]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/crypto/ux500/hash/hash_core.c
Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-bionic-kernel.git] / drivers / crypto / ux500 / hash / hash_core.c
1 /*
2 * Cryptographic API.
3 * Support for Nomadik hardware crypto engine.
4
5 * Copyright (C) ST-Ericsson SA 2010
6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11 * License terms: GNU General Public License (GPL) version 2
12 */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/crypto.h>
26
27 #include <linux/regulator/consumer.h>
28 #include <linux/dmaengine.h>
29 #include <linux/bitops.h>
30
31 #include <crypto/internal/hash.h>
32 #include <crypto/sha.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35
36 #include <linux/platform_data/crypto-ux500.h>
37
38 #include "hash_alg.h"
39
40 static int hash_mode;
41 module_param(hash_mode, int, 0);
42 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
43
44 /**
45 * Pre-calculated empty message digests.
46 */
47 static const u8 zero_message_hash_sha1[SHA1_DIGEST_SIZE] = {
48 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
49 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
50 0xaf, 0xd8, 0x07, 0x09
51 };
52
53 static const u8 zero_message_hash_sha256[SHA256_DIGEST_SIZE] = {
54 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
55 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
56 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
57 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
58 };
59
60 /* HMAC-SHA1, no key */
61 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
62 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
63 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
64 0x70, 0x69, 0x0e, 0x1d
65 };
66
67 /* HMAC-SHA256, no key */
68 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
69 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
70 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
71 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
72 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
73 };
74
75 /**
76 * struct hash_driver_data - data specific to the driver.
77 *
78 * @device_list: A list of registered devices to choose from.
79 * @device_allocation: A semaphore initialized with number of devices.
80 */
81 struct hash_driver_data {
82 struct klist device_list;
83 struct semaphore device_allocation;
84 };
85
86 static struct hash_driver_data driver_data;
87
88 /* Declaration of functions */
89 /**
90 * hash_messagepad - Pads a message and write the nblw bits.
91 * @device_data: Structure for the hash device.
92 * @message: Last word of a message
93 * @index_bytes: The number of bytes in the last message
94 *
95 * This function manages the final part of the digest calculation, when less
96 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
97 *
98 */
99 static void hash_messagepad(struct hash_device_data *device_data,
100 const u32 *message, u8 index_bytes);
101
102 /**
103 * release_hash_device - Releases a previously allocated hash device.
104 * @device_data: Structure for the hash device.
105 *
106 */
107 static void release_hash_device(struct hash_device_data *device_data)
108 {
109 spin_lock(&device_data->ctx_lock);
110 device_data->current_ctx->device = NULL;
111 device_data->current_ctx = NULL;
112 spin_unlock(&device_data->ctx_lock);
113
114 /*
115 * The down_interruptible part for this semaphore is called in
116 * cryp_get_device_data.
117 */
118 up(&driver_data.device_allocation);
119 }
120
121 static void hash_dma_setup_channel(struct hash_device_data *device_data,
122 struct device *dev)
123 {
124 struct hash_platform_data *platform_data = dev->platform_data;
125 struct dma_slave_config conf = {
126 .direction = DMA_MEM_TO_DEV,
127 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
128 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
129 .dst_maxburst = 16,
130 };
131
132 dma_cap_zero(device_data->dma.mask);
133 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
134
135 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
136 device_data->dma.chan_mem2hash =
137 dma_request_channel(device_data->dma.mask,
138 platform_data->dma_filter,
139 device_data->dma.cfg_mem2hash);
140
141 dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
142
143 init_completion(&device_data->dma.complete);
144 }
145
146 static void hash_dma_callback(void *data)
147 {
148 struct hash_ctx *ctx = data;
149
150 complete(&ctx->device->dma.complete);
151 }
152
153 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
154 int len, enum dma_data_direction direction)
155 {
156 struct dma_async_tx_descriptor *desc = NULL;
157 struct dma_chan *channel = NULL;
158 dma_cookie_t cookie;
159
160 if (direction != DMA_TO_DEVICE) {
161 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
162 __func__);
163 return -EFAULT;
164 }
165
166 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
167
168 channel = ctx->device->dma.chan_mem2hash;
169 ctx->device->dma.sg = sg;
170 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
171 ctx->device->dma.sg, ctx->device->dma.nents,
172 direction);
173
174 if (!ctx->device->dma.sg_len) {
175 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
176 __func__);
177 return -EFAULT;
178 }
179
180 dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
181 __func__);
182 desc = dmaengine_prep_slave_sg(channel,
183 ctx->device->dma.sg, ctx->device->dma.sg_len,
184 direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
185 if (!desc) {
186 dev_err(ctx->device->dev,
187 "%s: device_prep_slave_sg() failed!\n", __func__);
188 return -EFAULT;
189 }
190
191 desc->callback = hash_dma_callback;
192 desc->callback_param = ctx;
193
194 cookie = dmaengine_submit(desc);
195 dma_async_issue_pending(channel);
196
197 return 0;
198 }
199
200 static void hash_dma_done(struct hash_ctx *ctx)
201 {
202 struct dma_chan *chan;
203
204 chan = ctx->device->dma.chan_mem2hash;
205 dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
206 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
207 ctx->device->dma.sg_len, DMA_TO_DEVICE);
208 }
209
210 static int hash_dma_write(struct hash_ctx *ctx,
211 struct scatterlist *sg, int len)
212 {
213 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
214 if (error) {
215 dev_dbg(ctx->device->dev,
216 "%s: hash_set_dma_transfer() failed\n", __func__);
217 return error;
218 }
219
220 return len;
221 }
222
223 /**
224 * get_empty_message_digest - Returns a pre-calculated digest for
225 * the empty message.
226 * @device_data: Structure for the hash device.
227 * @zero_hash: Buffer to return the empty message digest.
228 * @zero_hash_size: Hash size of the empty message digest.
229 * @zero_digest: True if zero_digest returned.
230 */
231 static int get_empty_message_digest(
232 struct hash_device_data *device_data,
233 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
234 {
235 int ret = 0;
236 struct hash_ctx *ctx = device_data->current_ctx;
237 *zero_digest = false;
238
239 /**
240 * Caller responsible for ctx != NULL.
241 */
242
243 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
244 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
245 memcpy(zero_hash, &zero_message_hash_sha1[0],
246 SHA1_DIGEST_SIZE);
247 *zero_hash_size = SHA1_DIGEST_SIZE;
248 *zero_digest = true;
249 } else if (HASH_ALGO_SHA256 ==
250 ctx->config.algorithm) {
251 memcpy(zero_hash, &zero_message_hash_sha256[0],
252 SHA256_DIGEST_SIZE);
253 *zero_hash_size = SHA256_DIGEST_SIZE;
254 *zero_digest = true;
255 } else {
256 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
257 __func__);
258 ret = -EINVAL;
259 goto out;
260 }
261 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
262 if (!ctx->keylen) {
263 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
264 memcpy(zero_hash, &zero_message_hmac_sha1[0],
265 SHA1_DIGEST_SIZE);
266 *zero_hash_size = SHA1_DIGEST_SIZE;
267 *zero_digest = true;
268 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
269 memcpy(zero_hash, &zero_message_hmac_sha256[0],
270 SHA256_DIGEST_SIZE);
271 *zero_hash_size = SHA256_DIGEST_SIZE;
272 *zero_digest = true;
273 } else {
274 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
275 __func__);
276 ret = -EINVAL;
277 goto out;
278 }
279 } else {
280 dev_dbg(device_data->dev,
281 "%s: Continue hash calculation, since hmac key available\n",
282 __func__);
283 }
284 }
285 out:
286
287 return ret;
288 }
289
290 /**
291 * hash_disable_power - Request to disable power and clock.
