]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/dma/amba-pl08x.c
dmaengine: PL08x: Add support for different maximum transfer size
[mirror_ubuntu-focal-kernel.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
28 *
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
30 * channel.
31 *
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
37 *
38 * The PL080 has a dual bus master, PL081 has a single master.
39 *
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
47 *
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
50 * Until no data left
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
53 * Clear burst request
54 * Raise terminal count interrupt
55 *
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
59 *
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
62 *
63 * ASSUMES default (little) endianness for DMA transfers
64 *
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
71 * are ignored.
72 *
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
77 */
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/module.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
93
94 #include "dmaengine.h"
95 #include "virt-dma.h"
96
97 #define DRIVER_NAME "pl08xdmac"
98
99 static struct amba_driver pl08x_amba_driver;
100 struct pl08x_driver_data;
101
102 /**
103 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
104 * @channels: the number of channels available in this variant
105 * @dualmaster: whether this version supports dual AHB masters or not.
106 * @nomadik: whether the channels have Nomadik security extension bits
107 * that need to be checked for permission before use and some registers are
108 * missing
109 * @pl080s: whether this version is a PL080S, which has separate register and
110 * LLI word for transfer size.
111 */
112 struct vendor_data {
113 u8 config_offset;
114 u8 channels;
115 bool dualmaster;
116 bool nomadik;
117 bool pl080s;
118 u32 max_transfer_size;
119 };
120
121 /**
122 * struct pl08x_bus_data - information of source or destination
123 * busses for a transfer
124 * @addr: current address
125 * @maxwidth: the maximum width of a transfer on this bus
126 * @buswidth: the width of this bus in bytes: 1, 2 or 4
127 */
128 struct pl08x_bus_data {
129 dma_addr_t addr;
130 u8 maxwidth;
131 u8 buswidth;
132 };
133
134 /**
135 * struct pl08x_phy_chan - holder for the physical channels
136 * @id: physical index to this channel
137 * @lock: a lock to use when altering an instance of this struct
138 * @serving: the virtual channel currently being served by this physical
139 * channel
140 * @locked: channel unavailable for the system, e.g. dedicated to secure
141 * world
142 */
143 struct pl08x_phy_chan {
144 unsigned int id;
145 void __iomem *base;
146 void __iomem *reg_config;
147 spinlock_t lock;
148 struct pl08x_dma_chan *serving;
149 bool locked;
150 };
151
152 /**
153 * struct pl08x_sg - structure containing data per sg
154 * @src_addr: src address of sg
155 * @dst_addr: dst address of sg
156 * @len: transfer len in bytes
157 * @node: node for txd's dsg_list
158 */
159 struct pl08x_sg {
160 dma_addr_t src_addr;
161 dma_addr_t dst_addr;
162 size_t len;
163 struct list_head node;
164 };
165
166 /**
167 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
168 * @vd: virtual DMA descriptor
169 * @dsg_list: list of children sg's
170 * @llis_bus: DMA memory address (physical) start for the LLIs
171 * @llis_va: virtual memory address start for the LLIs
172 * @cctl: control reg values for current txd
173 * @ccfg: config reg values for current txd
174 * @done: this marks completed descriptors, which should not have their
175 * mux released.
176 */
177 struct pl08x_txd {
178 struct virt_dma_desc vd;
179 struct list_head dsg_list;
180 dma_addr_t llis_bus;
181 u32 *llis_va;
182 /* Default cctl value for LLIs */
183 u32 cctl;
184 /*
185 * Settings to be put into the physical channel when we
186 * trigger this txd. Other registers are in llis_va[0].
187 */
188 u32 ccfg;
189 bool done;
190 };
191
192 /**
193 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
194 * states
195 * @PL08X_CHAN_IDLE: the channel is idle
196 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
197 * channel and is running a transfer on it
198 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
199 * channel, but the transfer is currently paused
200 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
201 * channel to become available (only pertains to memcpy channels)
202 */
203 enum pl08x_dma_chan_state {
204 PL08X_CHAN_IDLE,
205 PL08X_CHAN_RUNNING,
206 PL08X_CHAN_PAUSED,
207 PL08X_CHAN_WAITING,
208 };
209
210 /**
211 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
212 * @vc: wrappped virtual channel
213 * @phychan: the physical channel utilized by this channel, if there is one
214 * @name: name of channel
215 * @cd: channel platform data
216 * @runtime_addr: address for RX/TX according to the runtime config
217 * @at: active transaction on this channel
218 * @lock: a lock for this channel data
219 * @host: a pointer to the host (internal use)
220 * @state: whether the channel is idle, paused, running etc
221 * @slave: whether this channel is a device (slave) or for memcpy
222 * @signal: the physical DMA request signal which this channel is using
223 * @mux_use: count of descriptors using this DMA request signal setting
224 */
225 struct pl08x_dma_chan {
226 struct virt_dma_chan vc;
227 struct pl08x_phy_chan *phychan;
228 const char *name;
229 const struct pl08x_channel_data *cd;
230 struct dma_slave_config cfg;
231 struct pl08x_txd *at;
232 struct pl08x_driver_data *host;
233 enum pl08x_dma_chan_state state;
234 bool slave;
235 int signal;
236 unsigned mux_use;
237 };
238
239 /**
240 * struct pl08x_driver_data - the local state holder for the PL08x
241 * @slave: slave engine for this instance
242 * @memcpy: memcpy engine for this instance
243 * @base: virtual memory base (remapped) for the PL08x
244 * @adev: the corresponding AMBA (PrimeCell) bus entry
245 * @vd: vendor data for this PL08x variant
246 * @pd: platform data passed in from the platform/machine
247 * @phy_chans: array of data for the physical channels
248 * @pool: a pool for the LLI descriptors
249 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
250 * fetches
251 * @mem_buses: set to indicate memory transfers on AHB2.
252 * @lock: a spinlock for this struct
253 */
254 struct pl08x_driver_data {
255 struct dma_device slave;
256 struct dma_device memcpy;
257 void __iomem *base;
258 struct amba_device *adev;
259 const struct vendor_data *vd;
260 struct pl08x_platform_data *pd;
261 struct pl08x_phy_chan *phy_chans;
262 struct dma_pool *pool;
263 u8 lli_buses;
264 u8 mem_buses;
265 u8 lli_words;
266 };
267
268 /*
269 * PL08X specific defines
270 */
271
272 /* The order of words in an LLI. */
273 #define PL080_LLI_SRC 0
274 #define PL080_LLI_DST 1
275 #define PL080_LLI_LLI 2
276 #define PL080_LLI_CCTL 3
277 #define PL080S_LLI_CCTL2 4
278
279 /* Total words in an LLI. */
280 #define PL080_LLI_WORDS 4
281 #define PL080S_LLI_WORDS 8
282
283 /*
284 * Number of LLIs in each LLI buffer allocated for one transfer
285 * (maximum times we call dma_pool_alloc on this pool without freeing)
286 */
287 #define MAX_NUM_TSFR_LLIS 512
288 #define PL08X_ALIGN 8
289
290 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
291 {
292 return container_of(chan, struct pl08x_dma_chan, vc.chan);
293 }
294
295 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
296 {
297 return container_of(tx, struct pl08x_txd, vd.tx);
298 }
299
300 /*
301 * Mux handling.
302 *
303 * This gives us the DMA request input to the PL08x primecell which the
304 * peripheral described by the channel data will be routed to, possibly
305 * via a board/SoC specific external MUX. One important point to note
306 * here is that this does not depend on the physical channel.
