]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/dma/amba-pl08x.c
Merge branch 'for-linus' into for-next
[mirror_ubuntu-hirsute-kernel.git] / drivers / dma / amba-pl08x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2006 ARM Ltd.
4 * Copyright (c) 2010 ST-Ericsson SA
5 * Copyirght (c) 2017 Linaro Ltd.
6 *
7 * Author: Peter Pearse <peter.pearse@arm.com>
8 * Author: Linus Walleij <linus.walleij@linaro.org>
9 *
10 * Documentation: ARM DDI 0196G == PL080
11 * Documentation: ARM DDI 0218E == PL081
12 * Documentation: S3C6410 User's Manual == PL080S
13 *
14 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
15 * channel.
16 *
17 * The PL080 has 8 channels available for simultaneous use, and the PL081
18 * has only two channels. So on these DMA controllers the number of channels
19 * and the number of incoming DMA signals are two totally different things.
20 * It is usually not possible to theoretically handle all physical signals,
21 * so a multiplexing scheme with possible denial of use is necessary.
22 *
23 * The PL080 has a dual bus master, PL081 has a single master.
24 *
25 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
26 * It differs in following aspects:
27 * - CH_CONFIG register at different offset,
28 * - separate CH_CONTROL2 register for transfer size,
29 * - bigger maximum transfer size,
30 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
31 * - no support for peripheral flow control.
32 *
33 * Memory to peripheral transfer may be visualized as
34 * Get data from memory to DMAC
35 * Until no data left
36 * On burst request from peripheral
37 * Destination burst from DMAC to peripheral
38 * Clear burst request
39 * Raise terminal count interrupt
40 *
41 * For peripherals with a FIFO:
42 * Source burst size == half the depth of the peripheral FIFO
43 * Destination burst size == the depth of the peripheral FIFO
44 *
45 * (Bursts are irrelevant for mem to mem transfers - there are no burst
46 * signals, the DMA controller will simply facilitate its AHB master.)
47 *
48 * ASSUMES default (little) endianness for DMA transfers
49 *
50 * The PL08x has two flow control settings:
51 * - DMAC flow control: the transfer size defines the number of transfers
52 * which occur for the current LLI entry, and the DMAC raises TC at the
53 * end of every LLI entry. Observed behaviour shows the DMAC listening
54 * to both the BREQ and SREQ signals (contrary to documented),
55 * transferring data if either is active. The LBREQ and LSREQ signals
56 * are ignored.
57 *
58 * - Peripheral flow control: the transfer size is ignored (and should be
59 * zero). The data is transferred from the current LLI entry, until
60 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
61 * will then move to the next LLI entry. Unsupported by PL080S.
62 */
63 #include <linux/amba/bus.h>
64 #include <linux/amba/pl08x.h>
65 #include <linux/debugfs.h>
66 #include <linux/delay.h>
67 #include <linux/device.h>
68 #include <linux/dmaengine.h>
69 #include <linux/dmapool.h>
70 #include <linux/dma-mapping.h>
71 #include <linux/export.h>
72 #include <linux/init.h>
73 #include <linux/interrupt.h>
74 #include <linux/module.h>
75 #include <linux/of.h>
76 #include <linux/of_dma.h>
77 #include <linux/pm_runtime.h>
78 #include <linux/seq_file.h>
79 #include <linux/slab.h>
80 #include <linux/amba/pl080.h>
81
82 #include "dmaengine.h"
83 #include "virt-dma.h"
84
85 #define DRIVER_NAME "pl08xdmac"
86
87 #define PL80X_DMA_BUSWIDTHS \
88 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
89 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
90 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
91 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @config_offset: offset to the configuration register
99 * @channels: the number of channels available in this variant
100 * @signals: the number of request signals available from the hardware
101 * @dualmaster: whether this version supports dual AHB masters or not.
102 * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
103 * channels have Nomadik security extension bits that need to be checked
104 * for permission before use and some registers are missing
105 * @pl080s: whether this variant is a Samsung PL080S, which has separate
106 * register and LLI word for transfer size.
107 * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
108 * @max_transfer_size: the maximum single element transfer size for this
109 * PL08x variant.
110 */
111 struct vendor_data {
112 u8 config_offset;
113 u8 channels;
114 u8 signals;
115 bool dualmaster;
116 bool nomadik;
117 bool pl080s;
118 bool ftdmac020;
119 u32 max_transfer_size;
120 };
121
122 /**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133 };
134
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137 /**
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @base: memory base address for this physical channel
141 * @reg_config: configuration address for this physical channel
142 * @reg_control: control address for this physical channel
143 * @reg_src: transfer source address register
144 * @reg_dst: transfer destination address register
145 * @reg_lli: transfer LLI address register
146 * @reg_busy: if the variant has a special per-channel busy register,
147 * this contains a pointer to it
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
150 * channel
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 * world
153 * @ftdmac020: channel is on a FTDMAC020
154 * @pl080s: channel is on a PL08s
155 */
156 struct pl08x_phy_chan {
157 unsigned int id;
158 void __iomem *base;
159 void __iomem *reg_config;
160 void __iomem *reg_control;
161 void __iomem *reg_src;
162 void __iomem *reg_dst;
163 void __iomem *reg_lli;
164 void __iomem *reg_busy;
165 spinlock_t lock;
166 struct pl08x_dma_chan *serving;
167 bool locked;
168 bool ftdmac020;
169 bool pl080s;
170 };
171
172 /**
173 * struct pl08x_sg - structure containing data per sg
174 * @src_addr: src address of sg
175 * @dst_addr: dst address of sg
176 * @len: transfer len in bytes
177 * @node: node for txd's dsg_list
178 */
179 struct pl08x_sg {
180 dma_addr_t src_addr;
181 dma_addr_t dst_addr;
182 size_t len;
183 struct list_head node;
184 };
185
186 /**
187 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
188 * @vd: virtual DMA descriptor
189 * @dsg_list: list of children sg's
190 * @llis_bus: DMA memory address (physical) start for the LLIs
191 * @llis_va: virtual memory address start for the LLIs
192 * @cctl: control reg values for current txd
193 * @ccfg: config reg values for current txd
194 * @done: this marks completed descriptors, which should not have their
195 * mux released.
196 * @cyclic: indicate cyclic transfers
197 */
198 struct pl08x_txd {
199 struct virt_dma_desc vd;
200 struct list_head dsg_list;
201 dma_addr_t llis_bus;
202 u32 *llis_va;
203 /* Default cctl value for LLIs */
204 u32 cctl;
205 /*
206 * Settings to be put into the physical channel when we
207 * trigger this txd. Other registers are in llis_va[0].
208 */
209 u32 ccfg;
210 bool done;
211 bool cyclic;
212 };
213
214 /**
215 * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
216 * states
217 * @PL08X_CHAN_IDLE: the channel is idle
218 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
219 * channel and is running a transfer on it
220 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
221 * channel, but the transfer is currently paused
222 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
223 * channel to become available (only pertains to memcpy channels)
224 */
225 enum pl08x_dma_chan_state {
226 PL08X_CHAN_IDLE,
227 PL08X_CHAN_RUNNING,
228 PL08X_CHAN_PAUSED,
229 PL08X_CHAN_WAITING,
230 };
231
232 /**
233 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
234 * @vc: wrappped virtual channel
235 * @phychan: the physical channel utilized by this channel, if there is one
236 * @name: name of channel
237 * @cd: channel platform data
238 * @cfg: slave configuration
239 * @at: active transaction on this channel
240 * @host: a pointer to the host (internal use)
241 * @state: whether the channel is idle, paused, running etc
242 * @slave: whether this channel is a device (slave) or for memcpy
243 * @signal: the physical DMA request signal which this channel is using
244 * @mux_use: count of descriptors using this DMA request signal setting
245 * @waiting_at: time in jiffies when this channel moved to waiting state
246 */
247 struct pl08x_dma_chan {
248 struct virt_dma_chan vc;
249 struct pl08x_phy_chan *phychan;
250 const char *name;
251 struct pl08x_channel_data *cd;
252 struct dma_slave_config cfg;
253 struct pl08x_txd *at;
254 struct pl08x_driver_data *host;
255 enum pl08x_dma_chan_state state;
256 bool slave;
257 int signal;
258 unsigned mux_use;
259 unsigned long waiting_at;
260 };
261
262 /**
263 * struct pl08x_driver_data - the local state holder for the PL08x
264 * @slave: optional slave engine for this instance
265 * @memcpy: memcpy engine for this instance
266 * @has_slave: the PL08x has a slave engine (routed signals)
267 * @base: virtual memory base (remapped) for the PL08x
268 * @adev: the corresponding AMBA (PrimeCell) bus entry
269 * @vd: vendor data for this PL08x variant
270 * @pd: platform data passed in from the platform/machine
271 * @phy_chans: array of data for the physical channels
272 * @pool: a pool for the LLI descriptors
273 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
274 * fetches
275 * @mem_buses: set to indicate memory transfers on AHB2.
276 * @lli_words: how many words are used in each LLI item for this variant
277 */
278 struct pl08x_driver_data {
279 struct dma_device slave;
280 struct dma_device memcpy;
281 bool has_slave;
282 void __iomem *base;
283 struct amba_device *adev;
284 const struct vendor_data *vd;
285 struct pl08x_platform_data *pd;
286 struct pl08x_phy_chan *phy_chans;
287 struct dma_pool *pool;
288 u8 lli_buses;
289 u8 mem_buses;
290 u8 lli_words;
291 };
292
293 /*
294 * PL08X specific defines
295 */
296
297 /* The order of words in an LLI. */
298 #define PL080_LLI_SRC 0
299 #define PL080_LLI_DST 1
300 #define PL080_LLI_LLI 2
301 #define PL080_LLI_CCTL 3
302 #define PL080S_LLI_CCTL2 4
303
304 /* Total words in an LLI. */
305 #define PL080_LLI_WORDS 4
306 #define PL080S_LLI_WORDS 8
307
308 /*
309 * Number of LLIs in each LLI buffer allocated for one transfer
310 * (maximum times we call dma_pool_alloc on this pool without freeing)
311 */
312 #define MAX_NUM_TSFR_LLIS 512
313 #define PL08X_ALIGN 8
314
315 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
316 {
317 return container_of(chan, struct pl08x_dma_chan, vc.chan);
318 }
319
320 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
321 {
322 return container_of(tx, struct pl08x_txd, vd.tx);
323 }
324
325 /*
326 * Mux handling.
327 *
328 * This gives us the DMA request input to the PL08x primecell which the
329 * peripheral described by the channel data will be routed to, possibly
330 * via a board/SoC specific external MUX. One important point to note
331 * here is that this does not depend on the physical channel.
332 */
333 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
334 {
335 const struct pl08x_platform_data *pd = plchan->host->pd;
336 int ret;
337
338 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
339 ret = pd->get_xfer_signal(plchan->cd);
340 if (ret < 0) {
341 plchan->mux_use = 0;
342 return ret;
343 }
344
345 plchan->signal = ret;
346 }
347 return 0;
348 }
349
350 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
351 {
352 const struct pl08x_platform_data *pd = plchan->host->pd;
353
354 if (plchan->signal >= 0) {
355 WARN_ON(plchan->mux_use == 0);
356
357 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
358 pd->put_xfer_signal(plchan->cd, plchan->signal);
359 plchan->signal = -1;
360 }
361 }
362 }
363
364 /*
365 * Physical channel handling
366 */
367
368 /* Whether a certain channel is busy or not */
369 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
370 {
371 unsigned int val;
372
373 /* If we have a special busy register, take a shortcut */
374 if (ch->reg_busy) {
375 val = readl(ch->reg_busy);
376 return !!(val & BIT(ch->id));
377 }
378 val = readl(ch->reg_config);
379 return val & PL080_CONFIG_ACTIVE;
380 }
381
382 /*
383 * pl08x_write_lli() - Write an LLI into the DMA controller.