292 * @device_data: Structure for the hash device.
293 * @save_device_state: If true, saves the current hw state.
294 *
295 * This function request for disabling power (regulator) and clock,
296 * and could also save current hw state.
297 */
298 static int hash_disable_power(struct hash_device_data *device_data,
299 bool save_device_state)
300 {
301 int ret = 0;
302 struct device *dev = device_data->dev;
303
304 spin_lock(&device_data->power_state_lock);
305 if (!device_data->power_state)
306 goto out;
307
308 if (save_device_state) {
309 hash_save_state(device_data,
310 &device_data->state);
311 device_data->restore_dev_state = true;
312 }
313
314 clk_disable(device_data->clk);
315 ret = regulator_disable(device_data->regulator);
316 if (ret)
317 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
318
319 device_data->power_state = false;
320
321 out:
322 spin_unlock(&device_data->power_state_lock);
323
324 return ret;
325 }
326
327 /**
328 * hash_enable_power - Request to enable power and clock.
329 * @device_data: Structure for the hash device.
330 * @restore_device_state: If true, restores a previous saved hw state.
331 *
332 * This function request for enabling power (regulator) and clock,
333 * and could also restore a previously saved hw state.
334 */
335 static int hash_enable_power(struct hash_device_data *device_data,
336 bool restore_device_state)
337 {
338 int ret = 0;
339 struct device *dev = device_data->dev;
340
341 spin_lock(&device_data->power_state_lock);
342 if (!device_data->power_state) {
343 ret = regulator_enable(device_data->regulator);
344 if (ret) {
345 dev_err(dev, "%s: regulator_enable() failed!\n",
346 __func__);
347 goto out;
348 }
349 ret = clk_enable(device_data->clk);
350 if (ret) {
351 dev_err(dev, "%s: clk_enable() failed!\n", __func__);
352 ret = regulator_disable(
353 device_data->regulator);
354 goto out;
355 }
356 device_data->power_state = true;
357 }
358
359 if (device_data->restore_dev_state) {
360 if (restore_device_state) {
361 device_data->restore_dev_state = false;
362 hash_resume_state(device_data, &device_data->state);
363 }
364 }
365 out:
366 spin_unlock(&device_data->power_state_lock);
367
368 return ret;
369 }
370
371 /**
372 * hash_get_device_data - Checks for an available hash device and return it.
373 * @hash_ctx: Structure for the hash context.
374 * @device_data: Structure for the hash device.
375 *
376 * This function check for an available hash device and return it to
377 * the caller.
378 * Note! Caller need to release the device, calling up().
379 */
380 static int hash_get_device_data(struct hash_ctx *ctx,
381 struct hash_device_data **device_data)
382 {
383 int ret;
384 struct klist_iter device_iterator;
385 struct klist_node *device_node;
386 struct hash_device_data *local_device_data = NULL;
387
388 /* Wait until a device is available */
389 ret = down_interruptible(&driver_data.device_allocation);
390 if (ret)
391 return ret; /* Interrupted */
392
393 /* Select a device */
394 klist_iter_init(&driver_data.device_list, &device_iterator);
395 device_node = klist_next(&device_iterator);
396 while (device_node) {
397 local_device_data = container_of(device_node,
398 struct hash_device_data, list_node);
399 spin_lock(&local_device_data->ctx_lock);
400 /* current_ctx allocates a device, NULL = unallocated */
401 if (local_device_data->current_ctx) {
402 device_node = klist_next(&device_iterator);
403 } else {
404 local_device_data->current_ctx = ctx;
405 ctx->device = local_device_data;
406 spin_unlock(&local_device_data->ctx_lock);
407 break;
408 }
409 spin_unlock(&local_device_data->ctx_lock);
410 }
411 klist_iter_exit(&device_iterator);
412
413 if (!device_node) {
414 /**
415 * No free device found.
416 * Since we allocated a device with down_interruptible, this
417 * should not be able to happen.
418 * Number of available devices, which are contained in
419 * device_allocation, is therefore decremented by not doing
420 * an up(device_allocation).
421 */
422 return -EBUSY;
423 }
424
425 *device_data = local_device_data;
426
427 return 0;
428 }
429
430 /**
431 * hash_hw_write_key - Writes the key to the hardware registries.
432 *
433 * @device_data: Structure for the hash device.
434 * @key: Key to be written.
435 * @keylen: The lengt of the key.
436 *
437 * Note! This function DOES NOT write to the NBLW registry, even though
438 * specified in the the hw design spec. Either due to incorrect info in the
439 * spec or due to a bug in the hw.
440 */
441 static void hash_hw_write_key(struct hash_device_data *device_data,
442 const u8 *key, unsigned int keylen)
443 {
444 u32 word = 0;
445 int nwords = 1;
446
447 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
448
449 while (keylen >= 4) {
450 u32 *key_word = (u32 *)key;
451
452 HASH_SET_DIN(key_word, nwords);
453 keylen -= 4;
454 key += 4;
455 }
456
457 /* Take care of the remaining bytes in the last word */
458 if (keylen) {
459 word = 0;
460 while (keylen) {
461 word |= (key[keylen - 1] << (8 * (keylen - 1)));
462 keylen--;
463 }
464
465 HASH_SET_DIN(&word, nwords);
466 }
467
468 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
469 cpu_relax();
470
471 HASH_SET_DCAL;
472
473 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
474 cpu_relax();
475 }
476
477 /**
478 * init_hash_hw - Initialise the hash hardware for a new calculation.
479 * @device_data: Structure for the hash device.
480 * @ctx: The hash context.
481 *
482 * This function will enable the bits needed to clear and start a new
483 * calculation.
484 */
485 static int init_hash_hw(struct hash_device_data *device_data,
486 struct hash_ctx *ctx)
487 {
488 int ret = 0;
489
490 ret = hash_setconfiguration(device_data, &ctx->config);
491 if (ret) {
492 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
493 __func__);
494 return ret;
495 }
496
497 hash_begin(device_data, ctx);
498
499 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
500 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
501
502 return ret;
503 }
504
505 /**
506 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
507 *
508 * @sg: Scatterlist.
509 * @size: Size in bytes.
510 * @aligned: True if sg data aligned to work in DMA mode.
