]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/crypto/stm32/stm32-cryp.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <crypto/aes.h>
18 #include <crypto/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22
23 #define DRIVER_NAME "stm32-cryp"
24
25 /* Bit [0] encrypt / decrypt */
26 #define FLG_ENCRYPT BIT(0)
27 /* Bit [8..1] algo & operation mode */
28 #define FLG_AES BIT(1)
29 #define FLG_DES BIT(2)
30 #define FLG_TDES BIT(3)
31 #define FLG_ECB BIT(4)
32 #define FLG_CBC BIT(5)
33 #define FLG_CTR BIT(6)
34 #define FLG_GCM BIT(7)
35 #define FLG_CCM BIT(8)
36 /* Mode mask = bits [15..0] */
37 #define FLG_MODE_MASK GENMASK(15, 0)
38 /* Bit [31..16] status */
39 #define FLG_CCM_PADDED_WA BIT(16)
40
41 /* Registers */
42 #define CRYP_CR 0x00000000
43 #define CRYP_SR 0x00000004
44 #define CRYP_DIN 0x00000008
45 #define CRYP_DOUT 0x0000000C
46 #define CRYP_DMACR 0x00000010
47 #define CRYP_IMSCR 0x00000014
48 #define CRYP_RISR 0x00000018
49 #define CRYP_MISR 0x0000001C
50 #define CRYP_K0LR 0x00000020
51 #define CRYP_K0RR 0x00000024
52 #define CRYP_K1LR 0x00000028
53 #define CRYP_K1RR 0x0000002C
54 #define CRYP_K2LR 0x00000030
55 #define CRYP_K2RR 0x00000034
56 #define CRYP_K3LR 0x00000038
57 #define CRYP_K3RR 0x0000003C
58 #define CRYP_IV0LR 0x00000040
59 #define CRYP_IV0RR 0x00000044
60 #define CRYP_IV1LR 0x00000048
61 #define CRYP_IV1RR 0x0000004C
62 #define CRYP_CSGCMCCM0R 0x00000050
63 #define CRYP_CSGCM0R 0x00000070
64
65 /* Registers values */
66 #define CR_DEC_NOT_ENC 0x00000004
67 #define CR_TDES_ECB 0x00000000
68 #define CR_TDES_CBC 0x00000008
69 #define CR_DES_ECB 0x00000010
70 #define CR_DES_CBC 0x00000018
71 #define CR_AES_ECB 0x00000020
72 #define CR_AES_CBC 0x00000028
73 #define CR_AES_CTR 0x00000030
74 #define CR_AES_KP 0x00000038
75 #define CR_AES_GCM 0x00080000
76 #define CR_AES_CCM 0x00080008
77 #define CR_AES_UNKNOWN 0xFFFFFFFF
78 #define CR_ALGO_MASK 0x00080038
79 #define CR_DATA32 0x00000000
80 #define CR_DATA16 0x00000040
81 #define CR_DATA8 0x00000080
82 #define CR_DATA1 0x000000C0
83 #define CR_KEY128 0x00000000
84 #define CR_KEY192 0x00000100
85 #define CR_KEY256 0x00000200
86 #define CR_FFLUSH 0x00004000
87 #define CR_CRYPEN 0x00008000
88 #define CR_PH_INIT 0x00000000
89 #define CR_PH_HEADER 0x00010000
90 #define CR_PH_PAYLOAD 0x00020000
91 #define CR_PH_FINAL 0x00030000
92 #define CR_PH_MASK 0x00030000
93 #define CR_NBPBL_SHIFT 20
94
95 #define SR_BUSY 0x00000010
96 #define SR_OFNE 0x00000004
97
98 #define IMSCR_IN BIT(0)
99 #define IMSCR_OUT BIT(1)
100
101 #define MISR_IN BIT(0)
102 #define MISR_OUT BIT(1)
103
104 /* Misc */
105 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
106 #define GCM_CTR_INIT 2
107 #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
108 #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
109 #define CRYP_AUTOSUSPEND_DELAY 50
110
111 struct stm32_cryp_caps {
112 bool swap_final;
113 bool padding_wa;
114 };
115
116 struct stm32_cryp_ctx {
117 struct crypto_engine_ctx enginectx;
118 struct stm32_cryp *cryp;
119 int keylen;
120 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
121 unsigned long flags;
122 };
123
124 struct stm32_cryp_reqctx {
125 unsigned long mode;
126 };
127
128 struct stm32_cryp {
129 struct list_head list;
130 struct device *dev;
131 void __iomem *regs;
132 struct clk *clk;
133 unsigned long flags;
134 u32 irq_status;
135 const struct stm32_cryp_caps *caps;
136 struct stm32_cryp_ctx *ctx;
137
138 struct crypto_engine *engine;
139
140 struct ablkcipher_request *req;
141 struct aead_request *areq;
142
143 size_t authsize;
144 size_t hw_blocksize;
145
146 size_t total_in;
147 size_t total_in_save;
148 size_t total_out;
149 size_t total_out_save;
150
151 struct scatterlist *in_sg;
152 struct scatterlist *out_sg;
153 struct scatterlist *out_sg_save;
154
155 struct scatterlist in_sgl;
156 struct scatterlist out_sgl;
157 bool sgs_copied;
158
159 int in_sg_len;
160 int out_sg_len;
161
162 struct scatter_walk in_walk;
163 struct scatter_walk out_walk;
164
165 u32 last_ctr[4];
166 u32 gcm_ctr;
167 };
168
169 struct stm32_cryp_list {
170 struct list_head dev_list;
171 spinlock_t lock; /* protect dev_list */
172 };
173
174 static struct stm32_cryp_list cryp_list = {
175 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
176 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
177 };
178
179 static inline bool is_aes(struct stm32_cryp *cryp)
180 {
181 return cryp->flags & FLG_AES;
182 }
183
184 static inline bool is_des(struct stm32_cryp *cryp)
185 {
186 return cryp->flags & FLG_DES;
187 }
188
189 static inline bool is_tdes(struct stm32_cryp *cryp)
190 {
191 return cryp->flags & FLG_TDES;
192 }
193
194 static inline bool is_ecb(struct stm32_cryp *cryp)
195 {
196 return cryp->flags & FLG_ECB;
197 }
198
199 static inline bool is_cbc(struct stm32_cryp *cryp)
200 {
201 return cryp->flags & FLG_CBC;
202 }
203
204 static inline bool is_ctr(struct stm32_cryp *cryp)
205 {
206 return cryp->flags & FLG_CTR;
207 }
208
209 static inline bool is_gcm(struct stm32_cryp *cryp)
210 {
211 return cryp->flags & FLG_GCM;
212 }
213
214 static inline bool is_ccm(struct stm32_cryp *cryp)
215 {
216 return cryp->flags & FLG_CCM;
217 }
218
219 static inline bool is_encrypt(struct stm32_cryp *cryp)
220 {
221 return cryp->flags & FLG_ENCRYPT;
222 }
223
224 static inline bool is_decrypt(struct stm32_cryp *cryp)
225 {
226 return !is_encrypt(cryp);
227 }
228
229 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
230 {
231 return readl_relaxed(cryp->regs + ofst);
232 }
233
234 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
235 {
236 writel_relaxed(val, cryp->regs + ofst);
237 }
238
239 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
240 {
241 u32 status;
242
243 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
244 !(status & SR_BUSY), 10, 100000);
245 }
246
247 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
248 {
249 u32 status;
250
251 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
252 !(status & CR_CRYPEN), 10, 100000);
253 }
254
255 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
256 {
257 u32 status;
258
259 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
260 status & SR_OFNE, 10, 100000);
261 }
262
263 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
264
265 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
266 {
267 struct stm32_cryp *tmp, *cryp = NULL;
268
269 spin_lock_bh(&cryp_list.lock);
270 if (!ctx->cryp) {
271 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
272 cryp = tmp;
273 break;
274 }
275 ctx->cryp = cryp;
276 } else {
277 cryp = ctx->cryp;
278 }
279
280 spin_unlock_bh(&cryp_list.lock);
281
282 return cryp;
283 }
284
285 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
286 size_t align)
287 {
288 int len = 0;
289
290 if (!total)
291 return 0;
292
293 if (!IS_ALIGNED(total, align))
294 return -EINVAL;
295
296 while (sg) {
297 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
298 return -EINVAL;
299
300 if (!IS_ALIGNED(sg->length, align))
301 return -EINVAL;
302
303 len += sg->length;
304 sg = sg_next(sg);
305 }
306
307 if (len != total)
308 return -EINVAL;
309
310 return 0;
311 }
312