307 */
308 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
309 {
310 const struct pl08x_platform_data *pd = plchan->host->pd;
311 int ret;
312
313 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
314 ret = pd->get_xfer_signal(plchan->cd);
315 if (ret < 0) {
316 plchan->mux_use = 0;
317 return ret;
318 }
319
320 plchan->signal = ret;
321 }
322 return 0;
323 }
324
325 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
326 {
327 const struct pl08x_platform_data *pd = plchan->host->pd;
328
329 if (plchan->signal >= 0) {
330 WARN_ON(plchan->mux_use == 0);
331
332 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
333 pd->put_xfer_signal(plchan->cd, plchan->signal);
334 plchan->signal = -1;
335 }
336 }
337 }
338
339 /*
340 * Physical channel handling
341 */
342
343 /* Whether a certain channel is busy or not */
344 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
345 {
346 unsigned int val;
347
348 val = readl(ch->reg_config);
349 return val & PL080_CONFIG_ACTIVE;
350 }
351
352 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
353 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
354 {
355 if (pl08x->vd->pl080s)
356 dev_vdbg(&pl08x->adev->dev,
357 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
358 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
359 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
360 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
361 lli[PL080S_LLI_CCTL2], ccfg);
362 else
363 dev_vdbg(&pl08x->adev->dev,
364 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
365 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
366 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
367 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
368
369 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
370 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
371 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
372 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
373
374 if (pl08x->vd->pl080s)
375 writel_relaxed(lli[PL080S_LLI_CCTL2],
376 phychan->base + PL080S_CH_CONTROL2);
377
378 writel(ccfg, phychan->reg_config);
379 }
380
381 /*
382 * Set the initial DMA register values i.e. those for the first LLI
383 * The next LLI pointer and the configuration interrupt bit have
384 * been set when the LLIs were constructed. Poke them into the hardware
385 * and start the transfer.
386 */
387 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
388 {
389 struct pl08x_driver_data *pl08x = plchan->host;
390 struct pl08x_phy_chan *phychan = plchan->phychan;
391 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
392 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
393 u32 val;
394
395 list_del(&txd->vd.node);
396
397 plchan->at = txd;
398
399 /* Wait for channel inactive */
400 while (pl08x_phy_channel_busy(phychan))
401 cpu_relax();
402
403 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
404
405 /* Enable the DMA channel */
406 /* Do not access config register until channel shows as disabled */
407 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
408 cpu_relax();
409
410 /* Do not access config register until channel shows as inactive */
411 val = readl(phychan->reg_config);
412 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
413 val = readl(phychan->reg_config);
414
415 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
416 }
417
418 /*
419 * Pause the channel by setting the HALT bit.
420 *
421 * For M->P transfers, pause the DMAC first and then stop the peripheral -
422 * the FIFO can only drain if the peripheral is still requesting data.
423 * (note: this can still timeout if the DMAC FIFO never drains of data.)
424 *
425 * For P->M transfers, disable the peripheral first to stop it filling
426 * the DMAC FIFO, and then pause the DMAC.
427 */
428 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
429 {
430 u32 val;
431 int timeout;
432
433 /* Set the HALT bit and wait for the FIFO to drain */
434 val = readl(ch->reg_config);
435 val |= PL080_CONFIG_HALT;
436 writel(val, ch->reg_config);
437
438 /* Wait for channel inactive */
439 for (timeout = 1000; timeout; timeout--) {
440 if (!pl08x_phy_channel_busy(ch))
441 break;
442 udelay(1);
443 }
444 if (pl08x_phy_channel_busy(ch))
445 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
446 }
447
448 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
449 {
450 u32 val;
451
452 /* Clear the HALT bit */
453 val = readl(ch->reg_config);
454 val &= ~PL080_CONFIG_HALT;
455 writel(val, ch->reg_config);
456 }
457
458 /*
459 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
460 * clears any pending interrupt status. This should not be used for
461 * an on-going transfer, but as a method of shutting down a channel
462 * (eg, when it's no longer used) or terminating a transfer.
463 */
464 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
465 struct pl08x_phy_chan *ch)
466 {
467 u32 val = readl(ch->reg_config);
468
469 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
470 PL080_CONFIG_TC_IRQ_MASK);
471
472 writel(val, ch->reg_config);
473
474 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
475 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
476 }
477
478 static inline u32 get_bytes_in_cctl(u32 cctl)
479 {
480 /* The source width defines the number of bytes */
481 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
482
483 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
484 case PL080_WIDTH_8BIT:
485 break;
486 case PL080_WIDTH_16BIT:
487 bytes *= 2;
488 break;
489 case PL080_WIDTH_32BIT:
490 bytes *= 4;
491 break;
492 }
493 return bytes;
494 }
495
496 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
497 {
498 /* The source width defines the number of bytes */
499 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
500
501 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
502 case PL080_WIDTH_8BIT:
503 break;
504 case PL080_WIDTH_16BIT:
505 bytes *= 2;
506 break;
507 case PL080_WIDTH_32BIT:
508 bytes *= 4;
509 break;
510 }
511 return bytes;
512 }
513
514 /* The channel should be paused when calling this */
515 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
516 {
517 struct pl08x_driver_data *pl08x = plchan->host;
518 const u32 *llis_va, *llis_va_limit;
519 struct pl08x_phy_chan *ch;
520 dma_addr_t llis_bus;
521 struct pl08x_txd *txd;
522 u32 llis_max_words;
523 size_t bytes;
524 u32 clli;
525
526 ch = plchan->phychan;
527 txd = plchan->at;
528
529 if (!ch || !txd)
530 return 0;
531
532 /*
533 * Follow the LLIs to get the number of remaining
534 * bytes in the currently active transaction.
535 */
536 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
537
538 /* First get the remaining bytes in the active transfer */
539 if (pl08x->vd->pl080s)
540 bytes = get_bytes_in_cctl_pl080s(
541 readl(ch->base + PL080_CH_CONTROL),
542 readl(ch->base + PL080S_CH_CONTROL2));
543 else
544 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
545
546 if (!clli)
547 return bytes;
548
549 llis_va = txd->llis_va;
550 llis_bus = txd->llis_bus;
551
552 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
553 BUG_ON(clli < llis_bus || clli >= llis_bus +
554 sizeof(u32) * llis_max_words);
555
556 /*
557 * Locate the next LLI - as this is an array,
558 * it's simple maths to find.
559 */
560 llis_va += (clli - llis_bus) / sizeof(u32);
561
562 llis_va_limit = llis_va + llis_max_words;
563
564 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
565 if (pl08x->vd->pl080s)
566 bytes += get_bytes_in_cctl_pl080s(
567 llis_va[PL080_LLI_CCTL],
568 llis_va[PL080S_LLI_CCTL2]);
569 else
570 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
571
572 /*
573 * A LLI pointer of 0 terminates the LLI list
574 */
575 if (!llis_va[PL080_LLI_LLI])
576 break;
577 }
578
579 return bytes;
580 }
581
582 /*
583 * Allocate a physical channel for a virtual channel
584 *
585 * Try to locate a physical channel to be used for this transfer. If all
586 * are taken return NULL and the requester will have to cope by using
587 * some fallback PIO mode or retrying later.
588 */
589 static struct pl08x_phy_chan *
590 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
591 struct pl08x_dma_chan *virt_chan)
592 {
593 struct pl08x_phy_chan *ch = NULL;
594 unsigned long flags;
595 int i;
596
597 for (i = 0; i < pl08x->vd->channels; i++) {
598 ch = &pl08x->phy_chans[i];
599
600 spin_lock_irqsave(&ch->lock, flags);
601
602 if (!ch->locked && !ch->serving) {
603 ch->serving = virt_chan;
604 spin_unlock_irqrestore(&ch->lock, flags);
605 break;
606 }
607
608 spin_unlock_irqrestore(&ch->lock, flags);
609 }
610
611 if (i == pl08x->vd->channels) {
612 /* No physical channel available, cope with it */
613 return NULL;
614 }
615
616 return ch;
617 }
618
619 /* Mark the physical channel as free. Note, this write is atomic. */
620 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
621 struct pl08x_phy_chan *ch)
622 {
623 ch->serving = NULL;
624 }
625
626 /*
627 * Try to allocate a physical channel. When successful, assign it to
628 * this virtual channel, and initiate the next descriptor. The
629 * virtual channel lock must be held at this point.
