]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/amba-pl08x.c
Merge tag 'mmc-updates-for-3.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <linux/amba/pl080.h>
87
88 #include "dmaengine.h"
89 #include "virt-dma.h"
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @channels: the number of channels available in this variant
99 * @dualmaster: whether this version supports dual AHB masters or not.
100 * @nomadik: whether the channels have Nomadik security extension bits
101 * that need to be checked for permission before use and some registers are
102 * missing
103 */
104 struct vendor_data {
105 u8 channels;
106 bool dualmaster;
107 bool nomadik;
108 };
109
110 /*
111 * PL08X private data structures
112 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
113 * start & end do not - their bus bit info is in cctl. Also note that these
114 * are fixed 32-bit quantities.
115 */
116 struct pl08x_lli {
117 u32 src;
118 u32 dst;
119 u32 lli;
120 u32 cctl;
121 };
122
123 /**
124 * struct pl08x_bus_data - information of source or destination
125 * busses for a transfer
126 * @addr: current address
127 * @maxwidth: the maximum width of a transfer on this bus
128 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 */
130 struct pl08x_bus_data {
131 dma_addr_t addr;
132 u8 maxwidth;
133 u8 buswidth;
134 };
135
136 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
137
138 /**
139 * struct pl08x_phy_chan - holder for the physical channels
140 * @id: physical index to this channel
141 * @lock: a lock to use when altering an instance of this struct
142 * @serving: the virtual channel currently being served by this physical
143 * channel
144 * @locked: channel unavailable for the system, e.g. dedicated to secure
145 * world
146 */
147 struct pl08x_phy_chan {
148 unsigned int id;
149 void __iomem *base;
150 spinlock_t lock;
151 struct pl08x_dma_chan *serving;
152 bool locked;
153 };
154
155 /**
156 * struct pl08x_sg - structure containing data per sg
157 * @src_addr: src address of sg
158 * @dst_addr: dst address of sg
159 * @len: transfer len in bytes
160 * @node: node for txd's dsg_list
161 */
162 struct pl08x_sg {
163 dma_addr_t src_addr;
164 dma_addr_t dst_addr;
165 size_t len;
166 struct list_head node;
167 };
168
169 /**
170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
171 * @vd: virtual DMA descriptor
172 * @dsg_list: list of children sg's
173 * @llis_bus: DMA memory address (physical) start for the LLIs
174 * @llis_va: virtual memory address start for the LLIs
175 * @cctl: control reg values for current txd
176 * @ccfg: config reg values for current txd
177 * @done: this marks completed descriptors, which should not have their
178 * mux released.
179 */
180 struct pl08x_txd {
181 struct virt_dma_desc vd;
182 struct list_head dsg_list;
183 dma_addr_t llis_bus;
184 struct pl08x_lli *llis_va;
185 /* Default cctl value for LLIs */
186 u32 cctl;
187 /*
188 * Settings to be put into the physical channel when we
189 * trigger this txd. Other registers are in llis_va[0].
190 */
191 u32 ccfg;
192 bool done;
193 };
194
195 /**
196 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
197 * states
198 * @PL08X_CHAN_IDLE: the channel is idle
199 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
200 * channel and is running a transfer on it
201 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
202 * channel, but the transfer is currently paused
203 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
204 * channel to become available (only pertains to memcpy channels)
205 */
206 enum pl08x_dma_chan_state {
207 PL08X_CHAN_IDLE,
208 PL08X_CHAN_RUNNING,
209 PL08X_CHAN_PAUSED,
210 PL08X_CHAN_WAITING,
211 };
212
213 /**
214 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
215 * @vc: wrappped virtual channel
216 * @phychan: the physical channel utilized by this channel, if there is one
217 * @name: name of channel
218 * @cd: channel platform data
219 * @runtime_addr: address for RX/TX according to the runtime config
220 * @at: active transaction on this channel
221 * @lock: a lock for this channel data
222 * @host: a pointer to the host (internal use)
223 * @state: whether the channel is idle, paused, running etc
224 * @slave: whether this channel is a device (slave) or for memcpy
225 * @signal: the physical DMA request signal which this channel is using
226 * @mux_use: count of descriptors using this DMA request signal setting
227 */
228 struct pl08x_dma_chan {
229 struct virt_dma_chan vc;
230 struct pl08x_phy_chan *phychan;
231 const char *name;
232 const struct pl08x_channel_data *cd;
233 struct dma_slave_config cfg;
234 struct pl08x_txd *at;
235 struct pl08x_driver_data *host;
236 enum pl08x_dma_chan_state state;
237 bool slave;
238 int signal;
239 unsigned mux_use;
240 };
241
242 /**
243 * struct pl08x_driver_data - the local state holder for the PL08x
244 * @slave: slave engine for this instance
245 * @memcpy: memcpy engine for this instance
246 * @base: virtual memory base (remapped) for the PL08x
247 * @adev: the corresponding AMBA (PrimeCell) bus entry
248 * @vd: vendor data for this PL08x variant
249 * @pd: platform data passed in from the platform/machine
250 * @phy_chans: array of data for the physical channels
251 * @pool: a pool for the LLI descriptors
252 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
253 * fetches
254 * @mem_buses: set to indicate memory transfers on AHB2.
255 * @lock: a spinlock for this struct
256 */
257 struct pl08x_driver_data {
258 struct dma_device slave;
259 struct dma_device memcpy;
260 void __iomem *base;
261 struct amba_device *adev;
262 const struct vendor_data *vd;
263 struct pl08x_platform_data *pd;
264 struct pl08x_phy_chan *phy_chans;
265 struct dma_pool *pool;
266 u8 lli_buses;
267 u8 mem_buses;
268 };
269
270 /*
271 * PL08X specific defines
272 */
273
274 /* Size (bytes) of each LLI buffer allocated for one transfer */
275 # define PL08X_LLI_TSFR_SIZE 0x2000
276
277 /* Maximum times we call dma_pool_alloc on this pool without freeing */
278 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
279 #define PL08X_ALIGN 8
280
281 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
282 {
283 return container_of(chan, struct pl08x_dma_chan, vc.chan);
284 }
285
286 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
287 {
288 return container_of(tx, struct pl08x_txd, vd.tx);
289 }
290
291 /*
292 * Mux handling.
293 *
294 * This gives us the DMA request input to the PL08x primecell which the
295 * peripheral described by the channel data will be routed to, possibly
296 * via a board/SoC specific external MUX. One important point to note
297 * here is that this does not depend on the physical channel.
298 */
299 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
300 {
301 const struct pl08x_platform_data *pd = plchan->host->pd;
302 int ret;
303
304 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
305 ret = pd->get_xfer_signal(plchan->cd);
306 if (ret < 0) {
307 plchan->mux_use = 0;
308 return ret;
309 }
310
311 plchan->signal = ret;
312 }
313 return 0;
314 }
315
316 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
317 {
318 const struct pl08x_platform_data *pd = plchan->host->pd;
319
320 if (plchan->signal >= 0) {
321 WARN_ON(plchan->mux_use == 0);
322
323 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
324 pd->put_xfer_signal(plchan->cd, plchan->signal);
325 plchan->signal = -1;
326 }
327 }
328 }
329
330 /*
331 * Physical channel handling
332 */
333
334 /* Whether a certain channel is busy or not */
335 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
336 {
337 unsigned int val;
338
339 val = readl(ch->base + PL080_CH_CONFIG);
340 return val & PL080_CONFIG_ACTIVE;
341 }
342
343 /*
344 * Set the initial DMA register values i.e. those for the first LLI
345 * The next LLI pointer and the configuration interrupt bit have
346 * been set when the LLIs were constructed. Poke them into the hardware
347 * and start the transfer.