313 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
314 {
315 int ret;
316
317 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
318 cryp->hw_blocksize);
319 if (ret)
320 return ret;
321
322 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
323 cryp->hw_blocksize);
324
325 return ret;
326 }
327
328 static void sg_copy_buf(void *buf, struct scatterlist *sg,
329 unsigned int start, unsigned int nbytes, int out)
330 {
331 struct scatter_walk walk;
332
333 if (!nbytes)
334 return;
335
336 scatterwalk_start(&walk, sg);
337 scatterwalk_advance(&walk, start);
338 scatterwalk_copychunks(buf, &walk, nbytes, out);
339 scatterwalk_done(&walk, out, 0);
340 }
341
342 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
343 {
344 void *buf_in, *buf_out;
345 int pages, total_in, total_out;
346
347 if (!stm32_cryp_check_io_aligned(cryp)) {
348 cryp->sgs_copied = 0;
349 return 0;
350 }
351
352 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
353 pages = total_in ? get_order(total_in) : 1;
354 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
355
356 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
357 pages = total_out ? get_order(total_out) : 1;
358 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
359
360 if (!buf_in || !buf_out) {
361 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
362 cryp->sgs_copied = 0;
363 return -EFAULT;
364 }
365
366 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
367
368 sg_init_one(&cryp->in_sgl, buf_in, total_in);
369 cryp->in_sg = &cryp->in_sgl;
370 cryp->in_sg_len = 1;
371
372 sg_init_one(&cryp->out_sgl, buf_out, total_out);
373 cryp->out_sg_save = cryp->out_sg;
374 cryp->out_sg = &cryp->out_sgl;
375 cryp->out_sg_len = 1;
376
377 cryp->sgs_copied = 1;
378
379 return 0;
380 }
381
382 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
383 {
384 if (!iv)
385 return;
386
387 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
388 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
389
390 if (is_aes(cryp)) {
391 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
392 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
393 }
394 }
395
396 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
397 {
398 struct ablkcipher_request *req = cryp->req;
399 u32 *tmp = req->info;
400
401 if (!tmp)
402 return;
403
404 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
406
407 if (is_aes(cryp)) {
408 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
410 }
411 }
412
413 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
414 {
415 unsigned int i;
416 int r_id;
417
418 if (is_des(c)) {
419 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
420 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
421 } else {
422 r_id = CRYP_K3RR;
423 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
424 stm32_cryp_write(c, r_id,
425 cpu_to_be32(c->ctx->key[i - 1]));
426 }
427 }
428
429 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
430 {
431 if (is_aes(cryp) && is_ecb(cryp))
432 return CR_AES_ECB;
433
434 if (is_aes(cryp) && is_cbc(cryp))
435 return CR_AES_CBC;
436
437 if (is_aes(cryp) && is_ctr(cryp))
438 return CR_AES_CTR;
439
440 if (is_aes(cryp) && is_gcm(cryp))
441 return CR_AES_GCM;
442
443 if (is_aes(cryp) && is_ccm(cryp))
444 return CR_AES_CCM;
445
446 if (is_des(cryp) && is_ecb(cryp))
447 return CR_DES_ECB;
448
449 if (is_des(cryp) && is_cbc(cryp))
450 return CR_DES_CBC;
451
452 if (is_tdes(cryp) && is_ecb(cryp))
453 return CR_TDES_ECB;
454
455 if (is_tdes(cryp) && is_cbc(cryp))
456 return CR_TDES_CBC;
457
458 dev_err(cryp->dev, "Unknown mode\n");
459 return CR_AES_UNKNOWN;
460 }
461
462 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
463 {
464 return is_encrypt(cryp) ? cryp->areq->cryptlen :
465 cryp->areq->cryptlen - cryp->authsize;
466 }
467
468 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
469 {
470 int ret;
471 u32 iv[4];
472
473 /* Phase 1 : init */
474 memcpy(iv, cryp->areq->iv, 12);
475 iv[3] = cpu_to_be32(GCM_CTR_INIT);
476 cryp->gcm_ctr = GCM_CTR_INIT;
477 stm32_cryp_hw_write_iv(cryp, iv);
478
479 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
480
481 /* Wait for end of processing */
482 ret = stm32_cryp_wait_enable(cryp);
483 if (ret)
484 dev_err(cryp->dev, "Timeout (gcm init)\n");
485
486 return ret;
487 }
488
489 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
490 {
491 int ret;
492 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
493 u32 *d;
494 unsigned int i, textlen;
495
496 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
497 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
498 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
499 iv[AES_BLOCK_SIZE - 1] = 1;
500 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
501
502 /* Build B0 */
503 memcpy(b0, iv, AES_BLOCK_SIZE);
504
505 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
506
507 if (cryp->areq->assoclen)
508 b0[0] |= 0x40;
509
510 textlen = stm32_cryp_get_input_text_len(cryp);
511
512 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
513 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
514
515 /* Enable HW */
516 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
517
518 /* Write B0 */
519 d = (u32 *)b0;
520
521 for (i = 0; i < AES_BLOCK_32; i++) {
522 if (!cryp->caps->padding_wa)
523 *d = cpu_to_be32(*d);
524 stm32_cryp_write(cryp, CRYP_DIN, *d++);
525 }
526
527 /* Wait for end of processing */
528 ret = stm32_cryp_wait_enable(cryp);
529 if (ret)
530 dev_err(cryp->dev, "Timeout (ccm init)\n");
531
532 return ret;
533 }
534
535 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
536 {
537 int ret;
538 u32 cfg, hw_mode;
539
540 pm_runtime_get_sync(cryp->dev);
541
542 /* Disable interrupt */
543 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
544
545 /* Set key */
546 stm32_cryp_hw_write_key(cryp);
547
548 /* Set configuration */
549 cfg = CR_DATA8 | CR_FFLUSH;
550
551 switch (cryp->ctx->keylen) {
552 case AES_KEYSIZE_128:
553 cfg |= CR_KEY128;
554 break;
555
556 case AES_KEYSIZE_192:
557 cfg |= CR_KEY192;
558 break;
559
560 default:
561 case AES_KEYSIZE_256:
562 cfg |= CR_KEY256;
563 break;
564 }
565
566 hw_mode = stm32_cryp_get_hw_mode(cryp);
567 if (hw_mode == CR_AES_UNKNOWN)
568 return -EINVAL;
569
570 /* AES ECB/CBC decrypt: run key preparation first */
571 if (is_decrypt(cryp) &&
572 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
573 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
574
575 /* Wait for end of processing */
576 ret = stm32_cryp_wait_busy(cryp);
577 if (ret) {
578 dev_err(cryp->dev, "Timeout (key preparation)\n");
579 return ret;
580 }
581 }
582
583 cfg |= hw_mode;
584
585 if (is_decrypt(cryp))
586 cfg |= CR_DEC_NOT_ENC;
587
588 /* Apply config and flush (valid when CRYPEN = 0) */
589 stm32_cryp_write(cryp, CRYP_CR, cfg);
590
591 switch (hw_mode) {
592 case CR_AES_GCM:
593 case CR_AES_CCM:
594 /* Phase 1 : init */
595 if (hw_mode == CR_AES_CCM)
596 ret = stm32_cryp_ccm_init(cryp, cfg);
597 else
598 ret = stm32_cryp_gcm_init(cryp, cfg);
599
600 if (ret)
601 return ret;
602
603 /* Phase 2 : header (authenticated data) */
604 if (cryp->areq->assoclen) {
605 cfg |= CR_PH_HEADER;
606 } else if (stm32_cryp_get_input_text_len(cryp)) {