630 */
631 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
632 {
633 struct pl08x_driver_data *pl08x = plchan->host;
634 struct pl08x_phy_chan *ch;
635
636 ch = pl08x_get_phy_channel(pl08x, plchan);
637 if (!ch) {
638 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
639 plchan->state = PL08X_CHAN_WAITING;
640 return;
641 }
642
643 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
644 ch->id, plchan->name);
645
646 plchan->phychan = ch;
647 plchan->state = PL08X_CHAN_RUNNING;
648 pl08x_start_next_txd(plchan);
649 }
650
651 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
652 struct pl08x_dma_chan *plchan)
653 {
654 struct pl08x_driver_data *pl08x = plchan->host;
655
656 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
657 ch->id, plchan->name);
658
659 /*
660 * We do this without taking the lock; we're really only concerned
661 * about whether this pointer is NULL or not, and we're guaranteed
662 * that this will only be called when it _already_ is non-NULL.
663 */
664 ch->serving = plchan;
665 plchan->phychan = ch;
666 plchan->state = PL08X_CHAN_RUNNING;
667 pl08x_start_next_txd(plchan);
668 }
669
670 /*
671 * Free a physical DMA channel, potentially reallocating it to another
672 * virtual channel if we have any pending.
673 */
674 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
675 {
676 struct pl08x_driver_data *pl08x = plchan->host;
677 struct pl08x_dma_chan *p, *next;
678
679 retry:
680 next = NULL;
681
682 /* Find a waiting virtual channel for the next transfer. */
683 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
684 if (p->state == PL08X_CHAN_WAITING) {
685 next = p;
686 break;
687 }
688
689 if (!next) {
690 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
691 if (p->state == PL08X_CHAN_WAITING) {
692 next = p;
693 break;
694 }
695 }
696
697 /* Ensure that the physical channel is stopped */
698 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
699
700 if (next) {
701 bool success;
702
703 /*
704 * Eww. We know this isn't going to deadlock
705 * but lockdep probably doesn't.
706 */
707 spin_lock(&next->vc.lock);
708 /* Re-check the state now that we have the lock */
709 success = next->state == PL08X_CHAN_WAITING;
710 if (success)
711 pl08x_phy_reassign_start(plchan->phychan, next);
712 spin_unlock(&next->vc.lock);
713
714 /* If the state changed, try to find another channel */
715 if (!success)
716 goto retry;
717 } else {
718 /* No more jobs, so free up the physical channel */
719 pl08x_put_phy_channel(pl08x, plchan->phychan);
720 }
721
722 plchan->phychan = NULL;
723 plchan->state = PL08X_CHAN_IDLE;
724 }
725
726 /*
727 * LLI handling
728 */
729
730 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
731 {
732 switch (coded) {
733 case PL080_WIDTH_8BIT:
734 return 1;
735 case PL080_WIDTH_16BIT:
736 return 2;
737 case PL080_WIDTH_32BIT:
738 return 4;
739 default:
740 break;
741 }
742 BUG();
743 return 0;
744 }
745
746 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
747 size_t tsize)
748 {
749 u32 retbits = cctl;
750
751 /* Remove all src, dst and transfer size bits */
752 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
753 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
754 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
755
756 /* Then set the bits according to the parameters */
757 switch (srcwidth) {
758 case 1:
759 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
760 break;
761 case 2:
762 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
763 break;
764 case 4:
765 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
766 break;
767 default:
768 BUG();
769 break;
770 }
771
772 switch (dstwidth) {
773 case 1:
774 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
775 break;
776 case 2:
777 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
778 break;
779 case 4:
780 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
781 break;
782 default:
783 BUG();
784 break;
785 }
786
787 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
788 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
789 return retbits;
790 }
791
792 struct pl08x_lli_build_data {
793 struct pl08x_txd *txd;
794 struct pl08x_bus_data srcbus;
795 struct pl08x_bus_data dstbus;
796 size_t remainder;
797 u32 lli_bus;
798 };
799
800 /*
801 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
802 * victim in case src & dest are not similarly aligned. i.e. If after aligning
803 * masters address with width requirements of transfer (by sending few byte by
804 * byte data), slave is still not aligned, then its width will be reduced to
805 * BYTE.
806 * - prefers the destination bus if both available
807 * - prefers bus with fixed address (i.e. peripheral)
808 */
809 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
810 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
811 {
812 if (!(cctl & PL080_CONTROL_DST_INCR)) {
813 *mbus = &bd->dstbus;
814 *sbus = &bd->srcbus;
815 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
816 *mbus = &bd->srcbus;
817 *sbus = &bd->dstbus;
818 } else {
819 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
820 *mbus = &bd->dstbus;
821 *sbus = &bd->srcbus;
822 } else {
823 *mbus = &bd->srcbus;
824 *sbus = &bd->dstbus;
825 }
826 }
827 }
828
829 /*
830 * Fills in one LLI for a certain transfer descriptor and advance the counter
831 */
832 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
833 struct pl08x_lli_build_data *bd,
834 int num_llis, int len, u32 cctl, u32 cctl2)
835 {
836 u32 offset = num_llis * pl08x->lli_words;
837 u32 *llis_va = bd->txd->llis_va + offset;
838 dma_addr_t llis_bus = bd->txd->llis_bus;
839
840 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
841
842 /* Advance the offset to next LLI. */
843 offset += pl08x->lli_words;
844
845 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
846 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
847 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
848 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
849 llis_va[PL080_LLI_CCTL] = cctl;
850 if (pl08x->vd->pl080s)
851 llis_va[PL080S_LLI_CCTL2] = cctl2;
852
853 if (cctl & PL080_CONTROL_SRC_INCR)
854 bd->srcbus.addr += len;
855 if (cctl & PL080_CONTROL_DST_INCR)
856 bd->dstbus.addr += len;
857
858 BUG_ON(bd->remainder < len);
859
860 bd->remainder -= len;
861 }
862
863 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
864 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
865 int num_llis, size_t *total_bytes)
866 {
867 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
868 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
869 (*total_bytes) += len;
870 }
871
872 #ifdef VERBOSE_DEBUG
873 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
874 const u32 *llis_va, int num_llis)
875 {
876 int i;
877
878 if (pl08x->vd->pl080s) {
879 dev_vdbg(&pl08x->adev->dev,
880 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
881 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
882 for (i = 0; i < num_llis; i++) {
883 dev_vdbg(&pl08x->adev->dev,
884 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
885 i, llis_va, llis_va[PL080_LLI_SRC],
886 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
887 llis_va[PL080_LLI_CCTL],
888 llis_va[PL080S_LLI_CCTL2]);
889 llis_va += pl08x->lli_words;
890 }
891 } else {
892 dev_vdbg(&pl08x->adev->dev,
893 "%-3s %-9s %-10s %-10s %-10s %s\n",
894 "lli", "", "csrc", "cdst", "clli", "cctl");
895 for (i = 0; i < num_llis; i++) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
898 i, llis_va, llis_va[PL080_LLI_SRC],
899 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
900 llis_va[PL080_LLI_CCTL]);
901 llis_va += pl08x->lli_words;
902 }
903 }
904 }
905 #else
906 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
907 const u32 *llis_va, int num_llis) {}
908 #endif
909
910 /*
911 * This fills in the table of LLIs for the transfer descriptor
912 * Note that we assume we never have to change the burst sizes
913 * Return 0 for error
914 */
915 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
916 struct pl08x_txd *txd)
917 {
918 struct pl08x_bus_data *mbus, *sbus;
919 struct pl08x_lli_build_data bd;
920 int num_llis = 0;
921 u32 cctl, early_bytes = 0;
922 size_t max_bytes_per_lli, total_bytes;
923 u32 *llis_va, *last_lli;
924 struct pl08x_sg *dsg;
925
926 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
927 if (!txd->llis_va) {
928 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
929 return 0;
930 }
931
932 bd.txd = txd;
933 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
934 cctl = txd->cctl;
935
936 /* Find maximum width of the source bus */
937 bd.srcbus.maxwidth =
938 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
939 PL080_CONTROL_SWIDTH_SHIFT);
940
941 /* Find maximum width of the destination bus */
942 bd.dstbus.maxwidth =
943 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
944 PL080_CONTROL_DWIDTH_SHIFT);
945
946 list_for_each_entry(dsg, &txd->dsg_list, node) {
947 total_bytes = 0;
948 cctl = txd->cctl;
949
950 bd.srcbus.addr = dsg->src_addr;
951 bd.dstbus.addr = dsg->dst_addr;
952 bd.remainder = dsg->len;
953 bd.srcbus.buswidth = bd.srcbus.maxwidth;
954 bd.dstbus.buswidth = bd.dstbus.maxwidth;
955
956 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
957
958 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
959 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
960 bd.srcbus.buswidth,
961 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
962 bd.dstbus.buswidth,
963 bd.remainder);
964 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
965 mbus == &bd.srcbus ? "src" : "dst",
966 sbus == &bd.srcbus ? "src" : "dst");
967
968 /*
969 * Zero length is only allowed if all these requirements are
970 * met:
971 * - flow controller is peripheral.