348 */
349 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
350 {
351 struct pl08x_driver_data *pl08x = plchan->host;
352 struct pl08x_phy_chan *phychan = plchan->phychan;
353 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
354 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
355 struct pl08x_lli *lli;
356 u32 val;
357
358 list_del(&txd->vd.node);
359
360 plchan->at = txd;
361
362 /* Wait for channel inactive */
363 while (pl08x_phy_channel_busy(phychan))
364 cpu_relax();
365
366 lli = &txd->llis_va[0];
367
368 dev_vdbg(&pl08x->adev->dev,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
372 txd->ccfg);
373
374 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
375 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
376 writel(lli->lli, phychan->base + PL080_CH_LLI);
377 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
378 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
379
380 /* Enable the DMA channel */
381 /* Do not access config register until channel shows as disabled */
382 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
383 cpu_relax();
384
385 /* Do not access config register until channel shows as inactive */
386 val = readl(phychan->base + PL080_CH_CONFIG);
387 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
388 val = readl(phychan->base + PL080_CH_CONFIG);
389
390 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
391 }
392
393 /*
394 * Pause the channel by setting the HALT bit.
395 *
396 * For M->P transfers, pause the DMAC first and then stop the peripheral -
397 * the FIFO can only drain if the peripheral is still requesting data.
398 * (note: this can still timeout if the DMAC FIFO never drains of data.)
399 *
400 * For P->M transfers, disable the peripheral first to stop it filling
401 * the DMAC FIFO, and then pause the DMAC.
402 */
403 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
404 {
405 u32 val;
406 int timeout;
407
408 /* Set the HALT bit and wait for the FIFO to drain */
409 val = readl(ch->base + PL080_CH_CONFIG);
410 val |= PL080_CONFIG_HALT;
411 writel(val, ch->base + PL080_CH_CONFIG);
412
413 /* Wait for channel inactive */
414 for (timeout = 1000; timeout; timeout--) {
415 if (!pl08x_phy_channel_busy(ch))
416 break;
417 udelay(1);
418 }
419 if (pl08x_phy_channel_busy(ch))
420 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
421 }
422
423 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
424 {
425 u32 val;
426
427 /* Clear the HALT bit */
428 val = readl(ch->base + PL080_CH_CONFIG);
429 val &= ~PL080_CONFIG_HALT;
430 writel(val, ch->base + PL080_CH_CONFIG);
431 }
432
433 /*
434 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
435 * clears any pending interrupt status. This should not be used for
436 * an on-going transfer, but as a method of shutting down a channel
437 * (eg, when it's no longer used) or terminating a transfer.
438 */
439 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
440 struct pl08x_phy_chan *ch)
441 {
442 u32 val = readl(ch->base + PL080_CH_CONFIG);
443
444 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
445 PL080_CONFIG_TC_IRQ_MASK);
446
447 writel(val, ch->base + PL080_CH_CONFIG);
448
449 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
450 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
451 }
452
453 static inline u32 get_bytes_in_cctl(u32 cctl)
454 {
455 /* The source width defines the number of bytes */
456 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
459 case PL080_WIDTH_8BIT:
460 break;
461 case PL080_WIDTH_16BIT:
462 bytes *= 2;
463 break;
464 case PL080_WIDTH_32BIT:
465 bytes *= 4;
466 break;
467 }
468 return bytes;
469 }
470
471 /* The channel should be paused when calling this */
472 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
473 {
474 struct pl08x_phy_chan *ch;
475 struct pl08x_txd *txd;
476 size_t bytes = 0;
477
478 ch = plchan->phychan;
479 txd = plchan->at;
480
481 /*
482 * Follow the LLIs to get the number of remaining
483 * bytes in the currently active transaction.
484 */
485 if (ch && txd) {
486 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
487
488 /* First get the remaining bytes in the active transfer */
489 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
490
491 if (clli) {
492 struct pl08x_lli *llis_va = txd->llis_va;
493 dma_addr_t llis_bus = txd->llis_bus;
494 int index;
495
496 BUG_ON(clli < llis_bus || clli >= llis_bus +
497 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
498
499 /*
500 * Locate the next LLI - as this is an array,
501 * it's simple maths to find.
502 */
503 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
504
505 for (; index < MAX_NUM_TSFR_LLIS; index++) {
506 bytes += get_bytes_in_cctl(llis_va[index].cctl);
507
508 /*
509 * A LLI pointer of 0 terminates the LLI list
510 */
511 if (!llis_va[index].lli)
512 break;
513 }
514 }
515 }
516
517 return bytes;
518 }
519
520 /*
521 * Allocate a physical channel for a virtual channel
522 *
523 * Try to locate a physical channel to be used for this transfer. If all
524 * are taken return NULL and the requester will have to cope by using
525 * some fallback PIO mode or retrying later.
526 */
527 static struct pl08x_phy_chan *
528 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
529 struct pl08x_dma_chan *virt_chan)
530 {
531 struct pl08x_phy_chan *ch = NULL;
532 unsigned long flags;
533 int i;
534
535 for (i = 0; i < pl08x->vd->channels; i++) {
536 ch = &pl08x->phy_chans[i];
537
538 spin_lock_irqsave(&ch->lock, flags);
539
540 if (!ch->locked && !ch->serving) {
541 ch->serving = virt_chan;
542 spin_unlock_irqrestore(&ch->lock, flags);
543 break;
544 }
545
546 spin_unlock_irqrestore(&ch->lock, flags);
547 }
548
549 if (i == pl08x->vd->channels) {
550 /* No physical channel available, cope with it */
551 return NULL;
552 }
553
554 return ch;
555 }
556
557 /* Mark the physical channel as free. Note, this write is atomic. */
558 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
559 struct pl08x_phy_chan *ch)
560 {
561 ch->serving = NULL;
562 }
563
564 /*
565 * Try to allocate a physical channel. When successful, assign it to
566 * this virtual channel, and initiate the next descriptor. The
567 * virtual channel lock must be held at this point.
568 */
569 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
570 {
571 struct pl08x_driver_data *pl08x = plchan->host;
572 struct pl08x_phy_chan *ch;
573
574 ch = pl08x_get_phy_channel(pl08x, plchan);
575 if (!ch) {
576 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
577 plchan->state = PL08X_CHAN_WAITING;
578 return;
579 }
580
581 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
582 ch->id, plchan->name);
583
584 plchan->phychan = ch;
585 plchan->state = PL08X_CHAN_RUNNING;
586 pl08x_start_next_txd(plchan);
587 }
588
589 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
590 struct pl08x_dma_chan *plchan)
591 {
592 struct pl08x_driver_data *pl08x = plchan->host;
593
594 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
595 ch->id, plchan->name);
596
597 /*
598 * We do this without taking the lock; we're really only concerned
599 * about whether this pointer is NULL or not, and we're guaranteed
600 * that this will only be called when it _already_ is non-NULL.