607 cfg |= CR_PH_PAYLOAD;
608 stm32_cryp_write(cryp, CRYP_CR, cfg);
609 } else {
610 cfg |= CR_PH_INIT;
611 }
612
613 break;
614
615 case CR_DES_CBC:
616 case CR_TDES_CBC:
617 case CR_AES_CBC:
618 case CR_AES_CTR:
619 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
620 break;
621
622 default:
623 break;
624 }
625
626 /* Enable now */
627 cfg |= CR_CRYPEN;
628
629 stm32_cryp_write(cryp, CRYP_CR, cfg);
630
631 cryp->flags &= ~FLG_CCM_PADDED_WA;
632
633 return 0;
634 }
635
636 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
637 {
638 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
639 /* Phase 4 : output tag */
640 err = stm32_cryp_read_auth_tag(cryp);
641
642 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
643 stm32_cryp_get_iv(cryp);
644
645 if (cryp->sgs_copied) {
646 void *buf_in, *buf_out;
647 int pages, len;
648
649 buf_in = sg_virt(&cryp->in_sgl);
650 buf_out = sg_virt(&cryp->out_sgl);
651
652 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
653 cryp->total_out_save, 1);
654
655 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
656 pages = len ? get_order(len) : 1;
657 free_pages((unsigned long)buf_in, pages);
658
659 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
660 pages = len ? get_order(len) : 1;
661 free_pages((unsigned long)buf_out, pages);
662 }
663
664 pm_runtime_mark_last_busy(cryp->dev);
665 pm_runtime_put_autosuspend(cryp->dev);
666
667 if (is_gcm(cryp) || is_ccm(cryp))
668 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
669 else
670 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
671 err);
672
673 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
674 }
675
676 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
677 {
678 /* Enable interrupt and let the IRQ handler do everything */
679 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
680
681 return 0;
682 }
683
684 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
685 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
686 void *areq);
687
688 static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
689 {
690 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
691
692 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
693
694 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
695 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
696 ctx->enginectx.op.unprepare_request = NULL;
697 return 0;
698 }
699
700 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
701 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
702 void *areq);
703
704 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
705 {
706 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
707
708 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
709
710 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
711 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
712 ctx->enginectx.op.unprepare_request = NULL;
713
714 return 0;
715 }
716
717 static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
718 {
719 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
720 crypto_ablkcipher_reqtfm(req));
721 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
722 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
723
724 if (!cryp)
725 return -ENODEV;
726
727 rctx->mode = mode;
728
729 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
730 }
731
732 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
733 {
734 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
735 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
736 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
737
738 if (!cryp)
739 return -ENODEV;
740
741 rctx->mode = mode;
742
743 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
744 }
745
746 static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 unsigned int keylen)
748 {
749 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
750
751 memcpy(ctx->key, key, keylen);
752 ctx->keylen = keylen;
753
754 return 0;
755 }
756
757 static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
758 unsigned int keylen)
759 {
760 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
761 keylen != AES_KEYSIZE_256)
762 return -EINVAL;
763 else
764 return stm32_cryp_setkey(tfm, key, keylen);
765 }
766
767 static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
768 unsigned int keylen)
769 {
770 u32 tmp[DES_EXPKEY_WORDS];
771
772 if (keylen != DES_KEY_SIZE)
773 return -EINVAL;
774
775 if ((crypto_ablkcipher_get_flags(tfm) &
776 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) &&
777 unlikely(!des_ekey(tmp, key))) {
778 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_WEAK_KEY);
779 return -EINVAL;
780 }
781
782 return stm32_cryp_setkey(tfm, key, keylen);
783 }
784
785 static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
786 unsigned int keylen)
787 {
788 u32 flags;
789 int err;
790
791 flags = crypto_ablkcipher_get_flags(tfm);
792 err = __des3_verify_key(&flags, key);
793 if (unlikely(err)) {
794 crypto_ablkcipher_set_flags(tfm, flags);
795 return err;
796 }
797
798 return stm32_cryp_setkey(tfm, key, keylen);
799 }
800
801 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
802 unsigned int keylen)
803 {
804 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
805
806 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
807 keylen != AES_KEYSIZE_256)
808 return -EINVAL;
809
810 memcpy(ctx->key, key, keylen);
811 ctx->keylen = keylen;
812
813 return 0;
814 }
815
816 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
817 unsigned int authsize)
818 {
819 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
820 }
821
822 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
823 unsigned int authsize)
824 {
825 switch (authsize) {
826 case 4:
827 case 6:
828 case 8:
829 case 10:
830 case 12:
831 case 14:
832 case 16:
833 break;
834 default:
835 return -EINVAL;
836 }
837
838 return 0;
839 }
840
841 static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
842 {
843 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
844 }
845
846 static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
847 {
848 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
849 }
850
851 static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
852 {
853 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
854 }
855
856 static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
857 {
858 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
859 }
860
861 static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
862 {
863 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
864 }
865
866 static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
867 {
868 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
869 }
870
871 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
872 {
873 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
874 }
875
876 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
877 {
878 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
879 }
880
881 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
882 {
883 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
884 }
885
886 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
887 {
888 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