972 * - src.addr is aligned to src.width
973 * - dst.addr is aligned to dst.width
974 *
975 * sg_len == 1 should be true, as there can be two cases here:
976 *
977 * - Memory addresses are contiguous and are not scattered.
978 * Here, Only one sg will be passed by user driver, with
979 * memory address and zero length. We pass this to controller
980 * and after the transfer it will receive the last burst
981 * request from peripheral and so transfer finishes.
982 *
983 * - Memory addresses are scattered and are not contiguous.
984 * Here, Obviously as DMA controller doesn't know when a lli's
985 * transfer gets over, it can't load next lli. So in this
986 * case, there has to be an assumption that only one lli is
987 * supported. Thus, we can't have scattered addresses.
988 */
989 if (!bd.remainder) {
990 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
991 PL080_CONFIG_FLOW_CONTROL_SHIFT;
992 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
993 (fc <= PL080_FLOW_SRC2DST_SRC))) {
994 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
995 __func__);
996 return 0;
997 }
998
999 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
1000 (bd.dstbus.addr % bd.dstbus.buswidth)) {
1001 dev_err(&pl08x->adev->dev,
1002 "%s src & dst address must be aligned to src"
1003 " & dst width if peripheral is flow controller",
1004 __func__);
1005 return 0;
1006 }
1007
1008 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1009 bd.dstbus.buswidth, 0);
1010 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1011 0, cctl, 0);
1012 break;
1013 }
1014
1015 /*
1016 * Send byte by byte for following cases
1017 * - Less than a bus width available
1018 * - until master bus is aligned
1019 */
1020 if (bd.remainder < mbus->buswidth)
1021 early_bytes = bd.remainder;
1022 else if ((mbus->addr) % (mbus->buswidth)) {
1023 early_bytes = mbus->buswidth - (mbus->addr) %
1024 (mbus->buswidth);
1025 if ((bd.remainder - early_bytes) < mbus->buswidth)
1026 early_bytes = bd.remainder;
1027 }
1028
1029 if (early_bytes) {
1030 dev_vdbg(&pl08x->adev->dev,
1031 "%s byte width LLIs (remain 0x%08x)\n",
1032 __func__, bd.remainder);
1033 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1034 num_llis++, &total_bytes);
1035 }
1036
1037 if (bd.remainder) {
1038 /*
1039 * Master now aligned
1040 * - if slave is not then we must set its width down
1041 */
1042 if (sbus->addr % sbus->buswidth) {
1043 dev_dbg(&pl08x->adev->dev,
1044 "%s set down bus width to one byte\n",
1045 __func__);
1046
1047 sbus->buswidth = 1;
1048 }
1049
1050 /*
1051 * Bytes transferred = tsize * src width, not
1052 * MIN(buswidths)
1053 */
1054 max_bytes_per_lli = bd.srcbus.buswidth *
1055 pl08x->vd->max_transfer_size;
1056 dev_vdbg(&pl08x->adev->dev,
1057 "%s max bytes per lli = %zu\n",
1058 __func__, max_bytes_per_lli);
1059
1060 /*
1061 * Make largest possible LLIs until less than one bus
1062 * width left
1063 */
1064 while (bd.remainder > (mbus->buswidth - 1)) {
1065 size_t lli_len, tsize, width;
1066
1067 /*
1068 * If enough left try to send max possible,
1069 * otherwise try to send the remainder
1070 */
1071 lli_len = min(bd.remainder, max_bytes_per_lli);
1072
1073 /*
1074 * Check against maximum bus alignment:
1075 * Calculate actual transfer size in relation to
1076 * bus width an get a maximum remainder of the
1077 * highest bus width - 1
1078 */
1079 width = max(mbus->buswidth, sbus->buswidth);
1080 lli_len = (lli_len / width) * width;
1081 tsize = lli_len / bd.srcbus.buswidth;
1082
1083 dev_vdbg(&pl08x->adev->dev,
1084 "%s fill lli with single lli chunk of "
1085 "size 0x%08zx (remainder 0x%08zx)\n",
1086 __func__, lli_len, bd.remainder);
1087
1088 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1089 bd.dstbus.buswidth, tsize);
1090 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1091 lli_len, cctl, tsize);
1092 total_bytes += lli_len;
1093 }
1094
1095 /*
1096 * Send any odd bytes
1097 */
1098 if (bd.remainder) {
1099 dev_vdbg(&pl08x->adev->dev,
1100 "%s align with boundary, send odd bytes (remain %zu)\n",
1101 __func__, bd.remainder);
1102 prep_byte_width_lli(pl08x, &bd, &cctl,
1103 bd.remainder, num_llis++, &total_bytes);
1104 }
1105 }
1106
1107 if (total_bytes != dsg->len) {
1108 dev_err(&pl08x->adev->dev,
1109 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1110 __func__, total_bytes, dsg->len);
1111 return 0;
1112 }
1113
1114 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1115 dev_err(&pl08x->adev->dev,
1116 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1117 __func__, MAX_NUM_TSFR_LLIS);
1118 return 0;
1119 }
1120 }
1121
1122 llis_va = txd->llis_va;
1123 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1124 /* The final LLI terminates the LLI. */
1125 last_lli[PL080_LLI_LLI] = 0;
1126 /* The final LLI element shall also fire an interrupt. */
1127 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1128
1129 pl08x_dump_lli(pl08x, llis_va, num_llis);
1130
1131 return num_llis;
1132 }
1133
1134 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1135 struct pl08x_txd *txd)
1136 {
1137 struct pl08x_sg *dsg, *_dsg;
1138
1139 if (txd->llis_va)
1140 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1141
1142 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1143 list_del(&dsg->node);
1144 kfree(dsg);
1145 }
1146
1147 kfree(txd);
1148 }
1149
1150 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1151 {
1152 struct device *dev = txd->vd.tx.chan->device->dev;
1153 struct pl08x_sg *dsg;
1154
1155 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1156 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1157 list_for_each_entry(dsg, &txd->dsg_list, node)
1158 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1159 DMA_TO_DEVICE);
1160 else {
1161 list_for_each_entry(dsg, &txd->dsg_list, node)
1162 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1163 DMA_TO_DEVICE);
1164 }
1165 }
1166 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1167 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1168 list_for_each_entry(dsg, &txd->dsg_list, node)
1169 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1170 DMA_FROM_DEVICE);
1171 else
1172 list_for_each_entry(dsg, &txd->dsg_list, node)
1173 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1174 DMA_FROM_DEVICE);
1175 }
1176 }
1177
1178 static void pl08x_desc_free(struct virt_dma_desc *vd)
1179 {
1180 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1181 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1182
1183 if (!plchan->slave)
1184 pl08x_unmap_buffers(txd);
1185
1186 if (!txd->done)
1187 pl08x_release_mux(plchan);
1188
1189 pl08x_free_txd(plchan->host, txd);
1190 }
1191
1192 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1193 struct pl08x_dma_chan *plchan)
1194 {
1195 LIST_HEAD(head);
1196
1197 vchan_get_all_descriptors(&plchan->vc, &head);
1198 vchan_dma_desc_free_list(&plchan->vc, &head);
1199 }
1200
1201 /*
1202 * The DMA ENGINE API
1203 */
1204 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1205 {
1206 return 0;
1207 }
1208
1209 static void pl08x_free_chan_resources(struct dma_chan *chan)
1210 {
1211 /* Ensure all queued descriptors are freed */
1212 vchan_free_chan_resources(to_virt_chan(chan));
1213 }
1214
1215 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1216 struct dma_chan *chan, unsigned long flags)
1217 {
1218 struct dma_async_tx_descriptor *retval = NULL;
1219
1220 return retval;
1221 }
1222
1223 /*
1224 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1225 * If slaves are relying on interrupts to signal completion this function
1226 * must not be called with interrupts disabled.