601 */
602 ch->serving = plchan;
603 plchan->phychan = ch;
604 plchan->state = PL08X_CHAN_RUNNING;
605 pl08x_start_next_txd(plchan);
606 }
607
608 /*
609 * Free a physical DMA channel, potentially reallocating it to another
610 * virtual channel if we have any pending.
611 */
612 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
613 {
614 struct pl08x_driver_data *pl08x = plchan->host;
615 struct pl08x_dma_chan *p, *next;
616
617 retry:
618 next = NULL;
619
620 /* Find a waiting virtual channel for the next transfer. */
621 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
622 if (p->state == PL08X_CHAN_WAITING) {
623 next = p;
624 break;
625 }
626
627 if (!next) {
628 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
629 if (p->state == PL08X_CHAN_WAITING) {
630 next = p;
631 break;
632 }
633 }
634
635 /* Ensure that the physical channel is stopped */
636 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
637
638 if (next) {
639 bool success;
640
641 /*
642 * Eww. We know this isn't going to deadlock
643 * but lockdep probably doesn't.
644 */
645 spin_lock(&next->vc.lock);
646 /* Re-check the state now that we have the lock */
647 success = next->state == PL08X_CHAN_WAITING;
648 if (success)
649 pl08x_phy_reassign_start(plchan->phychan, next);
650 spin_unlock(&next->vc.lock);
651
652 /* If the state changed, try to find another channel */
653 if (!success)
654 goto retry;
655 } else {
656 /* No more jobs, so free up the physical channel */
657 pl08x_put_phy_channel(pl08x, plchan->phychan);
658 }
659
660 plchan->phychan = NULL;
661 plchan->state = PL08X_CHAN_IDLE;
662 }
663
664 /*
665 * LLI handling
666 */
667
668 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
669 {
670 switch (coded) {
671 case PL080_WIDTH_8BIT:
672 return 1;
673 case PL080_WIDTH_16BIT:
674 return 2;
675 case PL080_WIDTH_32BIT:
676 return 4;
677 default:
678 break;
679 }
680 BUG();
681 return 0;
682 }
683
684 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
685 size_t tsize)
686 {
687 u32 retbits = cctl;
688
689 /* Remove all src, dst and transfer size bits */
690 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
691 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
692 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
693
694 /* Then set the bits according to the parameters */
695 switch (srcwidth) {
696 case 1:
697 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
698 break;
699 case 2:
700 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
701 break;
702 case 4:
703 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
704 break;
705 default:
706 BUG();
707 break;
708 }
709
710 switch (dstwidth) {
711 case 1:
712 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
713 break;
714 case 2:
715 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
716 break;
717 case 4:
718 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
719 break;
720 default:
721 BUG();
722 break;
723 }
724
725 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
726 return retbits;
727 }
728
729 struct pl08x_lli_build_data {
730 struct pl08x_txd *txd;
731 struct pl08x_bus_data srcbus;
732 struct pl08x_bus_data dstbus;
733 size_t remainder;
734 u32 lli_bus;
735 };
736
737 /*
738 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
739 * victim in case src & dest are not similarly aligned. i.e. If after aligning
740 * masters address with width requirements of transfer (by sending few byte by
741 * byte data), slave is still not aligned, then its width will be reduced to
742 * BYTE.
743 * - prefers the destination bus if both available
744 * - prefers bus with fixed address (i.e. peripheral)
745 */
746 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
747 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
748 {
749 if (!(cctl & PL080_CONTROL_DST_INCR)) {
750 *mbus = &bd->dstbus;
751 *sbus = &bd->srcbus;
752 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
753 *mbus = &bd->srcbus;
754 *sbus = &bd->dstbus;
755 } else {
756 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
757 *mbus = &bd->dstbus;
758 *sbus = &bd->srcbus;
759 } else {
760 *mbus = &bd->srcbus;
761 *sbus = &bd->dstbus;
762 }
763 }
764 }
765
766 /*
767 * Fills in one LLI for a certain transfer descriptor and advance the counter
768 */
769 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
770 int num_llis, int len, u32 cctl)
771 {
772 struct pl08x_lli *llis_va = bd->txd->llis_va;
773 dma_addr_t llis_bus = bd->txd->llis_bus;
774
775 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
776
777 llis_va[num_llis].cctl = cctl;
778 llis_va[num_llis].src = bd->srcbus.addr;
779 llis_va[num_llis].dst = bd->dstbus.addr;
780 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
781 sizeof(struct pl08x_lli);
782 llis_va[num_llis].lli |= bd->lli_bus;
783
784 if (cctl & PL080_CONTROL_SRC_INCR)
785 bd->srcbus.addr += len;
786 if (cctl & PL080_CONTROL_DST_INCR)
787 bd->dstbus.addr += len;
788
789 BUG_ON(bd->remainder < len);
790
791 bd->remainder -= len;
792 }
793
794 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
795 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
796 {
797 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
798 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
799 (*total_bytes) += len;
800 }
801
802 /*
803 * This fills in the table of LLIs for the transfer descriptor
804 * Note that we assume we never have to change the burst sizes
805 * Return 0 for error
806 */
807 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
808 struct pl08x_txd *txd)
809 {
810 struct pl08x_bus_data *mbus, *sbus;
811 struct pl08x_lli_build_data bd;
812 int num_llis = 0;
813 u32 cctl, early_bytes = 0;
814 size_t max_bytes_per_lli, total_bytes;
815 struct pl08x_lli *llis_va;
816 struct pl08x_sg *dsg;
817
818 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
819 if (!txd->llis_va) {
820 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
821 return 0;
822 }
823
824 bd.txd = txd;
825 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
826 cctl = txd->cctl;
827
828 /* Find maximum width of the source bus */
829 bd.srcbus.maxwidth =
830 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
831 PL080_CONTROL_SWIDTH_SHIFT);
832
833 /* Find maximum width of the destination bus */
834 bd.dstbus.maxwidth =
835 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
836 PL080_CONTROL_DWIDTH_SHIFT);
837
838 list_for_each_entry(dsg, &txd->dsg_list, node) {
839 total_bytes = 0;
840 cctl = txd->cctl;
841
842 bd.srcbus.addr = dsg->src_addr;
843 bd.dstbus.addr = dsg->dst_addr;
844 bd.remainder = dsg->len;
845 bd.srcbus.buswidth = bd.srcbus.maxwidth;
846 bd.dstbus.buswidth = bd.dstbus.maxwidth;
847
848 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
849
850 dev_vdbg(&pl08x->adev->dev,
851 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
852 (u64)bd.srcbus.addr,
853 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
854 bd.srcbus.buswidth,
855 (u64)bd.dstbus.addr,
856 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
857 bd.dstbus.buswidth,
858 bd.remainder);
859 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
860 mbus == &bd.srcbus ? "src" : "dst",
861 sbus == &bd.srcbus ? "src" : "dst");
862
863 /*
864 * Zero length is only allowed if all these requirements are
865 * met:
866 * - flow controller is peripheral.
867 * - src.addr is aligned to src.width
868 * - dst.addr is aligned to dst.width
869 *
870 * sg_len == 1 should be true, as there can be two cases here:
871 *
872 * - Memory addresses are contiguous and are not scattered.
873 * Here, Only one sg will be passed by user driver, with
874 * memory address and zero length. We pass this to controller
875 * and after the transfer it will receive the last burst
876 * request from peripheral and so transfer finishes.
