 d = SHA256_BLOCK_SIZE;
436 break;
437 case FLAGS_MODE_SHA384:
438 case FLAGS_MODE_SHA512:
439 d = SHA512_BLOCK_SIZE;
440 break;
441 default:
442 d = 0;
443 }
444
445 return d;
446 }
447
448 static void omap_sham_write_n(struct omap_sham_dev *dd, u32 offset,
449 u32 *value, int count)
450 {
451 for (; count--; value++, offset += 4)
452 omap_sham_write(dd, offset, *value);
453 }
454
455 static void omap_sham_write_ctrl_omap4(struct omap_sham_dev *dd, size_t length,
456 int final, int dma)
457 {
458 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
459 u32 val, mask;
460
461 /*
462 * Setting ALGO_CONST only for the first iteration and
463 * CLOSE_HASH only for the last one. Note that flags mode bits
464 * correspond to algorithm encoding in mode register.
465 */
466 val = (ctx->flags & FLAGS_MODE_MASK) >> (FLAGS_MODE_SHIFT);
467 if (!ctx->digcnt) {
468 struct crypto_ahash *tfm = crypto_ahash_reqtfm(dd->req);
469 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
470 struct omap_sham_hmac_ctx *bctx = tctx->base;
471 int bs, nr_dr;
472
473 val |= SHA_REG_MODE_ALGO_CONSTANT;
474
475 if (ctx->flags & BIT(FLAGS_HMAC)) {
476 bs = get_block_size(ctx);
477 nr_dr = bs / (2 * sizeof(u32));
478 val |= SHA_REG_MODE_HMAC_KEY_PROC;
479 omap_sham_write_n(dd, SHA_REG_ODIGEST(dd, 0),
480 (u32 *)bctx->ipad, nr_dr);
481 omap_sham_write_n(dd, SHA_REG_IDIGEST(dd, 0),
482 (u32 *)bctx->ipad + nr_dr, nr_dr);
483 ctx->digcnt += bs;
484 }
485 }
486
487 if (final) {
488 val |= SHA_REG_MODE_CLOSE_HASH;
489
490 if (ctx->flags & BIT(FLAGS_HMAC))
491 val |= SHA_REG_MODE_HMAC_OUTER_HASH;
492 }
493
494 mask = SHA_REG_MODE_ALGO_CONSTANT | SHA_REG_MODE_CLOSE_HASH |
495 SHA_REG_MODE_ALGO_MASK | SHA_REG_MODE_HMAC_OUTER_HASH |
496 SHA_REG_MODE_HMAC_KEY_PROC;
497
498 dev_dbg(dd->dev, "ctrl: %08x, flags: %08lx\n", val, ctx->flags);
499 omap_sham_write_mask(dd, SHA_REG_MODE(dd), val, mask);
500 omap_sham_write(dd, SHA_REG_IRQENA, SHA_REG_IRQENA_OUTPUT_RDY);
501 omap_sham_write_mask(dd, SHA_REG_MASK(dd),
502 SHA_REG_MASK_IT_EN |
503 (dma ? SHA_REG_MASK_DMA_EN : 0),
504 SHA_REG_MASK_IT_EN | SHA_REG_MASK_DMA_EN);
505 }
506
507 static void omap_sham_trigger_omap4(struct omap_sham_dev *dd, size_t length)
508 {
509 omap_sham_write(dd, SHA_REG_LENGTH(dd), length);
510 }
511
512 static int omap_sham_poll_irq_omap4(struct omap_sham_dev *dd)
513 {
514 return omap_sham_wait(dd, SHA_REG_IRQSTATUS,
515 SHA_REG_IRQSTATUS_INPUT_RDY);
516 }
517
518 static int omap_sham_xmit_cpu(struct omap_sham_dev *dd, size_t length,
519 int final)
520 {
521 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
522 int count, len32, bs32, offset = 0;
523 const u32 *buffer;
524 int mlen;
525 struct sg_mapping_iter mi;
526
527 dev_dbg(dd->dev, "xmit_cpu: digcnt: %d, length: %d, final: %d\n",
528 ctx->digcnt, length, final);
529
530 dd->pdata->write_ctrl(dd, length, final, 0);
531 dd->pdata->trigger(dd, length);
532
533 /* should be non-zero before next lines to disable clocks later */
534 ctx->digcnt += length;
535 ctx->total -= length;
536
537 if (final)
538 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
539
540 set_bit(FLAGS_CPU, &dd->flags);
541
542 len32 = DIV_ROUND_UP(length, sizeof(u32));
543 bs32 = get_block_size(ctx) / sizeof(u32);
544
545 sg_miter_start(&mi, ctx->sg, ctx->sg_len,
546 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
547
548 mlen = 0;
549
550 while (len32) {
551 if (dd->pdata->poll_irq(dd))
552 return -ETIMEDOUT;
553
554 for (count = 0; count < min(len32, bs32); count++, offset++) {
555 if (!mlen) {
556 sg_miter_next(&mi);
557 mlen = mi.length;
558 if (!mlen) {
559 pr_err("sg miter failure.\n");
560 return -EINVAL;
561 }
562 offset = 0;
563 buffer = mi.addr;
564 }
565 omap_sham_write(dd, SHA_REG_DIN(dd, count),
566 buffer[offset]);
567 mlen -= 4;
568 }
569 len32 -= min(len32, bs32);
570 }
571
572 sg_miter_stop(&mi);
573
574 return -EINPROGRESS;
575 }
576
577 static void omap_sham_dma_callback(void *param)
578 {
579 struct omap_sham_dev *dd = param;
580
581 set_bit(FLAGS_DMA_READY, &dd->flags);
582 tasklet_schedule(&dd->done_task);
583 }
584
585 static int omap_sham_xmit_dma(struct omap_sham_dev *dd, size_t length,
586 int final)
587 {
588 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
589 struct dma_async_tx_descriptor *tx;
590 struct dma_slave_config cfg;
591 int ret;
592
593 dev_dbg(dd->dev, "xmit_dma: digcnt: %d, length: %d, final: %d\n",
594 ctx->digcnt, length, final);
595
596 if (!dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE)) {
597 dev_err(dd->dev, "dma_map_sg error\n");
598 return -EINVAL;
599 }
600
601 memset(&cfg, 0, sizeof(cfg));
602
603 cfg.dst_addr = dd->phys_base + SHA_REG_DIN(dd, 0);
604 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 cfg.dst_maxburst = get_block_size(ctx) / DMA_SLAVE_BUSWIDTH_4_BYTES;
606
607 ret = dmaengine_slave_config(dd->dma_lch, &cfg);
608 if (ret) {
609 pr_err("omap-sham: can't configure dmaengine slave: %d\n", ret);
610 return ret;
611 }
612
613 tx = dmaengine_prep_slave_sg(dd->dma_lch, ctx->sg, ctx->sg_len,
614 DMA_MEM_TO_DEV,
615 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
616
617 if (!tx) {
618 dev_err(dd->dev, "prep_slave_sg failed\n");
619 return -EINVAL;
620 }
621
622 tx->callback = omap_sham_dma_callback;
623 tx->callback_param = dd;
624
625 dd->pdata->write_ctrl(dd, length, final, 1);
626
627 ctx->digcnt += length;
628 ctx->total -= length;
629
630 if (final)
631 set_bit(FLAGS_FINAL, &dd->flags); /* catch last interrupt */
632
633 set_bit(FLAGS_DMA_ACTIVE, &dd->flags);
634
635 dmaengine_submit(tx);
636 dma_async_issue_pending(dd->dma_lch);
637
638 dd->pdata->trigger(dd, length);
639
640 return -EINPROGRESS;
641 }
642
643 static int omap_sham_copy_sg_lists(struct omap_sham_reqctx *ctx,
644 struct scatterlist *sg, int bs, int new_len)
645 {
646 int n = sg_nents(sg);
647 struct scatterlist *tmp;
648 int offset = ctx->offset;
649
650 if (ctx->bufcnt)
651 n++;
652
653 ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
654 if (!ctx->sg)
655 return -ENOMEM;
656
657 sg_init_table(ctx->sg, n);
658
659 tmp = ctx->sg;
660
661 ctx->sg_len = 0;
662
663 if (ctx->bufcnt) {
664 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
665 tmp = sg_next(tmp);
666 ctx->sg_len++;
667 }
668
669 while (sg && new_len) {
670 int len = sg->length - offset;