1227 */
1228 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1229 dma_cookie_t cookie, struct dma_tx_state *txstate)
1230 {
1231 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1232 struct virt_dma_desc *vd;
1233 unsigned long flags;
1234 enum dma_status ret;
1235 size_t bytes = 0;
1236
1237 ret = dma_cookie_status(chan, cookie, txstate);
1238 if (ret == DMA_SUCCESS)
1239 return ret;
1240
1241 /*
1242 * There's no point calculating the residue if there's
1243 * no txstate to store the value.
1244 */
1245 if (!txstate) {
1246 if (plchan->state == PL08X_CHAN_PAUSED)
1247 ret = DMA_PAUSED;
1248 return ret;
1249 }
1250
1251 spin_lock_irqsave(&plchan->vc.lock, flags);
1252 ret = dma_cookie_status(chan, cookie, txstate);
1253 if (ret != DMA_SUCCESS) {
1254 vd = vchan_find_desc(&plchan->vc, cookie);
1255 if (vd) {
1256 /* On the issued list, so hasn't been processed yet */
1257 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1258 struct pl08x_sg *dsg;
1259
1260 list_for_each_entry(dsg, &txd->dsg_list, node)
1261 bytes += dsg->len;
1262 } else {
1263 bytes = pl08x_getbytes_chan(plchan);
1264 }
1265 }
1266 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1267
1268 /*
1269 * This cookie not complete yet
1270 * Get number of bytes left in the active transactions and queue
1271 */
1272 dma_set_residue(txstate, bytes);
1273
1274 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1275 ret = DMA_PAUSED;
1276
1277 /* Whether waiting or running, we're in progress */
1278 return ret;
1279 }
1280
1281 /* PrimeCell DMA extension */
1282 struct burst_table {
1283 u32 burstwords;
1284 u32 reg;
1285 };
1286
1287 static const struct burst_table burst_sizes[] = {
1288 {
1289 .burstwords = 256,
1290 .reg = PL080_BSIZE_256,
1291 },
1292 {
1293 .burstwords = 128,
1294 .reg = PL080_BSIZE_128,
1295 },
1296 {
1297 .burstwords = 64,
1298 .reg = PL080_BSIZE_64,
1299 },
1300 {
1301 .burstwords = 32,
1302 .reg = PL080_BSIZE_32,
1303 },
1304 {
1305 .burstwords = 16,
1306 .reg = PL080_BSIZE_16,
1307 },
1308 {
1309 .burstwords = 8,
1310 .reg = PL080_BSIZE_8,
1311 },
1312 {
1313 .burstwords = 4,
1314 .reg = PL080_BSIZE_4,
1315 },
1316 {
1317 .burstwords = 0,
1318 .reg = PL080_BSIZE_1,
1319 },
1320 };
1321
1322 /*
1323 * Given the source and destination available bus masks, select which
1324 * will be routed to each port. We try to have source and destination
1325 * on separate ports, but always respect the allowable settings.
1326 */
1327 static u32 pl08x_select_bus(u8 src, u8 dst)
1328 {
1329 u32 cctl = 0;
1330
1331 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1332 cctl |= PL080_CONTROL_DST_AHB2;
1333 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1334 cctl |= PL080_CONTROL_SRC_AHB2;
1335
1336 return cctl;
1337 }
1338
1339 static u32 pl08x_cctl(u32 cctl)
1340 {
1341 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1342 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1343 PL080_CONTROL_PROT_MASK);
1344
1345 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1346 return cctl | PL080_CONTROL_PROT_SYS;
1347 }
1348
1349 static u32 pl08x_width(enum dma_slave_buswidth width)
1350 {
1351 switch (width) {
1352 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1353 return PL080_WIDTH_8BIT;
1354 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1355 return PL080_WIDTH_16BIT;
1356 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1357 return PL080_WIDTH_32BIT;
1358 default:
1359 return ~0;
1360 }
1361 }
1362
1363 static u32 pl08x_burst(u32 maxburst)
1364 {
1365 int i;
1366
1367 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1368 if (burst_sizes[i].burstwords <= maxburst)
1369 break;
1370
1371 return burst_sizes[i].reg;
1372 }
1373
1374 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1375 enum dma_slave_buswidth addr_width, u32 maxburst)
1376 {
1377 u32 width, burst, cctl = 0;
1378
1379 width = pl08x_width(addr_width);
1380 if (width == ~0)
1381 return ~0;
1382
1383 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1384 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1385
1386 /*
1387 * If this channel will only request single transfers, set this
1388 * down to ONE element. Also select one element if no maxburst
1389 * is specified.