511 *
512 */
513 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
514 {
515 int nents = 0;
516 bool aligned_data = true;
517
518 while (size > 0 && sg) {
519 nents++;
520 size -= sg->length;
521
522 /* hash_set_dma_transfer will align last nent */
523 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
524 (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
525 aligned_data = false;
526
527 sg = sg_next(sg);
528 }
529
530 if (aligned)
531 *aligned = aligned_data;
532
533 if (size != 0)
534 return -EFAULT;
535
536 return nents;
537 }
538
539 /**
540 * hash_dma_valid_data - checks for dma valid sg data.
541 * @sg: Scatterlist.
542 * @datasize: Datasize in bytes.
543 *
544 * NOTE! This function checks for dma valid sg data, since dma
545 * only accept datasizes of even wordsize.
546 */
547 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
548 {
549 bool aligned;
550
551 /* Need to include at least one nent, else error */
552 if (hash_get_nents(sg, datasize, &aligned) < 1)
553 return false;
554
555 return aligned;
556 }
557
558 /**
559 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
560 * @req: The hash request for the job.
561 *
562 * Initialize structures.
563 */
564 static int hash_init(struct ahash_request *req)
565 {
566 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
567 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
568 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
569
570 if (!ctx->key)
571 ctx->keylen = 0;
572
573 memset(&req_ctx->state, 0, sizeof(struct hash_state));
574 req_ctx->updated = 0;
575 if (hash_mode == HASH_MODE_DMA) {
576 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
577 req_ctx->dma_mode = false; /* Don't use DMA */
578
579 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
580 __func__, HASH_DMA_ALIGN_SIZE);
581 } else {
582 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
583 hash_dma_valid_data(req->src, req->nbytes)) {
584 req_ctx->dma_mode = true;
585 } else {
586 req_ctx->dma_mode = false;
587 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
588 __func__,
589 HASH_DMA_PERFORMANCE_MIN_SIZE);
590 }
591 }
592 }
593 return 0;
594 }
595
596 /**
597 * hash_processblock - This function processes a single block of 512 bits (64
598 * bytes), word aligned, starting at message.
599 * @device_data: Structure for the hash device.
600 * @message: Block (512 bits) of message to be written to
601 * the HASH hardware.
602 *
603 */
604 static void hash_processblock(struct hash_device_data *device_data,
605 const u32 *message, int length)
606 {
607 int len = length / HASH_BYTES_PER_WORD;
608 /*
609 * NBLW bits. Reset the number of bits in last word (NBLW).
610 */
611 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
612
613 /*
614 * Write message data to the HASH_DIN register.
615 */
616 HASH_SET_DIN(message, len);
617 }
618
619 /**
620 * hash_messagepad - Pads a message and write the nblw bits.
621 * @device_data: Structure for the hash device.
622 * @message: Last word of a message.
623 * @index_bytes: The number of bytes in the last message.
624 *
625 * This function manages the final part of the digest calculation, when less
626 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
627 *
628 */
629 static void hash_messagepad(struct hash_device_data *device_data,
630 const u32 *message, u8 index_bytes)
631 {
632 int nwords = 1;
633
634 /*
635 * Clear hash str register, only clear NBLW
636 * since DCAL will be reset by hardware.
637 */
638 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
639
640 /* Main loop */
641 while (index_bytes >= 4) {
642 HASH_SET_DIN(message, nwords);
643 index_bytes -= 4;
644 message++;
645 }
646
647 if (index_bytes)
648 HASH_SET_DIN(message, nwords);
649
650 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651 cpu_relax();
652
653 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
654 HASH_SET_NBLW(index_bytes * 8);
655 dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
656 __func__, readl_relaxed(&device_data->base->din),
657 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
658 HASH_SET_DCAL;
659 dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
660 __func__, readl_relaxed(&device_data->base->din),
661 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
662
663 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
664 cpu_relax();
665 }
666
667 /**
668 * hash_incrementlength - Increments the length of the current message.
669 * @ctx: Hash context
670 * @incr: Length of message processed already
671 *
672 * Overflow cannot occur, because conditions for overflow are checked in
673 * hash_hw_update.
674 */
675 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
676 {
677 ctx->state.length.low_word += incr;
678
679 /* Check for wrap-around */
680 if (ctx->state.length.low_word < incr)
681 ctx->state.length.high_word++;
682 }
683
684 /**
685 * hash_setconfiguration - Sets the required configuration for the hash
686 * hardware.
687 * @device_data: Structure for the hash device.
688 * @config: Pointer to a configuration structure.
689 */
690 int hash_setconfiguration(struct hash_device_data *device_data,
691 struct hash_config *config)
692 {
693 int ret = 0;
694
695 if (config->algorithm != HASH_ALGO_SHA1 &&
696 config->algorithm != HASH_ALGO_SHA256)
697 return -EPERM;
698
699 /*
700 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
701 * to be written to HASH_DIN is considered as 32 bits.
702 */
703 HASH_SET_DATA_FORMAT(config->data_format);
704
705 /*
706 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
707 */
708 switch (config->algorithm) {
709 case HASH_ALGO_SHA1:
710 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
711 break;
712
713 case HASH_ALGO_SHA256:
714 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
715 break;
716
717 default:
718 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
719 __func__);
720 return -EPERM;
721 }
722
723 /*
724 * MODE bit. This bit selects between HASH or HMAC mode for the
725 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
726 */
727 if (HASH_OPER_MODE_HASH == config->oper_mode)
728 HASH_CLEAR_BITS(&device_data->base->cr,
729 HASH_CR_MODE_MASK);
730 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
731 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
732 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
733 /* Truncate key to blocksize */
734 dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
735 HASH_SET_BITS(&device_data->base->cr,
736 HASH_CR_LKEY_MASK);
737 } else {
738 dev_dbg(device_data->dev, "%s: LKEY cleared\n",
739 __func__);
740 HASH_CLEAR_BITS(&device_data->base->cr,
741 HASH_CR_LKEY_MASK);
742 }
743 } else { /* Wrong hash mode */
744 ret = -EPERM;
745 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
746 __func__);
747 }
748 return ret;
749 }
750
751 /**
752 * hash_begin - This routine resets some globals and initializes the hash
753 * hardware.
754 * @device_data: Structure for the hash device.
755 * @ctx: Hash context.
756 */
757 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
758 {
759 /* HW and SW initializations */
760 /* Note: there is no need to initialize buffer and digest members */
761
762 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
763 cpu_relax();
764
765 /*
766 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
767 * prepare the initialize the HASH accelerator to compute the message
768 * digest of a new message.
769 */
770 HASH_INITIALIZE;
771
772 /*
773 * NBLW bits. Reset the number of bits in last word (NBLW).