671
672 if (offset) {
673 offset -= sg->length;
674 if (offset < 0)
675 offset = 0;
676 }
677
678 if (new_len < len)
679 len = new_len;
680
681 if (len > 0) {
682 new_len -= len;
683 sg_set_page(tmp, sg_page(sg), len, sg->offset);
684 if (new_len <= 0)
685 sg_mark_end(tmp);
686 tmp = sg_next(tmp);
687 ctx->sg_len++;
688 }
689
690 sg = sg_next(sg);
691 }
692
693 set_bit(FLAGS_SGS_ALLOCED, &ctx->dd->flags);
694
695 ctx->bufcnt = 0;
696
697 return 0;
698 }
699
700 static int omap_sham_copy_sgs(struct omap_sham_reqctx *ctx,
701 struct scatterlist *sg, int bs, int new_len)
702 {
703 int pages;
704 void *buf;
705 int len;
706
707 len = new_len + ctx->bufcnt;
708
709 pages = get_order(ctx->total);
710
711 buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
712 if (!buf) {
713 pr_err("Couldn't allocate pages for unaligned cases.\n");
714 return -ENOMEM;
715 }
716
717 if (ctx->bufcnt)
718 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
719
720 scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->offset,
721 ctx->total - ctx->bufcnt, 0);
722 sg_init_table(ctx->sgl, 1);
723 sg_set_buf(ctx->sgl, buf, len);
724 ctx->sg = ctx->sgl;
725 set_bit(FLAGS_SGS_COPIED, &ctx->dd->flags);
726 ctx->sg_len = 1;
727 ctx->bufcnt = 0;
728 ctx->offset = 0;
729
730 return 0;
731 }
732
733 static int omap_sham_align_sgs(struct scatterlist *sg,
734 int nbytes, int bs, bool final,
735 struct omap_sham_reqctx *rctx)
736 {
737 int n = 0;
738 bool aligned = true;
739 bool list_ok = true;
740 struct scatterlist *sg_tmp = sg;
741 int new_len;
742 int offset = rctx->offset;
743
744 if (!sg || !sg->length || !nbytes)
745 return 0;
746
747 new_len = nbytes;
748
749 if (offset)
750 list_ok = false;
751
752 if (final)
753 new_len = DIV_ROUND_UP(new_len, bs) * bs;
754 else
755 new_len = (new_len - 1) / bs * bs;
756
757 if (nbytes != new_len)
758 list_ok = false;
759
760 while (nbytes > 0 && sg_tmp) {
761 n++;
762
763 #ifdef CONFIG_ZONE_DMA
764 if (page_zonenum(sg_page(sg_tmp)) != ZONE_DMA) {
765 aligned = false;
766 break;
767 }
768 #endif
769
770 if (offset < sg_tmp->length) {
771 if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
772 aligned = false;
773 break;
774 }
775
776 if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
777 aligned = false;
778 break;
779 }
780 }
781
782 if (offset) {
783 offset -= sg_tmp->length;
784 if (offset < 0) {
785 nbytes += offset;
786 offset = 0;
787 }
788 } else {
789 nbytes -= sg_tmp->length;
790 }
791
792 sg_tmp = sg_next(sg_tmp);
793
794 if (nbytes < 0) {
795 list_ok = false;
796 break;
797 }
798 }
799
800 if (!aligned)
801 return omap_sham_copy_sgs(rctx, sg, bs, new_len);
802 else if (!list_ok)
803 return omap_sham_copy_sg_lists(rctx, sg, bs, new_len);
804
805 rctx->sg_len = n;
806 rctx->sg = sg;
807
808 return 0;
809 }
810
811 static int omap_sham_prepare_request(struct ahash_request *req, bool update)
812 {
813 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
814 int bs;
815 int ret;
816 int nbytes;
817 bool final = rctx->flags & BIT(FLAGS_FINUP);
818 int xmit_len, hash_later;
819
820 bs = get_block_size(rctx);
821
822 if (update)
823 nbytes = req->nbytes;
824 else
825 nbytes = 0;
826
827 rctx->total = nbytes + rctx->bufcnt;
828
829 if (!rctx->total)
830 return 0;
831
832 if (nbytes && (!IS_ALIGNED(rctx->bufcnt, bs))) {
833 int len = bs - rctx->bufcnt % bs;
834
835 if (len > nbytes)
836 len = nbytes;
837 scatterwalk_map_and_copy(rctx->buffer + rctx->bufcnt, req->src,
838 0, len, 0);
839 rctx->bufcnt += len;
840 nbytes -= len;
841 rctx->offset = len;
842 }
843
844 if (rctx->bufcnt)
845 memcpy(rctx->dd->xmit_buf, rctx->buffer, rctx->bufcnt);
846
847 ret = omap_sham_align_sgs(req->src, nbytes, bs, final, rctx);
848 if (ret)
849 return ret;
850
851 xmit_len = rctx->total;
852
853 if (!IS_ALIGNED(xmit_len, bs)) {
854 if (final)
855 xmit_len = DIV_ROUND_UP(xmit_len, bs) * bs;
856 else
857 xmit_len = xmit_len / bs * bs;
858 } else if (!final) {
859 xmit_len -= bs;
860 }
861
862 hash_later = rctx->total - xmit_len;
863 if (hash_later < 0)
864 hash_later = 0;
865
866 if (rctx->bufcnt && nbytes) {
867 /* have data from previous operation and current */
868 sg_init_table(rctx->sgl, 2);
869 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, rctx->bufcnt);
870
871 sg_chain(rctx->sgl, 2, req->src);
872
873 rctx->sg = rctx->sgl;
874
875 rctx->sg_len++;
876 } else if (rctx->bufcnt) {
877 /* have buffered data only */
878 sg_init_table(rctx->sgl, 1);
879 sg_set_buf(rctx->sgl, rctx->dd->xmit_buf, xmit_len);
880
881 rctx->sg = rctx->sgl;
882
883 rctx->sg_len = 1;
884 }
885
886 if (hash_later) {
887 int offset = 0;
888
889 if (hash_later > req->nbytes) {
890 memcpy(rctx->buffer, rctx->buffer + xmit_len,
891 hash_later - req->nbytes);
892 offset = hash_later - req->nbytes;
893 }
894
895 if (req->nbytes) {
896 scatterwalk_map_and_copy(rctx->buffer + offset,
897 req->src,
898 offset + req->nbytes -
899 hash_later, hash_later, 0);
900 }
901
902 rctx->bufcnt = hash_later;
903 } else {
904 rctx->bufcnt = 0;
905 }
906
907 if (!final)
908 rctx->total = xmit_len;
909
910 return 0;
911 }
912
913 static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
914 {
915 struct omap_sham_reqctx *ctx = ahash_request_ctx(dd->req);
916
917 dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
918
919 clear_bit(FLAGS_DMA_ACTIVE, &dd->flags);
920
921 return 0;
922 }
923
924 static int omap_sham_init(struct ahash_request *req)
925 {
926 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
927 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
928 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
929 struct omap_sham_dev *dd = NULL, *tmp;
930 int bs = 0;
931
932 spin_lock_bh(&sham.lock);
933 if (!tctx->dd) {
934 list_for_each_entry(tmp, &sham.dev_list, list) {
935 dd = tmp;
936 break;
937 }
938 tctx->dd = dd;
939 } else {
940 dd = tctx->dd;
941 }
942 spin_unlock_bh(&sham.lock);
943
944 ctx->dd = dd;
945
946 ctx->flags = 0;
947
948 dev_dbg(dd->dev, "init: digest size: %d\n",
949 crypto_ahash_digestsize(tfm));
950
951 switch (crypto_ahash_digestsize(tfm)) {
952 case MD5_DIGEST_SIZE:
953 ctx->flags |= FLAGS_MODE_MD5;
954 bs = SHA1_BLOCK_SIZE;
955 break;
956 case SHA1_DIGEST_SIZE:
957 ctx->flags |= FLAGS_MODE_SHA1;
958 bs = SHA1_BLOCK_SIZE;
959 break;
960 case SHA224_DIGEST_SIZE:
961 ctx->flags |= FLAGS_MODE_SHA224;
962 bs = SHA224_BLOCK_SIZE;
963 break;
964 case SHA256_DIGEST_SIZE:
965 ctx->flags |= FLAGS_MODE_SHA256;
966 bs = SHA256_BLOCK_SIZE;
967 break;
968 case SHA384_DIGEST_SIZE:
969 ctx->flags |= FLAGS_MODE_SHA384;
970 bs = SHA384_BLOCK_SIZE;
971 break;
972 case SHA512_DIGEST_SIZE:
973 ctx->flags |= FLAGS_MODE_SHA512;
974 bs = SHA512_BLOCK_SIZE;
975 break;
976 }
977
978 ctx->bufcnt = 0;
979 ctx->digcnt = 0;
980 ctx->total = 0;
981 ctx->offset = 0;
982 ctx->buflen = BUFLEN;
983
984 if (tctx->flags & BIT(FLAGS_HMAC)) {
985 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
986 struct omap_sham_hmac_ctx *bctx = tctx->base;
987
988 memcpy(ctx->buffer, bctx->ipad, bs);
989 ctx->bufcnt = bs;
990 }
991
992 ctx->flags |= BIT(FLAGS_HMAC);
993 }
994
995 return 0;
996
997 }
998
999 static int omap_sham_update_req(struct omap_sham_dev *dd)
1000 {
1001 struct ahash_request *req = dd->req;
1002 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1003 int err;
1004 bool final = ctx->flags & BIT(FLAGS_FINUP);
1005
1006 dev_dbg(dd->dev, "update_req: total: %u, digcnt: %d, finup: %d\n",
1007 ctx->total, ctx->digcnt, (ctx->flags & BIT(FLAGS_FINUP)) != 0);
1008
1009 if (ctx->total < get_block_size(ctx) ||
1010 ctx->total < dd->fallback_sz)
1011 ctx->flags |= BIT(FLAGS_CPU);
1012
1013 if (ctx->flags & BIT(FLAGS_CPU))
1014 err = omap_sham_xmit_cpu(dd, ctx->total, final);
1015 else
1016 err = omap_sham_xmit_dma(dd, ctx->total, final);
1017
1018 /* wait for dma completion before can take more data */
1019 dev_dbg(dd->dev, "update: err: %d, digcnt: %d\n", err, ctx->digcnt);
1020
1021 return err;
1022 }
1023
1024 static int omap_sham_final_req(struct omap_sham_dev *dd)
1025 {
1026 struct ahash_request *req = dd->req;
1027 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1028 int err = 0, use_dma = 1;
1029
1030 if ((ctx->total <= get_block_size(ctx)) || dd->polling_mode)
1031 /*
1032 * faster to handle last block with cpu or
1033 * use cpu when dma is not present.
1034 */
1035 use_dma = 0;
1036
1037 if (use_dma)
1038 err = omap_sham_xmit_dma(dd, ctx->total, 1);
1039 else
1040 err = omap_sham_xmit_cpu(dd, ctx->total, 1);
1041
1042 ctx->bufcnt = 0;
1043
1044 dev_dbg(dd->dev, "final_req: err: %d\n", err);
1045
1046 return err;
1047 }
1048
1049 static int omap_sham_finish_hmac(struct ahash_request *req)
1050 {
1051 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1052 struct omap_sham_hmac_ctx *bctx = tctx->base;
1053 int bs = crypto_shash_blocksize(bctx->shash);
1054 int ds = crypto_shash_digestsize(bctx->shash);
1055 SHASH_DESC_ON_STACK(shash, bctx->shash);
1056
1057 shash->tfm = bctx->shash;
1058 shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
1059
1060 return crypto_shash_init(shash) ?:
1061 crypto_shash_update(shash, bctx->opad, bs) ?:
1062 crypto_shash_finup(shash, req->result, ds, req->result);
1063 }
1064
1065 static int omap_sham_finish(struct ahash_request *req)
1066 {
1067 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1068 struct omap_sham_dev *dd = ctx->dd;
1069 int err = 0;
1070
1071 if (ctx->digcnt) {
1072 omap_sham_copy_ready_hash(req);
1073 if ((ctx->flags & BIT(FLAGS_HMAC)) &&
1074 !test_bit(FLAGS_AUTO_XOR, &dd->flags))
1075 err = omap_sham_finish_hmac(req);
1076 }
1077
1078 dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
1079
1080 return err;
1081 }
1082
1083 static void omap_sham_finish_req(struct ahash_request *req, int err)
1084 {
1085 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1086 struct omap_sham_dev *dd = ctx->dd;
1087
1088 if (test_bit(FLAGS_SGS_COPIED, &dd->flags))
1089 free_pages((unsigned long)sg_virt(ctx->sg),
1090 get_order(ctx->sg->length + ctx->bufcnt));
1091
1092 if (test_bit(FLAGS_SGS_ALLOCED, &dd->flags))
1093 kfree(ctx->sg);
1094
1095 ctx->sg = NULL;
1096
1097 dd->flags &= ~(BIT(FLAGS_SGS_ALLOCED) | BIT(FLAGS_SGS_COPIED));
1098
1099 if (!err) {
1100 dd->pdata->copy_hash(req, 1);
1101 if (test_bit(FLAGS_FINAL, &dd->flags))
1102 err = omap_sham_finish(req);
1103 } else {
1104 ctx->flags |= BIT(FLAGS_ERROR);
1105 }
1106
1107 /* atomic operation is not needed here */
1108 dd->flags &= ~(BIT(FLAGS_BUSY) | BIT(FLAGS_FINAL) | BIT(FLAGS_CPU) |
1109 BIT(FLAGS_DMA_READY) | BIT(FLAGS_OUTPUT_READY));
1110
1111 pm_runtime_mark_last_busy(dd->dev);
1112 pm_runtime_put_autosuspend(dd->dev);
1113
1114 if (req->base.complete)
1115 req->base.complete(&req->base, err);
1116 }
1117
1118 static int omap_sham_handle_queue(struct omap_sham_dev *dd,
1119 struct ahash_request *req)
1120 {
1121 struct crypto_async_request *async_req, *backlog;
1122 struct omap_sham_reqctx *ctx;
1123 unsigned long flags;
1124 int err = 0, ret = 0;
1125
1126 retry:
1127 spin_lock_irqsave(&dd->lock, flags);
1128 if (req)
1129 ret = ahash_enqueue_request(&dd->queue, req);
1130 if (test_bit(FLAGS_BUSY, &dd->flags)) {
1131 spin_unlock_irqrestore(&dd->lock, flags);
1132 return ret;
1133 }
1134 backlog = crypto_get_backlog(&dd->queue);
1135 async_req = crypto_dequeue_request(&dd->queue);
1136 if (async_req)
1137 set_bit(FLAGS_BUSY, &dd->flags);
1138 spin_unlock_irqrestore(&dd->lock, flags);
1139
1140 if (!async_req)
1141 return ret;
1142
1143 if (backlog)
1144 backlog->complete(backlog, -EINPROGRESS);
1145
1146 req = ahash_request_cast(async_req);
1147 dd->req = req;
1148 ctx = ahash_request_ctx(req);
1149
1150 err = omap_sham_prepare_request(req, ctx->op == OP_UPDATE);
1151 if (err || !ctx->total)
1152 goto err1;
1153
1154 dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1155 ctx->op, req->nbytes);
1156
1157 err = omap_sham_hw_init(dd);
1158 if (err)
1159 goto err1;
1160
1161 if (ctx->digcnt)
1162 /* request has changed - restore hash */
1163 dd->pdata->copy_hash(req, 0);
1164
1165 if (ctx->op == OP_UPDATE) {
1166 err = omap_sham_update_req(dd);
1167 if (err != -EINPROGRESS && (ctx->flags & BIT(FLAGS_FINUP)))
1168 /* no final() after finup() */
1169 err = omap_sham_final_req(dd);
1170 } else if (ctx->op == OP_FINAL) {
1171 err = omap_sham_final_req(dd);
1172 }
1173 err1:
1174 dev_dbg(dd->dev, "exit, err: %d\n", err);
1175
1176 if (err != -EINPROGRESS) {
1177 /* done_task will not finish it, so do it here */
1178 omap_sham_finish_req(req, err);
1179 req = NULL;
1180
1181 /*
1182 * Execute next request immediately if there is anything
1183 * in queue.
