]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/crypto/padlock-aes.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / drivers / crypto / padlock-aes.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
8 * Key expansion routine taken from crypto/aes.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
18 *
19 * LICENSE TERMS
20 *
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
23 *
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
26 *
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
30 *
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
33 *
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
37 *
38 * DISCLAIMER
39 *
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
44 */
45
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <asm/byteorder.h>
53 #include "padlock.h"
54
55 #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
56 #define AES_MAX_KEY_SIZE 32 /* ditto */
57 #define AES_BLOCK_SIZE 16 /* ditto */
58 #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
59 #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
60
61 struct aes_ctx {
62 uint32_t e_data[AES_EXTENDED_KEY_SIZE+4];
63 uint32_t d_data[AES_EXTENDED_KEY_SIZE+4];
64 uint32_t *E;
65 uint32_t *D;
66 int key_length;
67 };
68
69 /* ====== Key management routines ====== */
70
71 static inline uint32_t
72 generic_rotr32 (const uint32_t x, const unsigned bits)
73 {
74 const unsigned n = bits % 32;
75 return (x >> n) | (x << (32 - n));
76 }
77
78 static inline uint32_t
79 generic_rotl32 (const uint32_t x, const unsigned bits)
80 {
81 const unsigned n = bits % 32;
82 return (x << n) | (x >> (32 - n));
83 }
84
85 #define rotl generic_rotl32
86 #define rotr generic_rotr32
87
88 /*
89 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
90 */
91 static inline uint8_t
92 byte(const uint32_t x, const unsigned n)
93 {
94 return x >> (n << 3);
95 }
96
97 #define uint32_t_in(x) le32_to_cpu(*(const uint32_t *)(x))
98 #define uint32_t_out(to, from) (*(uint32_t *)(to) = cpu_to_le32(from))
99
100 #define E_KEY ctx->E
101 #define D_KEY ctx->D
102
103 static uint8_t pow_tab[256];
104 static uint8_t log_tab[256];
105 static uint8_t sbx_tab[256];
106 static uint8_t isb_tab[256];
107 static uint32_t rco_tab[10];
108 static uint32_t ft_tab[4][256];
109 static uint32_t it_tab[4][256];
110
111 static uint32_t fl_tab[4][256];
112 static uint32_t il_tab[4][256];
113
114 static inline uint8_t
115 f_mult (uint8_t a, uint8_t b)
116 {
117 uint8_t aa = log_tab[a], cc = aa + log_tab[b];
118
119 return pow_tab[cc + (cc < aa ? 1 : 0)];
120 }
121
122 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
123
124 #define f_rn(bo, bi, n, k) \
125 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
126 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
127 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
128 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
129
130 #define i_rn(bo, bi, n, k) \
131 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
132 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
133 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
134 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
135
136 #define ls_box(x) \
137 ( fl_tab[0][byte(x, 0)] ^ \
138 fl_tab[1][byte(x, 1)] ^ \
139 fl_tab[2][byte(x, 2)] ^ \
140 fl_tab[3][byte(x, 3)] )
141
142 #define f_rl(bo, bi, n, k) \
143 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
144 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
145 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
146 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
147
148 #define i_rl(bo, bi, n, k) \
149 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
150 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
151 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
152 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
153
154 static void
155 gen_tabs (void)
156 {
157 uint32_t i, t;
158 uint8_t p, q;
159
160 /* log and power tables for GF(2**8) finite field with
161 0x011b as modular polynomial - the simplest prmitive
162 root is 0x03, used here to generate the tables */
163
164 for (i = 0, p = 1; i < 256; ++i) {
165 pow_tab[i] = (uint8_t) p;
166 log_tab[p] = (uint8_t) i;
167
168 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
169 }
170
171 log_tab[1] = 0;
172
173 for (i = 0, p = 1; i < 10; ++i) {
174 rco_tab[i] = p;
175