1390 */
1391 if (plchan->cd->single)
1392 maxburst = 1;
1393
1394 burst = pl08x_burst(maxburst);
1395 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1396 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1397
1398 return pl08x_cctl(cctl);
1399 }
1400
1401 static int dma_set_runtime_config(struct dma_chan *chan,
1402 struct dma_slave_config *config)
1403 {
1404 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1405 struct pl08x_driver_data *pl08x = plchan->host;
1406
1407 if (!plchan->slave)
1408 return -EINVAL;
1409
1410 /* Reject definitely invalid configurations */
1411 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1412 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1413 return -EINVAL;
1414
1415 if (config->device_fc && pl08x->vd->pl080s) {
1416 dev_err(&pl08x->adev->dev,
1417 "%s: PL080S does not support peripheral flow control\n",
1418 __func__);
1419 return -EINVAL;
1420 }
1421
1422 plchan->cfg = *config;
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * Slave transactions callback to the slave device to allow
1429 * synchronization of slave DMA signals with the DMAC enable
1430 */
1431 static void pl08x_issue_pending(struct dma_chan *chan)
1432 {
1433 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1434 unsigned long flags;
1435
1436 spin_lock_irqsave(&plchan->vc.lock, flags);
1437 if (vchan_issue_pending(&plchan->vc)) {
1438 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1439 pl08x_phy_alloc_and_start(plchan);
1440 }
1441 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1442 }
1443
1444 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1445 {
1446 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1447
1448 if (txd) {
1449 INIT_LIST_HEAD(&txd->dsg_list);
1450
1451 /* Always enable error and terminal interrupts */
1452 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1453 PL080_CONFIG_TC_IRQ_MASK;
1454 }
1455 return txd;
1456 }
1457
1458 /*
1459 * Initialize a descriptor to be used by memcpy submit
1460 */
1461 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1462 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1463 size_t len, unsigned long flags)
1464 {
1465 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1466 struct pl08x_driver_data *pl08x = plchan->host;
1467 struct pl08x_txd *txd;
1468 struct pl08x_sg *dsg;
1469 int ret;
1470
1471 txd = pl08x_get_txd(plchan);
1472 if (!txd) {
1473 dev_err(&pl08x->adev->dev,
1474 "%s no memory for descriptor\n", __func__);
1475 return NULL;
1476 }
1477
1478 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1479 if (!dsg) {
1480 pl08x_free_txd(pl08x, txd);
1481 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1482 __func__);
1483 return NULL;
1484 }
1485 list_add_tail(&dsg->node, &txd->dsg_list);
1486
1487 dsg->src_addr = src;
1488 dsg->dst_addr = dest;
1489 dsg->len = len;
1490
1491 /* Set platform data for m2m */
1492 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1493 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1494 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1495
1496 /* Both to be incremented or the code will break */
1497 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1498
1499 if (pl08x->vd->dualmaster)
1500 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1501 pl08x->mem_buses);
1502
1503 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1504 if (!ret) {
1505 pl08x_free_txd(pl08x, txd);
1506 return NULL;
1507 }
1508
1509 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1510 }
1511
1512 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1513 struct dma_chan *chan, struct scatterlist *sgl,
1514 unsigned int sg_len, enum dma_transfer_direction direction,
1515 unsigned long flags, void *context)
1516 {
1517 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1518 struct pl08x_driver_data *pl08x = plchan->host;
1519 struct pl08x_txd *txd;
1520 struct pl08x_sg *dsg;
1521 struct scatterlist *sg;
1522 enum dma_slave_buswidth addr_width;
1523 dma_addr_t slave_addr;
1524 int ret, tmp;
1525 u8 src_buses, dst_buses;
1526 u32 maxburst, cctl;
1527
1528 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1529 __func__, sg_dma_len(sgl), plchan->name);
1530
1531 txd = pl08x_get_txd(plchan);
1532 if (!txd) {
1533 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1534 return NULL;
1535 }
1536
1537 /*
1538 * Set up addresses, the PrimeCell configured address
1539 * will take precedence since this may configure the
1540 * channel target address dynamically at runtime.
1541 */
1542 if (direction == DMA_MEM_TO_DEV) {
1543 cctl = PL080_CONTROL_SRC_INCR;
1544 slave_addr = plchan->cfg.dst_addr;
1545 addr_width = plchan->cfg.dst_addr_width;
1546 maxburst = plchan->cfg.dst_maxburst;
1547 src_buses = pl08x->mem_buses;
1548 dst_buses = plchan->cd->periph_buses;
1549 } else if (direction == DMA_DEV_TO_MEM) {
1550 cctl = PL080_CONTROL_DST_INCR;
1551 slave_addr = plchan->cfg.src_addr;
1552 addr_width = plchan->cfg.src_addr_width;
1553 maxburst = plchan->cfg.src_maxburst;
1554 src_buses = plchan->cd->periph_buses;
1555 dst_buses = pl08x->mem_buses;
1556 } else {
1557 pl08x_free_txd(pl08x, txd);
1558 dev_err(&pl08x->adev->dev,
1559 "%s direction unsupported\n", __func__);
1560 return NULL;
1561 }
1562
1563 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1564 if (cctl == ~0) {
1565 pl08x_free_txd(pl08x, txd);
1566 dev_err(&pl08x->adev->dev,
1567 "DMA slave configuration botched?\n");
1568 return NULL;
1569 }
1570
1571 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1572
1573 if (plchan->cfg.device_fc)
1574 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1575 PL080_FLOW_PER2MEM_PER;
1576 else
1577 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1578 PL080_FLOW_PER2MEM;
1579
1580 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1581
1582 ret = pl08x_request_mux(plchan);
1583 if (ret < 0) {
1584 pl08x_free_txd(pl08x, txd);
1585 dev_dbg(&pl08x->adev->dev,
1586 "unable to mux for transfer on %s due to platform restrictions\n",
1587 plchan->name);
1588 return NULL;
1589 }
1590
1591 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1592 plchan->signal, plchan->name);
1593
1594 /* Assign the flow control signal to this channel */
1595 if (direction == DMA_MEM_TO_DEV)
1596 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1597 else
1598 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1599
1600 for_each_sg(sgl, sg, sg_len, tmp) {
1601 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1602 if (!dsg) {
1603 pl08x_release_mux(plchan);
1604 pl08x_free_txd(pl08x, txd);
1605 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1606 __func__);
1607 return NULL;
1608 }
1609 list_add_tail(&dsg->node, &txd->dsg_list);
1610
1611 dsg->len = sg_dma_len(sg);
1612 if (direction == DMA_MEM_TO_DEV) {
1613 dsg->src_addr = sg_dma_address(sg);
1614 dsg->dst_addr = slave_addr;
1615 } else {
1616 dsg->src_addr = slave_addr;
1617 dsg->dst_addr = sg_dma_address(sg);
1618 }
1619 }
1620
1621 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1622 if (!ret) {
1623 pl08x_release_mux(plchan);
1624 pl08x_free_txd(pl08x, txd);
1625 return NULL;
1626 }
1627
1628 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1629 }
1630
1631 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1632 unsigned long arg)
1633 {
1634 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1635 struct pl08x_driver_data *pl08x = plchan->host;
1636 unsigned long flags;
1637 int ret = 0;
1638
1639 /* Controls applicable to inactive channels */
1640 if (cmd == DMA_SLAVE_CONFIG) {
1641 return dma_set_runtime_config(chan,
1642 (struct dma_slave_config *)arg);
1643 }
1644
1645 /*
1646 * Anything succeeds on channels with no physical allocation and
1647 * no queued transfers.
1648 */
1649 spin_lock_irqsave(&plchan->vc.lock, flags);
1650 if (!plchan->phychan && !plchan->at) {
1651 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1652 return 0;
1653 }
1654
1655 switch (cmd) {
1656 case DMA_TERMINATE_ALL:
1657 plchan->state = PL08X_CHAN_IDLE;
1658
1659 if (plchan->phychan) {
1660 /*
1661 * Mark physical channel as free and free any slave
1662 * signal
1663 */
1664 pl08x_phy_free(plchan);
1665 }
1666 /* Dequeue jobs and free LLIs */
1667 if (plchan->at) {
1668 pl08x_desc_free(&plchan->at->vd);
1669 plchan->at = NULL;
1670 }
1671 /* Dequeue jobs not yet fired as well */
1672 pl08x_free_txd_list(pl08x, plchan);
1673 break;
1674 case DMA_PAUSE:
1675 pl08x_pause_phy_chan(plchan->phychan);
1676 plchan->state = PL08X_CHAN_PAUSED;
1677 break;
1678 case DMA_RESUME:
1679 pl08x_resume_phy_chan(plchan->phychan);
1680 plchan->state = PL08X_CHAN_RUNNING;
1681 break;
1682 default:
1683 /* Unknown command */
1684 ret = -ENXIO;
1685 break;
1686 }
1687
1688 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1689
1690 return ret;
1691 }
1692
1693 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1694 {
1695 struct pl08x_dma_chan *plchan;
1696 char *name = chan_id;
1697
1698 /* Reject channels for devices not bound to this driver */
1699 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1700 return false;
1701
1702 plchan = to_pl08x_chan(chan);
1703
1704 /* Check that the channel is not taken! */
1705 if (!strcmp(plchan->name, name))
1706 return true;
1707
1708 return false;
1709 }
1710
1711 /*
1712 * Just check that the device is there and active
1713 * TODO: turn this bit on/off depending on the number of physical channels
1714 * actually used, if it is zero... well shut it off. That will save some
1715 * power. Cut the clock at the same time.