889 }
890
891 static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
892 {
893 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
894 }
895
896 static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
897 {
898 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
899 }
900
901 static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
902 {
903 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
904 }
905
906 static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
907 {
908 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
909 }
910
911 static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
912 {
913 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
914 }
915
916 static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
917 {
918 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
919 }
920
921 static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
922 {
923 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
924 }
925
926 static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
927 {
928 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
929 }
930
931 static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
932 struct aead_request *areq)
933 {
934 struct stm32_cryp_ctx *ctx;
935 struct stm32_cryp *cryp;
936 struct stm32_cryp_reqctx *rctx;
937 int ret;
938
939 if (!req && !areq)
940 return -EINVAL;
941
942 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
943 crypto_aead_ctx(crypto_aead_reqtfm(areq));
944
945 cryp = ctx->cryp;
946
947 if (!cryp)
948 return -ENODEV;
949
950 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
951 rctx->mode &= FLG_MODE_MASK;
952
953 ctx->cryp = cryp;
954
955 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
956 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
957 cryp->ctx = ctx;
958
959 if (req) {
960 cryp->req = req;
961 cryp->areq = NULL;
962 cryp->total_in = req->nbytes;
963 cryp->total_out = cryp->total_in;
964 } else {
965 /*
966 * Length of input and output data:
967 * Encryption case:
968 * INPUT = AssocData || PlainText
969 * <- assoclen -> <- cryptlen ->
970 * <------- total_in ----------->
971 *
972 * OUTPUT = AssocData || CipherText || AuthTag
973 * <- assoclen -> <- cryptlen -> <- authsize ->
974 * <---------------- total_out ----------------->
975 *
976 * Decryption case:
977 * INPUT = AssocData || CipherText || AuthTag
978 * <- assoclen -> <--------- cryptlen --------->
979 * <- authsize ->
980 * <---------------- total_in ------------------>
981 *
982 * OUTPUT = AssocData || PlainText
983 * <- assoclen -> <- crypten - authsize ->
984 * <---------- total_out ----------------->
985 */
986 cryp->areq = areq;
987 cryp->req = NULL;
988 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
989 cryp->total_in = areq->assoclen + areq->cryptlen;
990 if (is_encrypt(cryp))
991 /* Append auth tag to output */
992 cryp->total_out = cryp->total_in + cryp->authsize;
993 else
994 /* No auth tag in output */
995 cryp->total_out = cryp->total_in - cryp->authsize;
996 }
997
998 cryp->total_in_save = cryp->total_in;
999 cryp->total_out_save = cryp->total_out;
1000
1001 cryp->in_sg = req ? req->src : areq->src;
1002 cryp->out_sg = req ? req->dst : areq->dst;
1003 cryp->out_sg_save = cryp->out_sg;
1004
1005 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
1006 if (cryp->in_sg_len < 0) {
1007 dev_err(cryp->dev, "Cannot get in_sg_len\n");
1008 ret = cryp->in_sg_len;
1009 return ret;
1010 }
1011
1012 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
1013 if (cryp->out_sg_len < 0) {
1014 dev_err(cryp->dev, "Cannot get out_sg_len\n");
1015 ret = cryp->out_sg_len;
1016 return ret;
1017 }
1018
1019 ret = stm32_cryp_copy_sgs(cryp);
1020 if (ret)
1021 return ret;
1022
1023 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1024 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1025
1026 if (is_gcm(cryp) || is_ccm(cryp)) {
1027 /* In output, jump after assoc data */
1028 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1029 cryp->total_out -= cryp->areq->assoclen;
1030 }
1031
1032 ret = stm32_cryp_hw_init(cryp);
1033 return ret;
1034 }
1035
1036 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1037 void *areq)
1038 {
1039 struct ablkcipher_request *req = container_of(areq,
1040 struct ablkcipher_request,
1041 base);
1042
1043 return stm32_cryp_prepare_req(req, NULL);
1044 }
1045
1046 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1047 {
1048 struct ablkcipher_request *req = container_of(areq,
1049 struct ablkcipher_request,
1050 base);
1051 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1052 crypto_ablkcipher_reqtfm(req));
1053 struct stm32_cryp *cryp = ctx->cryp;
1054
1055 if (!cryp)
1056 return -ENODEV;
1057
1058 return stm32_cryp_cpu_start(cryp);
1059 }
1060
1061 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1062 {
1063 struct aead_request *req = container_of(areq, struct aead_request,
1064 base);
1065
1066 return stm32_cryp_prepare_req(NULL, req);
1067 }
1068
1069 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1070 {
1071 struct aead_request *req = container_of(areq, struct aead_request,
1072 base);
1073 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1074 struct stm32_cryp *cryp = ctx->cryp;
1075
1076 if (!cryp)
1077 return -ENODEV;
1078
1079 if (unlikely(!cryp->areq->assoclen &&
1080 !stm32_cryp_get_input_text_len(cryp))) {
1081 /* No input data to process: get tag and finish */
1082 stm32_cryp_finish_req(cryp, 0);
1083 return 0;
1084 }
1085
1086 return stm32_cryp_cpu_start(cryp);
1087 }
1088
1089 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1090 unsigned int n)
1091 {
1092 scatterwalk_advance(&cryp->out_walk, n);
1093
1094 if (unlikely(cryp->out_sg->length == _walked_out)) {
1095 cryp->out_sg = sg_next(cryp->out_sg);
1096 if (cryp->out_sg) {
1097 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1098 return (sg_virt(cryp->out_sg) + _walked_out);
1099 }
1100 }
1101
1102 return (u32 *)((u8 *)dst + n);
1103 }
1104
1105 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1106 unsigned int n)
1107 {
1108 scatterwalk_advance(&cryp->in_walk, n);
1109
1110 if (unlikely(cryp->in_sg->length == _walked_in)) {
1111 cryp->in_sg = sg_next(cryp->in_sg);
1112 if (cryp->in_sg) {
1113 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1114 return (sg_virt(cryp->in_sg) + _walked_in);
1115 }
1116 }
1117
1118 return (u32 *)((u8 *)src + n);
1119 }
1120
1121 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1122 {
1123 u32 cfg, size_bit, *dst, d32;
1124 u8 *d8;
1125 unsigned int i, j;
1126 int ret = 0;
1127
1128 /* Update Config */
1129 cfg = stm32_cryp_read(cryp, CRYP_CR);
1130
1131 cfg &= ~CR_PH_MASK;
1132 cfg |= CR_PH_FINAL;
1133 cfg &= ~CR_DEC_NOT_ENC;
1134 cfg |= CR_CRYPEN;
1135
1136 stm32_cryp_write(cryp, CRYP_CR, cfg);
1137
1138 if (is_gcm(cryp)) {
1139 /* GCM: write aad and payload size (in bits) */
1140 size_bit = cryp->areq->assoclen * 8;
1141 if (cryp->caps->swap_final)
1142 size_bit = cpu_to_be32(size_bit);
1143
1144 stm32_cryp_write(cryp, CRYP_DIN, 0);
1145 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1146