877 *
878 * - Memory addresses are scattered and are not contiguous.
879 * Here, Obviously as DMA controller doesn't know when a lli's
880 * transfer gets over, it can't load next lli. So in this
881 * case, there has to be an assumption that only one lli is
882 * supported. Thus, we can't have scattered addresses.
883 */
884 if (!bd.remainder) {
885 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
886 PL080_CONFIG_FLOW_CONTROL_SHIFT;
887 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
888 (fc <= PL080_FLOW_SRC2DST_SRC))) {
889 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
890 __func__);
891 return 0;
892 }
893
894 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
895 !IS_BUS_ALIGNED(&bd.dstbus)) {
896 dev_err(&pl08x->adev->dev,
897 "%s src & dst address must be aligned to src"
898 " & dst width if peripheral is flow controller",
899 __func__);
900 return 0;
901 }
902
903 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
904 bd.dstbus.buswidth, 0);
905 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
906 break;
907 }
908
909 /*
910 * Send byte by byte for following cases
911 * - Less than a bus width available
912 * - until master bus is aligned
913 */
914 if (bd.remainder < mbus->buswidth)
915 early_bytes = bd.remainder;
916 else if (!IS_BUS_ALIGNED(mbus)) {
917 early_bytes = mbus->buswidth -
918 (mbus->addr & (mbus->buswidth - 1));
919 if ((bd.remainder - early_bytes) < mbus->buswidth)
920 early_bytes = bd.remainder;
921 }
922
923 if (early_bytes) {
924 dev_vdbg(&pl08x->adev->dev,
925 "%s byte width LLIs (remain 0x%08x)\n",
926 __func__, bd.remainder);
927 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
928 &total_bytes);
929 }
930
931 if (bd.remainder) {
932 /*
933 * Master now aligned
934 * - if slave is not then we must set its width down
935 */
936 if (!IS_BUS_ALIGNED(sbus)) {
937 dev_dbg(&pl08x->adev->dev,
938 "%s set down bus width to one byte\n",
939 __func__);
940
941 sbus->buswidth = 1;
942 }
943
944 /*
945 * Bytes transferred = tsize * src width, not
946 * MIN(buswidths)
947 */
948 max_bytes_per_lli = bd.srcbus.buswidth *
949 PL080_CONTROL_TRANSFER_SIZE_MASK;
950 dev_vdbg(&pl08x->adev->dev,
951 "%s max bytes per lli = %zu\n",
952 __func__, max_bytes_per_lli);
953
954 /*
955 * Make largest possible LLIs until less than one bus
956 * width left
957 */
958 while (bd.remainder > (mbus->buswidth - 1)) {
959 size_t lli_len, tsize, width;
960
961 /*
962 * If enough left try to send max possible,
963 * otherwise try to send the remainder
964 */
965 lli_len = min(bd.remainder, max_bytes_per_lli);
966
967 /*
968 * Check against maximum bus alignment:
969 * Calculate actual transfer size in relation to
970 * bus width an get a maximum remainder of the
971 * highest bus width - 1
972 */
973 width = max(mbus->buswidth, sbus->buswidth);
974 lli_len = (lli_len / width) * width;
975 tsize = lli_len / bd.srcbus.buswidth;
976
977 dev_vdbg(&pl08x->adev->dev,
978 "%s fill lli with single lli chunk of "
979 "size 0x%08zx (remainder 0x%08zx)\n",
980 __func__, lli_len, bd.remainder);
981
982 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
983 bd.dstbus.buswidth, tsize);
984 pl08x_fill_lli_for_desc(&bd, num_llis++,
985 lli_len, cctl);
986 total_bytes += lli_len;
987 }
988
989 /*
990 * Send any odd bytes
991 */
992 if (bd.remainder) {
993 dev_vdbg(&pl08x->adev->dev,
994 "%s align with boundary, send odd bytes (remain %zu)\n",
995 __func__, bd.remainder);
996 prep_byte_width_lli(&bd, &cctl, bd.remainder,
997 num_llis++, &total_bytes);
998 }
999 }
1000
1001 if (total_bytes != dsg->len) {
1002 dev_err(&pl08x->adev->dev,
1003 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1004 __func__, total_bytes, dsg->len);
1005 return 0;
1006 }
1007
1008 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1009 dev_err(&pl08x->adev->dev,
1010 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1011 __func__, (u32) MAX_NUM_TSFR_LLIS);
1012 return 0;
1013 }
1014 }
1015
1016 llis_va = txd->llis_va;
1017 /* The final LLI terminates the LLI. */
1018 llis_va[num_llis - 1].lli = 0;
1019 /* The final LLI element shall also fire an interrupt. */
1020 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1021
1022 #ifdef VERBOSE_DEBUG
1023 {
1024 int i;
1025
1026 dev_vdbg(&pl08x->adev->dev,
1027 "%-3s %-9s %-10s %-10s %-10s %s\n",
1028 "lli", "", "csrc", "cdst", "clli", "cctl");
1029 for (i = 0; i < num_llis; i++) {
1030 dev_vdbg(&pl08x->adev->dev,
1031 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1032 i, &llis_va[i], llis_va[i].src,
1033 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1034 );
1035 }
1036 }
1037 #endif
1038
1039 return num_llis;
1040 }
1041
1042 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1043 struct pl08x_txd *txd)
1044 {
1045 struct pl08x_sg *dsg, *_dsg;
1046
1047 if (txd->llis_va)
1048 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1049
1050 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1051 list_del(&dsg->node);
1052 kfree(dsg);
1053 }
1054
1055 kfree(txd);
1056 }
1057
1058 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1059 {
1060 struct device *dev = txd->vd.tx.chan->device->dev;
1061 struct pl08x_sg *dsg;
1062
1063 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1064 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1065 list_for_each_entry(dsg, &txd->dsg_list, node)
1066 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1067 DMA_TO_DEVICE);
1068 else {
1069 list_for_each_entry(dsg, &txd->dsg_list, node)
1070 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1071 DMA_TO_DEVICE);
1072 }
1073 }
1074 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1075 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1076 list_for_each_entry(dsg, &txd->dsg_list, node)
1077 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1078 DMA_FROM_DEVICE);
1079 else
1080 list_for_each_entry(dsg, &txd->dsg_list, node)
1081 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1082 DMA_FROM_DEVICE);
1083 }
1084 }
1085
1086 static void pl08x_desc_free(struct virt_dma_desc *vd)
1087 {
1088 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1089 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1090
1091 if (!plchan->slave)
1092 pl08x_unmap_buffers(txd);
1093
1094 if (!txd->done)
1095 pl08x_release_mux(plchan);
1096
1097 pl08x_free_txd(plchan->host, txd);
1098 }
1099
1100 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1101 struct pl08x_dma_chan *plchan)
1102 {
1103 LIST_HEAD(head);
1104
1105 vchan_get_all_descriptors(&plchan->vc, &head);
1106 vchan_dma_desc_free_list(&plchan->vc, &head);
1107 }
1108
1109 /*
1110 * The DMA ENGINE API
1111 */
1112 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1113 {
1114 return 0;
1115 }
1116
1117 static void pl08x_free_chan_resources(struct dma_chan *chan)
1118 {
1119 /* Ensure all queued descriptors are freed */
1120 vchan_free_chan_resources(to_virt_chan(chan));
1121 }
1122
1123 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1124 struct dma_chan *chan, unsigned long flags)
1125 {
1126 struct dma_async_tx_descriptor *retval = NULL;
1127
1128 return retval;
1129 }
1130
1131 /*
1132 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1133 * If slaves are relying on interrupts to signal completion this function
1134 * must not be called with interrupts disabled.