384 *
385 * The PL08x derivatives support linked lists, but the first item of the
386 * list containing the source, destination, control word and next LLI is
387 * ignored. Instead the driver has to write those values directly into the
388 * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
389 * register need to be set up for the first transfer.
390 */
391 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
392 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
393 {
394 if (pl08x->vd->pl080s)
395 dev_vdbg(&pl08x->adev->dev,
396 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
397 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
398 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
399 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
400 lli[PL080S_LLI_CCTL2], ccfg);
401 else
402 dev_vdbg(&pl08x->adev->dev,
403 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
404 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
405 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
406 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
407
408 writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
409 writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
410 writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
411
412 /*
413 * The FTMAC020 has a different layout in the CCTL word of the LLI
414 * and the CCTL register which is split in CSR and SIZE registers.
415 * Convert the LLI item CCTL into the proper values to write into
416 * the CSR and SIZE registers.
417 */
418 if (phychan->ftdmac020) {
419 u32 llictl = lli[PL080_LLI_CCTL];
420 u32 val = 0;
421
422 /* Write the transfer size (12 bits) to the size register */
423 writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
424 phychan->base + FTDMAC020_CH_SIZE);
425 /*
426 * Then write the control bits 28..16 to the control register
427 * by shuffleing the bits around to where they are in the
428 * main register. The mapping is as follows:
429 * Bit 28: TC_MSK - mask on all except last LLI
430 * Bit 27..25: SRC_WIDTH
431 * Bit 24..22: DST_WIDTH
432 * Bit 21..20: SRCAD_CTRL
433 * Bit 19..17: DSTAD_CTRL
434 * Bit 17: SRC_SEL
435 * Bit 16: DST_SEL
436 */
437 if (llictl & FTDMAC020_LLI_TC_MSK)
438 val |= FTDMAC020_CH_CSR_TC_MSK;
439 val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
440 (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
441 FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
442 val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
443 (FTDMAC020_LLI_DST_WIDTH_SHIFT -
444 FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
445 val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
446 (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
447 FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
448 val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
449 (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
450 FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
451 if (llictl & FTDMAC020_LLI_SRC_SEL)
452 val |= FTDMAC020_CH_CSR_SRC_SEL;
453 if (llictl & FTDMAC020_LLI_DST_SEL)
454 val |= FTDMAC020_CH_CSR_DST_SEL;
455
456 /*
457 * Set up the bits that exist in the CSR but are not
458 * part the LLI, i.e. only gets written to the control
459 * register right here.
460 *
461 * FIXME: do not just handle memcpy, also handle slave DMA.
462 */
463 switch (pl08x->pd->memcpy_burst_size) {
464 default:
465 case PL08X_BURST_SZ_1:
466 val |= PL080_BSIZE_1 <<
467 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
468 break;
469 case PL08X_BURST_SZ_4:
470 val |= PL080_BSIZE_4 <<
471 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
472 break;
473 case PL08X_BURST_SZ_8:
474 val |= PL080_BSIZE_8 <<
475 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
476 break;
477 case PL08X_BURST_SZ_16:
478 val |= PL080_BSIZE_16 <<
479 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
480 break;
481 case PL08X_BURST_SZ_32:
482 val |= PL080_BSIZE_32 <<
483 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
484 break;
485 case PL08X_BURST_SZ_64:
486 val |= PL080_BSIZE_64 <<
487 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
488 break;
489 case PL08X_BURST_SZ_128:
490 val |= PL080_BSIZE_128 <<
491 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
492 break;
493 case PL08X_BURST_SZ_256:
494 val |= PL080_BSIZE_256 <<
495 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
496 break;
497 }
498
499 /* Protection flags */
500 if (pl08x->pd->memcpy_prot_buff)
501 val |= FTDMAC020_CH_CSR_PROT2;
502 if (pl08x->pd->memcpy_prot_cache)
503 val |= FTDMAC020_CH_CSR_PROT3;
504 /* We are the kernel, so we are in privileged mode */
505 val |= FTDMAC020_CH_CSR_PROT1;
506
507 writel_relaxed(val, phychan->reg_control);
508 } else {
509 /* Bits are just identical */
510 writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
511 }
512
513 /* Second control word on the PL080s */
514 if (pl08x->vd->pl080s)
515 writel_relaxed(lli[PL080S_LLI_CCTL2],
516 phychan->base + PL080S_CH_CONTROL2);
517
518 writel(ccfg, phychan->reg_config);
519 }
520
521 /*
522 * Set the initial DMA register values i.e. those for the first LLI
523 * The next LLI pointer and the configuration interrupt bit have
524 * been set when the LLIs were constructed. Poke them into the hardware
525 * and start the transfer.
526 */
527 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
528 {
529 struct pl08x_driver_data *pl08x = plchan->host;
530 struct pl08x_phy_chan *phychan = plchan->phychan;
531 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
532 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
533 u32 val;
534
535 list_del(&txd->vd.node);
536
537 plchan->at = txd;
538
539 /* Wait for channel inactive */
540 while (pl08x_phy_channel_busy(phychan))
541 cpu_relax();
542
543 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
544
545 /* Enable the DMA channel */
546 /* Do not access config register until channel shows as disabled */
547 while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
548 cpu_relax();
549
550 /* Do not access config register until channel shows as inactive */
551 if (phychan->ftdmac020) {
552 val = readl(phychan->reg_config);
553 while (val & FTDMAC020_CH_CFG_BUSY)
554 val = readl(phychan->reg_config);
555
556 val = readl(phychan->reg_control);
557 while (val & FTDMAC020_CH_CSR_EN)
558 val = readl(phychan->reg_control);
559
560 writel(val | FTDMAC020_CH_CSR_EN,
561 phychan->reg_control);
562 } else {
563 val = readl(phychan->reg_config);
564 while ((val & PL080_CONFIG_ACTIVE) ||
565 (val & PL080_CONFIG_ENABLE))
566 val = readl(phychan->reg_config);
567
568 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
569 }
570 }
571
572 /*
573 * Pause the channel by setting the HALT bit.
574 *
575 * For M->P transfers, pause the DMAC first and then stop the peripheral -
576 * the FIFO can only drain if the peripheral is still requesting data.
577 * (note: this can still timeout if the DMAC FIFO never drains of data.)
578 *
579 * For P->M transfers, disable the peripheral first to stop it filling
580 * the DMAC FIFO, and then pause the DMAC.
581 */
582 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
583 {
584 u32 val;
585 int timeout;
586
587 if (ch->ftdmac020) {
588 /* Use the enable bit on the FTDMAC020 */
589 val = readl(ch->reg_control);
590 val &= ~FTDMAC020_CH_CSR_EN;
591 writel(val, ch->reg_control);
592 return;
593 }
594
595 /* Set the HALT bit and wait for the FIFO to drain */
596 val = readl(ch->reg_config);
597 val |= PL080_CONFIG_HALT;
598 writel(val, ch->reg_config);
599
600 /* Wait for channel inactive */
601 for (timeout = 1000; timeout; timeout--) {
602 if (!pl08x_phy_channel_busy(ch))
603 break;
604 udelay(1);
605 }
606 if (pl08x_phy_channel_busy(ch))
607 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
608 }
609
610 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
611 {
612 u32 val;
613
614 /* Use the enable bit on the FTDMAC020 */
615 if (ch->ftdmac020) {
616 val = readl(ch->reg_control);
617 val |= FTDMAC020_CH_CSR_EN;
618 writel(val, ch->reg_control);
619 return;
620 }
621
622 /* Clear the HALT bit */
623 val = readl(ch->reg_config);
624 val &= ~PL080_CONFIG_HALT;
625 writel(val, ch->reg_config);
626 }
627
628 /*
629 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
630 * clears any pending interrupt status. This should not be used for
631 * an on-going transfer, but as a method of shutting down a channel
632 * (eg, when it's no longer used) or terminating a transfer.
633 */
634 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
635 struct pl08x_phy_chan *ch)
636 {
637 u32 val;
638
639 /* The layout for the FTDMAC020 is different */
640 if (ch->ftdmac020) {
641 /* Disable all interrupts */
642 val = readl(ch->reg_config);
643 val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
644 FTDMAC020_CH_CFG_INT_ERR_MASK |
645 FTDMAC020_CH_CFG_INT_TC_MASK);
646 writel(val, ch->reg_config);
647
648 /* Abort and disable channel */
649 val = readl(ch->reg_control);
650 val &= ~FTDMAC020_CH_CSR_EN;
651 val |= FTDMAC020_CH_CSR_ABT;
652 writel(val, ch->reg_control);
653
654 /* Clear ABT and ERR interrupt flags */
655 writel(BIT(ch->id) | BIT(ch->id + 16),
656 pl08x->base + PL080_ERR_CLEAR);
657 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
658
659 return;
660 }
661
662 val = readl(ch->reg_config);
663 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
664 PL080_CONFIG_TC_IRQ_MASK);
665 writel(val, ch->reg_config);
666
667 writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
668 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
669 }
670
671 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
672 {
673 u32 val;
674 u32 bytes;
675
676 if (ch->ftdmac020) {
677 bytes = readl(ch->base + FTDMAC020_CH_SIZE);
678
679 val = readl(ch->reg_control);
680 val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
681 val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
682 } else if (ch->pl080s) {
683 val = readl(ch->base + PL080S_CH_CONTROL2);
684 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
685
686 val = readl(ch->reg_control);
687 val &= PL080_CONTROL_SWIDTH_MASK;
688 val >>= PL080_CONTROL_SWIDTH_SHIFT;
689 } else {
690 /* Plain PL08x */
691 val = readl(ch->reg_control);
692 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
693
694 val &= PL080_CONTROL_SWIDTH_MASK;
695 val >>= PL080_CONTROL_SWIDTH_SHIFT;
696 }
697
698 switch (val) {
699 case PL080_WIDTH_8BIT:
700 break;
701 case PL080_WIDTH_16BIT:
702 bytes *= 2;
703 break;
704 case PL080_WIDTH_32BIT:
705 bytes *= 4;
706 break;
707 }
708 return bytes;
709 }
710
711 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
712 {
713 u32 val;
714 u32 bytes;
715
716 if (ch->ftdmac020) {
717 val = llis_va[PL080_LLI_CCTL];
718 bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
719
720 val = llis_va[PL080_LLI_CCTL];
721 val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
722 val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
723 } else if (ch->pl080s) {
724 val = llis_va[PL080S_LLI_CCTL2];
725 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
726
727 val = llis_va[PL080_LLI_CCTL];
728 val &= PL080_CONTROL_SWIDTH_MASK;
729 val >>= PL080_CONTROL_SWIDTH_SHIFT;
730 } else {
731 /* Plain PL08x */
732 val = llis_va[PL080_LLI_CCTL];
733 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
734
735 val &= PL080_CONTROL_SWIDTH_MASK;
736 val >>= PL080_CONTROL_SWIDTH_SHIFT;
737 }
738
739 switch (val) {
740 case PL080_WIDTH_8BIT:
741 break;
742 case PL080_WIDTH_16BIT:
743 bytes *= 2;
744 break;
745 case PL080_WIDTH_32BIT:
746 bytes *= 4;
747 break;
748 }
749 return bytes;
750 }
751
752 /* The channel should be paused when calling this */
753 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
754 {
755 struct pl08x_driver_data *pl08x = plchan->host;
756 const u32 *llis_va, *llis_va_limit;
757 struct pl08x_phy_chan *ch;
758 dma_addr_t llis_bus;
759 struct pl08x_txd *txd;
760 u32 llis_max_words;
761 size_t bytes;
762 u32 clli;
763
764 ch = plchan->phychan;
765 txd = plchan->at;
766
767 if (!ch || !txd)
768 return 0;
769
770 /*
771 * Follow the LLIs to get the number of remaining
772 * bytes in the currently active transaction.