774 */
775 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
776 }
777
778 static int hash_process_data(struct hash_device_data *device_data,
779 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
780 int msg_length, u8 *data_buffer, u8 *buffer,
781 u8 *index)
782 {
783 int ret = 0;
784 u32 count;
785
786 do {
787 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
788 for (count = 0; count < msg_length; count++) {
789 buffer[*index + count] =
790 *(data_buffer + count);
791 }
792 *index += msg_length;
793 msg_length = 0;
794 } else {
795 if (req_ctx->updated) {
796 ret = hash_resume_state(device_data,
797 &device_data->state);
798 memmove(req_ctx->state.buffer,
799 device_data->state.buffer,
800 HASH_BLOCK_SIZE / sizeof(u32));
801 if (ret) {
802 dev_err(device_data->dev,
803 "%s: hash_resume_state() failed!\n",
804 __func__);
805 goto out;
806 }
807 } else {
808 ret = init_hash_hw(device_data, ctx);
809 if (ret) {
810 dev_err(device_data->dev,
811 "%s: init_hash_hw() failed!\n",
812 __func__);
813 goto out;
814 }
815 req_ctx->updated = 1;
816 }
817 /*
818 * If 'data_buffer' is four byte aligned and
819 * local buffer does not have any data, we can
820 * write data directly from 'data_buffer' to
821 * HW peripheral, otherwise we first copy data
822 * to a local buffer
823 */
824 if ((0 == (((u32)data_buffer) % 4)) &&
825 (0 == *index))
826 hash_processblock(device_data,
827 (const u32 *)data_buffer,
828 HASH_BLOCK_SIZE);
829 else {
830 for (count = 0;
831 count < (u32)(HASH_BLOCK_SIZE - *index);
832 count++) {
833 buffer[*index + count] =
834 *(data_buffer + count);
835 }
836 hash_processblock(device_data,
837 (const u32 *)buffer,
838 HASH_BLOCK_SIZE);
839 }
840 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
841 data_buffer += (HASH_BLOCK_SIZE - *index);
842
843 msg_length -= (HASH_BLOCK_SIZE - *index);
844 *index = 0;
845
846 ret = hash_save_state(device_data,
847 &device_data->state);
848
849 memmove(device_data->state.buffer,
850 req_ctx->state.buffer,
851 HASH_BLOCK_SIZE / sizeof(u32));
852 if (ret) {
853 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
854 __func__);
855 goto out;
856 }
857 }
858 } while (msg_length != 0);
859 out:
860
861 return ret;
862 }
863
864 /**
865 * hash_dma_final - The hash dma final function for SHA1/SHA256.
866 * @req: The hash request for the job.
867 */
868 static int hash_dma_final(struct ahash_request *req)
869 {
870 int ret = 0;
871 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
872 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
873 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
874 struct hash_device_data *device_data;
875 u8 digest[SHA256_DIGEST_SIZE];
876 int bytes_written = 0;
877
878 ret = hash_get_device_data(ctx, &device_data);
879 if (ret)
880 return ret;
881
882 dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
883
884 if (req_ctx->updated) {
885 ret = hash_resume_state(device_data, &device_data->state);
886
887 if (ret) {
888 dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
889 __func__);
890 goto out;
891 }
892 }
893
894 if (!req_ctx->updated) {
895 ret = hash_setconfiguration(device_data, &ctx->config);
896 if (ret) {
897 dev_err(device_data->dev,
898 "%s: hash_setconfiguration() failed!\n",
899 __func__);
900 goto out;
901 }
902
903 /* Enable DMA input */
904 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
905 HASH_CLEAR_BITS(&device_data->base->cr,
906 HASH_CR_DMAE_MASK);
907 } else {
908 HASH_SET_BITS(&device_data->base->cr,
909 HASH_CR_DMAE_MASK);
910 HASH_SET_BITS(&device_data->base->cr,
911 HASH_CR_PRIVN_MASK);
912 }
913
914 HASH_INITIALIZE;
915
916 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
917 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
918
919 /* Number of bits in last word = (nbytes * 8) % 32 */
920 HASH_SET_NBLW((req->nbytes * 8) % 32);
921 req_ctx->updated = 1;
922 }
923
924 /* Store the nents in the dma struct. */
925 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
926 if (!ctx->device->dma.nents) {
927 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
928 __func__);
929 ret = ctx->device->dma.nents;
930 goto out;
931 }
932
933 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
934 if (bytes_written != req->nbytes) {
935 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
936 __func__);
937 ret = bytes_written;
938 goto out;
939 }
940
941 wait_for_completion(&ctx->device->dma.complete);
942 hash_dma_done(ctx);
943
944 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
945 cpu_relax();
946
947 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
948 unsigned int keylen = ctx->keylen;
949 u8 *key = ctx->key;
950
951 dev_dbg(device_data->dev, "%s: keylen: %d\n",
952 __func__, ctx->keylen);
953 hash_hw_write_key(device_data, key, keylen);
954 }
955
956 hash_get_digest(device_data, digest, ctx->config.algorithm);
957 memcpy(req->result, digest, ctx->digestsize);
958
959 out:
960 release_hash_device(device_data);
961
962 /**
963 * Allocated in setkey, and only used in HMAC.
964 */
965 kfree(ctx->key);
966
967 return ret;
968 }
969
970 /**
971 * hash_hw_final - The final hash calculation function
972 * @req: The hash request for the job.
973 */
974 static int hash_hw_final(struct ahash_request *req)
975 {
976 int ret = 0;
977 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
978 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
979 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
980 struct hash_device_data *device_data;
981 u8 digest[SHA256_DIGEST_SIZE];
982
983 ret = hash_get_device_data(ctx, &device_data);
984 if (ret)
985 return ret;
986
987 dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
988
989 if (req_ctx->updated) {
990 ret = hash_resume_state(device_data, &device_data->state);
991
992 if (ret) {
993 dev_err(device_data->dev,
994 "%s: hash_resume_state() failed!\n", __func__);
995 goto out;
996 }
997 } else if (req->nbytes == 0 && ctx->keylen == 0) {
998 u8 zero_hash[SHA256_DIGEST_SIZE];
999 u32 zero_hash_size = 0;
1000 bool zero_digest = false;
1001 /**
1002 * Use a pre-calculated empty message digest
1003 * (workaround since hw return zeroes, hw bug!?)
1004 */
1005 ret = get_empty_message_digest(device_data, &zero_hash[0],
1006 &zero_hash_size, &zero_digest);
1007 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
1008 zero_digest) {
1009 memcpy(req->result, &zero_hash[0], ctx->digestsize);
1010 goto out;
1011 } else if (!ret && !zero_digest) {
1012 dev_dbg(device_data->dev,
1013 "%s: HMAC zero msg with key, continue...\n",
1014 __func__);
1015 } else {
1016 dev_err(device_data->dev,
1017 "%s: ret=%d, or wrong digest size? %s\n",
1018 __func__, ret,
1019 zero_hash_size == ctx->digestsize ?