1184 */
1185 goto retry;
1186 }
1187
1188 return ret;
1189 }
1190
1191 static int omap_sham_enqueue(struct ahash_request *req, unsigned int op)
1192 {
1193 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1194 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1195 struct omap_sham_dev *dd = tctx->dd;
1196
1197 ctx->op = op;
1198
1199 return omap_sham_handle_queue(dd, req);
1200 }
1201
1202 static int omap_sham_update(struct ahash_request *req)
1203 {
1204 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1205 struct omap_sham_dev *dd = ctx->dd;
1206
1207 if (!req->nbytes)
1208 return 0;
1209
1210 if (ctx->bufcnt + req->nbytes <= ctx->buflen) {
1211 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1212 0, req->nbytes, 0);
1213 ctx->bufcnt += req->nbytes;
1214 return 0;
1215 }
1216
1217 if (dd->polling_mode)
1218 ctx->flags |= BIT(FLAGS_CPU);
1219
1220 return omap_sham_enqueue(req, OP_UPDATE);
1221 }
1222
1223 static int omap_sham_shash_digest(struct crypto_shash *tfm, u32 flags,
1224 const u8 *data, unsigned int len, u8 *out)
1225 {
1226 SHASH_DESC_ON_STACK(shash, tfm);
1227
1228 shash->tfm = tfm;
1229 shash->flags = flags & CRYPTO_TFM_REQ_MAY_SLEEP;
1230
1231 return crypto_shash_digest(shash, data, len, out);
1232 }
1233
1234 static int omap_sham_final_shash(struct ahash_request *req)
1235 {
1236 struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1237 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1238 int offset = 0;
1239
1240 /*
1241 * If we are running HMAC on limited hardware support, skip
1242 * the ipad in the beginning of the buffer if we are going for
1243 * software fallback algorithm.
1244 */
1245 if (test_bit(FLAGS_HMAC, &ctx->flags) &&
1246 !test_bit(FLAGS_AUTO_XOR, &ctx->dd->flags))
1247 offset = get_block_size(ctx);
1248
1249 return omap_sham_shash_digest(tctx->fallback, req->base.flags,
1250 ctx->buffer + offset,
1251 ctx->bufcnt - offset, req->result);
1252 }
1253
1254 static int omap_sham_final(struct ahash_request *req)
1255 {
1256 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1257
1258 ctx->flags |= BIT(FLAGS_FINUP);
1259
1260 if (ctx->flags & BIT(FLAGS_ERROR))
1261 return 0; /* uncompleted hash is not needed */
1262
1263 /*
1264 * OMAP HW accel works only with buffers >= 9.
1265 * HMAC is always >= 9 because ipad == block size.
1266 * If buffersize is less than fallback_sz, we use fallback
1267 * SW encoding, as using DMA + HW in this case doesn't provide
1268 * any benefit.
1269 */
1270 if (!ctx->digcnt && ctx->bufcnt < ctx->dd->fallback_sz)
1271 return omap_sham_final_shash(req);
1272 else if (ctx->bufcnt)
1273 return omap_sham_enqueue(req, OP_FINAL);
1274
1275 /* copy ready hash (+ finalize hmac) */
1276 return omap_sham_finish(req);
1277 }
1278
1279 static int omap_sham_finup(struct ahash_request *req)
1280 {
1281 struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
1282 int err1, err2;
1283
1284 ctx->flags |= BIT(FLAGS_FINUP);
1285
1286 err1 = omap_sham_update(req);
1287 if (err1 == -EINPROGRESS || err1 == -EBUSY)
1288 return err1;
1289 /*
1290 * final() has to be always called to cleanup resources
1291 * even if udpate() failed, except EINPROGRESS
1292 */
1293 err2 = omap_sham_final(req);
1294
1295 return err1 ?: err2;
1296 }
1297
1298 static int omap_sham_digest(struct ahash_request *req)
1299 {
1300 return omap_sham_init(req) ?: omap_sham_finup(req);
1301 }
1302
1303 static int omap_sham_setkey(struct crypto_ahash *tfm, const u8 *key,
1304 unsigned int keylen)
1305 {
1306 struct omap_sham_ctx *tctx = crypto_ahash_ctx(tfm);
1307 struct omap_sham_hmac_ctx *bctx = tctx->base;
1308 int bs = crypto_shash_blocksize(bctx->shash);
1309 int ds = crypto_shash_digestsize(bctx->shash);
1310 struct omap_sham_dev *dd = NULL, *tmp;
1311 int err, i;
1312
1313 spin_lock_bh(&sham.lock);
1314 if (!tctx->dd) {
1315 list_for_each_entry(tmp, &sham.dev_list, list) {
1316 dd = tmp;
1317 break;
1318 }
1319 tctx->dd = dd;
1320 } else {
1321 dd = tctx->dd;
1322 }
1323 spin_unlock_bh(&sham.lock);
1324
1325 err = crypto_shash_setkey(tctx->fallback, key, keylen);
1326 if (err)
1327 return err;
1328
1329 if (keylen > bs) {
1330 err = omap_sham_shash_digest(bctx->shash,
1331 crypto_shash_get_flags(bctx->shash),
1332 key, keylen, bctx->ipad);
1333 if (err)
1334 return err;
1335 keylen = ds;
1336 } else {
1337 memcpy(bctx->ipad, key, keylen);
1338 }
1339
1340 memset(bctx->ipad + keylen, 0, bs - keylen);
1341
1342 if (!test_bit(FLAGS_AUTO_XOR, &dd->flags)) {
1343 memcpy(bctx->opad, bctx->ipad, bs);
1344
1345 for (i = 0; i < bs; i++) {
1346 bctx->ipad[i] ^= HMAC_IPAD_VALUE;
1347 bctx->opad[i] ^= HMAC_OPAD_VALUE;
1348 }
1349 }
1350
1351 return err;
1352 }
1353
1354 static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
1355 {
1356 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1357 const char *alg_name = crypto_tfm_alg_name(tfm);
1358
1359 /* Allocate a fallback and abort if it failed. */
1360 tctx->fallback = crypto_alloc_shash(alg_name, 0,
1361 CRYPTO_ALG_NEED_FALLBACK);
1362 if (IS_ERR(tctx->fallback)) {
1363 pr_err("omap-sham: fallback driver '%s' "
1364 "could not be loaded.\n", alg_name);
1365 return PTR_ERR(tctx->fallback);
1366 }
1367
1368 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1369 sizeof(struct omap_sham_reqctx) + BUFLEN);
1370
1371 if (alg_base) {
1372 struct omap_sham_hmac_ctx *bctx = tctx->base;
1373 tctx->flags |= BIT(FLAGS_HMAC);
1374 bctx->shash = crypto_alloc_shash(alg_base, 0,
1375 CRYPTO_ALG_NEED_FALLBACK);
1376 if (IS_ERR(bctx->shash)) {
1377 pr_err("omap-sham: base driver '%s' "
1378 "could not be loaded.\n", alg_base);
1379 crypto_free_shash(tctx->fallback);
1380 return PTR_ERR(bctx->shash);
1381 }
1382
1383 }
1384
1385 return 0;
1386 }
1387
1388 static int omap_sham_cra_init(struct crypto_tfm *tfm)
1389 {
1390 return omap_sham_cra_init_alg(tfm, NULL);
1391 }
1392
1393 static int omap_sham_cra_sha1_init(struct crypto_tfm *tfm)
1394 {
1395 return omap_sham_cra_init_alg(tfm, "sha1");
1396 }
1397
1398 static int omap_sham_cra_sha224_init(struct crypto_tfm *tfm)
1399 {
1400 return omap_sham_cra_init_alg(tfm, "sha224");
1401 }
1402
1403 static int omap_sham_cra_sha256_init(struct crypto_tfm *tfm)
1404 {
1405 return omap_sham_cra_init_alg(tfm, "sha256");
1406 }
1407
1408 static int omap_sham_cra_md5_init(struct crypto_tfm *tfm)
1409 {
1410 return omap_sham_cra_init_alg(tfm, "md5");
1411 }
1412
1413 static int omap_sham_cra_sha384_init(struct crypto_tfm *tfm)
1414 {
