]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/crypto/sunxi-ss/sun4i-ss-hash.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-eoan-kernel.git] / drivers / crypto / sunxi-ss / sun4i-ss-hash.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
4 *
5 * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
6 *
7 * This file add support for MD5 and SHA1.
8 *
9 * You could find the datasheet in Documentation/arm/sunxi/README
10 */
11 #include "sun4i-ss.h"
12 #include <linux/scatterlist.h>
13
14 /* This is a totally arbitrary value */
15 #define SS_TIMEOUT 100
16
17 int sun4i_hash_crainit(struct crypto_tfm *tfm)
18 {
19 struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
20 struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
21 struct sun4i_ss_alg_template *algt;
22
23 memset(op, 0, sizeof(struct sun4i_tfm_ctx));
24
25 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
26 op->ss = algt->ss;
27
28 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
29 sizeof(struct sun4i_req_ctx));
30 return 0;
31 }
32
33 /* sun4i_hash_init: initialize request context */
34 int sun4i_hash_init(struct ahash_request *areq)
35 {
36 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
37 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
38 struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
39 struct sun4i_ss_alg_template *algt;
40
41 memset(op, 0, sizeof(struct sun4i_req_ctx));
42
43 algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
44 op->mode = algt->mode;
45
46 return 0;
47 }
48
49 int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
50 {
51 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
52 struct md5_state *octx = out;
53 int i;
54
55 octx->byte_count = op->byte_count + op->len;
56
57 memcpy(octx->block, op->buf, op->len);
58
59 if (op->byte_count) {
60 for (i = 0; i < 4; i++)
61 octx->hash[i] = op->hash[i];
62 } else {
63 octx->hash[0] = SHA1_H0;
64 octx->hash[1] = SHA1_H1;
65 octx->hash[2] = SHA1_H2;
66 octx->hash[3] = SHA1_H3;
67 }
68
69 return 0;
70 }
71
72 int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
73 {
74 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
75 const struct md5_state *ictx = in;
76 int i;
77
78 sun4i_hash_init(areq);
79
80 op->byte_count = ictx->byte_count & ~0x3F;
81 op->len = ictx->byte_count & 0x3F;
82
83 memcpy(op->buf, ictx->block, op->len);
84
85 for (i = 0; i < 4; i++)
86 op->hash[i] = ictx->hash[i];
87
88 return 0;
89 }
90
91 int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
92 {
93 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
94 struct sha1_state *octx = out;
95 int i;
96
97 octx->count = op->byte_count + op->len;
98
99 memcpy(octx->buffer, op->buf, op->len);
100
101 if (op->byte_count) {
102 for (i = 0; i < 5; i++)
103 octx->state[i] = op->hash[i];
104 } else {
105 octx->state[0] = SHA1_H0;
106 octx->state[1] = SHA1_H1;
107 octx->state[2] = SHA1_H2;
108 octx->state[3] = SHA1_H3;
109 octx->state[4] = SHA1_H4;
110 }
111
112 return 0;
113 }
114
115 int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
116 {
117 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
118 const struct sha1_state *ictx = in;
119 int i;
120
121 sun4i_hash_init(areq);
122
123 op->byte_count = ictx->count & ~0x3F;
124 op->len = ictx->count & 0x3F;
125
126 memcpy(op->buf, ictx->buffer, op->len);
127
128 for (i = 0; i < 5; i++)
129 op->hash[i] = ictx->state[i];
130
131 return 0;
132 }
133
134 #define SS_HASH_UPDATE 1
135 #define SS_HASH_FINAL 2
136
137 /*
138 * sun4i_hash_update: update hash engine
139 *
140 * Could be used for both SHA1 and MD5
141 * Write data by step of 32bits and put then in the SS.
142 *
143 * Since we cannot leave partial data and hash state in the engine,
144 * we need to get the hash state at the end of this function.