773 */
774 clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
775
776 /* First get the remaining bytes in the active transfer */
777 bytes = get_bytes_in_phy_channel(ch);
778
779 if (!clli)
780 return bytes;
781
782 llis_va = txd->llis_va;
783 llis_bus = txd->llis_bus;
784
785 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
786 BUG_ON(clli < llis_bus || clli >= llis_bus +
787 sizeof(u32) * llis_max_words);
788
789 /*
790 * Locate the next LLI - as this is an array,
791 * it's simple maths to find.
792 */
793 llis_va += (clli - llis_bus) / sizeof(u32);
794
795 llis_va_limit = llis_va + llis_max_words;
796
797 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
798 bytes += get_bytes_in_lli(ch, llis_va);
799
800 /*
801 * A LLI pointer going backward terminates the LLI list
802 */
803 if (llis_va[PL080_LLI_LLI] <= clli)
804 break;
805 }
806
807 return bytes;
808 }
809
810 /*
811 * Allocate a physical channel for a virtual channel
812 *
813 * Try to locate a physical channel to be used for this transfer. If all
814 * are taken return NULL and the requester will have to cope by using
815 * some fallback PIO mode or retrying later.
816 */
817 static struct pl08x_phy_chan *
818 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
819 struct pl08x_dma_chan *virt_chan)
820 {
821 struct pl08x_phy_chan *ch = NULL;
822 unsigned long flags;
823 int i;
824
825 for (i = 0; i < pl08x->vd->channels; i++) {
826 ch = &pl08x->phy_chans[i];
827
828 spin_lock_irqsave(&ch->lock, flags);
829
830 if (!ch->locked && !ch->serving) {
831 ch->serving = virt_chan;
832 spin_unlock_irqrestore(&ch->lock, flags);
833 break;
834 }
835
836 spin_unlock_irqrestore(&ch->lock, flags);
837 }
838
839 if (i == pl08x->vd->channels) {
840 /* No physical channel available, cope with it */
841 return NULL;
842 }
843
844 return ch;
845 }
846
847 /* Mark the physical channel as free. Note, this write is atomic. */
848 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
849 struct pl08x_phy_chan *ch)
850 {
851 ch->serving = NULL;
852 }
853
854 /*
855 * Try to allocate a physical channel. When successful, assign it to
856 * this virtual channel, and initiate the next descriptor. The
857 * virtual channel lock must be held at this point.
858 */
859 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
860 {
861 struct pl08x_driver_data *pl08x = plchan->host;
862 struct pl08x_phy_chan *ch;
863
864 ch = pl08x_get_phy_channel(pl08x, plchan);
865 if (!ch) {
866 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
867 plchan->state = PL08X_CHAN_WAITING;
868 plchan->waiting_at = jiffies;
869 return;
870 }
871
872 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
873 ch->id, plchan->name);
874
875 plchan->phychan = ch;
876 plchan->state = PL08X_CHAN_RUNNING;
877 pl08x_start_next_txd(plchan);
878 }
879
880 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
881 struct pl08x_dma_chan *plchan)
882 {
883 struct pl08x_driver_data *pl08x = plchan->host;
884
885 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
886 ch->id, plchan->name);
887
888 /*
889 * We do this without taking the lock; we're really only concerned
890 * about whether this pointer is NULL or not, and we're guaranteed
891 * that this will only be called when it _already_ is non-NULL.
892 */
893 ch->serving = plchan;
894 plchan->phychan = ch;
895 plchan->state = PL08X_CHAN_RUNNING;
896 pl08x_start_next_txd(plchan);
897 }
898
899 /*
900 * Free a physical DMA channel, potentially reallocating it to another
901 * virtual channel if we have any pending.
902 */
903 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
904 {
905 struct pl08x_driver_data *pl08x = plchan->host;
906 struct pl08x_dma_chan *p, *next;
907 unsigned long waiting_at;
908 retry:
909 next = NULL;
910 waiting_at = jiffies;
911
912 /*
913 * Find a waiting virtual channel for the next transfer.
914 * To be fair, time when each channel reached waiting state is compared
915 * to select channel that is waiting for the longest time.
916 */
917 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
918 if (p->state == PL08X_CHAN_WAITING &&
919 p->waiting_at <= waiting_at) {
920 next = p;
921 waiting_at = p->waiting_at;
922 }
923
924 if (!next && pl08x->has_slave) {
925 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
926 if (p->state == PL08X_CHAN_WAITING &&
927 p->waiting_at <= waiting_at) {
928 next = p;
929 waiting_at = p->waiting_at;
930 }
931 }
932
933 /* Ensure that the physical channel is stopped */
934 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
935
936 if (next) {
937 bool success;
938
939 /*
940 * Eww. We know this isn't going to deadlock
941 * but lockdep probably doesn't.
942 */
943 spin_lock(&next->vc.lock);
944 /* Re-check the state now that we have the lock */
945 success = next->state == PL08X_CHAN_WAITING;
946 if (success)
947 pl08x_phy_reassign_start(plchan->phychan, next);
948 spin_unlock(&next->vc.lock);
949
950 /* If the state changed, try to find another channel */
951 if (!success)
952 goto retry;
953 } else {
954 /* No more jobs, so free up the physical channel */
955 pl08x_put_phy_channel(pl08x, plchan->phychan);
956 }
957
958 plchan->phychan = NULL;
959 plchan->state = PL08X_CHAN_IDLE;
960 }
961
962 /*
963 * LLI handling
964 */
965
966 static inline unsigned int
967 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
968 u32 cctl,
969 bool source)
970 {
971 u32 val;
972
973 if (pl08x->vd->ftdmac020) {
974 if (source)
975 val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
976 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
977 else
978 val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
979 FTDMAC020_LLI_DST_WIDTH_SHIFT;
980 } else {
981 if (source)
982 val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
983 PL080_CONTROL_SWIDTH_SHIFT;
984 else
985 val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
986 PL080_CONTROL_DWIDTH_SHIFT;
987 }
988
989 switch (val) {
990 case PL080_WIDTH_8BIT:
991 return 1;
992 case PL080_WIDTH_16BIT:
993 return 2;
994 case PL080_WIDTH_32BIT:
995 return 4;
996 default:
997 break;
998 }
999 BUG();
1000 return 0;
1001 }
1002
1003 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1004 u32 cctl,
1005 u8 srcwidth, u8 dstwidth,
1006 size_t tsize)
1007 {
1008 u32 retbits = cctl;
1009
1010 /*
1011 * Remove all src, dst and transfer size bits, then set the
1012 * width and size according to the parameters. The bit offsets
1013 * are different in the FTDMAC020 so we need to accound for this.
1014 */
1015 if (pl08x->vd->ftdmac020) {
1016 retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1017 retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1018 retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1019
1020 switch (srcwidth) {
1021 case 1:
1022 retbits |= PL080_WIDTH_8BIT <<
1023 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1024 break;
1025 case 2:
1026 retbits |= PL080_WIDTH_16BIT <<
1027 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1028 break;
1029 case 4:
1030 retbits |= PL080_WIDTH_32BIT <<
1031 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1032 break;
1033 default:
1034 BUG();
1035 break;
1036 }
1037
1038 switch (dstwidth) {
1039 case 1:
1040 retbits |= PL080_WIDTH_8BIT <<
1041 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1042 break;
1043 case 2:
1044 retbits |= PL080_WIDTH_16BIT <<
1045 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1046 break;
1047 case 4:
1048 retbits |= PL080_WIDTH_32BIT <<
1049 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1050 break;
1051 default:
1052 BUG();
1053 break;
1054 }
1055
1056 tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1057 retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1058 } else {
1059 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1060 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1061 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1062
1063 switch (srcwidth) {
1064 case 1:
1065 retbits |= PL080_WIDTH_8BIT <<
1066 PL080_CONTROL_SWIDTH_SHIFT;
1067 break;
1068 case 2:
1069 retbits |= PL080_WIDTH_16BIT <<
1070 PL080_CONTROL_SWIDTH_SHIFT;
1071 break;
1072 case 4:
1073 retbits |= PL080_WIDTH_32BIT <<
1074 PL080_CONTROL_SWIDTH_SHIFT;
1075 break;
1076 default:
1077 BUG();
1078 break;
1079 }
1080
1081 switch (dstwidth) {
1082 case 1:
1083 retbits |= PL080_WIDTH_8BIT <<
1084 PL080_CONTROL_DWIDTH_SHIFT;
1085 break;
1086 case 2:
1087 retbits |= PL080_WIDTH_16BIT <<
1088 PL080_CONTROL_DWIDTH_SHIFT;
1089 break;
1090 case 4:
1091 retbits |= PL080_WIDTH_32BIT <<
1092 PL080_CONTROL_DWIDTH_SHIFT;
1093 break;
1094 default:
1095 BUG();
1096 break;
1097 }
1098
1099 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1100 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1101 }
1102
1103 return retbits;
1104 }
1105
1106 struct pl08x_lli_build_data {
1107 struct pl08x_txd *txd;
1108 struct pl08x_bus_data srcbus;
1109 struct pl08x_bus_data dstbus;
1110 size_t remainder;
1111 u32 lli_bus;
1112 };
1113
1114 /*
1115 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1116 * victim in case src & dest are not similarly aligned. i.e. If after aligning
1117 * masters address with width requirements of transfer (by sending few byte by
1118 * byte data), slave is still not aligned, then its width will be reduced to
1119 * BYTE.
1120 * - prefers the destination bus if both available
1121 * - prefers bus with fixed address (i.e. peripheral)
1122 */
1123 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1124 struct pl08x_lli_build_data *bd,
1125 struct pl08x_bus_data **mbus,
1126 struct pl08x_bus_data **sbus,
1127 u32 cctl)
1128 {
1129 bool dst_incr;
1130 bool src_incr;
1131
1132 /*
1133 * The FTDMAC020 only supports memory-to-memory transfer, so
1134 * source and destination always increase.