176 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
177 }
178
179 for (i = 0; i < 256; ++i) {
180 p = (i ? pow_tab[255 - log_tab[i]] : 0);
181 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
182 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
183 sbx_tab[i] = p;
184 isb_tab[p] = (uint8_t) i;
185 }
186
187 for (i = 0; i < 256; ++i) {
188 p = sbx_tab[i];
189
190 t = p;
191 fl_tab[0][i] = t;
192 fl_tab[1][i] = rotl (t, 8);
193 fl_tab[2][i] = rotl (t, 16);
194 fl_tab[3][i] = rotl (t, 24);
195
196 t = ((uint32_t) ff_mult (2, p)) |
197 ((uint32_t) p << 8) |
198 ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
199
200 ft_tab[0][i] = t;
201 ft_tab[1][i] = rotl (t, 8);
202 ft_tab[2][i] = rotl (t, 16);
203 ft_tab[3][i] = rotl (t, 24);
204
205 p = isb_tab[i];
206
207 t = p;
208 il_tab[0][i] = t;
209 il_tab[1][i] = rotl (t, 8);
210 il_tab[2][i] = rotl (t, 16);
211 il_tab[3][i] = rotl (t, 24);
212
213 t = ((uint32_t) ff_mult (14, p)) |
214 ((uint32_t) ff_mult (9, p) << 8) |
215 ((uint32_t) ff_mult (13, p) << 16) |
216 ((uint32_t) ff_mult (11, p) << 24);
217
218 it_tab[0][i] = t;
219 it_tab[1][i] = rotl (t, 8);
220 it_tab[2][i] = rotl (t, 16);
221 it_tab[3][i] = rotl (t, 24);
222 }
223 }
224
225 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
226
227 #define imix_col(y,x) \
228 u = star_x(x); \
229 v = star_x(u); \
230 w = star_x(v); \
231 t = w ^ (x); \
232 (y) = u ^ v ^ w; \
233 (y) ^= rotr(u ^ t, 8) ^ \
234 rotr(v ^ t, 16) ^ \
235 rotr(t,24)
236
237 /* initialise the key schedule from the user supplied key */
238
239 #define loop4(i) \
240 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
241 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
242 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
243 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
244 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
245 }
246
247 #define loop6(i) \
248 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
249 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
250 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
251 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
252 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
253 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
254 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
255 }
256
257 #define loop8(i) \
258 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
259 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
260 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
261 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
262 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
263 t = E_KEY[8 * i + 4] ^ ls_box(t); \
264 E_KEY[8 * i + 12] = t; \
265 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
266 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
267 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
268 }
269
270 /* Tells whether the ACE is capable to generate
271 the extended key for a given key_len. */
272 static inline int
273 aes_hw_extkey_available(uint8_t key_len)
274 {
275 /* TODO: We should check the actual CPU model/stepping
276 as it's possible that the capability will be
277 added in the next CPU revisions. */
278 if (key_len == 16)
279 return 1;
280 return 0;
281 }
282
283 static int
284 aes_set_key(void *ctx_arg, const uint8_t *in_key, unsigned int key_len, uint32_t *flags)
285 {
286 struct aes_ctx *ctx = ctx_arg;
287 uint32_t i, t, u, v, w;
288 uint32_t P[AES_EXTENDED_KEY_SIZE];
289 uint32_t rounds;
290
291 if (key_len != 16 && key_len != 24 && key_len != 32) {
292 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
293 return -EINVAL;
294 }
295
296 ctx->key_length = key_len;
297
298 ctx->E = ctx->e_data;
299 ctx->D = ctx->d_data;
300
301 /* Ensure 16-Bytes alignmentation of keys for VIA PadLock. */
302 if ((int)(ctx->e_data) & 0x0F)
303 ctx->E += 4 - (((int)(ctx->e_data) & 0x0F) / sizeof (ctx->e_data[0]));
304
305 if ((int)(ctx->d_data) & 0x0F)
306 ctx->D += 4 - (((int)(ctx->d_data) & 0x0F) / sizeof (ctx->d_data[0]));
307
308 E_KEY[0] = uint32_t_in (in_key);
309 E_KEY[1] = uint32_t_in (in_key + 4);
310 E_KEY[2] = uint32_t_in (in_key + 8);
311 E_KEY[3] = uint32_t_in (in_key + 12);
312
313 /* Don't generate extended keys if the hardware can do it. */
314 if (aes_hw_extkey_available(key_len))
315 return 0;
316
317 switch (key_len) {
318 case 16:
319 t = E_KEY[3];