1020 "true" : "false");
1021 /* Return error */
1022 goto out;
1023 }
1024 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1025 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1026 __func__);
1027 goto out;
1028 }
1029
1030 if (!req_ctx->updated) {
1031 ret = init_hash_hw(device_data, ctx);
1032 if (ret) {
1033 dev_err(device_data->dev,
1034 "%s: init_hash_hw() failed!\n", __func__);
1035 goto out;
1036 }
1037 }
1038
1039 if (req_ctx->state.index) {
1040 hash_messagepad(device_data, req_ctx->state.buffer,
1041 req_ctx->state.index);
1042 } else {
1043 HASH_SET_DCAL;
1044 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1045 cpu_relax();
1046 }
1047
1048 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1049 unsigned int keylen = ctx->keylen;
1050 u8 *key = ctx->key;
1051
1052 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1053 __func__, ctx->keylen);
1054 hash_hw_write_key(device_data, key, keylen);
1055 }
1056
1057 hash_get_digest(device_data, digest, ctx->config.algorithm);
1058 memcpy(req->result, digest, ctx->digestsize);
1059
1060 out:
1061 release_hash_device(device_data);
1062
1063 /**
1064 * Allocated in setkey, and only used in HMAC.
1065 */
1066 kfree(ctx->key);
1067
1068 return ret;
1069 }
1070
1071 /**
1072 * hash_hw_update - Updates current HASH computation hashing another part of
1073 * the message.
1074 * @req: Byte array containing the message to be hashed (caller
1075 * allocated).
1076 */
1077 int hash_hw_update(struct ahash_request *req)
1078 {
1079 int ret = 0;
1080 u8 index = 0;
1081 u8 *buffer;
1082 struct hash_device_data *device_data;
1083 u8 *data_buffer;
1084 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1085 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1086 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1087 struct crypto_hash_walk walk;
1088 int msg_length = crypto_hash_walk_first(req, &walk);
1089
1090 /* Empty message ("") is correct indata */
1091 if (msg_length == 0)
1092 return ret;
1093
1094 index = req_ctx->state.index;
1095 buffer = (u8 *)req_ctx->state.buffer;
1096
1097 /* Check if ctx->state.length + msg_length
1098 overflows */
1099 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1100 HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1101 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1102 return -EPERM;
1103 }
1104
1105 ret = hash_get_device_data(ctx, &device_data);
1106 if (ret)
1107 return ret;
1108
1109 /* Main loop */
1110 while (0 != msg_length) {
1111 data_buffer = walk.data;
1112 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1113 data_buffer, buffer, &index);
1114
1115 if (ret) {
1116 dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1117 __func__);
1118 goto out;
1119 }
1120
1121 msg_length = crypto_hash_walk_done(&walk, 0);
1122 }
1123
1124 req_ctx->state.index = index;
1125 dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1126 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1127
1128 out:
1129 release_hash_device(device_data);
1130
1131 return ret;
1132 }
1133
1134 /**
1135 * hash_resume_state - Function that resumes the state of an calculation.
1136 * @device_data: Pointer to the device structure.
1137 * @device_state: The state to be restored in the hash hardware
1138 */
1139 int hash_resume_state(struct hash_device_data *device_data,
1140 const struct hash_state *device_state)
1141 {
1142 u32 temp_cr;
1143 s32 count;
1144 int hash_mode = HASH_OPER_MODE_HASH;
1145
1146 if (NULL == device_state) {
1147 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1148 __func__);
1149 return -EPERM;
1150 }
1151
1152 /* Check correctness of index and length members */
1153 if (device_state->index > HASH_BLOCK_SIZE ||
1154 (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1155 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1156 __func__);
1157 return -EPERM;
1158 }
1159
1160 /*
1161 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1162 * prepare the initialize the HASH accelerator to compute the message
1163 * digest of a new message.
1164 */
1165 HASH_INITIALIZE;
1166
1167 temp_cr = device_state->temp_cr;
1168 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1169
1170 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1171 hash_mode = HASH_OPER_MODE_HMAC;
1172 else
1173 hash_mode = HASH_OPER_MODE_HASH;
1174
1175 for (count = 0; count < HASH_CSR_COUNT; count++) {
1176 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1177 break;
1178
1179 writel_relaxed(device_state->csr[count],
1180 &device_data->base->csrx[count]);
1181 }
1182
1183 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1184 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1185
1186 writel_relaxed(device_state->str_reg, &device_data->base->str);
1187 writel_relaxed(temp_cr, &device_data->base->cr);
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * hash_save_state - Function that saves the state of hardware.
1194 * @device_data: Pointer to the device structure.
1195 * @device_state: The strucure where the hardware state should be saved.
1196 */
1197 int hash_save_state(struct hash_device_data *device_data,
1198 struct hash_state *device_state)
1199 {
1200 u32 temp_cr;
1201 u32 count;
1202 int hash_mode = HASH_OPER_MODE_HASH;
1203
1204 if (NULL == device_state) {
1205 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1206 __func__);
1207 return -ENOTSUPP;
1208 }
1209
1210 /* Write dummy value to force digest intermediate calculation. This
1211 * actually makes sure that there isn't any ongoing calculation in the
1212 * hardware.
1213 */
1214 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1215 cpu_relax();
1216
1217 temp_cr = readl_relaxed(&device_data->base->cr);
1218
1219 device_state->str_reg = readl_relaxed(&device_data->base->str);
1220
1221 device_state->din_reg = readl_relaxed(&device_data->base->din);
1222
1223 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1224 hash_mode = HASH_OPER_MODE_HMAC;
1225 else
1226 hash_mode = HASH_OPER_MODE_HASH;
1227
1228 for (count = 0; count < HASH_CSR_COUNT; count++) {
1229 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1230 break;
1231
1232 device_state->csr[count] =
1233 readl_relaxed(&device_data->base->csrx[count]);
1234 }
1235
1236 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1237 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1238
1239 device_state->temp_cr = temp_cr;
1240
1241 return 0;
1242 }
1243
1244 /**
1245 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1246 * @device_data:
1247 *
1248 */
1249 int hash_check_hw(struct hash_device_data *device_data)
1250 {
1251 /* Checking Peripheral Ids */
1252 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1253 HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1254 HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1255 HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1256 HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1257 HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1258 HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1259 HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1260 return 0;
1261 }
1262
1263 dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1264 return -ENOTSUPP;
1265 }
1266
1267 /**
1268 * hash_get_digest - Gets the digest.
1269 * @device_data: Pointer to the device structure.
1270 * @digest: User allocated byte array for the calculated digest.
1271 * @algorithm: The algorithm in use.
1272 */
1273 void hash_get_digest(struct hash_device_data *device_data,
1274 u8 *digest, int algorithm)
1275 {
1276 u32 temp_hx_val, count;
1277 int loop_ctr;
1278
1279 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1280 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1281 __func__, algorithm);
1282 return;
1283 }
1284
1285 if (algorithm == HASH_ALGO_SHA1)
1286 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1287 else
1288 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1289
1290 dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1291 __func__, (u32) digest);
1292
1293 /* Copy result into digest array */
1294 for (count = 0; count < loop_ctr; count++) {
1295 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1296 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1297 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1298 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1299 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1300 }
1301 }
1302
1303 /**
1304 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1305 * @req: The hash request for the job.