1135 */
1136 if (pl08x->vd->ftdmac020) {
1137 dst_incr = true;
1138 src_incr = true;
1139 } else {
1140 dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1141 src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1142 }
1143
1144 /*
1145 * If either bus is not advancing, i.e. it is a peripheral, that
1146 * one becomes master
1147 */
1148 if (!dst_incr) {
1149 *mbus = &bd->dstbus;
1150 *sbus = &bd->srcbus;
1151 } else if (!src_incr) {
1152 *mbus = &bd->srcbus;
1153 *sbus = &bd->dstbus;
1154 } else {
1155 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1156 *mbus = &bd->dstbus;
1157 *sbus = &bd->srcbus;
1158 } else {
1159 *mbus = &bd->srcbus;
1160 *sbus = &bd->dstbus;
1161 }
1162 }
1163 }
1164
1165 /*
1166 * Fills in one LLI for a certain transfer descriptor and advance the counter
1167 */
1168 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1169 struct pl08x_lli_build_data *bd,
1170 int num_llis, int len, u32 cctl, u32 cctl2)
1171 {
1172 u32 offset = num_llis * pl08x->lli_words;
1173 u32 *llis_va = bd->txd->llis_va + offset;
1174 dma_addr_t llis_bus = bd->txd->llis_bus;
1175
1176 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1177
1178 /* Advance the offset to next LLI. */
1179 offset += pl08x->lli_words;
1180
1181 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1182 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1183 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1184 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1185 llis_va[PL080_LLI_CCTL] = cctl;
1186 if (pl08x->vd->pl080s)
1187 llis_va[PL080S_LLI_CCTL2] = cctl2;
1188
1189 if (pl08x->vd->ftdmac020) {
1190 /* FIXME: only memcpy so far so both increase */
1191 bd->srcbus.addr += len;
1192 bd->dstbus.addr += len;
1193 } else {
1194 if (cctl & PL080_CONTROL_SRC_INCR)
1195 bd->srcbus.addr += len;
1196 if (cctl & PL080_CONTROL_DST_INCR)
1197 bd->dstbus.addr += len;
1198 }
1199
1200 BUG_ON(bd->remainder < len);
1201
1202 bd->remainder -= len;
1203 }
1204
1205 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1206 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1207 int num_llis, size_t *total_bytes)
1208 {
1209 *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1210 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1211 (*total_bytes) += len;
1212 }
1213
1214 #if 1
1215 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1216 const u32 *llis_va, int num_llis)
1217 {
1218 int i;
1219
1220 if (pl08x->vd->pl080s) {
1221 dev_vdbg(&pl08x->adev->dev,
1222 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
1223 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1224 for (i = 0; i < num_llis; i++) {
1225 dev_vdbg(&pl08x->adev->dev,
1226 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1227 i, llis_va, llis_va[PL080_LLI_SRC],
1228 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1229 llis_va[PL080_LLI_CCTL],
1230 llis_va[PL080S_LLI_CCTL2]);
1231 llis_va += pl08x->lli_words;
1232 }
1233 } else {
1234 dev_vdbg(&pl08x->adev->dev,
1235 "%-3s %-9s %-10s %-10s %-10s %s\n",
1236 "lli", "", "csrc", "cdst", "clli", "cctl");
1237 for (i = 0; i < num_llis; i++) {
1238 dev_vdbg(&pl08x->adev->dev,
1239 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1240 i, llis_va, llis_va[PL080_LLI_SRC],
1241 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1242 llis_va[PL080_LLI_CCTL]);
1243 llis_va += pl08x->lli_words;
1244 }
1245 }
1246 }
1247 #else
1248 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1249 const u32 *llis_va, int num_llis) {}
1250 #endif
1251
1252 /*
1253 * This fills in the table of LLIs for the transfer descriptor
1254 * Note that we assume we never have to change the burst sizes
1255 * Return 0 for error
1256 */
1257 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1258 struct pl08x_txd *txd)
1259 {
1260 struct pl08x_bus_data *mbus, *sbus;
1261 struct pl08x_lli_build_data bd;
1262 int num_llis = 0;
1263 u32 cctl, early_bytes = 0;
1264 size_t max_bytes_per_lli, total_bytes;
1265 u32 *llis_va, *last_lli;
1266 struct pl08x_sg *dsg;
1267
1268 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1269 if (!txd->llis_va) {
1270 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1271 return 0;
1272 }
1273
1274 bd.txd = txd;
1275 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1276 cctl = txd->cctl;
1277
1278 /* Find maximum width of the source bus */
1279 bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1280
1281 /* Find maximum width of the destination bus */
1282 bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1283
1284 list_for_each_entry(dsg, &txd->dsg_list, node) {
1285 total_bytes = 0;
1286 cctl = txd->cctl;
1287
1288 bd.srcbus.addr = dsg->src_addr;
1289 bd.dstbus.addr = dsg->dst_addr;
1290 bd.remainder = dsg->len;
1291 bd.srcbus.buswidth = bd.srcbus.maxwidth;
1292 bd.dstbus.buswidth = bd.dstbus.maxwidth;
1293
1294 pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1295
1296 dev_vdbg(&pl08x->adev->dev,
1297 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1298 (u64)bd.srcbus.addr,
1299 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1300 bd.srcbus.buswidth,
1301 (u64)bd.dstbus.addr,
1302 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1303 bd.dstbus.buswidth,
1304 bd.remainder);
1305 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1306 mbus == &bd.srcbus ? "src" : "dst",
1307 sbus == &bd.srcbus ? "src" : "dst");
1308
1309 /*
1310 * Zero length is only allowed if all these requirements are
1311 * met:
1312 * - flow controller is peripheral.
1313 * - src.addr is aligned to src.width
1314 * - dst.addr is aligned to dst.width
1315 *
1316 * sg_len == 1 should be true, as there can be two cases here:
1317 *
1318 * - Memory addresses are contiguous and are not scattered.
1319 * Here, Only one sg will be passed by user driver, with
1320 * memory address and zero length. We pass this to controller
1321 * and after the transfer it will receive the last burst
1322 * request from peripheral and so transfer finishes.
1323 *
1324 * - Memory addresses are scattered and are not contiguous.
1325 * Here, Obviously as DMA controller doesn't know when a lli's
1326 * transfer gets over, it can't load next lli. So in this
1327 * case, there has to be an assumption that only one lli is
1328 * supported. Thus, we can't have scattered addresses.
1329 */
1330 if (!bd.remainder) {
1331 u32 fc;
1332
1333 /* FTDMAC020 only does memory-to-memory */
1334 if (pl08x->vd->ftdmac020)
1335 fc = PL080_FLOW_MEM2MEM;
1336 else
1337 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1338 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1339 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1340 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1341 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1342 __func__);
1343 return 0;
1344 }
1345
1346 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1347 !IS_BUS_ALIGNED(&bd.dstbus)) {
1348 dev_err(&pl08x->adev->dev,
1349 "%s src & dst address must be aligned to src"
1350 " & dst width if peripheral is flow controller",
1351 __func__);
1352 return 0;
1353 }
1354
1355 cctl = pl08x_lli_control_bits(pl08x, cctl,
1356 bd.srcbus.buswidth, bd.dstbus.buswidth,
1357 0);
1358 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1359 0, cctl, 0);
1360 break;
1361 }
1362
1363 /*
1364 * Send byte by byte for following cases
1365 * - Less than a bus width available
1366 * - until master bus is aligned
1367 */
1368 if (bd.remainder < mbus->buswidth)
1369 early_bytes = bd.remainder;
1370 else if (!IS_BUS_ALIGNED(mbus)) {
1371 early_bytes = mbus->buswidth -
1372 (mbus->addr & (mbus->buswidth - 1));
1373 if ((bd.remainder - early_bytes) < mbus->buswidth)
1374 early_bytes = bd.remainder;
1375 }
1376
1377 if (early_bytes) {
1378 dev_vdbg(&pl08x->adev->dev,
1379 "%s byte width LLIs (remain 0x%08zx)\n",
1380 __func__, bd.remainder);
1381 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1382 num_llis++, &total_bytes);
1383 }
1384
1385 if (bd.remainder) {
1386 /*
1387 * Master now aligned
1388 * - if slave is not then we must set its width down
1389 */
1390 if (!IS_BUS_ALIGNED(sbus)) {
1391 dev_dbg(&pl08x->adev->dev,
1392 "%s set down bus width to one byte\n",
1393 __func__);
1394
1395 sbus->buswidth = 1;
1396 }
1397
1398 /*
1399 * Bytes transferred = tsize * src width, not
1400 * MIN(buswidths)
1401 */
1402 max_bytes_per_lli = bd.srcbus.buswidth *
1403 pl08x->vd->max_transfer_size;
1404 dev_vdbg(&pl08x->adev->dev,
1405 "%s max bytes per lli = %zu\n",
1406 __func__, max_bytes_per_lli);
1407
1408 /*
1409 * Make largest possible LLIs until less than one bus
1410 * width left
1411 */
1412 while (bd.remainder > (mbus->buswidth - 1)) {
1413 size_t lli_len, tsize, width;
1414
1415 /*
1416 * If enough left try to send max possible,
1417 * otherwise try to send the remainder
1418 */
1419 lli_len = min(bd.remainder, max_bytes_per_lli);
1420
1421 /*
1422 * Check against maximum bus alignment:
1423 * Calculate actual transfer size in relation to
1424 * bus width an get a maximum remainder of the
1425 * highest bus width - 1
1426 */
1427 width = max(mbus->buswidth, sbus->buswidth);
1428 lli_len = (lli_len / width) * width;
1429 tsize = lli_len / bd.srcbus.buswidth;
1430
1431 dev_vdbg(&pl08x->adev->dev,
1432 "%s fill lli with single lli chunk of "
1433 "size 0x%08zx (remainder 0x%08zx)\n",
1434 __func__, lli_len, bd.remainder);
1435
1436 cctl = pl08x_lli_control_bits(pl08x, cctl,
1437 bd.srcbus.buswidth, bd.dstbus.buswidth,
1438 tsize);
1439 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1440 lli_len, cctl, tsize);
1441 total_bytes += lli_len;
1442 }
1443
1444 /*
1445 * Send any odd bytes
1446 */
1447 if (bd.remainder) {
1448 dev_vdbg(&pl08x->adev->dev,
1449 "%s align with boundary, send odd bytes (remain %zu)\n",
1450 __func__, bd.remainder);
1451 prep_byte_width_lli(pl08x, &bd, &cctl,
1452 bd.remainder, num_llis++, &total_bytes);
1453 }
1454 }
1455
1456 if (total_bytes != dsg->len) {
1457 dev_err(&pl08x->adev->dev,
1458 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1459 __func__, total_bytes, dsg->len);
1460 return 0;
1461 }
1462
1463 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1464 dev_err(&pl08x->adev->dev,
1465 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1466 __func__, MAX_NUM_TSFR_LLIS);
1467 return 0;
1468 }
1469 }
1470
1471 llis_va = txd->llis_va;
1472 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1473
1474 if (txd->cyclic) {
1475 /* Link back to the first LLI. */
1476 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1477 } else {
1478 /* The final LLI terminates the LLI. */
1479 last_lli[PL080_LLI_LLI] = 0;
1480 /* The final LLI element shall also fire an interrupt. */
1481 if (pl08x->vd->ftdmac020)
1482 last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1483 else
1484 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1485 }
1486
1487 pl08x_dump_lli(pl08x, llis_va, num_llis);
1488
1489 return num_llis;
1490 }
1491
1492 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1493 struct pl08x_txd *txd)
1494 {
1495 struct pl08x_sg *dsg, *_dsg;
1496
1497 if (txd->llis_va)
1498 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1499
1500 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1501 list_del(&dsg->node);
1502 kfree(dsg);
1503 }
1504
1505 kfree(txd);
1506 }
1507
1508 static void pl08x_desc_free(struct virt_dma_desc *vd)
1509 {
1510 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1511 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1512
1513 dma_descriptor_unmap(&vd->tx);
1514 if (!txd->done)
1515 pl08x_release_mux(plchan);
1516
1517 pl08x_free_txd(plchan->host, txd);
1518 }
1519
1520 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1521 struct pl08x_dma_chan *plchan)
1522 {
1523 LIST_HEAD(head);
1524
1525 vchan_get_all_descriptors(&plchan->vc, &head);
1526 vchan_dma_desc_free_list(&plchan->vc, &head);
1527 }
1528
1529 /*
1530 * The DMA ENGINE API
1531 */
1532 static void pl08x_free_chan_resources(struct dma_chan *chan)
1533 {
1534 /* Ensure all queued descriptors are freed */
1535 vchan_free_chan_resources(to_virt_chan(chan));
1536 }
1537
1538 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1539 struct dma_chan *chan, unsigned long flags)
1540 {
1541 struct dma_async_tx_descriptor *retval = NULL;
1542
1543 return retval;
1544 }
1545
1546 /*
1547 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1548 * If slaves are relying on interrupts to signal completion this function
1549 * must not be called with interrupts disabled.