1135 */
1136 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1137 dma_cookie_t cookie, struct dma_tx_state *txstate)
1138 {
1139 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1140 struct virt_dma_desc *vd;
1141 unsigned long flags;
1142 enum dma_status ret;
1143 size_t bytes = 0;
1144
1145 ret = dma_cookie_status(chan, cookie, txstate);
1146 if (ret == DMA_SUCCESS)
1147 return ret;
1148
1149 /*
1150 * There's no point calculating the residue if there's
1151 * no txstate to store the value.
1152 */
1153 if (!txstate) {
1154 if (plchan->state == PL08X_CHAN_PAUSED)
1155 ret = DMA_PAUSED;
1156 return ret;
1157 }
1158
1159 spin_lock_irqsave(&plchan->vc.lock, flags);
1160 ret = dma_cookie_status(chan, cookie, txstate);
1161 if (ret != DMA_SUCCESS) {
1162 vd = vchan_find_desc(&plchan->vc, cookie);
1163 if (vd) {
1164 /* On the issued list, so hasn't been processed yet */
1165 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1166 struct pl08x_sg *dsg;
1167
1168 list_for_each_entry(dsg, &txd->dsg_list, node)
1169 bytes += dsg->len;
1170 } else {
1171 bytes = pl08x_getbytes_chan(plchan);
1172 }
1173 }
1174 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1175
1176 /*
1177 * This cookie not complete yet
1178 * Get number of bytes left in the active transactions and queue
1179 */
1180 dma_set_residue(txstate, bytes);
1181
1182 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1183 ret = DMA_PAUSED;
1184
1185 /* Whether waiting or running, we're in progress */
1186 return ret;
1187 }
1188
1189 /* PrimeCell DMA extension */
1190 struct burst_table {
1191 u32 burstwords;
1192 u32 reg;
1193 };
1194
1195 static const struct burst_table burst_sizes[] = {
1196 {
1197 .burstwords = 256,
1198 .reg = PL080_BSIZE_256,
1199 },
1200 {
1201 .burstwords = 128,
1202 .reg = PL080_BSIZE_128,
1203 },
1204 {
1205 .burstwords = 64,
1206 .reg = PL080_BSIZE_64,
1207 },
1208 {
1209 .burstwords = 32,
1210 .reg = PL080_BSIZE_32,
1211 },
1212 {
1213 .burstwords = 16,
1214 .reg = PL080_BSIZE_16,
1215 },
1216 {
1217 .burstwords = 8,
1218 .reg = PL080_BSIZE_8,
1219 },
1220 {
1221 .burstwords = 4,
1222 .reg = PL080_BSIZE_4,
1223 },
1224 {
1225 .burstwords = 0,
1226 .reg = PL080_BSIZE_1,
1227 },
1228 };
1229
1230 /*
1231 * Given the source and destination available bus masks, select which
1232 * will be routed to each port. We try to have source and destination
1233 * on separate ports, but always respect the allowable settings.
1234 */
1235 static u32 pl08x_select_bus(u8 src, u8 dst)
1236 {
1237 u32 cctl = 0;
1238
1239 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1240 cctl |= PL080_CONTROL_DST_AHB2;
1241 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1242 cctl |= PL080_CONTROL_SRC_AHB2;
1243
1244 return cctl;
1245 }
1246
1247 static u32 pl08x_cctl(u32 cctl)
1248 {
1249 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1250 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1251 PL080_CONTROL_PROT_MASK);
1252
1253 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1254 return cctl | PL080_CONTROL_PROT_SYS;
1255 }
1256
1257 static u32 pl08x_width(enum dma_slave_buswidth width)
1258 {
1259 switch (width) {
1260 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1261 return PL080_WIDTH_8BIT;
1262 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1263 return PL080_WIDTH_16BIT;
1264 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1265 return PL080_WIDTH_32BIT;
1266 default:
1267 return ~0;
1268 }
1269 }
1270
1271 static u32 pl08x_burst(u32 maxburst)
1272 {
1273 int i;
1274
1275 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1276 if (burst_sizes[i].burstwords <= maxburst)
1277 break;
1278
1279 return burst_sizes[i].reg;
1280 }
1281
1282 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1283 enum dma_slave_buswidth addr_width, u32 maxburst)
1284 {
1285 u32 width, burst, cctl = 0;
1286
1287 width = pl08x_width(addr_width);
1288 if (width == ~0)
1289 return ~0;
1290
1291 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1292 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1293
1294 /*
1295 * If this channel will only request single transfers, set this
1296 * down to ONE element. Also select one element if no maxburst
1297 * is specified.
1298 */
1299 if (plchan->cd->single)
1300 maxburst = 1;
1301
1302 burst = pl08x_burst(maxburst);
1303 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1304 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1305
1306 return pl08x_cctl(cctl);
1307 }
1308
1309 static int dma_set_runtime_config(struct dma_chan *chan,
1310 struct dma_slave_config *config)
1311 {
1312 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1313
1314 if (!plchan->slave)
1315 return -EINVAL;
1316
1317 /* Reject definitely invalid configurations */
1318 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1319 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1320 return -EINVAL;
1321
1322 plchan->cfg = *config;
1323
1324 return 0;
1325 }
1326
1327 /*
1328 * Slave transactions callback to the slave device to allow
1329 * synchronization of slave DMA signals with the DMAC enable
1330 */
1331 static void pl08x_issue_pending(struct dma_chan *chan)
1332 {
1333 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1334 unsigned long flags;
1335
1336 spin_lock_irqsave(&plchan->vc.lock, flags);
1337 if (vchan_issue_pending(&plchan->vc)) {
1338 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1339 pl08x_phy_alloc_and_start(plchan);
1340 }
1341 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1342 }
1343
1344 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1345 {
1346 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1347
1348 if (txd) {
1349 INIT_LIST_HEAD(&txd->dsg_list);
1350
1351 /* Always enable error and terminal interrupts */
1352 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1353 PL080_CONFIG_TC_IRQ_MASK;
1354 }
1355 return txd;
1356 }
1357
1358 /*
1359 * Initialize a descriptor to be used by memcpy submit
1360 */
1361 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1362 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1363 size_t len, unsigned long flags)
1364 {
1365 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1366 struct pl08x_driver_data *pl08x = plchan->host;
1367 struct pl08x_txd *txd;
1368 struct pl08x_sg *dsg;
1369 int ret;
1370
1371 txd = pl08x_get_txd(plchan);
1372 if (!txd) {
1373 dev_err(&pl08x->adev->dev,
1374 "%s no memory for descriptor\n", __func__);
1375 return NULL;
1376 }
1377
1378 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1379 if (!dsg) {
1380 pl08x_free_txd(pl08x, txd);
1381 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1382 __func__);
1383 return NULL;
1384 }
1385 list_add_tail(&dsg->node, &txd->dsg_list);
1386
1387 dsg->src_addr = src;
1388 dsg->dst_addr = dest;
1389 dsg->len = len;
1390
1391 /* Set platform data for m2m */
1392 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1393 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1394 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1395
1396 /* Both to be incremented or the code will break */
1397 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1398
1399 if (pl08x->vd->dualmaster)
1400 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1401 pl08x->mem_buses);
1402
1403 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1404 if (!ret) {
1405 pl08x_free_txd(pl08x, txd);
1406 return NULL;
1407 }
1408
1409 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1410 }
1411
1412 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1413 struct dma_chan *chan, struct scatterlist *sgl,
1414 unsigned int sg_len, enum dma_transfer_direction direction,
1415 unsigned long flags, void *context)
1416 {
1417 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1418 struct pl08x_driver_data *pl08x = plchan->host;
1419 struct pl08x_txd *txd;
1420 struct pl08x_sg *dsg;
1421 struct scatterlist *sg;
1422 enum dma_slave_buswidth addr_width;
1423 dma_addr_t slave_addr;
1424 int ret, tmp;
1425 u8 src_buses, dst_buses;
1426 u32 maxburst, cctl;
1427
1428 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1429 __func__, sg_dma_len(sgl), plchan->name);
1430
1431 txd = pl08x_get_txd(plchan);
1432 if (!txd) {
1433 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1434 return NULL;
1435 }
1436
1437 /*
1438 * Set up addresses, the PrimeCell configured address
1439 * will take precedence since this may configure the
1440 * channel target address dynamically at runtime.