1415 return omap_sham_cra_init_alg(tfm, "sha384");
1416 }
1417
1418 static int omap_sham_cra_sha512_init(struct crypto_tfm *tfm)
1419 {
1420 return omap_sham_cra_init_alg(tfm, "sha512");
1421 }
1422
1423 static void omap_sham_cra_exit(struct crypto_tfm *tfm)
1424 {
1425 struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
1426
1427 crypto_free_shash(tctx->fallback);
1428 tctx->fallback = NULL;
1429
1430 if (tctx->flags & BIT(FLAGS_HMAC)) {
1431 struct omap_sham_hmac_ctx *bctx = tctx->base;
1432 crypto_free_shash(bctx->shash);
1433 }
1434 }
1435
1436 static int omap_sham_export(struct ahash_request *req, void *out)
1437 {
1438 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1439
1440 memcpy(out, rctx, sizeof(*rctx) + rctx->bufcnt);
1441
1442 return 0;
1443 }
1444
1445 static int omap_sham_import(struct ahash_request *req, const void *in)
1446 {
1447 struct omap_sham_reqctx *rctx = ahash_request_ctx(req);
1448 const struct omap_sham_reqctx *ctx_in = in;
1449
1450 memcpy(rctx, in, sizeof(*rctx) + ctx_in->bufcnt);
1451
1452 return 0;
1453 }
1454
1455 static struct ahash_alg algs_sha1_md5[] = {
1456 {
1457 .init = omap_sham_init,
1458 .update = omap_sham_update,
1459 .final = omap_sham_final,
1460 .finup = omap_sham_finup,
1461 .digest = omap_sham_digest,
1462 .halg.digestsize = SHA1_DIGEST_SIZE,
1463 .halg.base = {
1464 .cra_name = "sha1",
1465 .cra_driver_name = "omap-sha1",
1466 .cra_priority = 400,
1467 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1468 CRYPTO_ALG_KERN_DRIVER_ONLY |
1469 CRYPTO_ALG_ASYNC |
1470 CRYPTO_ALG_NEED_FALLBACK,
1471 .cra_blocksize = SHA1_BLOCK_SIZE,
1472 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1473 .cra_alignmask = OMAP_ALIGN_MASK,
1474 .cra_module = THIS_MODULE,
1475 .cra_init = omap_sham_cra_init,
1476 .cra_exit = omap_sham_cra_exit,
1477 }
1478 },
1479 {
1480 .init = omap_sham_init,
1481 .update = omap_sham_update,
1482 .final = omap_sham_final,
1483 .finup = omap_sham_finup,
1484 .digest = omap_sham_digest,
1485 .halg.digestsize = MD5_DIGEST_SIZE,
1486 .halg.base = {
1487 .cra_name = "md5",
1488 .cra_driver_name = "omap-md5",
1489 .cra_priority = 400,
1490 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1491 CRYPTO_ALG_KERN_DRIVER_ONLY |
1492 CRYPTO_ALG_ASYNC |
1493 CRYPTO_ALG_NEED_FALLBACK,
1494 .cra_blocksize = SHA1_BLOCK_SIZE,
1495 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1496 .cra_alignmask = OMAP_ALIGN_MASK,
1497 .cra_module = THIS_MODULE,
1498 .cra_init = omap_sham_cra_init,
1499 .cra_exit = omap_sham_cra_exit,
1500 }
1501 },
1502 {
1503 .init = omap_sham_init,
1504 .update = omap_sham_update,
1505 .final = omap_sham_final,
1506 .finup = omap_sham_finup,
1507 .digest = omap_sham_digest,
1508 .setkey = omap_sham_setkey,
1509 .halg.digestsize = SHA1_DIGEST_SIZE,
1510 .halg.base = {
1511 .cra_name = "hmac(sha1)",
1512 .cra_driver_name = "omap-hmac-sha1",
1513 .cra_priority = 400,
1514 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1515 CRYPTO_ALG_KERN_DRIVER_ONLY |
1516 CRYPTO_ALG_ASYNC |
1517 CRYPTO_ALG_NEED_FALLBACK,
1518 .cra_blocksize = SHA1_BLOCK_SIZE,
1519 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1520 sizeof(struct omap_sham_hmac_ctx),
1521 .cra_alignmask = OMAP_ALIGN_MASK,
1522 .cra_module = THIS_MODULE,
1523 .cra_init = omap_sham_cra_sha1_init,
1524 .cra_exit = omap_sham_cra_exit,
1525 }
1526 },
1527 {
1528 .init = omap_sham_init,
1529 .update = omap_sham_update,
1530 .final = omap_sham_final,
1531 .finup = omap_sham_finup,
1532 .digest = omap_sham_digest,
1533 .setkey = omap_sham_setkey,
1534 .halg.digestsize = MD5_DIGEST_SIZE,
1535 .halg.base = {
1536 .cra_name = "hmac(md5)",
1537 .cra_driver_name = "omap-hmac-md5",
1538 .cra_priority = 400,
1539 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1540 CRYPTO_ALG_KERN_DRIVER_ONLY |
1541 CRYPTO_ALG_ASYNC |
1542 CRYPTO_ALG_NEED_FALLBACK,
1543 .cra_blocksize = SHA1_BLOCK_SIZE,
1544 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1545 sizeof(struct omap_sham_hmac_ctx),
1546 .cra_alignmask = OMAP_ALIGN_MASK,
1547 .cra_module = THIS_MODULE,
1548 .cra_init = omap_sham_cra_md5_init,
1549 .cra_exit = omap_sham_cra_exit,
1550 }
1551 }
1552 };
1553
1554 /* OMAP4 has some algs in addition to what OMAP2 has */
1555 static struct ahash_alg algs_sha224_sha256[] = {
1556 {
1557 .init = omap_sham_init,
1558 .update = omap_sham_update,
1559 .final = omap_sham_final,
1560 .finup = omap_sham_finup,
1561 .digest = omap_sham_digest,
1562 .halg.digestsize = SHA224_DIGEST_SIZE,
1563 .halg.base = {
1564 .cra_name = "sha224",
1565 .cra_driver_name = "omap-sha224",
1566 .cra_priority = 400,
1567 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1568 CRYPTO_ALG_ASYNC |
1569 CRYPTO_ALG_NEED_FALLBACK,
1570 .cra_blocksize = SHA224_BLOCK_SIZE,
1571 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1572 .cra_alignmask = OMAP_ALIGN_MASK,
1573 .cra_module = THIS_MODULE,
1574 .cra_init = omap_sham_cra_init,
1575 .cra_exit = omap_sham_cra_exit,
1576 }
1577 },
1578 {
1579 .init = omap_sham_init,
1580 .update = omap_sham_update,
1581 .final = omap_sham_final,
1582 .finup = omap_sham_finup,
1583 .digest = omap_sham_digest,
1584 .halg.digestsize = SHA256_DIGEST_SIZE,
1585 .halg.base = {
1586 .cra_name = "sha256",
1587 .cra_driver_name = "omap-sha256",
1588 .cra_priority = 400,
1589 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1590 CRYPTO_ALG_ASYNC |
1591 CRYPTO_ALG_NEED_FALLBACK,
1592 .cra_blocksize = SHA256_BLOCK_SIZE,
1593 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1594 .cra_alignmask = OMAP_ALIGN_MASK,
1595 .cra_module = THIS_MODULE,
1596 .cra_init = omap_sham_cra_init,
1597 .cra_exit = omap_sham_cra_exit,
1598 }
1599 },
1600 {
1601 .init = omap_sham_init,
1602 .update = omap_sham_update,
1603 .final = omap_sham_final,
1604 .finup = omap_sham_finup,
1605 .digest = omap_sham_digest,
1606 .setkey = omap_sham_setkey,
1607 .halg.digestsize = SHA224_DIGEST_SIZE,
1608 .halg.base = {
1609 .cra_name = "hmac(sha224)",
1610 .cra_driver_name = "omap-hmac-sha224",
1611 .cra_priority = 400,
1612 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1613 CRYPTO_ALG_ASYNC |
1614 CRYPTO_ALG_NEED_FALLBACK,
1615 .cra_blocksize = SHA224_BLOCK_SIZE,
1616 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1617 sizeof(struct omap_sham_hmac_ctx),
1618 .cra_alignmask = OMAP_ALIGN_MASK,
1619 .cra_module = THIS_MODULE,
1620 .cra_init = omap_sham_cra_sha224_init,
1621 .cra_exit = omap_sham_cra_exit,
1622 }
1623 },