1550 */
1551 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1552 dma_cookie_t cookie, struct dma_tx_state *txstate)
1553 {
1554 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1555 struct virt_dma_desc *vd;
1556 unsigned long flags;
1557 enum dma_status ret;
1558 size_t bytes = 0;
1559
1560 ret = dma_cookie_status(chan, cookie, txstate);
1561 if (ret == DMA_COMPLETE)
1562 return ret;
1563
1564 /*
1565 * There's no point calculating the residue if there's
1566 * no txstate to store the value.
1567 */
1568 if (!txstate) {
1569 if (plchan->state == PL08X_CHAN_PAUSED)
1570 ret = DMA_PAUSED;
1571 return ret;
1572 }
1573
1574 spin_lock_irqsave(&plchan->vc.lock, flags);
1575 ret = dma_cookie_status(chan, cookie, txstate);
1576 if (ret != DMA_COMPLETE) {
1577 vd = vchan_find_desc(&plchan->vc, cookie);
1578 if (vd) {
1579 /* On the issued list, so hasn't been processed yet */
1580 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1581 struct pl08x_sg *dsg;
1582
1583 list_for_each_entry(dsg, &txd->dsg_list, node)
1584 bytes += dsg->len;
1585 } else {
1586 bytes = pl08x_getbytes_chan(plchan);
1587 }
1588 }
1589 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1590
1591 /*
1592 * This cookie not complete yet
1593 * Get number of bytes left in the active transactions and queue
1594 */
1595 dma_set_residue(txstate, bytes);
1596
1597 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1598 ret = DMA_PAUSED;
1599
1600 /* Whether waiting or running, we're in progress */
1601 return ret;
1602 }
1603
1604 /* PrimeCell DMA extension */
1605 struct burst_table {
1606 u32 burstwords;
1607 u32 reg;
1608 };
1609
1610 static const struct burst_table burst_sizes[] = {
1611 {
1612 .burstwords = 256,
1613 .reg = PL080_BSIZE_256,
1614 },
1615 {
1616 .burstwords = 128,
1617 .reg = PL080_BSIZE_128,
1618 },
1619 {
1620 .burstwords = 64,
1621 .reg = PL080_BSIZE_64,
1622 },
1623 {
1624 .burstwords = 32,
1625 .reg = PL080_BSIZE_32,
1626 },
1627 {
1628 .burstwords = 16,
1629 .reg = PL080_BSIZE_16,
1630 },
1631 {
1632 .burstwords = 8,
1633 .reg = PL080_BSIZE_8,
1634 },
1635 {
1636 .burstwords = 4,
1637 .reg = PL080_BSIZE_4,
1638 },
1639 {
1640 .burstwords = 0,
1641 .reg = PL080_BSIZE_1,
1642 },
1643 };
1644
1645 /*
1646 * Given the source and destination available bus masks, select which
1647 * will be routed to each port. We try to have source and destination
1648 * on separate ports, but always respect the allowable settings.
1649 */
1650 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1651 {
1652 u32 cctl = 0;
1653 u32 dst_ahb2;
1654 u32 src_ahb2;
1655
1656 /* The FTDMAC020 use different bits to indicate src/dst bus */
1657 if (ftdmac020) {
1658 dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1659 src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1660 } else {
1661 dst_ahb2 = PL080_CONTROL_DST_AHB2;
1662 src_ahb2 = PL080_CONTROL_SRC_AHB2;
1663 }
1664
1665 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1666 cctl |= dst_ahb2;
1667 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1668 cctl |= src_ahb2;
1669
1670 return cctl;
1671 }
1672
1673 static u32 pl08x_cctl(u32 cctl)
1674 {
1675 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1676 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1677 PL080_CONTROL_PROT_MASK);
1678
1679 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1680 return cctl | PL080_CONTROL_PROT_SYS;
1681 }
1682
1683 static u32 pl08x_width(enum dma_slave_buswidth width)
1684 {
1685 switch (width) {
1686 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1687 return PL080_WIDTH_8BIT;
1688 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1689 return PL080_WIDTH_16BIT;
1690 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1691 return PL080_WIDTH_32BIT;
1692 default:
1693 return ~0;
1694 }
1695 }
1696
1697 static u32 pl08x_burst(u32 maxburst)
1698 {
1699 int i;
1700
1701 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1702 if (burst_sizes[i].burstwords <= maxburst)
1703 break;
1704
1705 return burst_sizes[i].reg;
1706 }
1707
1708 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1709 enum dma_slave_buswidth addr_width, u32 maxburst)
1710 {
1711 u32 width, burst, cctl = 0;
1712
1713 width = pl08x_width(addr_width);
1714 if (width == ~0)
1715 return ~0;
1716
1717 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1718 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1719
1720 /*
1721 * If this channel will only request single transfers, set this
1722 * down to ONE element. Also select one element if no maxburst
1723 * is specified.
1724 */
1725 if (plchan->cd->single)
1726 maxburst = 1;
1727
1728 burst = pl08x_burst(maxburst);
1729 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1730 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1731
1732 return pl08x_cctl(cctl);
1733 }
1734
1735 /*
1736 * Slave transactions callback to the slave device to allow
1737 * synchronization of slave DMA signals with the DMAC enable
1738 */
1739 static void pl08x_issue_pending(struct dma_chan *chan)
1740 {
1741 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1742 unsigned long flags;
1743
1744 spin_lock_irqsave(&plchan->vc.lock, flags);
1745 if (vchan_issue_pending(&plchan->vc)) {
1746 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1747 pl08x_phy_alloc_and_start(plchan);
1748 }
1749 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1750 }
1751
1752 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1753 {
1754 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1755
1756 if (txd)
1757 INIT_LIST_HEAD(&txd->dsg_list);
1758 return txd;
1759 }
1760
1761 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1762 {
1763 u32 cctl = 0;
1764
1765 /* Conjure cctl */
1766 switch (pl08x->pd->memcpy_burst_size) {
1767 default:
1768 dev_err(&pl08x->adev->dev,
1769 "illegal burst size for memcpy, set to 1\n");
1770 /* Fall through */
1771 case PL08X_BURST_SZ_1:
1772 cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1773 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1774 break;
1775 case PL08X_BURST_SZ_4:
1776 cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1777 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1778 break;
1779 case PL08X_BURST_SZ_8:
1780 cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1781 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1782 break;
1783 case PL08X_BURST_SZ_16:
1784 cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1785 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1786 break;
1787 case PL08X_BURST_SZ_32:
1788 cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1789 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1790 break;
1791 case PL08X_BURST_SZ_64:
1792 cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1793 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1794 break;
1795 case PL08X_BURST_SZ_128:
1796 cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1797 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1798 break;
1799 case PL08X_BURST_SZ_256:
1800 cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1801 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1802 break;
1803 }
1804
1805 switch (pl08x->pd->memcpy_bus_width) {
1806 default:
1807 dev_err(&pl08x->adev->dev,
1808 "illegal bus width for memcpy, set to 8 bits\n");
1809 /* Fall through */
1810 case PL08X_BUS_WIDTH_8_BITS:
1811 cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1812 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1813 break;
1814 case PL08X_BUS_WIDTH_16_BITS:
1815 cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1816 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1817 break;
1818 case PL08X_BUS_WIDTH_32_BITS:
1819 cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1820 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1821 break;
1822 }
1823
1824 /* Protection flags */
1825 if (pl08x->pd->memcpy_prot_buff)
1826 cctl |= PL080_CONTROL_PROT_BUFF;
1827 if (pl08x->pd->memcpy_prot_cache)
1828 cctl |= PL080_CONTROL_PROT_CACHE;
1829
1830 /* We are the kernel, so we are in privileged mode */
1831 cctl |= PL080_CONTROL_PROT_SYS;
1832
1833 /* Both to be incremented or the code will break */
1834 cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1835
1836 if (pl08x->vd->dualmaster)
1837 cctl |= pl08x_select_bus(false,
1838 pl08x->mem_buses,
1839 pl08x->mem_buses);
1840
1841 return cctl;
1842 }
1843
1844 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1845 {
1846 u32 cctl = 0;
1847
1848 /* Conjure cctl */
1849 switch (pl08x->pd->memcpy_bus_width) {
1850 default:
1851 dev_err(&pl08x->adev->dev,
1852 "illegal bus width for memcpy, set to 8 bits\n");
1853 /* Fall through */
1854 case PL08X_BUS_WIDTH_8_BITS:
1855 cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1856 PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1857 break;
1858 case PL08X_BUS_WIDTH_16_BITS:
1859 cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1860 PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1861 break;
1862 case PL08X_BUS_WIDTH_32_BITS:
1863 cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1864 PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1865 break;
1866 }
1867
1868 /*
1869 * By default mask the TC IRQ on all LLIs, it will be unmasked on
1870 * the last LLI item by other code.
1871 */
1872 cctl |= FTDMAC020_LLI_TC_MSK;
1873
1874 /*
1875 * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1876 * and FTDMAC020_LLI_DSTAD_CTL as zero
1877 */
1878 if (pl08x->vd->dualmaster)
1879 cctl |= pl08x_select_bus(true,
1880 pl08x->mem_buses,
1881 pl08x->mem_buses);
1882
1883 return cctl;
1884 }
1885
1886 /*
1887 * Initialize a descriptor to be used by memcpy submit
1888 */
1889 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1890 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1891 size_t len, unsigned long flags)
1892 {
1893 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1894 struct pl08x_driver_data *pl08x = plchan->host;
1895 struct pl08x_txd *txd;
1896 struct pl08x_sg *dsg;
1897 int ret;
1898
1899 txd = pl08x_get_txd(plchan);
1900 if (!txd) {
1901 dev_err(&pl08x->adev->dev,
1902 "%s no memory for descriptor\n", __func__);
1903 return NULL;
1904 }
1905
1906 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1907 if (!dsg) {
1908 pl08x_free_txd(pl08x, txd);
1909 return NULL;
1910 }
1911 list_add_tail(&dsg->node, &txd->dsg_list);
1912
1913 dsg->src_addr = src;
1914 dsg->dst_addr = dest;
1915 dsg->len = len;
1916 if (pl08x->vd->ftdmac020) {
1917 /* Writing CCFG zero ENABLES all interrupts */
1918 txd->ccfg = 0;
1919 txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1920 } else {
1921 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1922 PL080_CONFIG_TC_IRQ_MASK |
1923 PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1924 txd->cctl = pl08x_memcpy_cctl(pl08x);
1925 }
1926
1927 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1928 if (!ret) {
1929 pl08x_free_txd(pl08x, txd);
1930 return NULL;
1931 }
1932
1933 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1934 }
1935
1936 static struct pl08x_txd *pl08x_init_txd(
1937 struct dma_chan *chan,
1938 enum dma_transfer_direction direction,
1939 dma_addr_t *slave_addr)
1940 {
1941 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1942 struct pl08x_driver_data *pl08x = plchan->host;
1943 struct pl08x_txd *txd;
1944 enum dma_slave_buswidth addr_width;
1945 int ret, tmp;
1946 u8 src_buses, dst_buses;
1947 u32 maxburst, cctl;
1948
1949 txd = pl08x_get_txd(plchan);
1950 if (!txd) {
1951 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1952 return NULL;
1953 }
1954
1955 /*
1956 * Set up addresses, the PrimeCell configured address
1957 * will take precedence since this may configure the
1958 * channel target address dynamically at runtime.