1441 */
1442 if (direction == DMA_MEM_TO_DEV) {
1443 cctl = PL080_CONTROL_SRC_INCR;
1444 slave_addr = plchan->cfg.dst_addr;
1445 addr_width = plchan->cfg.dst_addr_width;
1446 maxburst = plchan->cfg.dst_maxburst;
1447 src_buses = pl08x->mem_buses;
1448 dst_buses = plchan->cd->periph_buses;
1449 } else if (direction == DMA_DEV_TO_MEM) {
1450 cctl = PL080_CONTROL_DST_INCR;
1451 slave_addr = plchan->cfg.src_addr;
1452 addr_width = plchan->cfg.src_addr_width;
1453 maxburst = plchan->cfg.src_maxburst;
1454 src_buses = plchan->cd->periph_buses;
1455 dst_buses = pl08x->mem_buses;
1456 } else {
1457 pl08x_free_txd(pl08x, txd);
1458 dev_err(&pl08x->adev->dev,
1459 "%s direction unsupported\n", __func__);
1460 return NULL;
1461 }
1462
1463 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1464 if (cctl == ~0) {
1465 pl08x_free_txd(pl08x, txd);
1466 dev_err(&pl08x->adev->dev,
1467 "DMA slave configuration botched?\n");
1468 return NULL;
1469 }
1470
1471 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1472
1473 if (plchan->cfg.device_fc)
1474 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1475 PL080_FLOW_PER2MEM_PER;
1476 else
1477 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1478 PL080_FLOW_PER2MEM;
1479
1480 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1481
1482 ret = pl08x_request_mux(plchan);
1483 if (ret < 0) {
1484 pl08x_free_txd(pl08x, txd);
1485 dev_dbg(&pl08x->adev->dev,
1486 "unable to mux for transfer on %s due to platform restrictions\n",
1487 plchan->name);
1488 return NULL;
1489 }
1490
1491 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1492 plchan->signal, plchan->name);
1493
1494 /* Assign the flow control signal to this channel */
1495 if (direction == DMA_MEM_TO_DEV)
1496 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1497 else
1498 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1499
1500 for_each_sg(sgl, sg, sg_len, tmp) {
1501 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1502 if (!dsg) {
1503 pl08x_release_mux(plchan);
1504 pl08x_free_txd(pl08x, txd);
1505 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1506 __func__);
1507 return NULL;
1508 }
1509 list_add_tail(&dsg->node, &txd->dsg_list);
1510
1511 dsg->len = sg_dma_len(sg);
1512 if (direction == DMA_MEM_TO_DEV) {
1513 dsg->src_addr = sg_dma_address(sg);
1514 dsg->dst_addr = slave_addr;
1515 } else {
1516 dsg->src_addr = slave_addr;
1517 dsg->dst_addr = sg_dma_address(sg);
1518 }
1519 }
1520
1521 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1522 if (!ret) {
1523 pl08x_release_mux(plchan);
1524 pl08x_free_txd(pl08x, txd);
1525 return NULL;
1526 }
1527
1528 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1529 }
1530
1531 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1532 unsigned long arg)
1533 {
1534 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1535 struct pl08x_driver_data *pl08x = plchan->host;
1536 unsigned long flags;
1537 int ret = 0;
1538
1539 /* Controls applicable to inactive channels */
1540 if (cmd == DMA_SLAVE_CONFIG) {
1541 return dma_set_runtime_config(chan,
1542 (struct dma_slave_config *)arg);
1543 }
1544
1545 /*
1546 * Anything succeeds on channels with no physical allocation and
1547 * no queued transfers.
1548 */
1549 spin_lock_irqsave(&plchan->vc.lock, flags);
1550 if (!plchan->phychan && !plchan->at) {
1551 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1552 return 0;
1553 }
1554
1555 switch (cmd) {
1556 case DMA_TERMINATE_ALL:
1557 plchan->state = PL08X_CHAN_IDLE;
1558
1559 if (plchan->phychan) {
1560 /*
1561 * Mark physical channel as free and free any slave
1562 * signal
1563 */
1564 pl08x_phy_free(plchan);
1565 }
1566 /* Dequeue jobs and free LLIs */
1567 if (plchan->at) {
1568 pl08x_desc_free(&plchan->at->vd);
1569 plchan->at = NULL;
1570 }
1571 /* Dequeue jobs not yet fired as well */
1572 pl08x_free_txd_list(pl08x, plchan);
1573 break;
1574 case DMA_PAUSE:
1575 pl08x_pause_phy_chan(plchan->phychan);
1576 plchan->state = PL08X_CHAN_PAUSED;
1577 break;
1578 case DMA_RESUME:
1579 pl08x_resume_phy_chan(plchan->phychan);
1580 plchan->state = PL08X_CHAN_RUNNING;
1581 break;
1582 default:
1583 /* Unknown command */
1584 ret = -ENXIO;
1585 break;
1586 }
1587
1588 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1589
1590 return ret;
1591 }
1592
1593 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1594 {
1595 struct pl08x_dma_chan *plchan;
1596 char *name = chan_id;
1597
1598 /* Reject channels for devices not bound to this driver */
1599 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1600 return false;
1601
1602 plchan = to_pl08x_chan(chan);
1603
1604 /* Check that the channel is not taken! */
1605 if (!strcmp(plchan->name, name))
1606 return true;
1607
1608 return false;
1609 }
1610
1611 /*
1612 * Just check that the device is there and active
1613 * TODO: turn this bit on/off depending on the number of physical channels
1614 * actually used, if it is zero... well shut it off. That will save some
1615 * power. Cut the clock at the same time.