1147 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1148 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1149 size_bit *= 8;
1150 if (cryp->caps->swap_final)
1151 size_bit = cpu_to_be32(size_bit);
1152
1153 stm32_cryp_write(cryp, CRYP_DIN, 0);
1154 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1155 } else {
1156 /* CCM: write CTR0 */
1157 u8 iv[AES_BLOCK_SIZE];
1158 u32 *iv32 = (u32 *)iv;
1159
1160 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1161 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1162
1163 for (i = 0; i < AES_BLOCK_32; i++) {
1164 if (!cryp->caps->padding_wa)
1165 *iv32 = cpu_to_be32(*iv32);
1166 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1167 }
1168 }
1169
1170 /* Wait for output data */
1171 ret = stm32_cryp_wait_output(cryp);
1172 if (ret) {
1173 dev_err(cryp->dev, "Timeout (read tag)\n");
1174 return ret;
1175 }
1176
1177 if (is_encrypt(cryp)) {
1178 /* Get and write tag */
1179 dst = sg_virt(cryp->out_sg) + _walked_out;
1180
1181 for (i = 0; i < AES_BLOCK_32; i++) {
1182 if (cryp->total_out >= sizeof(u32)) {
1183 /* Read a full u32 */
1184 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1185
1186 dst = stm32_cryp_next_out(cryp, dst,
1187 sizeof(u32));
1188 cryp->total_out -= sizeof(u32);
1189 } else if (!cryp->total_out) {
1190 /* Empty fifo out (data from input padding) */
1191 stm32_cryp_read(cryp, CRYP_DOUT);
1192 } else {
1193 /* Read less than an u32 */
1194 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1195 d8 = (u8 *)&d32;
1196
1197 for (j = 0; j < cryp->total_out; j++) {
1198 *((u8 *)dst) = *(d8++);
1199 dst = stm32_cryp_next_out(cryp, dst, 1);
1200 }
1201 cryp->total_out = 0;
1202 }
1203 }
1204 } else {
1205 /* Get and check tag */
1206 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1207
1208 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1209 cryp->total_in_save - cryp->authsize,
1210 cryp->authsize, 0);
1211
1212 for (i = 0; i < AES_BLOCK_32; i++)
1213 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1214
1215 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1216 ret = -EBADMSG;
1217 }
1218
1219 /* Disable cryp */
1220 cfg &= ~CR_CRYPEN;
1221 stm32_cryp_write(cryp, CRYP_CR, cfg);
1222
1223 return ret;
1224 }
1225
1226 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1227 {
1228 u32 cr;
1229
1230 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1231 cryp->last_ctr[3] = 0;
1232 cryp->last_ctr[2]++;
1233 if (!cryp->last_ctr[2]) {
1234 cryp->last_ctr[1]++;
1235 if (!cryp->last_ctr[1])
1236 cryp->last_ctr[0]++;
1237 }
1238
1239 cr = stm32_cryp_read(cryp, CRYP_CR);
1240 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1241
1242 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1243
1244 stm32_cryp_write(cryp, CRYP_CR, cr);
1245 }
1246
1247 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1248 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1249 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1250 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1251 }
1252
1253 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1254 {
1255 unsigned int i, j;
1256 u32 d32, *dst;
1257 u8 *d8;
1258 size_t tag_size;
1259
1260 /* Do no read tag now (if any) */
1261 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1262 tag_size = cryp->authsize;
1263 else
1264 tag_size = 0;
1265
1266 dst = sg_virt(cryp->out_sg) + _walked_out;
1267
1268 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1269 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1270 /* Read a full u32 */
1271 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1272
1273 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1274 cryp->total_out -= sizeof(u32);
1275 } else if (cryp->total_out == tag_size) {
1276 /* Empty fifo out (data from input padding) */
1277 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1278 } else {
1279 /* Read less than an u32 */
1280 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1281 d8 = (u8 *)&d32;
1282
1283 for (j = 0; j < cryp->total_out - tag_size; j++) {
1284 *((u8 *)dst) = *(d8++);
1285 dst = stm32_cryp_next_out(cryp, dst, 1);
1286 }
1287 cryp->total_out = tag_size;
1288 }
1289 }
1290
1291 return !(cryp->total_out - tag_size) || !cryp->total_in;
1292 }
1293
1294 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1295 {
1296 unsigned int i, j;
1297 u32 *src;
1298 u8 d8[4];
1299 size_t tag_size;
1300
1301 /* Do no write tag (if any) */
1302 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1303 tag_size = cryp->authsize;
1304 else
1305 tag_size = 0;
1306
1307 src = sg_virt(cryp->in_sg) + _walked_in;
1308
1309 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1310 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1311 /* Write a full u32 */
1312 stm32_cryp_write(cryp, CRYP_DIN, *src);
1313
1314 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1315 cryp->total_in -= sizeof(u32);
1316 } else if (cryp->total_in == tag_size) {
1317 /* Write padding data */
1318 stm32_cryp_write(cryp, CRYP_DIN, 0);
1319 } else {
1320 /* Write less than an u32 */
1321 memset(d8, 0, sizeof(u32));
1322 for (j = 0; j < cryp->total_in - tag_size; j++) {
1323 d8[j] = *((u8 *)src);
1324 src = stm32_cryp_next_in(cryp, src, 1);
1325 }
1326
1327 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1328 cryp->total_in = tag_size;
1329 }
1330 }
1331 }
1332
1333 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1334 {
1335 int err;
1336 u32 cfg, tmp[AES_BLOCK_32];
1337 size_t total_in_ori = cryp->total_in;
1338 struct scatterlist *out_sg_ori = cryp->out_sg;
1339 unsigned int i;
1340
1341 /* 'Special workaround' procedure described in the datasheet */
1342
1343 /* a) disable ip */
1344 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1345 cfg = stm32_cryp_read(cryp, CRYP_CR);
1346 cfg &= ~CR_CRYPEN;
1347 stm32_cryp_write(cryp, CRYP_CR, cfg);
1348
1349 /* b) Update IV1R */
1350 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1351
1352 /* c) change mode to CTR */
1353 cfg &= ~CR_ALGO_MASK;
1354 cfg |= CR_AES_CTR;
1355 stm32_cryp_write(cryp, CRYP_CR, cfg);
1356
1357 /* a) enable IP */
1358 cfg |= CR_CRYPEN;
1359 stm32_cryp_write(cryp, CRYP_CR, cfg);
1360
1361 /* b) pad and write the last block */
1362 stm32_cryp_irq_write_block(cryp);
1363 cryp->total_in = total_in_ori;
1364 err = stm32_cryp_wait_output(cryp);
1365 if (err) {
1366 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1367 return stm32_cryp_finish_req(cryp, err);
1368 }
1369
1370 /* c) get and store encrypted data */
1371 stm32_cryp_irq_read_data(cryp);
1372 scatterwalk_map_and_copy(tmp, out_sg_ori,
1373 cryp->total_in_save - total_in_ori,
1374 total_in_ori, 0);
1375
1376 /* d) change mode back to AES GCM */
1377 cfg &= ~CR_ALGO_MASK;
1378 cfg |= CR_AES_GCM;
1379 stm32_cryp_write(cryp, CRYP_CR, cfg);
1380
1381 /* e) change phase to Final */
1382 cfg &= ~CR_PH_MASK;
1383 cfg |= CR_PH_FINAL;
1384 stm32_cryp_write(cryp, CRYP_CR, cfg);
1385
1386 /* f) write padded data */
1387 for (i = 0; i < AES_BLOCK_32; i++) {
1388 if (cryp->total_in)
1389 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1390 else
1391 stm32_cryp_write(cryp, CRYP_DIN, 0);
1392
1393 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1394 }
1395
1396 /* g) Empty fifo out */