320 for (i = 0; i < 10; ++i)
321 loop4 (i);
322 break;
323
324 case 24:
325 E_KEY[4] = uint32_t_in (in_key + 16);
326 t = E_KEY[5] = uint32_t_in (in_key + 20);
327 for (i = 0; i < 8; ++i)
328 loop6 (i);
329 break;
330
331 case 32:
332 E_KEY[4] = uint32_t_in (in_key + 16);
333 E_KEY[5] = uint32_t_in (in_key + 20);
334 E_KEY[6] = uint32_t_in (in_key + 24);
335 t = E_KEY[7] = uint32_t_in (in_key + 28);
336 for (i = 0; i < 7; ++i)
337 loop8 (i);
338 break;
339 }
340
341 D_KEY[0] = E_KEY[0];
342 D_KEY[1] = E_KEY[1];
343 D_KEY[2] = E_KEY[2];
344 D_KEY[3] = E_KEY[3];
345
346 for (i = 4; i < key_len + 24; ++i) {
347 imix_col (D_KEY[i], E_KEY[i]);
348 }
349
350 /* PadLock needs a different format of the decryption key. */
351 rounds = 10 + (key_len - 16) / 4;
352
353 for (i = 0; i < rounds; i++) {
354 P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
355 P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
356 P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
357 P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
358 }
359
360 P[0] = E_KEY[(rounds * 4) + 0];
361 P[1] = E_KEY[(rounds * 4) + 1];
362 P[2] = E_KEY[(rounds * 4) + 2];
363 P[3] = E_KEY[(rounds * 4) + 3];
364
365 memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
366
367 return 0;
368 }
369
370 /* ====== Encryption/decryption routines ====== */
371
372 /* This is the real call to PadLock. */
373 static inline void
374 padlock_xcrypt_ecb(uint8_t *input, uint8_t *output, uint8_t *key,
375 void *control_word, uint32_t count)
376 {
377 asm volatile ("pushfl; popfl"); /* enforce key reload. */
378 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
379 : "+S"(input), "+D"(output)
380 : "d"(control_word), "b"(key), "c"(count));
381 }
382
383 static void
384 aes_padlock(void *ctx_arg, uint8_t *out_arg, const uint8_t *in_arg, int encdec)
385 {
386 /* Don't blindly modify this structure - the items must
387 fit on 16-Bytes boundaries! */
388 struct padlock_xcrypt_data {
389 uint8_t buf[AES_BLOCK_SIZE];
390 union cword cword;
391 };
392
393 struct aes_ctx *ctx = ctx_arg;
394 char bigbuf[sizeof(struct padlock_xcrypt_data) + 16];
395 struct padlock_xcrypt_data *data;
396 void *key;
397
398 /* Place 'data' at the first 16-Bytes aligned address in 'bigbuf'. */
399 if (((long)bigbuf) & 0x0F)
400 data = (void*)(bigbuf + 16 - ((long)bigbuf & 0x0F));
401 else
402 data = (void*)bigbuf;
403
404 /* Prepare Control word. */
405 memset (data, 0, sizeof(struct padlock_xcrypt_data));
406 data->cword.b.encdec = !encdec; /* in the rest of cryptoapi ENC=1/DEC=0 */
407 data->cword.b.rounds = 10 + (ctx->key_length - 16) / 4;
408 data->cword.b.ksize = (ctx->key_length - 16) / 8;
409
410 /* Is the hardware capable to generate the extended key? */
411 if (!aes_hw_extkey_available(ctx->key_length))
412 data->cword.b.keygen = 1;
413
414 /* ctx->E starts with a plain key - if the hardware is capable
415 to generate the extended key itself we must supply
416 the plain key for both Encryption and Decryption. */
417 if (encdec == CRYPTO_DIR_ENCRYPT || data->cword.b.keygen == 0)
418 key = ctx->E;
419 else
420 key = ctx->D;
421
422 memcpy(data->buf, in_arg, AES_BLOCK_SIZE);
423 padlock_xcrypt_ecb(data->buf, data->buf, key, &data->cword, 1);
424 memcpy(out_arg, data->buf, AES_BLOCK_SIZE);
425 }
426
427 static void
428 aes_encrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
429 {
430 aes_padlock(ctx_arg, out, in, CRYPTO_DIR_ENCRYPT);
431 }
432
433 static void
434 aes_decrypt(void *ctx_arg, uint8_t *out, const uint8_t *in)
435 {
436 aes_padlock(ctx_arg, out, in, CRYPTO_DIR_DECRYPT);
437 }
438
439 static struct crypto_alg aes_alg = {
440 .cra_name = "aes",
441 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
442 .cra_blocksize = AES_BLOCK_SIZE,
443 .cra_ctxsize = sizeof(struct aes_ctx),
444 .cra_module = THIS_MODULE,
445 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
446 .cra_u = {
447 .cipher = {
448 .cia_min_keysize = AES_MIN_KEY_SIZE,
449 .cia_max_keysize = AES_MAX_KEY_SIZE,
450 .cia_setkey = aes_set_key,
451 .cia_encrypt = aes_encrypt,
452 .cia_decrypt = aes_decrypt
453 }
454 }
455 };
456
457 int __init padlock_init_aes(void)
458 {
459 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
460
461 gen_tabs();
462 return crypto_register_alg(&aes_alg);
463 }
464
465 void __exit padlock_fini_aes(void)
466 {
467 crypto_unregister_alg(&aes_alg);
468 }