1716 */
1717 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1718 {
1719 /* The Nomadik variant does not have the config register */
1720 if (pl08x->vd->nomadik)
1721 return;
1722 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1723 }
1724
1725 static irqreturn_t pl08x_irq(int irq, void *dev)
1726 {
1727 struct pl08x_driver_data *pl08x = dev;
1728 u32 mask = 0, err, tc, i;
1729
1730 /* check & clear - ERR & TC interrupts */
1731 err = readl(pl08x->base + PL080_ERR_STATUS);
1732 if (err) {
1733 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1734 __func__, err);
1735 writel(err, pl08x->base + PL080_ERR_CLEAR);
1736 }
1737 tc = readl(pl08x->base + PL080_TC_STATUS);
1738 if (tc)
1739 writel(tc, pl08x->base + PL080_TC_CLEAR);
1740
1741 if (!err && !tc)
1742 return IRQ_NONE;
1743
1744 for (i = 0; i < pl08x->vd->channels; i++) {
1745 if (((1 << i) & err) || ((1 << i) & tc)) {
1746 /* Locate physical channel */
1747 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1748 struct pl08x_dma_chan *plchan = phychan->serving;
1749 struct pl08x_txd *tx;
1750
1751 if (!plchan) {
1752 dev_err(&pl08x->adev->dev,
1753 "%s Error TC interrupt on unused channel: 0x%08x\n",
1754 __func__, i);
1755 continue;
1756 }
1757
1758 spin_lock(&plchan->vc.lock);
1759 tx = plchan->at;
1760 if (tx) {
1761 plchan->at = NULL;
1762 /*
1763 * This descriptor is done, release its mux
1764 * reservation.
1765 */
1766 pl08x_release_mux(plchan);
1767 tx->done = true;
1768 vchan_cookie_complete(&tx->vd);
1769
1770 /*
1771 * And start the next descriptor (if any),
1772 * otherwise free this channel.
1773 */
1774 if (vchan_next_desc(&plchan->vc))
1775 pl08x_start_next_txd(plchan);
1776 else
1777 pl08x_phy_free(plchan);
1778 }
1779 spin_unlock(&plchan->vc.lock);
1780
1781 mask |= (1 << i);
1782 }
1783 }
1784
1785 return mask ? IRQ_HANDLED : IRQ_NONE;
1786 }
1787
1788 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1789 {
1790 chan->slave = true;
1791 chan->name = chan->cd->bus_id;
1792 chan->cfg.src_addr = chan->cd->addr;
1793 chan->cfg.dst_addr = chan->cd->addr;
1794 }
1795
1796 /*
1797 * Initialise the DMAC memcpy/slave channels.
1798 * Make a local wrapper to hold required data
1799 */
1800 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1801 struct dma_device *dmadev, unsigned int channels, bool slave)
1802 {
1803 struct pl08x_dma_chan *chan;
1804 int i;
1805
1806 INIT_LIST_HEAD(&dmadev->channels);
1807
1808 /*
1809 * Register as many many memcpy as we have physical channels,
1810 * we won't always be able to use all but the code will have
1811 * to cope with that situation.
1812 */
1813 for (i = 0; i < channels; i++) {
1814 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1815 if (!chan) {
1816 dev_err(&pl08x->adev->dev,
1817 "%s no memory for channel\n", __func__);
1818 return -ENOMEM;
1819 }
1820
1821 chan->host = pl08x;
1822 chan->state = PL08X_CHAN_IDLE;
1823 chan->signal = -1;
1824
1825 if (slave) {
1826 chan->cd = &pl08x->pd->slave_channels[i];
1827 pl08x_dma_slave_init(chan);
1828 } else {
1829 chan->cd = &pl08x->pd->memcpy_channel;
1830 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1831 if (!chan->name) {
1832 kfree(chan);
1833 return -ENOMEM;
1834 }
1835 }
1836 dev_dbg(&pl08x->adev->dev,
1837 "initialize virtual channel \"%s\"\n",
1838 chan->name);
1839
1840 chan->vc.desc_free = pl08x_desc_free;
1841 vchan_init(&chan->vc, dmadev);
1842 }
1843 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1844 i, slave ? "slave" : "memcpy");
1845 return i;
1846 }
1847
1848 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1849 {
1850 struct pl08x_dma_chan *chan = NULL;
1851 struct pl08x_dma_chan *next;
1852
1853 list_for_each_entry_safe(chan,
1854 next, &dmadev->channels, vc.chan.device_node) {
1855 list_del(&chan->vc.chan.device_node);
1856 kfree(chan);
1857 }
1858 }
1859
1860 #ifdef CONFIG_DEBUG_FS
1861 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1862 {
1863 switch (state) {
1864 case PL08X_CHAN_IDLE:
1865 return "idle";
1866 case PL08X_CHAN_RUNNING:
1867 return "running";
1868 case PL08X_CHAN_PAUSED:
1869 return "paused";
1870 case PL08X_CHAN_WAITING:
1871 return "waiting";
1872 default:
1873 break;
1874 }
1875 return "UNKNOWN STATE";
1876 }
1877
1878 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1879 {
1880 struct pl08x_driver_data *pl08x = s->private;
1881 struct pl08x_dma_chan *chan;
1882 struct pl08x_phy_chan *ch;
1883 unsigned long flags;
1884 int i;
1885
1886 seq_printf(s, "PL08x physical channels:\n");
1887 seq_printf(s, "CHANNEL:\tUSER:\n");
1888 seq_printf(s, "--------\t-----\n");
1889 for (i = 0; i < pl08x->vd->channels; i++) {
1890 struct pl08x_dma_chan *virt_chan;
1891
1892 ch = &pl08x->phy_chans[i];
1893
1894 spin_lock_irqsave(&ch->lock, flags);
1895 virt_chan = ch->serving;
1896
1897 seq_printf(s, "%d\t\t%s%s\n",
1898 ch->id,
1899 virt_chan ? virt_chan->name : "(none)",
1900 ch->locked ? " LOCKED" : "");
1901
1902 spin_unlock_irqrestore(&ch->lock, flags);
1903 }
1904
1905 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1906 seq_printf(s, "CHANNEL:\tSTATE:\n");
1907 seq_printf(s, "--------\t------\n");
1908 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1909 seq_printf(s, "%s\t\t%s\n", chan->name,
1910 pl08x_state_str(chan->state));
1911 }
1912
1913 seq_printf(s, "\nPL08x virtual slave channels:\n");
1914 seq_printf(s, "CHANNEL:\tSTATE:\n");
1915 seq_printf(s, "--------\t------\n");
1916 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1917 seq_printf(s, "%s\t\t%s\n", chan->name,
1918 pl08x_state_str(chan->state));
1919 }
1920
1921 return 0;
1922 }
1923
1924 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1925 {
1926 return single_open(file, pl08x_debugfs_show, inode->i_private);
1927 }
1928
1929 static const struct file_operations pl08x_debugfs_operations = {
1930 .open = pl08x_debugfs_open,
1931 .read = seq_read,
1932 .llseek = seq_lseek,
1933 .release = single_release,
1934 };
1935
1936 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1937 {
1938 /* Expose a simple debugfs interface to view all clocks */
1939 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1940 S_IFREG | S_IRUGO, NULL, pl08x,
1941 &pl08x_debugfs_operations);
1942 }
1943
1944 #else
1945 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1946 {
1947 }
1948 #endif
1949
1950 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1951 {
1952 struct pl08x_driver_data *pl08x;
1953 const struct vendor_data *vd = id->data;
1954 u32 tsfr_size;
1955 int ret = 0;
1956 int i;
1957
1958 ret = amba_request_regions(adev, NULL);
1959 if (ret)
1960 return ret;
1961
1962 /* Create the driver state holder */
1963 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1964 if (!pl08x) {
1965 ret = -ENOMEM;
1966 goto out_no_pl08x;
1967 }
1968
1969 /* Initialize memcpy engine */
1970 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1971 pl08x->memcpy.dev = &adev->dev;
1972 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1973 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1974 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1975 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1976 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1977 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1978 pl08x->memcpy.device_control = pl08x_control;