1397 err = stm32_cryp_wait_output(cryp);
1398 if (err) {
1399 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1400 return stm32_cryp_finish_req(cryp, err);
1401 }
1402
1403 for (i = 0; i < AES_BLOCK_32; i++)
1404 stm32_cryp_read(cryp, CRYP_DOUT);
1405
1406 /* h) run the he normal Final phase */
1407 stm32_cryp_finish_req(cryp, 0);
1408 }
1409
1410 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1411 {
1412 u32 cfg, payload_bytes;
1413
1414 /* disable ip, set NPBLB and reneable ip */
1415 cfg = stm32_cryp_read(cryp, CRYP_CR);
1416 cfg &= ~CR_CRYPEN;
1417 stm32_cryp_write(cryp, CRYP_CR, cfg);
1418
1419 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1420 cryp->total_in;
1421 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1422 cfg |= CR_CRYPEN;
1423 stm32_cryp_write(cryp, CRYP_CR, cfg);
1424 }
1425
1426 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1427 {
1428 int err = 0;
1429 u32 cfg, iv1tmp;
1430 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1431 size_t last_total_out, total_in_ori = cryp->total_in;
1432 struct scatterlist *out_sg_ori = cryp->out_sg;
1433 unsigned int i;
1434
1435 /* 'Special workaround' procedure described in the datasheet */
1436 cryp->flags |= FLG_CCM_PADDED_WA;
1437
1438 /* a) disable ip */
1439 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1440
1441 cfg = stm32_cryp_read(cryp, CRYP_CR);
1442 cfg &= ~CR_CRYPEN;
1443 stm32_cryp_write(cryp, CRYP_CR, cfg);
1444
1445 /* b) get IV1 from CRYP_CSGCMCCM7 */
1446 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1447
1448 /* c) Load CRYP_CSGCMCCMxR */
1449 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1450 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1451
1452 /* d) Write IV1R */
1453 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1454
1455 /* e) change mode to CTR */
1456 cfg &= ~CR_ALGO_MASK;
1457 cfg |= CR_AES_CTR;
1458 stm32_cryp_write(cryp, CRYP_CR, cfg);
1459
1460 /* a) enable IP */
1461 cfg |= CR_CRYPEN;
1462 stm32_cryp_write(cryp, CRYP_CR, cfg);
1463
1464 /* b) pad and write the last block */
1465 stm32_cryp_irq_write_block(cryp);
1466 cryp->total_in = total_in_ori;
1467 err = stm32_cryp_wait_output(cryp);
1468 if (err) {
1469 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1470 return stm32_cryp_finish_req(cryp, err);
1471 }
1472
1473 /* c) get and store decrypted data */
1474 last_total_out = cryp->total_out;
1475 stm32_cryp_irq_read_data(cryp);
1476
1477 memset(tmp, 0, sizeof(tmp));
1478 scatterwalk_map_and_copy(tmp, out_sg_ori,
1479 cryp->total_out_save - last_total_out,
1480 last_total_out, 0);
1481
1482 /* d) Load again CRYP_CSGCMCCMxR */
1483 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1484 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1485
1486 /* e) change mode back to AES CCM */
1487 cfg &= ~CR_ALGO_MASK;
1488 cfg |= CR_AES_CCM;
1489 stm32_cryp_write(cryp, CRYP_CR, cfg);
1490
1491 /* f) change phase to header */
1492 cfg &= ~CR_PH_MASK;
1493 cfg |= CR_PH_HEADER;
1494 stm32_cryp_write(cryp, CRYP_CR, cfg);
1495
1496 /* g) XOR and write padded data */
1497 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1498 tmp[i] ^= cstmp1[i];
1499 tmp[i] ^= cstmp2[i];
1500 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1501 }
1502
1503 /* h) wait for completion */
1504 err = stm32_cryp_wait_busy(cryp);
1505 if (err)
1506 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1507
1508 /* i) run the he normal Final phase */
1509 stm32_cryp_finish_req(cryp, err);
1510 }
1511
1512 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1513 {
1514 if (unlikely(!cryp->total_in)) {
1515 dev_warn(cryp->dev, "No more data to process\n");
1516 return;
1517 }
1518
1519 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1520 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1521 is_encrypt(cryp))) {
1522 /* Padding for AES GCM encryption */
1523 if (cryp->caps->padding_wa)
1524 /* Special case 1 */
1525 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1526
1527 /* Setting padding bytes (NBBLB) */
1528 stm32_cryp_irq_set_npblb(cryp);
1529 }
1530
1531 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1532 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1533 is_decrypt(cryp))) {
1534 /* Padding for AES CCM decryption */
1535 if (cryp->caps->padding_wa)
1536 /* Special case 2 */
1537 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1538
1539 /* Setting padding bytes (NBBLB) */
1540 stm32_cryp_irq_set_npblb(cryp);
1541 }
1542
1543 if (is_aes(cryp) && is_ctr(cryp))
1544 stm32_cryp_check_ctr_counter(cryp);
1545
1546 stm32_cryp_irq_write_block(cryp);
1547 }
1548
1549 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1550 {
1551 int err;
1552 unsigned int i, j;
1553 u32 cfg, *src;
1554
1555 src = sg_virt(cryp->in_sg) + _walked_in;
1556
1557 for (i = 0; i < AES_BLOCK_32; i++) {
1558 stm32_cryp_write(cryp, CRYP_DIN, *src);
1559
1560 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1561 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1562
1563 /* Check if whole header written */
1564 if ((cryp->total_in_save - cryp->total_in) ==
1565 cryp->areq->assoclen) {
1566 /* Write padding if needed */
1567 for (j = i + 1; j < AES_BLOCK_32; j++)
1568 stm32_cryp_write(cryp, CRYP_DIN, 0);
1569
1570 /* Wait for completion */
1571 err = stm32_cryp_wait_busy(cryp);
1572 if (err) {
1573 dev_err(cryp->dev, "Timeout (gcm header)\n");
1574 return stm32_cryp_finish_req(cryp, err);
1575 }
1576
1577 if (stm32_cryp_get_input_text_len(cryp)) {
1578 /* Phase 3 : payload */
1579 cfg = stm32_cryp_read(cryp, CRYP_CR);
1580 cfg &= ~CR_CRYPEN;
1581 stm32_cryp_write(cryp, CRYP_CR, cfg);
1582
1583 cfg &= ~CR_PH_MASK;
1584 cfg |= CR_PH_PAYLOAD;
1585 cfg |= CR_CRYPEN;
1586 stm32_cryp_write(cryp, CRYP_CR, cfg);
1587 } else {
1588 /* Phase 4 : tag */
1589 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1590 stm32_cryp_finish_req(cryp, 0);
1591 }
1592
1593 break;
1594 }
1595
1596 if (!cryp->total_in)
1597 break;
1598 }
1599 }
1600
1601 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1602 {
1603 int err;
1604 unsigned int i = 0, j, k;
1605 u32 alen, cfg, *src;
1606 u8 d8[4];
1607
1608 src = sg_virt(cryp->in_sg) + _walked_in;
1609 alen = cryp->areq->assoclen;
1610
1611 if (!_walked_in) {
1612 if (cryp->areq->assoclen <= 65280) {
1613 /* Write first u32 of B1 */
1614 d8[0] = (alen >> 8) & 0xFF;
1615 d8[1] = alen & 0xFF;
1616 d8[2] = *((u8 *)src);
1617 src = stm32_cryp_next_in(cryp, src, 1);
1618 d8[3] = *((u8 *)src);
1619 src = stm32_cryp_next_in(cryp, src, 1);
1620
1621 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1622 i++;
1623
1624 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1625 } else {
1626 /* Build the two first u32 of B1 */
1627 d8[0] = 0xFF;
1628 d8[1] = 0xFE;
1629 d8[2] = alen & 0xFF000000;
1630 d8[3] = alen & 0x00FF0000;
1631
1632 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1633 i++;
1634
1635 d8[0] = alen & 0x0000FF00;
1636 d8[1] = alen & 0x000000FF;
1637 d8[2] = *((u8 *)src);
1638 src = stm32_cryp_next_in(cryp, src, 1);
1639 d8[3] = *((u8 *)src);
1640 src = stm32_cryp_next_in(cryp, src, 1);
1641
1642 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643 i++;
1644