1306 */
1307 static int ahash_update(struct ahash_request *req)
1308 {
1309 int ret = 0;
1310 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1311
1312 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1313 ret = hash_hw_update(req);
1314 /* Skip update for DMA, all data will be passed to DMA in final */
1315
1316 if (ret) {
1317 pr_err("%s: hash_hw_update() failed!\n", __func__);
1318 }
1319
1320 return ret;
1321 }
1322
1323 /**
1324 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1325 * @req: The hash request for the job.
1326 */
1327 static int ahash_final(struct ahash_request *req)
1328 {
1329 int ret = 0;
1330 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1331
1332 pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1333
1334 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1335 ret = hash_dma_final(req);
1336 else
1337 ret = hash_hw_final(req);
1338
1339 if (ret) {
1340 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1341 }
1342
1343 return ret;
1344 }
1345
1346 static int hash_setkey(struct crypto_ahash *tfm,
1347 const u8 *key, unsigned int keylen, int alg)
1348 {
1349 int ret = 0;
1350 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1351
1352 /**
1353 * Freed in final.
1354 */
1355 ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1356 if (!ctx->key) {
1357 pr_err("%s: Failed to allocate ctx->key for %d\n",
1358 __func__, alg);
1359 return -ENOMEM;
1360 }
1361 ctx->keylen = keylen;
1362
1363 return ret;
1364 }
1365
1366 static int ahash_sha1_init(struct ahash_request *req)
1367 {
1368 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1369 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1370
1371 ctx->config.data_format = HASH_DATA_8_BITS;
1372 ctx->config.algorithm = HASH_ALGO_SHA1;
1373 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1374 ctx->digestsize = SHA1_DIGEST_SIZE;
1375
1376 return hash_init(req);
1377 }
1378
1379 static int ahash_sha256_init(struct ahash_request *req)
1380 {
1381 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1382 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1383
1384 ctx->config.data_format = HASH_DATA_8_BITS;
1385 ctx->config.algorithm = HASH_ALGO_SHA256;
1386 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1387 ctx->digestsize = SHA256_DIGEST_SIZE;
1388
1389 return hash_init(req);
1390 }
1391
1392 static int ahash_sha1_digest(struct ahash_request *req)
1393 {
1394 int ret2, ret1;
1395
1396 ret1 = ahash_sha1_init(req);
1397 if (ret1)
1398 goto out;
1399
1400 ret1 = ahash_update(req);
1401 ret2 = ahash_final(req);
1402
1403 out:
1404 return ret1 ? ret1 : ret2;
1405 }
1406
1407 static int ahash_sha256_digest(struct ahash_request *req)
1408 {
1409 int ret2, ret1;
1410
1411 ret1 = ahash_sha256_init(req);
1412 if (ret1)
1413 goto out;
1414
1415 ret1 = ahash_update(req);
1416 ret2 = ahash_final(req);
1417
1418 out:
1419 return ret1 ? ret1 : ret2;
1420 }
1421
1422 static int hmac_sha1_init(struct ahash_request *req)
1423 {
1424 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1425 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1426
1427 ctx->config.data_format = HASH_DATA_8_BITS;
1428 ctx->config.algorithm = HASH_ALGO_SHA1;
1429 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1430 ctx->digestsize = SHA1_DIGEST_SIZE;
1431
1432 return hash_init(req);
1433 }
1434
1435 static int hmac_sha256_init(struct ahash_request *req)
1436 {
1437 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1438 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1439
1440 ctx->config.data_format = HASH_DATA_8_BITS;
1441 ctx->config.algorithm = HASH_ALGO_SHA256;
1442 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1443 ctx->digestsize = SHA256_DIGEST_SIZE;
1444
1445 return hash_init(req);
1446 }
1447
1448 static int hmac_sha1_digest(struct ahash_request *req)
1449 {
1450 int ret2, ret1;
1451
1452 ret1 = hmac_sha1_init(req);
1453 if (ret1)
1454 goto out;
1455
1456 ret1 = ahash_update(req);
1457 ret2 = ahash_final(req);
1458
1459 out:
1460 return ret1 ? ret1 : ret2;
1461 }
1462
1463 static int hmac_sha256_digest(struct ahash_request *req)
1464 {
1465 int ret2, ret1;
1466
1467 ret1 = hmac_sha256_init(req);
1468 if (ret1)
1469 goto out;
1470
1471 ret1 = ahash_update(req);
1472 ret2 = ahash_final(req);
1473
1474 out:
1475 return ret1 ? ret1 : ret2;
1476 }
1477
1478 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1479 const u8 *key, unsigned int keylen)
1480 {
1481 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1482 }
1483
1484 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1485 const u8 *key, unsigned int keylen)
1486 {
1487 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1488 }
1489
1490 struct hash_algo_template {
1491 struct hash_config conf;
1492 struct ahash_alg hash;
1493 };
1494
1495 static int hash_cra_init(struct crypto_tfm *tfm)
1496 {
1497 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1498 struct crypto_alg *alg = tfm->__crt_alg;
1499 struct hash_algo_template *hash_alg;
1500
1501 hash_alg = container_of(__crypto_ahash_alg(alg),
1502 struct hash_algo_template,
1503 hash);
1504
1505 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1506 sizeof(struct hash_req_ctx));
1507
1508 ctx->config.data_format = HASH_DATA_8_BITS;
1509 ctx->config.algorithm = hash_alg->conf.algorithm;
1510 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1511
1512 ctx->digestsize = hash_alg->hash.halg.digestsize;
1513
1514 return 0;
1515 }
1516
1517 static struct hash_algo_template hash_algs[] = {
1518 {
1519 .conf.algorithm = HASH_ALGO_SHA1,
1520 .conf.oper_mode = HASH_OPER_MODE_HASH,
1521 .hash = {
1522 .init = hash_init,
1523 .update = ahash_update,
1524 .final = ahash_final,
1525 .digest = ahash_sha1_digest,
1526 .halg.digestsize = SHA1_DIGEST_SIZE,
1527 .halg.statesize = sizeof(struct hash_ctx),
1528 .halg.base = {
1529 .cra_name = "sha1",
1530 .cra_driver_name = "sha1-ux500",
1531 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1532 CRYPTO_ALG_ASYNC),
1533 .cra_blocksize = SHA1_BLOCK_SIZE,
1534 .cra_ctxsize = sizeof(struct hash_ctx),
1535 .cra_init = hash_cra_init,
1536 .cra_module = THIS_MODULE,
1537 }
1538 }
1539 },
1540 {
1541 .conf.algorithm = HASH_ALGO_SHA256,
1542 .conf.oper_mode = HASH_OPER_MODE_HASH,
1543 .hash = {
1544 .init = hash_init,
1545 .update = ahash_update,
1546 .final = ahash_final,
1547 .digest = ahash_sha256_digest,