145 * We can get the hash state every 64 bytes
146 *
147 * So the first work is to get the number of bytes to write to SS modulo 64
148 * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
149 *
150 * So at the begin of update()
151 * if op->len + areq->nbytes < 64
152 * => all data will be written to wait buffer (op->buf) and end=0
153 * if not, write all data from op->buf to the device and position end to
154 * complete to 64bytes
155 *
156 * example 1:
157 * update1 60o => op->len=60
158 * update2 60o => need one more word to have 64 bytes
159 * end=4
160 * so write all data from op->buf and one word of SGs
161 * write remaining data in op->buf
162 * final state op->len=56
163 */
164 static int sun4i_hash(struct ahash_request *areq)
165 {
166 /*
167 * i is the total bytes read from SGs, to be compared to areq->nbytes
168 * i is important because we cannot rely on SG length since the sum of
169 * SG->length could be greater than areq->nbytes
170 *
171 * end is the position when we need to stop writing to the device,
172 * to be compared to i
173 *
174 * in_i: advancement in the current SG
175 */
176 unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
177 unsigned int in_i = 0;
178 u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, wb = 0, v, ivmode = 0;
179 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
180 struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
181 struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
182 struct sun4i_ss_ctx *ss = tfmctx->ss;
183 struct scatterlist *in_sg = areq->src;
184 struct sg_mapping_iter mi;
185 int in_r, err = 0;
186 size_t copied = 0;
187
188 dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
189 __func__, crypto_tfm_alg_name(areq->base.tfm),
190 op->byte_count, areq->nbytes, op->mode,
191 op->len, op->hash[0]);
192
193 if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
194 return 0;
195
196 /* protect against overflow */
197 if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
198 dev_err(ss->dev, "Cannot process too large request\n");
199 return -EINVAL;
200 }
201
202 if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
203 /* linearize data to op->buf */
204 copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
205 op->buf + op->len, areq->nbytes, 0);
206 op->len += copied;
207 return 0;
208 }
209
210 spin_lock_bh(&ss->slock);
211
212 /*
213 * if some data have been processed before,
214 * we need to restore the partial hash state
215 */
216 if (op->byte_count) {
217 ivmode = SS_IV_ARBITRARY;
218 for (i = 0; i < 5; i++)
219 writel(op->hash[i], ss->base + SS_IV0 + i * 4);
220 }
221 /* Enable the device */
222 writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
223
224 if (!(op->flags & SS_HASH_UPDATE))
225 goto hash_final;
226
227 /* start of handling data */
228 if (!(op->flags & SS_HASH_FINAL)) {
229 end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
230
231 if (end > areq->nbytes || areq->nbytes - end > 63) {
232 dev_err(ss->dev, "ERROR: Bound error %u %u\n",
233 end, areq->nbytes);
234 err = -EINVAL;
235 goto release_ss;
236 }
237 } else {
238 /* Since we have the flag final, we can go up to modulo 4 */
239 if (areq->nbytes < 4)
240 end = 0;
241 else
242 end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
243 }
244
245 /* TODO if SGlen % 4 and !op->len then DMA */
246 i = 1;
247 while (in_sg && i == 1) {
248 if (in_sg->length % 4)
249 i = 0;
250 in_sg = sg_next(in_sg);
251 }
252 if (i == 1 && !op->len && areq->nbytes)
253 dev_dbg(ss->dev, "We can DMA\n");
254
255 i = 0;
256 sg_miter_start(&mi, areq->src, sg_nents(areq->src),
257 SG_MITER_FROM_SG | SG_MITER_ATOMIC);
258 sg_miter_next(&mi);
259 in_i = 0;
260
261 do {
262 /*
263 * we need to linearize in two case:
264 * - the buffer is already used
265 * - the SG does not have enough byte remaining ( < 4)
266 */
267 if (op->len || (mi.length - in_i) < 4) {
268 /*
269 * if we have entered here we have two reason to stop
270 * - the buffer is full
271 * - reach the end
272 */
273 while (op->len < 64 && i < end) {
274 /* how many bytes we can read from current SG */
275 in_r = min3(mi.length - in_i, end - i,
276 64 - op->len);
277 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
278 op->len += in_r;
279 i += in_r;
280 in_i += in_r;
281 if (in_i == mi.length) {
282 sg_miter_next(&mi);
283 in_i = 0;
284 }
285 }
286 if (op->len > 3 && !(op->len % 4)) {
287 /* write buf to the device */
288 writesl(ss->base + SS_RXFIFO, op->buf,
289 op->len / 4);
290 op->byte_count += op->len;
291 op->len = 0;
292 }
293 }
294 if (mi.length - in_i > 3 && i < end) {
295 /* how many bytes we can read from current SG */
296 in_r = min3(mi.length - in_i, areq->nbytes - i,
297 ((mi.length - in_i) / 4) * 4);
298 /* how many bytes we can write in the device*/
299 todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
300 writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
301 op->byte_count += todo * 4;
302 i += todo * 4;
303 in_i += todo * 4;
304 rx_cnt -= todo;
305 if (!rx_cnt) {
306 spaces = readl(ss->base + SS_FCSR);
307 rx_cnt = SS_RXFIFO_SPACES(spaces);
308 }
309 if (in_i == mi.length) {
310 sg_miter_next(&mi);
311 in_i = 0;
312 }
313 }
314 } while (i < end);
315
316 /*
317 * Now we have written to the device all that we can,
318 * store the remaining bytes in op->buf
319 */
320 if ((areq->nbytes - i) < 64) {
321 while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
322 /* how many bytes we can read from current SG */
323 in_r = min3(mi.length - in_i, areq->nbytes - i,
324 64 - op->len);
325 memcpy(op->buf + op->len, mi.addr + in_i, in_r);
326 op->len += in_r;
327 i += in_r;
328 in_i += in_r;
329 if (in_i == mi.length) {
330 sg_miter_next(&mi);
331 in_i = 0;
332 }
333 }
334 }
335
336 sg_miter_stop(&mi);
337
338 /*
339 * End of data process
340 * Now if we have the flag final go to finalize part
341 * If not, store the partial hash
342 */
343 if (op->flags & SS_HASH_FINAL)
344 goto hash_final;
345
346 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
347 i = 0;
348 do {
349 v = readl(ss->base + SS_CTL);
350 i++;
351 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
352 if (unlikely(i >= SS_TIMEOUT)) {
353 dev_err_ratelimited(ss->dev,
354 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
355 i, SS_TIMEOUT, v, areq->nbytes);
356 err = -EIO;
357 goto release_ss;
358 }
359
360 /*
361 * The datasheet isn't very clear about when to retrieve the digest. The
362 * bit SS_DATA_END is cleared when the engine has processed the data and
363 * when the digest is computed *but* it doesn't mean the digest is
364 * available in the digest registers. Hence the delay to be sure we can
365 * read it.