1645 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1646 }
1647 }
1648
1649 /* Write next u32 */
1650 for (; i < AES_BLOCK_32; i++) {
1651 /* Build an u32 */
1652 memset(d8, 0, sizeof(u32));
1653 for (k = 0; k < sizeof(u32); k++) {
1654 d8[k] = *((u8 *)src);
1655 src = stm32_cryp_next_in(cryp, src, 1);
1656
1657 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1658 if ((cryp->total_in_save - cryp->total_in) == alen)
1659 break;
1660 }
1661
1662 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1663
1664 if ((cryp->total_in_save - cryp->total_in) == alen) {
1665 /* Write padding if needed */
1666 for (j = i + 1; j < AES_BLOCK_32; j++)
1667 stm32_cryp_write(cryp, CRYP_DIN, 0);
1668
1669 /* Wait for completion */
1670 err = stm32_cryp_wait_busy(cryp);
1671 if (err) {
1672 dev_err(cryp->dev, "Timeout (ccm header)\n");
1673 return stm32_cryp_finish_req(cryp, err);
1674 }
1675
1676 if (stm32_cryp_get_input_text_len(cryp)) {
1677 /* Phase 3 : payload */
1678 cfg = stm32_cryp_read(cryp, CRYP_CR);
1679 cfg &= ~CR_CRYPEN;
1680 stm32_cryp_write(cryp, CRYP_CR, cfg);
1681
1682 cfg &= ~CR_PH_MASK;
1683 cfg |= CR_PH_PAYLOAD;
1684 cfg |= CR_CRYPEN;
1685 stm32_cryp_write(cryp, CRYP_CR, cfg);
1686 } else {
1687 /* Phase 4 : tag */
1688 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1689 stm32_cryp_finish_req(cryp, 0);
1690 }
1691
1692 break;
1693 }
1694 }
1695 }
1696
1697 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1698 {
1699 struct stm32_cryp *cryp = arg;
1700 u32 ph;
1701
1702 if (cryp->irq_status & MISR_OUT)
1703 /* Output FIFO IRQ: read data */
1704 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1705 /* All bytes processed, finish */
1706 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1707 stm32_cryp_finish_req(cryp, 0);
1708 return IRQ_HANDLED;
1709 }
1710
1711 if (cryp->irq_status & MISR_IN) {
1712 if (is_gcm(cryp)) {
1713 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1714 if (unlikely(ph == CR_PH_HEADER))
1715 /* Write Header */
1716 stm32_cryp_irq_write_gcm_header(cryp);
1717 else
1718 /* Input FIFO IRQ: write data */
1719 stm32_cryp_irq_write_data(cryp);
1720 cryp->gcm_ctr++;
1721 } else if (is_ccm(cryp)) {
1722 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1723 if (unlikely(ph == CR_PH_HEADER))
1724 /* Write Header */
1725 stm32_cryp_irq_write_ccm_header(cryp);
1726 else
1727 /* Input FIFO IRQ: write data */
1728 stm32_cryp_irq_write_data(cryp);
1729 } else {
1730 /* Input FIFO IRQ: write data */
1731 stm32_cryp_irq_write_data(cryp);
1732 }
1733 }
1734
1735 return IRQ_HANDLED;
1736 }
1737
1738 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1739 {
1740 struct stm32_cryp *cryp = arg;
1741
1742 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1743
1744 return IRQ_WAKE_THREAD;
1745 }
1746
1747 static struct crypto_alg crypto_algs[] = {
1748 {
1749 .cra_name = "ecb(aes)",
1750 .cra_driver_name = "stm32-ecb-aes",
1751 .cra_priority = 200,
1752 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1753 CRYPTO_ALG_ASYNC,
1754 .cra_blocksize = AES_BLOCK_SIZE,
1755 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1756 .cra_alignmask = 0xf,
1757 .cra_type = &crypto_ablkcipher_type,
1758 .cra_module = THIS_MODULE,
1759 .cra_init = stm32_cryp_cra_init,
1760 .cra_ablkcipher = {
1761 .min_keysize = AES_MIN_KEY_SIZE,
1762 .max_keysize = AES_MAX_KEY_SIZE,
1763 .setkey = stm32_cryp_aes_setkey,
1764 .encrypt = stm32_cryp_aes_ecb_encrypt,
1765 .decrypt = stm32_cryp_aes_ecb_decrypt,
1766 }
1767 },
1768 {
1769 .cra_name = "cbc(aes)",
1770 .cra_driver_name = "stm32-cbc-aes",
1771 .cra_priority = 200,
1772 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1773 CRYPTO_ALG_ASYNC,
1774 .cra_blocksize = AES_BLOCK_SIZE,
1775 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1776 .cra_alignmask = 0xf,
1777 .cra_type = &crypto_ablkcipher_type,
1778 .cra_module = THIS_MODULE,
1779 .cra_init = stm32_cryp_cra_init,
1780 .cra_ablkcipher = {
1781 .min_keysize = AES_MIN_KEY_SIZE,
1782 .max_keysize = AES_MAX_KEY_SIZE,
1783 .ivsize = AES_BLOCK_SIZE,
1784 .setkey = stm32_cryp_aes_setkey,
1785 .encrypt = stm32_cryp_aes_cbc_encrypt,
1786 .decrypt = stm32_cryp_aes_cbc_decrypt,
1787 }
1788 },
1789 {
1790 .cra_name = "ctr(aes)",
1791 .cra_driver_name = "stm32-ctr-aes",
1792 .cra_priority = 200,
1793 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1794 CRYPTO_ALG_ASYNC,
1795 .cra_blocksize = 1,
1796 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1797 .cra_alignmask = 0xf,
1798 .cra_type = &crypto_ablkcipher_type,
1799 .cra_module = THIS_MODULE,
1800 .cra_init = stm32_cryp_cra_init,
1801 .cra_ablkcipher = {
1802 .min_keysize = AES_MIN_KEY_SIZE,
1803 .max_keysize = AES_MAX_KEY_SIZE,
1804 .ivsize = AES_BLOCK_SIZE,
1805 .setkey = stm32_cryp_aes_setkey,
1806 .encrypt = stm32_cryp_aes_ctr_encrypt,
1807 .decrypt = stm32_cryp_aes_ctr_decrypt,
1808 }
1809 },
1810 {
1811 .cra_name = "ecb(des)",
1812 .cra_driver_name = "stm32-ecb-des",
1813 .cra_priority = 200,
1814 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1815 CRYPTO_ALG_ASYNC,
1816 .cra_blocksize = DES_BLOCK_SIZE,
1817 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1818 .cra_alignmask = 0xf,
1819 .cra_type = &crypto_ablkcipher_type,
1820 .cra_module = THIS_MODULE,
1821 .cra_init = stm32_cryp_cra_init,
1822 .cra_ablkcipher = {
1823 .min_keysize = DES_BLOCK_SIZE,
1824 .max_keysize = DES_BLOCK_SIZE,
1825 .setkey = stm32_cryp_des_setkey,
1826 .encrypt = stm32_cryp_des_ecb_encrypt,
1827 .decrypt = stm32_cryp_des_ecb_decrypt,
1828 }
1829 },
1830 {
1831 .cra_name = "cbc(des)",
1832 .cra_driver_name = "stm32-cbc-des",
1833 .cra_priority = 200,
1834 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1835 CRYPTO_ALG_ASYNC,
1836 .cra_blocksize = DES_BLOCK_SIZE,
1837 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1838 .cra_alignmask = 0xf,
1839 .cra_type = &crypto_ablkcipher_type,
1840 .cra_module = THIS_MODULE,
1841 .cra_init = stm32_cryp_cra_init,
1842 .cra_ablkcipher = {
1843 .min_keysize = DES_BLOCK_SIZE,
1844 .max_keysize = DES_BLOCK_SIZE,
1845 .ivsize = DES_BLOCK_SIZE,
1846 .setkey = stm32_cryp_des_setkey,
1847 .encrypt = stm32_cryp_des_cbc_encrypt,
1848 .decrypt = stm32_cryp_des_cbc_decrypt,
1849 }
1850 },
1851 {
1852 .cra_name = "ecb(des3_ede)",
1853 .cra_driver_name = "stm32-ecb-des3",
1854 .cra_priority = 200,
1855 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1856 CRYPTO_ALG_ASYNC,
1857 .cra_blocksize = DES_BLOCK_SIZE,
1858 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1859 .cra_alignmask = 0xf,
1860 .cra_type = &crypto_ablkcipher_type,
1861 .cra_module = THIS_MODULE,
1862 .cra_init = stm32_cryp_cra_init,
1863 .cra_ablkcipher = {
1864 .min_keysize = 3 * DES_BLOCK_SIZE,
1865 .max_keysize = 3 * DES_BLOCK_SIZE,
1866 .setkey = stm32_cryp_tdes_setkey,
1867 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1868 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1869 }
1870 },
1871 {
1872 .cra_name = "cbc(des3_ede)",
1873 .cra_driver_name = "stm32-cbc-des3",
1874 .cra_priority = 200,
1875 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1876 CRYPTO_ALG_ASYNC,
1877 .cra_blocksize = DES_BLOCK_SIZE,
1878 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1879 .cra_alignmask = 0xf,