1548 .halg.digestsize = SHA256_DIGEST_SIZE,
1549 .halg.statesize = sizeof(struct hash_ctx),
1550 .halg.base = {
1551 .cra_name = "sha256",
1552 .cra_driver_name = "sha256-ux500",
1553 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1554 CRYPTO_ALG_ASYNC),
1555 .cra_blocksize = SHA256_BLOCK_SIZE,
1556 .cra_ctxsize = sizeof(struct hash_ctx),
1557 .cra_type = &crypto_ahash_type,
1558 .cra_init = hash_cra_init,
1559 .cra_module = THIS_MODULE,
1560 }
1561 }
1562 },
1563 {
1564 .conf.algorithm = HASH_ALGO_SHA1,
1565 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1566 .hash = {
1567 .init = hash_init,
1568 .update = ahash_update,
1569 .final = ahash_final,
1570 .digest = hmac_sha1_digest,
1571 .setkey = hmac_sha1_setkey,
1572 .halg.digestsize = SHA1_DIGEST_SIZE,
1573 .halg.statesize = sizeof(struct hash_ctx),
1574 .halg.base = {
1575 .cra_name = "hmac(sha1)",
1576 .cra_driver_name = "hmac-sha1-ux500",
1577 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1578 CRYPTO_ALG_ASYNC),
1579 .cra_blocksize = SHA1_BLOCK_SIZE,
1580 .cra_ctxsize = sizeof(struct hash_ctx),
1581 .cra_type = &crypto_ahash_type,
1582 .cra_init = hash_cra_init,
1583 .cra_module = THIS_MODULE,
1584 }
1585 }
1586 },
1587 {
1588 .conf.algorithm = HASH_ALGO_SHA256,
1589 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1590 .hash = {
1591 .init = hash_init,
1592 .update = ahash_update,
1593 .final = ahash_final,
1594 .digest = hmac_sha256_digest,
1595 .setkey = hmac_sha256_setkey,
1596 .halg.digestsize = SHA256_DIGEST_SIZE,
1597 .halg.statesize = sizeof(struct hash_ctx),
1598 .halg.base = {
1599 .cra_name = "hmac(sha256)",
1600 .cra_driver_name = "hmac-sha256-ux500",
1601 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1602 CRYPTO_ALG_ASYNC),
1603 .cra_blocksize = SHA256_BLOCK_SIZE,
1604 .cra_ctxsize = sizeof(struct hash_ctx),
1605 .cra_type = &crypto_ahash_type,
1606 .cra_init = hash_cra_init,
1607 .cra_module = THIS_MODULE,
1608 }
1609 }
1610 }
1611 };
1612
1613 /**
1614 * hash_algs_register_all -
1615 */
1616 static int ahash_algs_register_all(struct hash_device_data *device_data)
1617 {
1618 int ret;
1619 int i;
1620 int count;
1621
1622 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1623 ret = crypto_register_ahash(&hash_algs[i].hash);
1624 if (ret) {
1625 count = i;
1626 dev_err(device_data->dev, "%s: alg registration failed\n",
1627 hash_algs[i].hash.halg.base.cra_driver_name);
1628 goto unreg;
1629 }
1630 }
1631 return 0;
1632 unreg:
1633 for (i = 0; i < count; i++)
1634 crypto_unregister_ahash(&hash_algs[i].hash);
1635 return ret;
1636 }
1637
1638 /**
1639 * hash_algs_unregister_all -
1640 */
1641 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1642 {
1643 int i;
1644
1645 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1646 crypto_unregister_ahash(&hash_algs[i].hash);
1647 }
1648
1649 /**
1650 * ux500_hash_probe - Function that probes the hash hardware.
1651 * @pdev: The platform device.
1652 */
1653 static int ux500_hash_probe(struct platform_device *pdev)
1654 {
1655 int ret = 0;
1656 struct resource *res = NULL;
1657 struct hash_device_data *device_data;
1658 struct device *dev = &pdev->dev;
1659
1660 device_data = kzalloc(sizeof(*device_data), GFP_ATOMIC);
1661 if (!device_data) {
1662 ret = -ENOMEM;
1663 goto out;
1664 }
1665
1666 device_data->dev = dev;
1667 device_data->current_ctx = NULL;
1668
1669 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1670 if (!res) {
1671 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1672 ret = -ENODEV;
1673 goto out_kfree;
1674 }
1675
1676 res = request_mem_region(res->start, resource_size(res), pdev->name);
1677 if (res == NULL) {
1678 dev_dbg(dev, "%s: request_mem_region() failed!\n", __func__);
1679 ret = -EBUSY;
1680 goto out_kfree;
1681 }
1682
1683 device_data->phybase = res->start;
1684 device_data->base = ioremap(res->start, resource_size(res));
1685 if (!device_data->base) {
1686 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1687 ret = -ENOMEM;
1688 goto out_free_mem;
1689 }
1690 spin_lock_init(&device_data->ctx_lock);
1691 spin_lock_init(&device_data->power_state_lock);
1692
1693 /* Enable power for HASH1 hardware block */
1694 device_data->regulator = regulator_get(dev, "v-ape");
1695 if (IS_ERR(device_data->regulator)) {
1696 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1697 ret = PTR_ERR(device_data->regulator);
1698 device_data->regulator = NULL;
1699 goto out_unmap;
1700 }
1701
1702 /* Enable the clock for HASH1 hardware block */
1703 device_data->clk = clk_get(dev, NULL);
1704 if (IS_ERR(device_data->clk)) {
1705 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1706 ret = PTR_ERR(device_data->clk);
1707 goto out_regulator;
1708 }
1709
1710 ret = clk_prepare(device_data->clk);
1711 if (ret) {
1712 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1713 goto out_clk;
1714 }
1715
1716 /* Enable device power (and clock) */
1717 ret = hash_enable_power(device_data, false);
1718 if (ret) {
1719 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1720 goto out_clk_unprepare;
1721 }
1722
1723 ret = hash_check_hw(device_data);
1724 if (ret) {
1725 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1726 goto out_power;
1727 }
1728
1729 if (hash_mode == HASH_MODE_DMA)
1730 hash_dma_setup_channel(device_data, dev);
1731
1732 platform_set_drvdata(pdev, device_data);
1733
1734 /* Put the new device into the device list... */
1735 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1736 /* ... and signal that a new device is available. */
1737 up(&driver_data.device_allocation);
1738
1739 ret = ahash_algs_register_all(device_data);
1740 if (ret) {
1741 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1742 __func__);
1743 goto out_power;
1744 }
1745
1746 dev_info(dev, "successfully registered\n");
1747 return 0;
1748
1749 out_power:
1750 hash_disable_power(device_data, false);
1751
1752 out_clk_unprepare:
1753 clk_unprepare(device_data->clk);
1754
1755 out_clk:
1756 clk_put(device_data->clk);
1757
1758 out_regulator:
1759 regulator_put(device_data->regulator);
1760
1761 out_unmap:
1762 iounmap(device_data->base);
1763
1764 out_free_mem:
1765 release_mem_region(res->start, resource_size(res));
1766
1767 out_kfree:
1768 kfree(device_data);
1769 out:
1770 return ret;
1771 }
1772
1773 /**
1774 * ux500_hash_remove - Function that removes the hash device from the platform.
1775 * @pdev: The platform device.