1979
1980 /* Initialize slave engine */
1981 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1982 pl08x->slave.dev = &adev->dev;
1983 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1984 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1985 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1986 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1987 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1988 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1989 pl08x->slave.device_control = pl08x_control;
1990
1991 /* Get the platform data */
1992 pl08x->pd = dev_get_platdata(&adev->dev);
1993 if (!pl08x->pd) {
1994 dev_err(&adev->dev, "no platform data supplied\n");
1995 ret = -EINVAL;
1996 goto out_no_platdata;
1997 }
1998
1999 /* Assign useful pointers to the driver state */
2000 pl08x->adev = adev;
2001 pl08x->vd = vd;
2002
2003 /* By default, AHB1 only. If dualmaster, from platform */
2004 pl08x->lli_buses = PL08X_AHB1;
2005 pl08x->mem_buses = PL08X_AHB1;
2006 if (pl08x->vd->dualmaster) {
2007 pl08x->lli_buses = pl08x->pd->lli_buses;
2008 pl08x->mem_buses = pl08x->pd->mem_buses;
2009 }
2010
2011 if (vd->pl080s)
2012 pl08x->lli_words = PL080S_LLI_WORDS;
2013 else
2014 pl08x->lli_words = PL080_LLI_WORDS;
2015 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2016
2017 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2018 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2019 tsfr_size, PL08X_ALIGN, 0);
2020 if (!pl08x->pool) {
2021 ret = -ENOMEM;
2022 goto out_no_lli_pool;
2023 }
2024
2025 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2026 if (!pl08x->base) {
2027 ret = -ENOMEM;
2028 goto out_no_ioremap;
2029 }
2030
2031 /* Turn on the PL08x */
2032 pl08x_ensure_on(pl08x);
2033
2034 /* Attach the interrupt handler */
2035 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2036 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2037
2038 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2039 DRIVER_NAME, pl08x);
2040 if (ret) {
2041 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2042 __func__, adev->irq[0]);
2043 goto out_no_irq;
2044 }
2045
2046 /* Initialize physical channels */
2047 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2048 GFP_KERNEL);
2049 if (!pl08x->phy_chans) {
2050 dev_err(&adev->dev, "%s failed to allocate "
2051 "physical channel holders\n",
2052 __func__);
2053 ret = -ENOMEM;
2054 goto out_no_phychans;
2055 }
2056
2057 for (i = 0; i < vd->channels; i++) {
2058 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2059
2060 ch->id = i;
2061 ch->base = pl08x->base + PL080_Cx_BASE(i);
2062 ch->reg_config = ch->base + vd->config_offset;
2063 spin_lock_init(&ch->lock);
2064
2065 /*
2066 * Nomadik variants can have channels that are locked
2067 * down for the secure world only. Lock up these channels
2068 * by perpetually serving a dummy virtual channel.
2069 */
2070 if (vd->nomadik) {
2071 u32 val;
2072
2073 val = readl(ch->reg_config);
2074 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2075 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2076 ch->locked = true;
2077 }
2078 }
2079
2080 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2081 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2082 }
2083
2084 /* Register as many memcpy channels as there are physical channels */
2085 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2086 pl08x->vd->channels, false);
2087 if (ret <= 0) {
2088 dev_warn(&pl08x->adev->dev,
2089 "%s failed to enumerate memcpy channels - %d\n",
2090 __func__, ret);
2091 goto out_no_memcpy;
2092 }
2093 pl08x->memcpy.chancnt = ret;
2094
2095 /* Register slave channels */
2096 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2097 pl08x->pd->num_slave_channels, true);
2098 if (ret <= 0) {
2099 dev_warn(&pl08x->adev->dev,
2100 "%s failed to enumerate slave channels - %d\n",
2101 __func__, ret);
2102 goto out_no_slave;
2103 }
2104 pl08x->slave.chancnt = ret;
2105
2106 ret = dma_async_device_register(&pl08x->memcpy);
2107 if (ret) {
2108 dev_warn(&pl08x->adev->dev,
2109 "%s failed to register memcpy as an async device - %d\n",
2110 __func__, ret);
2111 goto out_no_memcpy_reg;
2112 }
2113
2114 ret = dma_async_device_register(&pl08x->slave);
2115 if (ret) {
2116 dev_warn(&pl08x->adev->dev,
2117 "%s failed to register slave as an async device - %d\n",
2118 __func__, ret);
2119 goto out_no_slave_reg;
2120 }
2121
2122 amba_set_drvdata(adev, pl08x);
2123 init_pl08x_debugfs(pl08x);
2124 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2125 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2126 (unsigned long long)adev->res.start, adev->irq[0]);
2127
2128 return 0;
2129
2130 out_no_slave_reg:
2131 dma_async_device_unregister(&pl08x->memcpy);
2132 out_no_memcpy_reg:
2133 pl08x_free_virtual_channels(&pl08x->slave);
2134 out_no_slave:
2135 pl08x_free_virtual_channels(&pl08x->memcpy);
2136 out_no_memcpy:
2137 kfree(pl08x->phy_chans);
2138 out_no_phychans:
2139 free_irq(adev->irq[0], pl08x);
2140 out_no_irq:
2141 iounmap(pl08x->base);
2142 out_no_ioremap:
2143 dma_pool_destroy(pl08x->pool);
2144 out_no_lli_pool:
2145 out_no_platdata:
2146 kfree(pl08x);
2147 out_no_pl08x:
2148 amba_release_regions(adev);
2149 return ret;
2150 }
2151
2152 /* PL080 has 8 channels and the PL080 have just 2 */
2153 static struct vendor_data vendor_pl080 = {
2154 .config_offset = PL080_CH_CONFIG,
2155 .channels = 8,
2156 .dualmaster = true,
2157 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2158 };
2159
2160 static struct vendor_data vendor_nomadik = {
2161 .config_offset = PL080_CH_CONFIG,
2162 .channels = 8,
2163 .dualmaster = true,
2164 .nomadik = true,
2165 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2166 };
2167
2168 static struct vendor_data vendor_pl080s = {
2169 .config_offset = PL080S_CH_CONFIG,
2170 .channels = 8,
2171 .pl080s = true,
2172 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2173 };
2174
2175 static struct vendor_data vendor_pl081 = {
2176 .config_offset = PL080_CH_CONFIG,
2177 .channels = 2,
2178 .dualmaster = false,
2179 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2180 };
2181
2182 static struct amba_id pl08x_ids[] = {
2183 /* Samsung PL080S variant */
2184 {
2185 .id = 0x0a141080,
2186 .mask = 0xffffffff,
2187 .data = &vendor_pl080s,
2188 },
2189 /* PL080 */
2190 {
2191 .id = 0x00041080,
2192 .mask = 0x000fffff,
2193 .data = &vendor_pl080,
2194 },
2195 /* PL081 */
2196 {
2197 .id = 0x00041081,
2198 .mask = 0x000fffff,
2199 .data = &vendor_pl081,
2200 },
2201 /* Nomadik 8815 PL080 variant */
2202 {
2203 .id = 0x00280080,
2204 .mask = 0x00ffffff,
2205 .data = &vendor_nomadik,
2206 },
2207 { 0, 0 },
2208 };
2209
2210 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2211
2212 static struct amba_driver pl08x_amba_driver = {
2213 .drv.name = DRIVER_NAME,
2214 .id_table = pl08x_ids,
2215 .probe = pl08x_probe,
2216 };
2217
2218 static int __init pl08x_init(void)
2219 {
2220 int retval;
2221 retval = amba_driver_register(&pl08x_amba_driver);
2222 if (retval)
2223 printk(KERN_WARNING DRIVER_NAME
2224 "failed to register as an AMBA device (%d)\n",
2225 retval);
2226 return retval;
2227 }
2228 subsys_initcall(pl08x_init);