1616 */
1617 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1618 {
1619 /* The Nomadik variant does not have the config register */
1620 if (pl08x->vd->nomadik)
1621 return;
1622 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1623 }
1624
1625 static irqreturn_t pl08x_irq(int irq, void *dev)
1626 {
1627 struct pl08x_driver_data *pl08x = dev;
1628 u32 mask = 0, err, tc, i;
1629
1630 /* check & clear - ERR & TC interrupts */
1631 err = readl(pl08x->base + PL080_ERR_STATUS);
1632 if (err) {
1633 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1634 __func__, err);
1635 writel(err, pl08x->base + PL080_ERR_CLEAR);
1636 }
1637 tc = readl(pl08x->base + PL080_TC_STATUS);
1638 if (tc)
1639 writel(tc, pl08x->base + PL080_TC_CLEAR);
1640
1641 if (!err && !tc)
1642 return IRQ_NONE;
1643
1644 for (i = 0; i < pl08x->vd->channels; i++) {
1645 if (((1 << i) & err) || ((1 << i) & tc)) {
1646 /* Locate physical channel */
1647 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1648 struct pl08x_dma_chan *plchan = phychan->serving;
1649 struct pl08x_txd *tx;
1650
1651 if (!plchan) {
1652 dev_err(&pl08x->adev->dev,
1653 "%s Error TC interrupt on unused channel: 0x%08x\n",
1654 __func__, i);
1655 continue;
1656 }
1657
1658 spin_lock(&plchan->vc.lock);
1659 tx = plchan->at;
1660 if (tx) {
1661 plchan->at = NULL;
1662 /*
1663 * This descriptor is done, release its mux
1664 * reservation.
1665 */
1666 pl08x_release_mux(plchan);
1667 tx->done = true;
1668 vchan_cookie_complete(&tx->vd);
1669
1670 /*
1671 * And start the next descriptor (if any),
1672 * otherwise free this channel.
1673 */
1674 if (vchan_next_desc(&plchan->vc))
1675 pl08x_start_next_txd(plchan);
1676 else
1677 pl08x_phy_free(plchan);
1678 }
1679 spin_unlock(&plchan->vc.lock);
1680
1681 mask |= (1 << i);
1682 }
1683 }
1684
1685 return mask ? IRQ_HANDLED : IRQ_NONE;
1686 }
1687
1688 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1689 {
1690 chan->slave = true;
1691 chan->name = chan->cd->bus_id;
1692 chan->cfg.src_addr = chan->cd->addr;
1693 chan->cfg.dst_addr = chan->cd->addr;
1694 }
1695
1696 /*
1697 * Initialise the DMAC memcpy/slave channels.
1698 * Make a local wrapper to hold required data
1699 */
1700 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1701 struct dma_device *dmadev, unsigned int channels, bool slave)
1702 {
1703 struct pl08x_dma_chan *chan;
1704 int i;
1705
1706 INIT_LIST_HEAD(&dmadev->channels);
1707
1708 /*
1709 * Register as many many memcpy as we have physical channels,
1710 * we won't always be able to use all but the code will have
1711 * to cope with that situation.
1712 */
1713 for (i = 0; i < channels; i++) {
1714 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1715 if (!chan) {
1716 dev_err(&pl08x->adev->dev,
1717 "%s no memory for channel\n", __func__);
1718 return -ENOMEM;
1719 }
1720
1721 chan->host = pl08x;
1722 chan->state = PL08X_CHAN_IDLE;
1723 chan->signal = -1;
1724
1725 if (slave) {
1726 chan->cd = &pl08x->pd->slave_channels[i];
1727 pl08x_dma_slave_init(chan);
1728 } else {
1729 chan->cd = &pl08x->pd->memcpy_channel;
1730 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1731 if (!chan->name) {
1732 kfree(chan);
1733 return -ENOMEM;
1734 }
1735 }
1736 dev_dbg(&pl08x->adev->dev,
1737 "initialize virtual channel \"%s\"\n",
1738 chan->name);
1739
1740 chan->vc.desc_free = pl08x_desc_free;
1741 vchan_init(&chan->vc, dmadev);
1742 }
1743 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1744 i, slave ? "slave" : "memcpy");
1745 return i;
1746 }
1747
1748 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1749 {
1750 struct pl08x_dma_chan *chan = NULL;
1751 struct pl08x_dma_chan *next;
1752
1753 list_for_each_entry_safe(chan,
1754 next, &dmadev->channels, vc.chan.device_node) {
1755 list_del(&chan->vc.chan.device_node);
1756 kfree(chan);
1757 }
1758 }
1759
1760 #ifdef CONFIG_DEBUG_FS
1761 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1762 {
1763 switch (state) {
1764 case PL08X_CHAN_IDLE:
1765 return "idle";
1766 case PL08X_CHAN_RUNNING:
1767 return "running";
1768 case PL08X_CHAN_PAUSED:
1769 return "paused";
1770 case PL08X_CHAN_WAITING:
1771 return "waiting";
1772 default:
1773 break;
1774 }
1775 return "UNKNOWN STATE";
1776 }
1777
1778 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1779 {
1780 struct pl08x_driver_data *pl08x = s->private;
1781 struct pl08x_dma_chan *chan;
1782 struct pl08x_phy_chan *ch;
1783 unsigned long flags;
1784 int i;
1785
1786 seq_printf(s, "PL08x physical channels:\n");
1787 seq_printf(s, "CHANNEL:\tUSER:\n");
1788 seq_printf(s, "--------\t-----\n");
1789 for (i = 0; i < pl08x->vd->channels; i++) {
1790 struct pl08x_dma_chan *virt_chan;
1791
1792 ch = &pl08x->phy_chans[i];
1793
1794 spin_lock_irqsave(&ch->lock, flags);
1795 virt_chan = ch->serving;
1796
1797 seq_printf(s, "%d\t\t%s%s\n",
1798 ch->id,
1799 virt_chan ? virt_chan->name : "(none)",
1800 ch->locked ? " LOCKED" : "");
1801
1802 spin_unlock_irqrestore(&ch->lock, flags);
1803 }
1804
1805 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1806 seq_printf(s, "CHANNEL:\tSTATE:\n");
1807 seq_printf(s, "--------\t------\n");
1808 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1809 seq_printf(s, "%s\t\t%s\n", chan->name,
1810 pl08x_state_str(chan->state));
1811 }
1812
1813 seq_printf(s, "\nPL08x virtual slave channels:\n");
1814 seq_printf(s, "CHANNEL:\tSTATE:\n");
1815 seq_printf(s, "--------\t------\n");
1816 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1817 seq_printf(s, "%s\t\t%s\n", chan->name,
1818 pl08x_state_str(chan->state));
1819 }
1820
1821 return 0;
1822 }
1823
1824 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1825 {
1826 return single_open(file, pl08x_debugfs_show, inode->i_private);
1827 }
1828
1829 static const struct file_operations pl08x_debugfs_operations = {
1830 .open = pl08x_debugfs_open,
1831 .read = seq_read,
1832 .llseek = seq_lseek,
1833 .release = single_release,
1834 };
1835
1836 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1837 {
1838 /* Expose a simple debugfs interface to view all clocks */
1839 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1840 S_IFREG | S_IRUGO, NULL, pl08x,
1841 &pl08x_debugfs_operations);
1842 }
1843
1844 #else
1845 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1846 {
1847 }
1848 #endif
1849
1850 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1851 {
1852 struct pl08x_driver_data *pl08x;
1853 const struct vendor_data *vd = id->data;
1854 int ret = 0;
1855 int i;
1856
1857 ret = amba_request_regions(adev, NULL);
1858 if (ret)
1859 return ret;
1860
1861 /* Create the driver state holder */
1862 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1863 if (!pl08x) {
1864 ret = -ENOMEM;
1865 goto out_no_pl08x;
1866 }
1867
1868 /* Initialize memcpy engine */