1959 */
1960 if (direction == DMA_MEM_TO_DEV) {
1961 cctl = PL080_CONTROL_SRC_INCR;
1962 *slave_addr = plchan->cfg.dst_addr;
1963 addr_width = plchan->cfg.dst_addr_width;
1964 maxburst = plchan->cfg.dst_maxburst;
1965 src_buses = pl08x->mem_buses;
1966 dst_buses = plchan->cd->periph_buses;
1967 } else if (direction == DMA_DEV_TO_MEM) {
1968 cctl = PL080_CONTROL_DST_INCR;
1969 *slave_addr = plchan->cfg.src_addr;
1970 addr_width = plchan->cfg.src_addr_width;
1971 maxburst = plchan->cfg.src_maxburst;
1972 src_buses = plchan->cd->periph_buses;
1973 dst_buses = pl08x->mem_buses;
1974 } else {
1975 pl08x_free_txd(pl08x, txd);
1976 dev_err(&pl08x->adev->dev,
1977 "%s direction unsupported\n", __func__);
1978 return NULL;
1979 }
1980
1981 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1982 if (cctl == ~0) {
1983 pl08x_free_txd(pl08x, txd);
1984 dev_err(&pl08x->adev->dev,
1985 "DMA slave configuration botched?\n");
1986 return NULL;
1987 }
1988
1989 txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1990
1991 if (plchan->cfg.device_fc)
1992 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1993 PL080_FLOW_PER2MEM_PER;
1994 else
1995 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1996 PL080_FLOW_PER2MEM;
1997
1998 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1999 PL080_CONFIG_TC_IRQ_MASK |
2000 tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2001
2002 ret = pl08x_request_mux(plchan);
2003 if (ret < 0) {
2004 pl08x_free_txd(pl08x, txd);
2005 dev_dbg(&pl08x->adev->dev,
2006 "unable to mux for transfer on %s due to platform restrictions\n",
2007 plchan->name);
2008 return NULL;
2009 }
2010
2011 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2012 plchan->signal, plchan->name);
2013
2014 /* Assign the flow control signal to this channel */
2015 if (direction == DMA_MEM_TO_DEV)
2016 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2017 else
2018 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2019
2020 return txd;
2021 }
2022
2023 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2024 enum dma_transfer_direction direction,
2025 dma_addr_t slave_addr,
2026 dma_addr_t buf_addr,
2027 unsigned int len)
2028 {
2029 struct pl08x_sg *dsg;
2030
2031 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2032 if (!dsg)
2033 return -ENOMEM;
2034
2035 list_add_tail(&dsg->node, &txd->dsg_list);
2036
2037 dsg->len = len;
2038 if (direction == DMA_MEM_TO_DEV) {
2039 dsg->src_addr = buf_addr;
2040 dsg->dst_addr = slave_addr;
2041 } else {
2042 dsg->src_addr = slave_addr;
2043 dsg->dst_addr = buf_addr;
2044 }
2045
2046 return 0;
2047 }
2048
2049 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2050 struct dma_chan *chan, struct scatterlist *sgl,
2051 unsigned int sg_len, enum dma_transfer_direction direction,
2052 unsigned long flags, void *context)
2053 {
2054 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2055 struct pl08x_driver_data *pl08x = plchan->host;
2056 struct pl08x_txd *txd;
2057 struct scatterlist *sg;
2058 int ret, tmp;
2059 dma_addr_t slave_addr;
2060
2061 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2062 __func__, sg_dma_len(sgl), plchan->name);
2063
2064 txd = pl08x_init_txd(chan, direction, &slave_addr);
2065 if (!txd)
2066 return NULL;
2067
2068 for_each_sg(sgl, sg, sg_len, tmp) {
2069 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2070 sg_dma_address(sg),
2071 sg_dma_len(sg));
2072 if (ret) {
2073 pl08x_release_mux(plchan);
2074 pl08x_free_txd(pl08x, txd);
2075 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2076 __func__);
2077 return NULL;
2078 }
2079 }
2080
2081 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2082 if (!ret) {
2083 pl08x_release_mux(plchan);
2084 pl08x_free_txd(pl08x, txd);
2085 return NULL;
2086 }
2087
2088 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2089 }
2090
2091 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2092 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2093 size_t period_len, enum dma_transfer_direction direction,
2094 unsigned long flags)
2095 {
2096 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2097 struct pl08x_driver_data *pl08x = plchan->host;
2098 struct pl08x_txd *txd;
2099 int ret, tmp;
2100 dma_addr_t slave_addr;
2101
2102 dev_dbg(&pl08x->adev->dev,
2103 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2104 __func__, period_len, buf_len,
2105 direction == DMA_MEM_TO_DEV ? "to" : "from",
2106 plchan->name);
2107
2108 txd = pl08x_init_txd(chan, direction, &slave_addr);
2109 if (!txd)
2110 return NULL;
2111
2112 txd->cyclic = true;
2113 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2114 for (tmp = 0; tmp < buf_len; tmp += period_len) {
2115 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2116 buf_addr + tmp, period_len);
2117 if (ret) {
2118 pl08x_release_mux(plchan);
2119 pl08x_free_txd(pl08x, txd);
2120 return NULL;
2121 }
2122 }
2123
2124 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2125 if (!ret) {
2126 pl08x_release_mux(plchan);
2127 pl08x_free_txd(pl08x, txd);
2128 return NULL;
2129 }
2130
2131 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2132 }
2133
2134 static int pl08x_config(struct dma_chan *chan,
2135 struct dma_slave_config *config)
2136 {
2137 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2138 struct pl08x_driver_data *pl08x = plchan->host;
2139
2140 if (!plchan->slave)
2141 return -EINVAL;
2142
2143 /* Reject definitely invalid configurations */
2144 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2145 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2146 return -EINVAL;
2147
2148 if (config->device_fc && pl08x->vd->pl080s) {
2149 dev_err(&pl08x->adev->dev,
2150 "%s: PL080S does not support peripheral flow control\n",
2151 __func__);
2152 return -EINVAL;
2153 }
2154
2155 plchan->cfg = *config;
2156
2157 return 0;
2158 }
2159
2160 static int pl08x_terminate_all(struct dma_chan *chan)
2161 {
2162 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2163 struct pl08x_driver_data *pl08x = plchan->host;
2164 unsigned long flags;
2165
2166 spin_lock_irqsave(&plchan->vc.lock, flags);
2167 if (!plchan->phychan && !plchan->at) {
2168 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2169 return 0;
2170 }
2171
2172 plchan->state = PL08X_CHAN_IDLE;
2173
2174 if (plchan->phychan) {
2175 /*
2176 * Mark physical channel as free and free any slave
2177 * signal
2178 */
2179 pl08x_phy_free(plchan);
2180 }
2181 /* Dequeue jobs and free LLIs */
2182 if (plchan->at) {
2183 vchan_terminate_vdesc(&plchan->at->vd);
2184 plchan->at = NULL;
2185 }
2186 /* Dequeue jobs not yet fired as well */
2187 pl08x_free_txd_list(pl08x, plchan);
2188
2189 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2190
2191 return 0;
2192 }
2193
2194 static void pl08x_synchronize(struct dma_chan *chan)
2195 {
2196 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2197
2198 vchan_synchronize(&plchan->vc);
2199 }
2200
2201 static int pl08x_pause(struct dma_chan *chan)
2202 {
2203 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2204 unsigned long flags;
2205
2206 /*
2207 * Anything succeeds on channels with no physical allocation and
2208 * no queued transfers.
2209 */
2210 spin_lock_irqsave(&plchan->vc.lock, flags);
2211 if (!plchan->phychan && !plchan->at) {
2212 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2213 return 0;
2214 }
2215
2216 pl08x_pause_phy_chan(plchan->phychan);
2217 plchan->state = PL08X_CHAN_PAUSED;
2218
2219 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2220
2221 return 0;
2222 }
2223
2224 static int pl08x_resume(struct dma_chan *chan)
2225 {
2226 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2227 unsigned long flags;
2228
2229 /*
2230 * Anything succeeds on channels with no physical allocation and
2231 * no queued transfers.
2232 */
2233 spin_lock_irqsave(&plchan->vc.lock, flags);
2234 if (!plchan->phychan && !plchan->at) {
2235 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2236 return 0;
2237 }
2238
2239 pl08x_resume_phy_chan(plchan->phychan);
2240 plchan->state = PL08X_CHAN_RUNNING;
2241
2242 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2243
2244 return 0;
2245 }
2246
2247 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2248 {
2249 struct pl08x_dma_chan *plchan;
2250 char *name = chan_id;
2251
2252 /* Reject channels for devices not bound to this driver */
2253 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2254 return false;
2255
2256 plchan = to_pl08x_chan(chan);
2257
2258 /* Check that the channel is not taken! */
2259 if (!strcmp(plchan->name, name))
2260 return true;
2261
2262 return false;
2263 }
2264 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2265
2266 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2267 {
2268 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2269
2270 return plchan->cd == chan_id;
2271 }
2272
2273 /*
2274 * Just check that the device is there and active
2275 * TODO: turn this bit on/off depending on the number of physical channels
2276 * actually used, if it is zero... well shut it off. That will save some
2277 * power. Cut the clock at the same time.
2278 */
2279 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2280 {
2281 /* The Nomadik variant does not have the config register */
2282 if (pl08x->vd->nomadik)
2283 return;
2284 /* The FTDMAC020 variant does this in another register */
2285 if (pl08x->vd->ftdmac020) {
2286 writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2287 return;
2288 }
2289 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2290 }
2291
2292 static irqreturn_t pl08x_irq(int irq, void *dev)
2293 {
2294 struct pl08x_driver_data *pl08x = dev;
2295 u32 mask = 0, err, tc, i;
2296
2297 /* check & clear - ERR & TC interrupts */
2298 err = readl(pl08x->base + PL080_ERR_STATUS);
2299 if (err) {
2300 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2301 __func__, err);
2302 writel(err, pl08x->base + PL080_ERR_CLEAR);
2303 }
2304 tc = readl(pl08x->base + PL080_TC_STATUS);
2305 if (tc)
2306 writel(tc, pl08x->base + PL080_TC_CLEAR);
2307
2308 if (!err && !tc)
2309 return IRQ_NONE;
2310
2311 for (i = 0; i < pl08x->vd->channels; i++) {
2312 if ((BIT(i) & err) || (BIT(i) & tc)) {
2313 /* Locate physical channel */
2314 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2315 struct pl08x_dma_chan *plchan = phychan->serving;
2316 struct pl08x_txd *tx;
2317
2318 if (!plchan) {
2319 dev_err(&pl08x->adev->dev,
2320 "%s Error TC interrupt on unused channel: 0x%08x\n",
2321 __func__, i);
2322 continue;
2323 }
2324
2325 spin_lock(&plchan->vc.lock);
2326 tx = plchan->at;
2327 if (tx && tx->cyclic) {
2328 vchan_cyclic_callback(&tx->vd);
2329 } else if (tx) {
2330 plchan->at = NULL;
2331 /*
2332 * This descriptor is done, release its mux
2333 * reservation.