1624 {
1625 .init = omap_sham_init,
1626 .update = omap_sham_update,
1627 .final = omap_sham_final,
1628 .finup = omap_sham_finup,
1629 .digest = omap_sham_digest,
1630 .setkey = omap_sham_setkey,
1631 .halg.digestsize = SHA256_DIGEST_SIZE,
1632 .halg.base = {
1633 .cra_name = "hmac(sha256)",
1634 .cra_driver_name = "omap-hmac-sha256",
1635 .cra_priority = 400,
1636 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1637 CRYPTO_ALG_ASYNC |
1638 CRYPTO_ALG_NEED_FALLBACK,
1639 .cra_blocksize = SHA256_BLOCK_SIZE,
1640 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1641 sizeof(struct omap_sham_hmac_ctx),
1642 .cra_alignmask = OMAP_ALIGN_MASK,
1643 .cra_module = THIS_MODULE,
1644 .cra_init = omap_sham_cra_sha256_init,
1645 .cra_exit = omap_sham_cra_exit,
1646 }
1647 },
1648 };
1649
1650 static struct ahash_alg algs_sha384_sha512[] = {
1651 {
1652 .init = omap_sham_init,
1653 .update = omap_sham_update,
1654 .final = omap_sham_final,
1655 .finup = omap_sham_finup,
1656 .digest = omap_sham_digest,
1657 .halg.digestsize = SHA384_DIGEST_SIZE,
1658 .halg.base = {
1659 .cra_name = "sha384",
1660 .cra_driver_name = "omap-sha384",
1661 .cra_priority = 400,
1662 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1663 CRYPTO_ALG_ASYNC |
1664 CRYPTO_ALG_NEED_FALLBACK,
1665 .cra_blocksize = SHA384_BLOCK_SIZE,
1666 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1667 .cra_alignmask = OMAP_ALIGN_MASK,
1668 .cra_module = THIS_MODULE,
1669 .cra_init = omap_sham_cra_init,
1670 .cra_exit = omap_sham_cra_exit,
1671 }
1672 },
1673 {
1674 .init = omap_sham_init,
1675 .update = omap_sham_update,
1676 .final = omap_sham_final,
1677 .finup = omap_sham_finup,
1678 .digest = omap_sham_digest,
1679 .halg.digestsize = SHA512_DIGEST_SIZE,
1680 .halg.base = {
1681 .cra_name = "sha512",
1682 .cra_driver_name = "omap-sha512",
1683 .cra_priority = 400,
1684 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1685 CRYPTO_ALG_ASYNC |
1686 CRYPTO_ALG_NEED_FALLBACK,
1687 .cra_blocksize = SHA512_BLOCK_SIZE,
1688 .cra_ctxsize = sizeof(struct omap_sham_ctx),
1689 .cra_alignmask = OMAP_ALIGN_MASK,
1690 .cra_module = THIS_MODULE,
1691 .cra_init = omap_sham_cra_init,
1692 .cra_exit = omap_sham_cra_exit,
1693 }
1694 },
1695 {
1696 .init = omap_sham_init,
1697 .update = omap_sham_update,
1698 .final = omap_sham_final,
1699 .finup = omap_sham_finup,
1700 .digest = omap_sham_digest,
1701 .setkey = omap_sham_setkey,
1702 .halg.digestsize = SHA384_DIGEST_SIZE,
1703 .halg.base = {
1704 .cra_name = "hmac(sha384)",
1705 .cra_driver_name = "omap-hmac-sha384",
1706 .cra_priority = 400,
1707 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1708 CRYPTO_ALG_ASYNC |
1709 CRYPTO_ALG_NEED_FALLBACK,
1710 .cra_blocksize = SHA384_BLOCK_SIZE,
1711 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1712 sizeof(struct omap_sham_hmac_ctx),
1713 .cra_alignmask = OMAP_ALIGN_MASK,
1714 .cra_module = THIS_MODULE,
1715 .cra_init = omap_sham_cra_sha384_init,
1716 .cra_exit = omap_sham_cra_exit,
1717 }
1718 },
1719 {
1720 .init = omap_sham_init,
1721 .update = omap_sham_update,
1722 .final = omap_sham_final,
1723 .finup = omap_sham_finup,
1724 .digest = omap_sham_digest,
1725 .setkey = omap_sham_setkey,
1726 .halg.digestsize = SHA512_DIGEST_SIZE,
1727 .halg.base = {
1728 .cra_name = "hmac(sha512)",
1729 .cra_driver_name = "omap-hmac-sha512",
1730 .cra_priority = 400,
1731 .cra_flags = CRYPTO_ALG_TYPE_AHASH |
1732 CRYPTO_ALG_ASYNC |
1733 CRYPTO_ALG_NEED_FALLBACK,
1734 .cra_blocksize = SHA512_BLOCK_SIZE,
1735 .cra_ctxsize = sizeof(struct omap_sham_ctx) +
1736 sizeof(struct omap_sham_hmac_ctx),
1737 .cra_alignmask = OMAP_ALIGN_MASK,
1738 .cra_module = THIS_MODULE,
1739 .cra_init = omap_sham_cra_sha512_init,
1740 .cra_exit = omap_sham_cra_exit,
1741 }
1742 },
1743 };
1744
1745 static void omap_sham_done_task(unsigned long data)
1746 {
1747 struct omap_sham_dev *dd = (struct omap_sham_dev *)data;
1748 int err = 0;
1749
1750 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1751 omap_sham_handle_queue(dd, NULL);
1752 return;
1753 }
1754
1755 if (test_bit(FLAGS_CPU, &dd->flags)) {
1756 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags))
1757 goto finish;
1758 } else if (test_bit(FLAGS_DMA_READY, &dd->flags)) {
1759 if (test_and_clear_bit(FLAGS_DMA_ACTIVE, &dd->flags)) {
1760 omap_sham_update_dma_stop(dd);
1761 if (dd->err) {
1762 err = dd->err;
1763 goto finish;
1764 }
1765 }
1766 if (test_and_clear_bit(FLAGS_OUTPUT_READY, &dd->flags)) {
1767 /* hash or semi-hash ready */
1768 clear_bit(FLAGS_DMA_READY, &dd->flags);
1769 goto finish;
1770 }
1771 }
1772
1773 return;
1774
1775 finish:
1776 dev_dbg(dd->dev, "update done: err: %d\n", err);
1777 /* finish curent request */
1778 omap_sham_finish_req(dd->req, err);
1779
1780 /* If we are not busy, process next req */
1781 if (!test_bit(FLAGS_BUSY, &dd->flags))
1782 omap_sham_handle_queue(dd, NULL);
1783 }
1784
1785 static irqreturn_t omap_sham_irq_common(struct omap_sham_dev *dd)
1786 {
1787 if (!test_bit(FLAGS_BUSY, &dd->flags)) {
1788 dev_warn(dd->dev, "Interrupt when no active requests.\n");
1789 } else {
1790 set_bit(FLAGS_OUTPUT_READY, &dd->flags);
1791 tasklet_schedule(&dd->done_task);
1792 }
1793
1794 return IRQ_HANDLED;
1795 }
1796
1797 static irqreturn_t omap_sham_irq_omap2(int irq, void *dev_id)
1798 {
1799 struct omap_sham_dev *dd = dev_id;
1800
1801 if (unlikely(test_bit(FLAGS_FINAL, &dd->flags)))
1802 /* final -> allow device to go to power-saving mode */
1803 omap_sham_write_mask(dd, SHA_REG_CTRL, 0, SHA_REG_CTRL_LENGTH);
1804
1805 omap_sham_write_mask(dd, SHA_REG_CTRL, SHA_REG_CTRL_OUTPUT_READY,
1806 SHA_REG_CTRL_OUTPUT_READY);
1807 omap_sham_read(dd, SHA_REG_CTRL);
1808
1809 return omap_sham_irq_common(dd);
1810 }
1811
1812 static irqreturn_t omap_sham_irq_omap4(int irq, void *dev_id)
1813 {
1814 struct omap_sham_dev *dd = dev_id;
1815
1816 omap_sham_write_mask(dd, SHA_REG_MASK(dd), 0, SHA_REG_MASK_IT_EN);
1817
1818 return omap_sham_irq_common(dd);
1819 }
1820
1821 static struct omap_sham_algs_info omap_sham_algs_info_omap2[] = {
1822 {
1823 .algs_list = algs_sha1_md5,
1824 .size = ARRAY_SIZE(algs_sha1_md5),
1825 },
1826 };
1827
1828 static const struct omap_sham_pdata omap_sham_pdata_omap2 = {
1829 .algs_info = omap_sham_algs_info_omap2,
1830 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap2),
1831 .flags = BIT(FLAGS_BE32_SHA1),
1832 .digest_size = SHA1_DIGEST_SIZE,
1833 .copy_hash = omap_sham_copy_hash_omap2,