366 */
367 ndelay(1);
368
369 for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
370 op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
371
372 goto release_ss;
373
374 /*
375 * hash_final: finalize hashing operation
376 *
377 * If we have some remaining bytes, we write them.
378 * Then ask the SS for finalizing the hashing operation
379 *
380 * I do not check RX FIFO size in this function since the size is 32
381 * after each enabling and this function neither write more than 32 words.
382 * If we come from the update part, we cannot have more than
383 * 3 remaining bytes to write and SS is fast enough to not care about it.
384 */
385
386 hash_final:
387
388 /* write the remaining words of the wait buffer */
389 if (op->len) {
390 nwait = op->len / 4;
391 if (nwait) {
392 writesl(ss->base + SS_RXFIFO, op->buf, nwait);
393 op->byte_count += 4 * nwait;
394 }
395
396 nbw = op->len - 4 * nwait;
397 if (nbw) {
398 wb = *(u32 *)(op->buf + nwait * 4);
399 wb &= GENMASK((nbw * 8) - 1, 0);
400
401 op->byte_count += nbw;
402 }
403 }
404
405 /* write the remaining bytes of the nbw buffer */
406 wb |= ((1 << 7) << (nbw * 8));
407 bf[j++] = wb;
408
409 /*
410 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
411 * I take the operations from other MD5/SHA1 implementations
412 */
413
414 /* last block size */
415 fill = 64 - (op->byte_count % 64);
416 min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
417
418 /* if we can't fill all data, jump to the next 64 block */
419 if (fill < min_fill)
420 fill += 64;
421
422 j += (fill - min_fill) / sizeof(u32);
423
424 /* write the length of data */
425 if (op->mode == SS_OP_SHA1) {
426 __be64 bits = cpu_to_be64(op->byte_count << 3);
427 bf[j++] = lower_32_bits(bits);
428 bf[j++] = upper_32_bits(bits);
429 } else {
430 __le64 bits = op->byte_count << 3;
431 bf[j++] = lower_32_bits(bits);
432 bf[j++] = upper_32_bits(bits);
433 }
434 writesl(ss->base + SS_RXFIFO, bf, j);
435
436 /* Tell the SS to stop the hashing */
437 writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
438
439 /*
440 * Wait for SS to finish the hash.
441 * The timeout could happen only in case of bad overclocking
442 * or driver bug.
443 */
444 i = 0;
445 do {
446 v = readl(ss->base + SS_CTL);
447 i++;
448 } while (i < SS_TIMEOUT && (v & SS_DATA_END));
449 if (unlikely(i >= SS_TIMEOUT)) {
450 dev_err_ratelimited(ss->dev,
451 "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
452 i, SS_TIMEOUT, v, areq->nbytes);
453 err = -EIO;
454 goto release_ss;
455 }
456
457 /*
458 * The datasheet isn't very clear about when to retrieve the digest. The
459 * bit SS_DATA_END is cleared when the engine has processed the data and
460 * when the digest is computed *but* it doesn't mean the digest is
461 * available in the digest registers. Hence the delay to be sure we can
462 * read it.
463 */
464 ndelay(1);
465
466 /* Get the hash from the device */
467 if (op->mode == SS_OP_SHA1) {
468 for (i = 0; i < 5; i++) {
469 v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
470 memcpy(areq->result + i * 4, &v, 4);
471 }
472 } else {
473 for (i = 0; i < 4; i++) {
474 v = readl(ss->base + SS_MD0 + i * 4);
475 memcpy(areq->result + i * 4, &v, 4);
476 }
477 }
478
479 release_ss:
480 writel(0, ss->base + SS_CTL);
481 spin_unlock_bh(&ss->slock);
482 return err;
483 }
484
485 int sun4i_hash_final(struct ahash_request *areq)
486 {
487 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
488
489 op->flags = SS_HASH_FINAL;
490 return sun4i_hash(areq);
491 }
492
493 int sun4i_hash_update(struct ahash_request *areq)
494 {
495 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
496
497 op->flags = SS_HASH_UPDATE;
498 return sun4i_hash(areq);
499 }
500
501 /* sun4i_hash_finup: finalize hashing operation after an update */
502 int sun4i_hash_finup(struct ahash_request *areq)
503 {
504 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
505
506 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
507 return sun4i_hash(areq);
508 }
509
510 /* combo of init/update/final functions */
511 int sun4i_hash_digest(struct ahash_request *areq)
512 {
513 int err;
514 struct sun4i_req_ctx *op = ahash_request_ctx(areq);
515
516 err = sun4i_hash_init(areq);
517 if (err)
518 return err;
519
520 op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
521 return sun4i_hash(areq);
522 }