1880 .cra_type = &crypto_ablkcipher_type,
1881 .cra_module = THIS_MODULE,
1882 .cra_init = stm32_cryp_cra_init,
1883 .cra_ablkcipher = {
1884 .min_keysize = 3 * DES_BLOCK_SIZE,
1885 .max_keysize = 3 * DES_BLOCK_SIZE,
1886 .ivsize = DES_BLOCK_SIZE,
1887 .setkey = stm32_cryp_tdes_setkey,
1888 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1889 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1890 }
1891 },
1892 };
1893
1894 static struct aead_alg aead_algs[] = {
1895 {
1896 .setkey = stm32_cryp_aes_aead_setkey,
1897 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1898 .encrypt = stm32_cryp_aes_gcm_encrypt,
1899 .decrypt = stm32_cryp_aes_gcm_decrypt,
1900 .init = stm32_cryp_aes_aead_init,
1901 .ivsize = 12,
1902 .maxauthsize = AES_BLOCK_SIZE,
1903
1904 .base = {
1905 .cra_name = "gcm(aes)",
1906 .cra_driver_name = "stm32-gcm-aes",
1907 .cra_priority = 200,
1908 .cra_flags = CRYPTO_ALG_ASYNC,
1909 .cra_blocksize = 1,
1910 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1911 .cra_alignmask = 0xf,
1912 .cra_module = THIS_MODULE,
1913 },
1914 },
1915 {
1916 .setkey = stm32_cryp_aes_aead_setkey,
1917 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1918 .encrypt = stm32_cryp_aes_ccm_encrypt,
1919 .decrypt = stm32_cryp_aes_ccm_decrypt,
1920 .init = stm32_cryp_aes_aead_init,
1921 .ivsize = AES_BLOCK_SIZE,
1922 .maxauthsize = AES_BLOCK_SIZE,
1923
1924 .base = {
1925 .cra_name = "ccm(aes)",
1926 .cra_driver_name = "stm32-ccm-aes",
1927 .cra_priority = 200,
1928 .cra_flags = CRYPTO_ALG_ASYNC,
1929 .cra_blocksize = 1,
1930 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1931 .cra_alignmask = 0xf,
1932 .cra_module = THIS_MODULE,
1933 },
1934 },
1935 };
1936
1937 static const struct stm32_cryp_caps f7_data = {
1938 .swap_final = true,
1939 .padding_wa = true,
1940 };
1941
1942 static const struct stm32_cryp_caps mp1_data = {
1943 .swap_final = false,
1944 .padding_wa = false,
1945 };
1946
1947 static const struct of_device_id stm32_dt_ids[] = {
1948 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1949 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1950 {},
1951 };
1952 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1953
1954 static int stm32_cryp_probe(struct platform_device *pdev)
1955 {
1956 struct device *dev = &pdev->dev;
1957 struct stm32_cryp *cryp;
1958 struct resource *res;
1959 struct reset_control *rst;
1960 int irq, ret;
1961
1962 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1963 if (!cryp)
1964 return -ENOMEM;
1965
1966 cryp->caps = of_device_get_match_data(dev);
1967 if (!cryp->caps)
1968 return -ENODEV;
1969
1970 cryp->dev = dev;
1971
1972 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1973 cryp->regs = devm_ioremap_resource(dev, res);
1974 if (IS_ERR(cryp->regs))
1975 return PTR_ERR(cryp->regs);
1976
1977 irq = platform_get_irq(pdev, 0);
1978 if (irq < 0) {
1979 dev_err(dev, "Cannot get IRQ resource\n");
1980 return irq;
1981 }
1982
1983 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1984 stm32_cryp_irq_thread, IRQF_ONESHOT,
1985 dev_name(dev), cryp);
1986 if (ret) {
1987 dev_err(dev, "Cannot grab IRQ\n");
1988 return ret;
1989 }
1990
1991 cryp->clk = devm_clk_get(dev, NULL);
1992 if (IS_ERR(cryp->clk)) {
1993 dev_err(dev, "Could not get clock\n");
1994 return PTR_ERR(cryp->clk);
1995 }
1996
1997 ret = clk_prepare_enable(cryp->clk);
1998 if (ret) {
1999 dev_err(cryp->dev, "Failed to enable clock\n");
2000 return ret;
2001 }
2002
2003 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2004 pm_runtime_use_autosuspend(dev);
2005
2006 pm_runtime_get_noresume(dev);
2007 pm_runtime_set_active(dev);
2008 pm_runtime_enable(dev);
2009
2010 rst = devm_reset_control_get(dev, NULL);
2011 if (!IS_ERR(rst)) {
2012 reset_control_assert(rst);
2013 udelay(2);
2014 reset_control_deassert(rst);
2015 }
2016
2017 platform_set_drvdata(pdev, cryp);
2018
2019 spin_lock(&cryp_list.lock);
2020 list_add(&cryp->list, &cryp_list.dev_list);
2021 spin_unlock(&cryp_list.lock);
2022
2023 /* Initialize crypto engine */
2024 cryp->engine = crypto_engine_alloc_init(dev, 1);
2025 if (!cryp->engine) {
2026 dev_err(dev, "Could not init crypto engine\n");
2027 ret = -ENOMEM;
2028 goto err_engine1;
2029 }
2030
2031 ret = crypto_engine_start(cryp->engine);
2032 if (ret) {
2033 dev_err(dev, "Could not start crypto engine\n");
2034 goto err_engine2;
2035 }
2036
2037 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2038 if (ret) {
2039 dev_err(dev, "Could not register algs\n");
2040 goto err_algs;
2041 }
2042
2043 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2044 if (ret)
2045 goto err_aead_algs;
2046
2047 dev_info(dev, "Initialized\n");
2048
2049 pm_runtime_put_sync(dev);
2050
2051 return 0;
2052
2053 err_aead_algs:
2054 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2055 err_algs:
2056 err_engine2:
2057 crypto_engine_exit(cryp->engine);
2058 err_engine1:
2059 spin_lock(&cryp_list.lock);
2060 list_del(&cryp->list);
2061 spin_unlock(&cryp_list.lock);
2062
2063 pm_runtime_disable(dev);
2064 pm_runtime_put_noidle(dev);
2065 pm_runtime_disable(dev);
2066 pm_runtime_put_noidle(dev);
2067
2068 clk_disable_unprepare(cryp->clk);
2069
2070 return ret;
2071 }
2072
2073 static int stm32_cryp_remove(struct platform_device *pdev)
2074 {
2075 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2076 int ret;
2077
2078 if (!cryp)
2079 return -ENODEV;
2080
2081 ret = pm_runtime_get_sync(cryp->dev);
2082 if (ret < 0)
2083 return ret;
2084
2085 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2086 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2087
2088 crypto_engine_exit(cryp->engine);
2089
2090 spin_lock(&cryp_list.lock);
2091 list_del(&cryp->list);
2092 spin_unlock(&cryp_list.lock);
2093
2094 pm_runtime_disable(cryp->dev);
2095 pm_runtime_put_noidle(cryp->dev);
2096
2097 clk_disable_unprepare(cryp->clk);
2098
2099 return 0;
2100 }
2101
2102 #ifdef CONFIG_PM
2103 static int stm32_cryp_runtime_suspend(struct device *dev)
2104 {
2105 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2106
2107 clk_disable_unprepare(cryp->clk);
2108
2109 return 0;
2110 }
2111
2112 static int stm32_cryp_runtime_resume(struct device *dev)
2113 {
2114 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2115 int ret;
2116
2117 ret = clk_prepare_enable(cryp->clk);
2118 if (ret) {
2119 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2120 return ret;
2121 }
2122
2123 return 0;
2124 }
2125 #endif
2126
2127 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2128 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2129 pm_runtime_force_resume)
2130 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2131 stm32_cryp_runtime_resume, NULL)
2132 };
2133
2134 static struct platform_driver stm32_cryp_driver = {
2135 .probe = stm32_cryp_probe,
2136 .remove = stm32_cryp_remove,
2137 .driver = {
2138 .name = DRIVER_NAME,
2139 .pm = &stm32_cryp_pm_ops,
2140 .of_match_table = stm32_dt_ids,
2141 },
2142 };
2143
2144 module_platform_driver(stm32_cryp_driver);
2145
2146 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2147 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2148 MODULE_LICENSE("GPL");