1834 .write_ctrl = omap_sham_write_ctrl_omap2,
1835 .trigger = omap_sham_trigger_omap2,
1836 .poll_irq = omap_sham_poll_irq_omap2,
1837 .intr_hdlr = omap_sham_irq_omap2,
1838 .idigest_ofs = 0x00,
1839 .din_ofs = 0x1c,
1840 .digcnt_ofs = 0x14,
1841 .rev_ofs = 0x5c,
1842 .mask_ofs = 0x60,
1843 .sysstatus_ofs = 0x64,
1844 .major_mask = 0xf0,
1845 .major_shift = 4,
1846 .minor_mask = 0x0f,
1847 .minor_shift = 0,
1848 };
1849
1850 #ifdef CONFIG_OF
1851 static struct omap_sham_algs_info omap_sham_algs_info_omap4[] = {
1852 {
1853 .algs_list = algs_sha1_md5,
1854 .size = ARRAY_SIZE(algs_sha1_md5),
1855 },
1856 {
1857 .algs_list = algs_sha224_sha256,
1858 .size = ARRAY_SIZE(algs_sha224_sha256),
1859 },
1860 };
1861
1862 static const struct omap_sham_pdata omap_sham_pdata_omap4 = {
1863 .algs_info = omap_sham_algs_info_omap4,
1864 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap4),
1865 .flags = BIT(FLAGS_AUTO_XOR),
1866 .digest_size = SHA256_DIGEST_SIZE,
1867 .copy_hash = omap_sham_copy_hash_omap4,
1868 .write_ctrl = omap_sham_write_ctrl_omap4,
1869 .trigger = omap_sham_trigger_omap4,
1870 .poll_irq = omap_sham_poll_irq_omap4,
1871 .intr_hdlr = omap_sham_irq_omap4,
1872 .idigest_ofs = 0x020,
1873 .odigest_ofs = 0x0,
1874 .din_ofs = 0x080,
1875 .digcnt_ofs = 0x040,
1876 .rev_ofs = 0x100,
1877 .mask_ofs = 0x110,
1878 .sysstatus_ofs = 0x114,
1879 .mode_ofs = 0x44,
1880 .length_ofs = 0x48,
1881 .major_mask = 0x0700,
1882 .major_shift = 8,
1883 .minor_mask = 0x003f,
1884 .minor_shift = 0,
1885 };
1886
1887 static struct omap_sham_algs_info omap_sham_algs_info_omap5[] = {
1888 {
1889 .algs_list = algs_sha1_md5,
1890 .size = ARRAY_SIZE(algs_sha1_md5),
1891 },
1892 {
1893 .algs_list = algs_sha224_sha256,
1894 .size = ARRAY_SIZE(algs_sha224_sha256),
1895 },
1896 {
1897 .algs_list = algs_sha384_sha512,
1898 .size = ARRAY_SIZE(algs_sha384_sha512),
1899 },
1900 };
1901
1902 static const struct omap_sham_pdata omap_sham_pdata_omap5 = {
1903 .algs_info = omap_sham_algs_info_omap5,
1904 .algs_info_size = ARRAY_SIZE(omap_sham_algs_info_omap5),
1905 .flags = BIT(FLAGS_AUTO_XOR),
1906 .digest_size = SHA512_DIGEST_SIZE,
1907 .copy_hash = omap_sham_copy_hash_omap4,
1908 .write_ctrl = omap_sham_write_ctrl_omap4,
1909 .trigger = omap_sham_trigger_omap4,
1910 .poll_irq = omap_sham_poll_irq_omap4,
1911 .intr_hdlr = omap_sham_irq_omap4,
1912 .idigest_ofs = 0x240,
1913 .odigest_ofs = 0x200,
1914 .din_ofs = 0x080,
1915 .digcnt_ofs = 0x280,
1916 .rev_ofs = 0x100,
1917 .mask_ofs = 0x110,
1918 .sysstatus_ofs = 0x114,
1919 .mode_ofs = 0x284,
1920 .length_ofs = 0x288,
1921 .major_mask = 0x0700,
1922 .major_shift = 8,
1923 .minor_mask = 0x003f,
1924 .minor_shift = 0,
1925 };
1926
1927 static const struct of_device_id omap_sham_of_match[] = {
1928 {
1929 .compatible = "ti,omap2-sham",
1930 .data = &omap_sham_pdata_omap2,
1931 },
1932 {
1933 .compatible = "ti,omap3-sham",
1934 .data = &omap_sham_pdata_omap2,
1935 },
1936 {
1937 .compatible = "ti,omap4-sham",
1938 .data = &omap_sham_pdata_omap4,
1939 },
1940 {
1941 .compatible = "ti,omap5-sham",
1942 .data = &omap_sham_pdata_omap5,
1943 },
1944 {},
1945 };
1946 MODULE_DEVICE_TABLE(of, omap_sham_of_match);
1947
1948 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1949 struct device *dev, struct resource *res)
1950 {
1951 struct device_node *node = dev->of_node;
1952 int err = 0;
1953
1954 dd->pdata = of_device_get_match_data(dev);
1955 if (!dd->pdata) {
1956 dev_err(dev, "no compatible OF match\n");
1957 err = -EINVAL;
1958 goto err;
1959 }
1960
1961 err = of_address_to_resource(node, 0, res);
1962 if (err < 0) {
1963 dev_err(dev, "can't translate OF node address\n");
1964 err = -EINVAL;
1965 goto err;
1966 }
1967
1968 dd->irq = irq_of_parse_and_map(node, 0);
1969 if (!dd->irq) {
1970 dev_err(dev, "can't translate OF irq value\n");
1971 err = -EINVAL;
1972 goto err;
1973 }
1974
1975 err:
1976 return err;
1977 }
1978 #else
1979 static const struct of_device_id omap_sham_of_match[] = {
1980 {},
1981 };
1982
1983 static int omap_sham_get_res_of(struct omap_sham_dev *dd,
1984 struct device *dev, struct resource *res)
1985 {
1986 return -EINVAL;
1987 }
1988 #endif
1989
1990 static int omap_sham_get_res_pdev(struct omap_sham_dev *dd,
1991 struct platform_device *pdev, struct resource *res)
1992 {
1993 struct device *dev = &pdev->dev;
1994 struct resource *r;
1995 int err = 0;
1996
1997 /* Get the base address */
1998 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1999 if (!r) {
2000 dev_err(dev, "no MEM resource info\n");
2001 err = -ENODEV;
2002 goto err;
2003 }
2004 memcpy(res, r, sizeof(*res));
2005
2006 /* Get the IRQ */
2007 dd->irq = platform_get_irq(pdev, 0);
2008 if (dd->irq < 0) {
2009 dev_err(dev, "no IRQ resource info\n");
2010 err = dd->irq;
2011 goto err;
2012 }
2013
2014 /* Only OMAP2/3 can be non-DT */
2015 dd->pdata = &omap_sham_pdata_omap2;
2016
2017 err:
2018 return err;
2019 }
2020
2021 static ssize_t fallback_show(struct device *dev, struct device_attribute *attr,
2022 char *buf)
2023 {
2024 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2025
2026 return sprintf(buf, "%d\n", dd->fallback_sz);
2027 }
2028
2029 static ssize_t fallback_store(struct device *dev, struct device_attribute *attr,
2030 const char *buf, size_t size)
2031 {
2032 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2033 ssize_t status;
2034 long value;
2035
2036 status = kstrtol(buf, 0, &value);
2037 if (status)
2038 return status;
2039
2040 /* HW accelerator only works with buffers > 9 */
2041 if (value < 9) {
2042 dev_err(dev, "minimum fallback size 9\n");
2043 return -EINVAL;
2044 }
2045
2046 dd->fallback_sz = value;
2047
2048 return size;
2049 }
2050
2051 static ssize_t queue_len_show(struct device *dev, struct device_attribute *attr,
2052 char *buf)
2053 {
2054 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2055
2056 return sprintf(buf, "%d\n", dd->queue.max_qlen);
2057 }
2058
2059 static ssize_t queue_len_store(struct device *dev,
2060 struct device_attribute *attr, const char *buf,
2061 size_t size)
2062 {
2063 struct omap_sham_dev *dd = dev_get_drvdata(dev);
2064 ssize_t status;
2065 long value;
2066 unsigned long flags;
2067
2068 status = kstrtol(buf, 0, &value);
2069 if (status)
2070 return status;
2071
2072 if (value < 1)
2073 return -EINVAL;
2074
2075 /*
2076 * Changing the queue size in fly is safe, if size becomes smaller
2077 * than current size, it will just not accept new entries until
2078 * it has shrank enough.