2334 */
2335 pl08x_release_mux(plchan);
2336 tx->done = true;
2337 vchan_cookie_complete(&tx->vd);
2338
2339 /*
2340 * And start the next descriptor (if any),
2341 * otherwise free this channel.
2342 */
2343 if (vchan_next_desc(&plchan->vc))
2344 pl08x_start_next_txd(plchan);
2345 else
2346 pl08x_phy_free(plchan);
2347 }
2348 spin_unlock(&plchan->vc.lock);
2349
2350 mask |= BIT(i);
2351 }
2352 }
2353
2354 return mask ? IRQ_HANDLED : IRQ_NONE;
2355 }
2356
2357 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2358 {
2359 chan->slave = true;
2360 chan->name = chan->cd->bus_id;
2361 chan->cfg.src_addr = chan->cd->addr;
2362 chan->cfg.dst_addr = chan->cd->addr;
2363 }
2364
2365 /*
2366 * Initialise the DMAC memcpy/slave channels.
2367 * Make a local wrapper to hold required data
2368 */
2369 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2370 struct dma_device *dmadev, unsigned int channels, bool slave)
2371 {
2372 struct pl08x_dma_chan *chan;
2373 int i;
2374
2375 INIT_LIST_HEAD(&dmadev->channels);
2376
2377 /*
2378 * Register as many many memcpy as we have physical channels,
2379 * we won't always be able to use all but the code will have
2380 * to cope with that situation.
2381 */
2382 for (i = 0; i < channels; i++) {
2383 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2384 if (!chan)
2385 return -ENOMEM;
2386
2387 chan->host = pl08x;
2388 chan->state = PL08X_CHAN_IDLE;
2389 chan->signal = -1;
2390
2391 if (slave) {
2392 chan->cd = &pl08x->pd->slave_channels[i];
2393 /*
2394 * Some implementations have muxed signals, whereas some
2395 * use a mux in front of the signals and need dynamic
2396 * assignment of signals.
2397 */
2398 chan->signal = i;
2399 pl08x_dma_slave_init(chan);
2400 } else {
2401 chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2402 if (!chan->cd) {
2403 kfree(chan);
2404 return -ENOMEM;
2405 }
2406 chan->cd->bus_id = "memcpy";
2407 chan->cd->periph_buses = pl08x->pd->mem_buses;
2408 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2409 if (!chan->name) {
2410 kfree(chan->cd);
2411 kfree(chan);
2412 return -ENOMEM;
2413 }
2414 }
2415 dev_dbg(&pl08x->adev->dev,
2416 "initialize virtual channel \"%s\"\n",
2417 chan->name);
2418
2419 chan->vc.desc_free = pl08x_desc_free;
2420 vchan_init(&chan->vc, dmadev);
2421 }
2422 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2423 i, slave ? "slave" : "memcpy");
2424 return i;
2425 }
2426
2427 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2428 {
2429 struct pl08x_dma_chan *chan = NULL;
2430 struct pl08x_dma_chan *next;
2431
2432 list_for_each_entry_safe(chan,
2433 next, &dmadev->channels, vc.chan.device_node) {
2434 list_del(&chan->vc.chan.device_node);
2435 kfree(chan);
2436 }
2437 }
2438
2439 #ifdef CONFIG_DEBUG_FS
2440 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2441 {
2442 switch (state) {
2443 case PL08X_CHAN_IDLE:
2444 return "idle";
2445 case PL08X_CHAN_RUNNING:
2446 return "running";
2447 case PL08X_CHAN_PAUSED:
2448 return "paused";
2449 case PL08X_CHAN_WAITING:
2450 return "waiting";
2451 default:
2452 break;
2453 }
2454 return "UNKNOWN STATE";
2455 }
2456
2457 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2458 {
2459 struct pl08x_driver_data *pl08x = s->private;
2460 struct pl08x_dma_chan *chan;
2461 struct pl08x_phy_chan *ch;
2462 unsigned long flags;
2463 int i;
2464
2465 seq_printf(s, "PL08x physical channels:\n");
2466 seq_printf(s, "CHANNEL:\tUSER:\n");
2467 seq_printf(s, "--------\t-----\n");
2468 for (i = 0; i < pl08x->vd->channels; i++) {
2469 struct pl08x_dma_chan *virt_chan;
2470
2471 ch = &pl08x->phy_chans[i];
2472
2473 spin_lock_irqsave(&ch->lock, flags);
2474 virt_chan = ch->serving;
2475
2476 seq_printf(s, "%d\t\t%s%s\n",
2477 ch->id,
2478 virt_chan ? virt_chan->name : "(none)",
2479 ch->locked ? " LOCKED" : "");
2480
2481 spin_unlock_irqrestore(&ch->lock, flags);
2482 }
2483
2484 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2485 seq_printf(s, "CHANNEL:\tSTATE:\n");
2486 seq_printf(s, "--------\t------\n");
2487 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2488 seq_printf(s, "%s\t\t%s\n", chan->name,
2489 pl08x_state_str(chan->state));
2490 }
2491
2492 if (pl08x->has_slave) {
2493 seq_printf(s, "\nPL08x virtual slave channels:\n");
2494 seq_printf(s, "CHANNEL:\tSTATE:\n");
2495 seq_printf(s, "--------\t------\n");
2496 list_for_each_entry(chan, &pl08x->slave.channels,
2497 vc.chan.device_node) {
2498 seq_printf(s, "%s\t\t%s\n", chan->name,
2499 pl08x_state_str(chan->state));
2500 }
2501 }
2502
2503 return 0;
2504 }
2505
2506 DEFINE_SHOW_ATTRIBUTE(pl08x_debugfs);
2507
2508 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2509 {
2510 /* Expose a simple debugfs interface to view all clocks */
2511 debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
2512 NULL, pl08x, &pl08x_debugfs_fops);
2513 }
2514
2515 #else
2516 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2517 {
2518 }
2519 #endif
2520
2521 #ifdef CONFIG_OF
2522 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2523 u32 id)
2524 {
2525 struct pl08x_dma_chan *chan;
2526
2527 /* Trying to get a slave channel from something with no slave support */
2528 if (!pl08x->has_slave)
2529 return NULL;
2530
2531 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2532 if (chan->signal == id)
2533 return &chan->vc.chan;
2534 }
2535
2536 return NULL;
2537 }
2538
2539 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2540 struct of_dma *ofdma)
2541 {
2542 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2543 struct dma_chan *dma_chan;
2544 struct pl08x_dma_chan *plchan;
2545
2546 if (!pl08x)
2547 return NULL;
2548
2549 if (dma_spec->args_count != 2) {
2550 dev_err(&pl08x->adev->dev,
2551 "DMA channel translation requires two cells\n");
2552 return NULL;
2553 }
2554
2555 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2556 if (!dma_chan) {
2557 dev_err(&pl08x->adev->dev,
2558 "DMA slave channel not found\n");
2559 return NULL;
2560 }
2561
2562 plchan = to_pl08x_chan(dma_chan);
2563 dev_dbg(&pl08x->adev->dev,
2564 "translated channel for signal %d\n",
2565 dma_spec->args[0]);
2566
2567 /* Augment channel data for applicable AHB buses */
2568 plchan->cd->periph_buses = dma_spec->args[1];
2569 return dma_get_slave_channel(dma_chan);
2570 }
2571
2572 static int pl08x_of_probe(struct amba_device *adev,
2573 struct pl08x_driver_data *pl08x,
2574 struct device_node *np)
2575 {
2576 struct pl08x_platform_data *pd;
2577 struct pl08x_channel_data *chanp = NULL;
2578 u32 val;
2579 int ret;
2580 int i;
2581
2582 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2583 if (!pd)
2584 return -ENOMEM;
2585
2586 /* Eligible bus masters for fetching LLIs */
2587 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2588 pd->lli_buses |= PL08X_AHB1;
2589 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2590 pd->lli_buses |= PL08X_AHB2;
2591 if (!pd->lli_buses) {
2592 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2593 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2594 }
2595
2596 /* Eligible bus masters for memory access */
2597 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2598 pd->mem_buses |= PL08X_AHB1;
2599 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2600 pd->mem_buses |= PL08X_AHB2;
2601 if (!pd->mem_buses) {
2602 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2603 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2604 }
2605
2606 /* Parse the memcpy channel properties */
2607 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2608 if (ret) {
2609 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2610 val = 1;
2611 }
2612 switch (val) {
2613 default:
2614 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2615 /* Fall through */
2616 case 1:
2617 pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2618 break;
2619 case 4:
2620 pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2621 break;
2622 case 8:
2623 pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2624 break;
2625 case 16:
2626 pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2627 break;
2628 case 32:
2629 pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2630 break;
2631 case 64:
2632 pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2633 break;
2634 case 128:
2635 pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2636 break;
2637 case 256:
2638 pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2639 break;
2640 }
2641
2642 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2643 if (ret) {
2644 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2645 val = 8;
2646 }
2647 switch (val) {
2648 default:
2649 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2650 /* Fall through */
2651 case 8:
2652 pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2653 break;
2654 case 16:
2655 pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2656 break;
2657 case 32:
2658 pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2659 break;
2660 }
2661
2662 /*
2663 * Allocate channel data for all possible slave channels (one
2664 * for each possible signal), channels will then be allocated
2665 * for a device and have it's AHB interfaces set up at
2666 * translation time.