1869 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1870 pl08x->memcpy.dev = &adev->dev;
1871 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1872 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1873 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1874 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1875 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1876 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1877 pl08x->memcpy.device_control = pl08x_control;
1878
1879 /* Initialize slave engine */
1880 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1881 pl08x->slave.dev = &adev->dev;
1882 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1883 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1884 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1885 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1886 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1887 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1888 pl08x->slave.device_control = pl08x_control;
1889
1890 /* Get the platform data */
1891 pl08x->pd = dev_get_platdata(&adev->dev);
1892 if (!pl08x->pd) {
1893 dev_err(&adev->dev, "no platform data supplied\n");
1894 ret = -EINVAL;
1895 goto out_no_platdata;
1896 }
1897
1898 /* Assign useful pointers to the driver state */
1899 pl08x->adev = adev;
1900 pl08x->vd = vd;
1901
1902 /* By default, AHB1 only. If dualmaster, from platform */
1903 pl08x->lli_buses = PL08X_AHB1;
1904 pl08x->mem_buses = PL08X_AHB1;
1905 if (pl08x->vd->dualmaster) {
1906 pl08x->lli_buses = pl08x->pd->lli_buses;
1907 pl08x->mem_buses = pl08x->pd->mem_buses;
1908 }
1909
1910 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1911 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1912 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1913 if (!pl08x->pool) {
1914 ret = -ENOMEM;
1915 goto out_no_lli_pool;
1916 }
1917
1918 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1919 if (!pl08x->base) {
1920 ret = -ENOMEM;
1921 goto out_no_ioremap;
1922 }
1923
1924 /* Turn on the PL08x */
1925 pl08x_ensure_on(pl08x);
1926
1927 /* Attach the interrupt handler */
1928 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1929 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1930
1931 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1932 DRIVER_NAME, pl08x);
1933 if (ret) {
1934 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1935 __func__, adev->irq[0]);
1936 goto out_no_irq;
1937 }
1938
1939 /* Initialize physical channels */
1940 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1941 GFP_KERNEL);
1942 if (!pl08x->phy_chans) {
1943 dev_err(&adev->dev, "%s failed to allocate "
1944 "physical channel holders\n",
1945 __func__);
1946 ret = -ENOMEM;
1947 goto out_no_phychans;
1948 }
1949
1950 for (i = 0; i < vd->channels; i++) {
1951 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1952
1953 ch->id = i;
1954 ch->base = pl08x->base + PL080_Cx_BASE(i);
1955 spin_lock_init(&ch->lock);
1956
1957 /*
1958 * Nomadik variants can have channels that are locked
1959 * down for the secure world only. Lock up these channels
1960 * by perpetually serving a dummy virtual channel.
1961 */
1962 if (vd->nomadik) {
1963 u32 val;
1964
1965 val = readl(ch->base + PL080_CH_CONFIG);
1966 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1967 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1968 ch->locked = true;
1969 }
1970 }
1971
1972 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1973 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1974 }
1975
1976 /* Register as many memcpy channels as there are physical channels */
1977 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1978 pl08x->vd->channels, false);
1979 if (ret <= 0) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to enumerate memcpy channels - %d\n",
1982 __func__, ret);
1983 goto out_no_memcpy;
1984 }
1985 pl08x->memcpy.chancnt = ret;
1986
1987 /* Register slave channels */
1988 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1989 pl08x->pd->num_slave_channels, true);
1990 if (ret <= 0) {
1991 dev_warn(&pl08x->adev->dev,
1992 "%s failed to enumerate slave channels - %d\n",
1993 __func__, ret);
1994 goto out_no_slave;
1995 }
1996 pl08x->slave.chancnt = ret;
1997
1998 ret = dma_async_device_register(&pl08x->memcpy);
1999 if (ret) {
2000 dev_warn(&pl08x->adev->dev,
2001 "%s failed to register memcpy as an async device - %d\n",
2002 __func__, ret);
2003 goto out_no_memcpy_reg;
2004 }
2005
2006 ret = dma_async_device_register(&pl08x->slave);
2007 if (ret) {
2008 dev_warn(&pl08x->adev->dev,
2009 "%s failed to register slave as an async device - %d\n",
2010 __func__, ret);
2011 goto out_no_slave_reg;
2012 }
2013
2014 amba_set_drvdata(adev, pl08x);
2015 init_pl08x_debugfs(pl08x);
2016 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2017 amba_part(adev), amba_rev(adev),
2018 (unsigned long long)adev->res.start, adev->irq[0]);
2019
2020 return 0;
2021
2022 out_no_slave_reg:
2023 dma_async_device_unregister(&pl08x->memcpy);
2024 out_no_memcpy_reg:
2025 pl08x_free_virtual_channels(&pl08x->slave);
2026 out_no_slave:
2027 pl08x_free_virtual_channels(&pl08x->memcpy);
2028 out_no_memcpy:
2029 kfree(pl08x->phy_chans);
2030 out_no_phychans:
2031 free_irq(adev->irq[0], pl08x);
2032 out_no_irq:
2033 iounmap(pl08x->base);
2034 out_no_ioremap:
2035 dma_pool_destroy(pl08x->pool);
2036 out_no_lli_pool:
2037 out_no_platdata:
2038 kfree(pl08x);
2039 out_no_pl08x:
2040 amba_release_regions(adev);
2041 return ret;
2042 }
2043
2044 /* PL080 has 8 channels and the PL080 have just 2 */
2045 static struct vendor_data vendor_pl080 = {
2046 .channels = 8,
2047 .dualmaster = true,
2048 };
2049
2050 static struct vendor_data vendor_nomadik = {
2051 .channels = 8,
2052 .dualmaster = true,
2053 .nomadik = true,
2054 };
2055
2056 static struct vendor_data vendor_pl081 = {
2057 .channels = 2,
2058 .dualmaster = false,
2059 };
2060
2061 static struct amba_id pl08x_ids[] = {
2062 /* PL080 */
2063 {
2064 .id = 0x00041080,
2065 .mask = 0x000fffff,
2066 .data = &vendor_pl080,
2067 },
2068 /* PL081 */
2069 {
2070 .id = 0x00041081,
2071 .mask = 0x000fffff,
2072 .data = &vendor_pl081,
2073 },
2074 /* Nomadik 8815 PL080 variant */
2075 {
2076 .id = 0x00280080,
2077 .mask = 0x00ffffff,
2078 .data = &vendor_nomadik,
2079 },
2080 { 0, 0 },
2081 };
2082
2083 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2084
2085 static struct amba_driver pl08x_amba_driver = {
2086 .drv.name = DRIVER_NAME,
2087 .id_table = pl08x_ids,
2088 .probe = pl08x_probe,
2089 };
2090
2091 static int __init pl08x_init(void)
2092 {
2093 int retval;
2094 retval = amba_driver_register(&pl08x_amba_driver);
2095 if (retval)
2096 printk(KERN_WARNING DRIVER_NAME
2097 "failed to register as an AMBA device (%d)\n",
2098 retval);
2099 return retval;
2100 }
2101 subsys_initcall(pl08x_init);