1776 */
1777 static int ux500_hash_remove(struct platform_device *pdev)
1778 {
1779 struct resource *res;
1780 struct hash_device_data *device_data;
1781 struct device *dev = &pdev->dev;
1782
1783 device_data = platform_get_drvdata(pdev);
1784 if (!device_data) {
1785 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1786 return -ENOMEM;
1787 }
1788
1789 /* Try to decrease the number of available devices. */
1790 if (down_trylock(&driver_data.device_allocation))
1791 return -EBUSY;
1792
1793 /* Check that the device is free */
1794 spin_lock(&device_data->ctx_lock);
1795 /* current_ctx allocates a device, NULL = unallocated */
1796 if (device_data->current_ctx) {
1797 /* The device is busy */
1798 spin_unlock(&device_data->ctx_lock);
1799 /* Return the device to the pool. */
1800 up(&driver_data.device_allocation);
1801 return -EBUSY;
1802 }
1803
1804 spin_unlock(&device_data->ctx_lock);
1805
1806 /* Remove the device from the list */
1807 if (klist_node_attached(&device_data->list_node))
1808 klist_remove(&device_data->list_node);
1809
1810 /* If this was the last device, remove the services */
1811 if (list_empty(&driver_data.device_list.k_list))
1812 ahash_algs_unregister_all(device_data);
1813
1814 if (hash_disable_power(device_data, false))
1815 dev_err(dev, "%s: hash_disable_power() failed\n",
1816 __func__);
1817
1818 clk_unprepare(device_data->clk);
1819 clk_put(device_data->clk);
1820 regulator_put(device_data->regulator);
1821
1822 iounmap(device_data->base);
1823
1824 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1825 if (res)
1826 release_mem_region(res->start, resource_size(res));
1827
1828 kfree(device_data);
1829
1830 return 0;
1831 }
1832
1833 /**
1834 * ux500_hash_shutdown - Function that shutdown the hash device.
1835 * @pdev: The platform device
1836 */
1837 static void ux500_hash_shutdown(struct platform_device *pdev)
1838 {
1839 struct resource *res = NULL;
1840 struct hash_device_data *device_data;
1841
1842 device_data = platform_get_drvdata(pdev);
1843 if (!device_data) {
1844 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1845 __func__);
1846 return;
1847 }
1848
1849 /* Check that the device is free */
1850 spin_lock(&device_data->ctx_lock);
1851 /* current_ctx allocates a device, NULL = unallocated */
1852 if (!device_data->current_ctx) {
1853 if (down_trylock(&driver_data.device_allocation))
1854 dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1855 __func__);
1856 /**
1857 * (Allocate the device)
1858 * Need to set this to non-null (dummy) value,
1859 * to avoid usage if context switching.
1860 */
1861 device_data->current_ctx++;
1862 }
1863 spin_unlock(&device_data->ctx_lock);
1864
1865 /* Remove the device from the list */
1866 if (klist_node_attached(&device_data->list_node))
1867 klist_remove(&device_data->list_node);
1868
1869 /* If this was the last device, remove the services */
1870 if (list_empty(&driver_data.device_list.k_list))
1871 ahash_algs_unregister_all(device_data);
1872
1873 iounmap(device_data->base);
1874
1875 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1876 if (res)
1877 release_mem_region(res->start, resource_size(res));
1878
1879 if (hash_disable_power(device_data, false))
1880 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1881 __func__);
1882 }
1883
1884 /**
1885 * ux500_hash_suspend - Function that suspends the hash device.
1886 * @dev: Device to suspend.
1887 */
1888 static int ux500_hash_suspend(struct device *dev)
1889 {
1890 int ret;
1891 struct hash_device_data *device_data;
1892 struct hash_ctx *temp_ctx = NULL;
1893
1894 device_data = dev_get_drvdata(dev);
1895 if (!device_data) {
1896 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1897 return -ENOMEM;
1898 }
1899
1900 spin_lock(&device_data->ctx_lock);
1901 if (!device_data->current_ctx)
1902 device_data->current_ctx++;
1903 spin_unlock(&device_data->ctx_lock);
1904
1905 if (device_data->current_ctx == ++temp_ctx) {
1906 if (down_interruptible(&driver_data.device_allocation))
1907 dev_dbg(dev, "%s: down_interruptible() failed\n",
1908 __func__);
1909 ret = hash_disable_power(device_data, false);
1910
1911 } else {
1912 ret = hash_disable_power(device_data, true);
1913 }
1914
1915 if (ret)
1916 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1917
1918 return ret;
1919 }
1920
1921 /**
1922 * ux500_hash_resume - Function that resume the hash device.
1923 * @dev: Device to resume.
1924 */
1925 static int ux500_hash_resume(struct device *dev)
1926 {
1927 int ret = 0;
1928 struct hash_device_data *device_data;
1929 struct hash_ctx *temp_ctx = NULL;
1930
1931 device_data = dev_get_drvdata(dev);
1932 if (!device_data) {
1933 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1934 return -ENOMEM;
1935 }
1936
1937 spin_lock(&device_data->ctx_lock);
1938 if (device_data->current_ctx == ++temp_ctx)
1939 device_data->current_ctx = NULL;
1940 spin_unlock(&device_data->ctx_lock);
1941
1942 if (!device_data->current_ctx)
1943 up(&driver_data.device_allocation);
1944 else
1945 ret = hash_enable_power(device_data, true);
1946
1947 if (ret)
1948 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1949
1950 return ret;
1951 }
1952
1953 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1954
1955 static const struct of_device_id ux500_hash_match[] = {
1956 { .compatible = "stericsson,ux500-hash" },
1957 { },
1958 };
1959
1960 static struct platform_driver hash_driver = {
1961 .probe = ux500_hash_probe,
1962 .remove = ux500_hash_remove,
1963 .shutdown = ux500_hash_shutdown,
1964 .driver = {
1965 .owner = THIS_MODULE,
1966 .name = "hash1",
1967 .of_match_table = ux500_hash_match,
1968 .pm = &ux500_hash_pm,
1969 }
1970 };
1971
1972 /**
1973 * ux500_hash_mod_init - The kernel module init function.
1974 */
1975 static int __init ux500_hash_mod_init(void)
1976 {
1977 klist_init(&driver_data.device_list, NULL, NULL);
1978 /* Initialize the semaphore to 0 devices (locked state) */
1979 sema_init(&driver_data.device_allocation, 0);
1980
1981 return platform_driver_register(&hash_driver);
1982 }
1983
1984 /**
1985 * ux500_hash_mod_fini - The kernel module exit function.
1986 */
1987 static void __exit ux500_hash_mod_fini(void)
1988 {
1989 platform_driver_unregister(&hash_driver);
1990 }
1991
1992 module_init(ux500_hash_mod_init);
1993 module_exit(ux500_hash_mod_fini);
1994
1995 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1996 MODULE_LICENSE("GPL");
1997
1998 MODULE_ALIAS("sha1-all");
1999 MODULE_ALIAS("sha256-all");
2000 MODULE_ALIAS("hmac-sha1-all");
2001 MODULE_ALIAS("hmac-sha256-all");