2667 */
2668 if (pl08x->vd->signals) {
2669 chanp = devm_kcalloc(&adev->dev,
2670 pl08x->vd->signals,
2671 sizeof(struct pl08x_channel_data),
2672 GFP_KERNEL);
2673 if (!chanp)
2674 return -ENOMEM;
2675
2676 pd->slave_channels = chanp;
2677 for (i = 0; i < pl08x->vd->signals; i++) {
2678 /*
2679 * chanp->periph_buses will be assigned at translation
2680 */
2681 chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2682 chanp++;
2683 }
2684 pd->num_slave_channels = pl08x->vd->signals;
2685 }
2686
2687 pl08x->pd = pd;
2688
2689 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2690 pl08x);
2691 }
2692 #else
2693 static inline int pl08x_of_probe(struct amba_device *adev,
2694 struct pl08x_driver_data *pl08x,
2695 struct device_node *np)
2696 {
2697 return -EINVAL;
2698 }
2699 #endif
2700
2701 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2702 {
2703 struct pl08x_driver_data *pl08x;
2704 struct vendor_data *vd = id->data;
2705 struct device_node *np = adev->dev.of_node;
2706 u32 tsfr_size;
2707 int ret = 0;
2708 int i;
2709
2710 ret = amba_request_regions(adev, NULL);
2711 if (ret)
2712 return ret;
2713
2714 /* Ensure that we can do DMA */
2715 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2716 if (ret)
2717 goto out_no_pl08x;
2718
2719 /* Create the driver state holder */
2720 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2721 if (!pl08x) {
2722 ret = -ENOMEM;
2723 goto out_no_pl08x;
2724 }
2725
2726 /* Assign useful pointers to the driver state */
2727 pl08x->adev = adev;
2728 pl08x->vd = vd;
2729
2730 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2731 if (!pl08x->base) {
2732 ret = -ENOMEM;
2733 goto out_no_ioremap;
2734 }
2735
2736 if (vd->ftdmac020) {
2737 u32 val;
2738
2739 val = readl(pl08x->base + FTDMAC020_REVISION);
2740 dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2741 (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2742 val = readl(pl08x->base + FTDMAC020_FEATURE);
2743 dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2744 "%s built-in bridge, %s, %s linked lists\n",
2745 (val >> 12) & 0x0f,
2746 (val & BIT(10)) ? "no" : "has",
2747 (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2748 (val & BIT(8)) ? "supports" : "does not support");
2749
2750 /* Vendor data from feature register */
2751 if (!(val & BIT(8)))
2752 dev_warn(&pl08x->adev->dev,
2753 "linked lists not supported, required\n");
2754 vd->channels = (val >> 12) & 0x0f;
2755 vd->dualmaster = !!(val & BIT(9));
2756 }
2757
2758 /* Initialize memcpy engine */
2759 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2760 pl08x->memcpy.dev = &adev->dev;
2761 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2762 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2763 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2764 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2765 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2766 pl08x->memcpy.device_config = pl08x_config;
2767 pl08x->memcpy.device_pause = pl08x_pause;
2768 pl08x->memcpy.device_resume = pl08x_resume;
2769 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2770 pl08x->memcpy.device_synchronize = pl08x_synchronize;
2771 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2772 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2773 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2774 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2775 if (vd->ftdmac020)
2776 pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2777
2778
2779 /*
2780 * Initialize slave engine, if the block has no signals, that means
2781 * we have no slave support.
2782 */
2783 if (vd->signals) {
2784 pl08x->has_slave = true;
2785 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2786 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2787 pl08x->slave.dev = &adev->dev;
2788 pl08x->slave.device_free_chan_resources =
2789 pl08x_free_chan_resources;
2790 pl08x->slave.device_prep_dma_interrupt =
2791 pl08x_prep_dma_interrupt;
2792 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2793 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2794 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2795 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2796 pl08x->slave.device_config = pl08x_config;
2797 pl08x->slave.device_pause = pl08x_pause;
2798 pl08x->slave.device_resume = pl08x_resume;
2799 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2800 pl08x->slave.device_synchronize = pl08x_synchronize;
2801 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2802 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2803 pl08x->slave.directions =
2804 BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2805 pl08x->slave.residue_granularity =
2806 DMA_RESIDUE_GRANULARITY_SEGMENT;
2807 }
2808
2809 /* Get the platform data */
2810 pl08x->pd = dev_get_platdata(&adev->dev);
2811 if (!pl08x->pd) {
2812 if (np) {
2813 ret = pl08x_of_probe(adev, pl08x, np);
2814 if (ret)
2815 goto out_no_platdata;
2816 } else {
2817 dev_err(&adev->dev, "no platform data supplied\n");
2818 ret = -EINVAL;
2819 goto out_no_platdata;
2820 }
2821 } else {
2822 pl08x->slave.filter.map = pl08x->pd->slave_map;
2823 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2824 pl08x->slave.filter.fn = pl08x_filter_fn;
2825 }
2826
2827 /* By default, AHB1 only. If dualmaster, from platform */
2828 pl08x->lli_buses = PL08X_AHB1;
2829 pl08x->mem_buses = PL08X_AHB1;
2830 if (pl08x->vd->dualmaster) {
2831 pl08x->lli_buses = pl08x->pd->lli_buses;
2832 pl08x->mem_buses = pl08x->pd->mem_buses;
2833 }
2834
2835 if (vd->pl080s)
2836 pl08x->lli_words = PL080S_LLI_WORDS;
2837 else
2838 pl08x->lli_words = PL080_LLI_WORDS;
2839 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2840
2841 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2842 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2843 tsfr_size, PL08X_ALIGN, 0);
2844 if (!pl08x->pool) {
2845 ret = -ENOMEM;
2846 goto out_no_lli_pool;
2847 }
2848
2849 /* Turn on the PL08x */
2850 pl08x_ensure_on(pl08x);
2851
2852 /* Clear any pending interrupts */
2853 if (vd->ftdmac020)
2854 /* This variant has error IRQs in bits 16-19 */
2855 writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2856 else
2857 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2858 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2859
2860 /* Attach the interrupt handler */
2861 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2862 if (ret) {
2863 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2864 __func__, adev->irq[0]);
2865 goto out_no_irq;
2866 }
2867
2868 /* Initialize physical channels */
2869 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2870 GFP_KERNEL);
2871 if (!pl08x->phy_chans) {
2872 ret = -ENOMEM;
2873 goto out_no_phychans;
2874 }
2875
2876 for (i = 0; i < vd->channels; i++) {
2877 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2878
2879 ch->id = i;
2880 ch->base = pl08x->base + PL080_Cx_BASE(i);
2881 if (vd->ftdmac020) {
2882 /* FTDMA020 has a special channel busy register */
2883 ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2884 ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2885 ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2886 ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2887 ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2888 ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2889 ch->ftdmac020 = true;
2890 } else {
2891 ch->reg_config = ch->base + vd->config_offset;
2892 ch->reg_control = ch->base + PL080_CH_CONTROL;
2893 ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2894 ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2895 ch->reg_lli = ch->base + PL080_CH_LLI;
2896 }
2897 if (vd->pl080s)
2898 ch->pl080s = true;
2899
2900 spin_lock_init(&ch->lock);
2901
2902 /*
2903 * Nomadik variants can have channels that are locked
2904 * down for the secure world only. Lock up these channels
2905 * by perpetually serving a dummy virtual channel.
2906 */
2907 if (vd->nomadik) {
2908 u32 val;
2909
2910 val = readl(ch->reg_config);
2911 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2912 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2913 ch->locked = true;
2914 }
2915 }
2916
2917 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2918 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2919 }
2920
2921 /* Register as many memcpy channels as there are physical channels */
2922 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2923 pl08x->vd->channels, false);
2924 if (ret <= 0) {
2925 dev_warn(&pl08x->adev->dev,
2926 "%s failed to enumerate memcpy channels - %d\n",
2927 __func__, ret);
2928 goto out_no_memcpy;
2929 }
2930
2931 /* Register slave channels */
2932 if (pl08x->has_slave) {
2933 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2934 pl08x->pd->num_slave_channels, true);
2935 if (ret < 0) {
2936 dev_warn(&pl08x->adev->dev,
2937 "%s failed to enumerate slave channels - %d\n",
2938 __func__, ret);
2939 goto out_no_slave;
2940 }
2941 }
2942
2943 ret = dma_async_device_register(&pl08x->memcpy);
2944 if (ret) {
2945 dev_warn(&pl08x->adev->dev,
2946 "%s failed to register memcpy as an async device - %d\n",
2947 __func__, ret);
2948 goto out_no_memcpy_reg;
2949 }
2950
2951 if (pl08x->has_slave) {
2952 ret = dma_async_device_register(&pl08x->slave);
2953 if (ret) {
2954 dev_warn(&pl08x->adev->dev,
2955 "%s failed to register slave as an async device - %d\n",
2956 __func__, ret);
2957 goto out_no_slave_reg;
2958 }
2959 }
2960
2961 amba_set_drvdata(adev, pl08x);
2962 init_pl08x_debugfs(pl08x);
2963 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2964 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2965 (unsigned long long)adev->res.start, adev->irq[0]);
2966
2967 return 0;
2968
2969 out_no_slave_reg:
2970 dma_async_device_unregister(&pl08x->memcpy);
2971 out_no_memcpy_reg:
2972 if (pl08x->has_slave)
2973 pl08x_free_virtual_channels(&pl08x->slave);
2974 out_no_slave:
2975 pl08x_free_virtual_channels(&pl08x->memcpy);
2976 out_no_memcpy:
2977 kfree(pl08x->phy_chans);
2978 out_no_phychans:
2979 free_irq(adev->irq[0], pl08x);
2980 out_no_irq:
2981 dma_pool_destroy(pl08x->pool);
2982 out_no_lli_pool:
2983 out_no_platdata:
2984 iounmap(pl08x->base);
2985 out_no_ioremap:
2986 kfree(pl08x);
2987 out_no_pl08x:
2988 amba_release_regions(adev);
2989 return ret;
2990 }
2991
2992 /* PL080 has 8 channels and the PL080 have just 2 */
2993 static struct vendor_data vendor_pl080 = {
2994 .config_offset = PL080_CH_CONFIG,
2995 .channels = 8,
2996 .signals = 16,
2997 .dualmaster = true,
2998 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2999 };
3000
3001 static struct vendor_data vendor_nomadik = {
3002 .config_offset = PL080_CH_CONFIG,
3003 .channels = 8,
3004 .signals = 32,
3005 .dualmaster = true,
3006 .nomadik = true,
3007 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3008 };
3009
3010 static struct vendor_data vendor_pl080s = {
3011 .config_offset = PL080S_CH_CONFIG,
3012 .channels = 8,
3013 .signals = 32,
3014 .pl080s = true,
3015 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3016 };
3017
3018 static struct vendor_data vendor_pl081 = {
3019 .config_offset = PL080_CH_CONFIG,
3020 .channels = 2,
3021 .signals = 16,
3022 .dualmaster = false,
3023 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3024 };
3025
3026 static struct vendor_data vendor_ftdmac020 = {
3027 .config_offset = PL080_CH_CONFIG,
3028 .ftdmac020 = true,
3029 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3030 };
3031
3032 static const struct amba_id pl08x_ids[] = {
3033 /* Samsung PL080S variant */
3034 {
3035 .id = 0x0a141080,
3036 .mask = 0xffffffff,
3037 .data = &vendor_pl080s,
3038 },
3039 /* PL080 */
3040 {
3041 .id = 0x00041080,
3042 .mask = 0x000fffff,
3043 .data = &vendor_pl080,
3044 },
3045 /* PL081 */
3046 {
3047 .id = 0x00041081,
3048 .mask = 0x000fffff,
3049 .data = &vendor_pl081,
3050 },
3051 /* Nomadik 8815 PL080 variant */
3052 {
3053 .id = 0x00280080,
3054 .mask = 0x00ffffff,
3055 .data = &vendor_nomadik,
3056 },
3057 /* Faraday Technology FTDMAC020 */
3058 {
3059 .id = 0x0003b080,
3060 .mask = 0x000fffff,
3061 .data = &vendor_ftdmac020,
3062 },
3063 { 0, 0 },
3064 };
3065
3066 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3067
3068 static struct amba_driver pl08x_amba_driver = {
3069 .drv.name = DRIVER_NAME,
3070 .id_table = pl08x_ids,
3071 .probe = pl08x_probe,
3072 };
3073
3074 static int __init pl08x_init(void)
3075 {
3076 int retval;
3077 retval = amba_driver_register(&pl08x_amba_driver);
3078 if (retval)
3079 printk(KERN_WARNING DRIVER_NAME
3080 "failed to register as an AMBA device (%d)\n",
3081 retval);
3082 return retval;
3083 }
3084 subsys_initcall(pl08x_init);