2079 */
2080 spin_lock_irqsave(&dd->lock, flags);
2081 dd->queue.max_qlen = value;
2082 spin_unlock_irqrestore(&dd->lock, flags);
2083
2084 return size;
2085 }
2086
2087 static DEVICE_ATTR_RW(queue_len);
2088 static DEVICE_ATTR_RW(fallback);
2089
2090 static struct attribute *omap_sham_attrs[] = {
2091 &dev_attr_queue_len.attr,
2092 &dev_attr_fallback.attr,
2093 NULL,
2094 };
2095
2096 static struct attribute_group omap_sham_attr_group = {
2097 .attrs = omap_sham_attrs,
2098 };
2099
2100 static int omap_sham_probe(struct platform_device *pdev)
2101 {
2102 struct omap_sham_dev *dd;
2103 struct device *dev = &pdev->dev;
2104 struct resource res;
2105 dma_cap_mask_t mask;
2106 int err, i, j;
2107 u32 rev;
2108
2109 dd = devm_kzalloc(dev, sizeof(struct omap_sham_dev), GFP_KERNEL);
2110 if (dd == NULL) {
2111 dev_err(dev, "unable to alloc data struct.\n");
2112 err = -ENOMEM;
2113 goto data_err;
2114 }
2115 dd->dev = dev;
2116 platform_set_drvdata(pdev, dd);
2117
2118 INIT_LIST_HEAD(&dd->list);
2119 spin_lock_init(&dd->lock);
2120 tasklet_init(&dd->done_task, omap_sham_done_task, (unsigned long)dd);
2121 crypto_init_queue(&dd->queue, OMAP_SHAM_QUEUE_LENGTH);
2122
2123 err = (dev->of_node) ? omap_sham_get_res_of(dd, dev, &res) :
2124 omap_sham_get_res_pdev(dd, pdev, &res);
2125 if (err)
2126 goto data_err;
2127
2128 dd->io_base = devm_ioremap_resource(dev, &res);
2129 if (IS_ERR(dd->io_base)) {
2130 err = PTR_ERR(dd->io_base);
2131 goto data_err;
2132 }
2133 dd->phys_base = res.start;
2134
2135 err = devm_request_irq(dev, dd->irq, dd->pdata->intr_hdlr,
2136 IRQF_TRIGGER_NONE, dev_name(dev), dd);
2137 if (err) {
2138 dev_err(dev, "unable to request irq %d, err = %d\n",
2139 dd->irq, err);
2140 goto data_err;
2141 }
2142
2143 dma_cap_zero(mask);
2144 dma_cap_set(DMA_SLAVE, mask);
2145
2146 dd->dma_lch = dma_request_chan(dev, "rx");
2147 if (IS_ERR(dd->dma_lch)) {
2148 err = PTR_ERR(dd->dma_lch);
2149 if (err == -EPROBE_DEFER)
2150 goto data_err;
2151
2152 dd->polling_mode = 1;
2153 dev_dbg(dev, "using polling mode instead of dma\n");
2154 }
2155
2156 dd->flags |= dd->pdata->flags;
2157
2158 pm_runtime_use_autosuspend(dev);
2159 pm_runtime_set_autosuspend_delay(dev, DEFAULT_AUTOSUSPEND_DELAY);
2160
2161 dd->fallback_sz = OMAP_SHA_DMA_THRESHOLD;
2162
2163 pm_runtime_enable(dev);
2164 pm_runtime_irq_safe(dev);
2165
2166 err = pm_runtime_get_sync(dev);
2167 if (err < 0) {
2168 dev_err(dev, "failed to get sync: %d\n", err);
2169 goto err_pm;
2170 }
2171
2172 rev = omap_sham_read(dd, SHA_REG_REV(dd));
2173 pm_runtime_put_sync(&pdev->dev);
2174
2175 dev_info(dev, "hw accel on OMAP rev %u.%u\n",
2176 (rev & dd->pdata->major_mask) >> dd->pdata->major_shift,
2177 (rev & dd->pdata->minor_mask) >> dd->pdata->minor_shift);
2178
2179 spin_lock(&sham.lock);
2180 list_add_tail(&dd->list, &sham.dev_list);
2181 spin_unlock(&sham.lock);
2182
2183 for (i = 0; i < dd->pdata->algs_info_size; i++) {
2184 for (j = 0; j < dd->pdata->algs_info[i].size; j++) {
2185 struct ahash_alg *alg;
2186
2187 alg = &dd->pdata->algs_info[i].algs_list[j];
2188 alg->export = omap_sham_export;
2189 alg->import = omap_sham_import;
2190 alg->halg.statesize = sizeof(struct omap_sham_reqctx) +
2191 BUFLEN;
2192 err = crypto_register_ahash(alg);
2193 if (err)
2194 goto err_algs;
2195
2196 dd->pdata->algs_info[i].registered++;
2197 }
2198 }
2199
2200 err = sysfs_create_group(&dev->kobj, &omap_sham_attr_group);
2201 if (err) {
2202 dev_err(dev, "could not create sysfs device attrs\n");
2203 goto err_algs;
2204 }
2205
2206 return 0;
2207
2208 err_algs:
2209 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2210 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2211 crypto_unregister_ahash(
2212 &dd->pdata->algs_info[i].algs_list[j]);
2213 err_pm:
2214 pm_runtime_disable(dev);
2215 if (!dd->polling_mode)
2216 dma_release_channel(dd->dma_lch);
2217 data_err:
2218 dev_err(dev, "initialization failed.\n");
2219
2220 return err;
2221 }
2222
2223 static int omap_sham_remove(struct platform_device *pdev)
2224 {
2225 struct omap_sham_dev *dd;
2226 int i, j;
2227
2228 dd = platform_get_drvdata(pdev);
2229 if (!dd)
2230 return -ENODEV;
2231 spin_lock(&sham.lock);
2232 list_del(&dd->list);
2233 spin_unlock(&sham.lock);
2234 for (i = dd->pdata->algs_info_size - 1; i >= 0; i--)
2235 for (j = dd->pdata->algs_info[i].registered - 1; j >= 0; j--)
2236 crypto_unregister_ahash(
2237 &dd->pdata->algs_info[i].algs_list[j]);
2238 tasklet_kill(&dd->done_task);
2239 pm_runtime_disable(&pdev->dev);
2240
2241 if (!dd->polling_mode)
2242 dma_release_channel(dd->dma_lch);
2243
2244 return 0;
2245 }
2246
2247 #ifdef CONFIG_PM_SLEEP
2248 static int omap_sham_suspend(struct device *dev)
2249 {
2250 pm_runtime_put_sync(dev);
2251 return 0;
2252 }
2253
2254 static int omap_sham_resume(struct device *dev)
2255 {
2256 int err = pm_runtime_get_sync(dev);
2257 if (err < 0) {
2258 dev_err(dev, "failed to get sync: %d\n", err);
2259 return err;
2260 }
2261 return 0;
2262 }
2263 #endif
2264
2265 static SIMPLE_DEV_PM_OPS(omap_sham_pm_ops, omap_sham_suspend, omap_sham_resume);
2266
2267 static struct platform_driver omap_sham_driver = {
2268 .probe = omap_sham_probe,
2269 .remove = omap_sham_remove,
2270 .driver = {
2271 .name = "omap-sham",
2272 .pm = &omap_sham_pm_ops,
2273 .of_match_table = omap_sham_of_match,
2274 },
2275 };
2276
2277 module_platform_driver(omap_sham_driver);
2278
2279 MODULE_DESCRIPTION("OMAP SHA1/MD5 hw acceleration support.");
2280 MODULE_LICENSE("GPL v2");
2281 MODULE_AUTHOR("Dmitry Kasatkin");
2282 MODULE_ALIAS("platform:omap-sham");