]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/amba-pl08x.c
Merge tag 'upstream-3.12-rc1' of git://git.infradead.org/linux-ubi
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
28 *
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
30 * channel.
31 *
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
37 *
38 * The PL080 has a dual bus master, PL081 has a single master.
39 *
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
47 *
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
50 * Until no data left
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
53 * Clear burst request
54 * Raise terminal count interrupt
55 *
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
59 *
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
62 *
63 * ASSUMES default (little) endianness for DMA transfers
64 *
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
71 * are ignored.
72 *
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
77 */
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/module.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
93
94 #include "dmaengine.h"
95 #include "virt-dma.h"
96
97 #define DRIVER_NAME "pl08xdmac"
98
99 static struct amba_driver pl08x_amba_driver;
100 struct pl08x_driver_data;
101
102 /**
103 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
104 * @channels: the number of channels available in this variant
105 * @dualmaster: whether this version supports dual AHB masters or not.
106 * @nomadik: whether the channels have Nomadik security extension bits
107 * that need to be checked for permission before use and some registers are
108 * missing
109 * @pl080s: whether this version is a PL080S, which has separate register and
110 * LLI word for transfer size.
111 */
112 struct vendor_data {
113 u8 config_offset;
114 u8 channels;
115 bool dualmaster;
116 bool nomadik;
117 bool pl080s;
118 u32 max_transfer_size;
119 };
120
121 /**
122 * struct pl08x_bus_data - information of source or destination
123 * busses for a transfer
124 * @addr: current address
125 * @maxwidth: the maximum width of a transfer on this bus
126 * @buswidth: the width of this bus in bytes: 1, 2 or 4
127 */
128 struct pl08x_bus_data {
129 dma_addr_t addr;
130 u8 maxwidth;
131 u8 buswidth;
132 };
133
134 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
135
136 /**
137 * struct pl08x_phy_chan - holder for the physical channels
138 * @id: physical index to this channel
139 * @lock: a lock to use when altering an instance of this struct
140 * @serving: the virtual channel currently being served by this physical
141 * channel
142 * @locked: channel unavailable for the system, e.g. dedicated to secure
143 * world
144 */
145 struct pl08x_phy_chan {
146 unsigned int id;
147 void __iomem *base;
148 void __iomem *reg_config;
149 spinlock_t lock;
150 struct pl08x_dma_chan *serving;
151 bool locked;
152 };
153
154 /**
155 * struct pl08x_sg - structure containing data per sg
156 * @src_addr: src address of sg
157 * @dst_addr: dst address of sg
158 * @len: transfer len in bytes
159 * @node: node for txd's dsg_list
160 */
161 struct pl08x_sg {
162 dma_addr_t src_addr;
163 dma_addr_t dst_addr;
164 size_t len;
165 struct list_head node;
166 };
167
168 /**
169 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
170 * @vd: virtual DMA descriptor
171 * @dsg_list: list of children sg's
172 * @llis_bus: DMA memory address (physical) start for the LLIs
173 * @llis_va: virtual memory address start for the LLIs
174 * @cctl: control reg values for current txd
175 * @ccfg: config reg values for current txd
176 * @done: this marks completed descriptors, which should not have their
177 * mux released.
178 * @cyclic: indicate cyclic transfers
179 */
180 struct pl08x_txd {
181 struct virt_dma_desc vd;
182 struct list_head dsg_list;
183 dma_addr_t llis_bus;
184 u32 *llis_va;
185 /* Default cctl value for LLIs */
186 u32 cctl;
187 /*
188 * Settings to be put into the physical channel when we
189 * trigger this txd. Other registers are in llis_va[0].
190 */
191 u32 ccfg;
192 bool done;
193 bool cyclic;
194 };
195
196 /**
197 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
198 * states
199 * @PL08X_CHAN_IDLE: the channel is idle
200 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
201 * channel and is running a transfer on it
202 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
203 * channel, but the transfer is currently paused
204 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
205 * channel to become available (only pertains to memcpy channels)
206 */
207 enum pl08x_dma_chan_state {
208 PL08X_CHAN_IDLE,
209 PL08X_CHAN_RUNNING,
210 PL08X_CHAN_PAUSED,
211 PL08X_CHAN_WAITING,
212 };
213
214 /**
215 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
216 * @vc: wrappped virtual channel
217 * @phychan: the physical channel utilized by this channel, if there is one
218 * @name: name of channel
219 * @cd: channel platform data
220 * @runtime_addr: address for RX/TX according to the runtime config
221 * @at: active transaction on this channel
222 * @lock: a lock for this channel data
223 * @host: a pointer to the host (internal use)
224 * @state: whether the channel is idle, paused, running etc
225 * @slave: whether this channel is a device (slave) or for memcpy
226 * @signal: the physical DMA request signal which this channel is using
227 * @mux_use: count of descriptors using this DMA request signal setting
228 */
229 struct pl08x_dma_chan {
230 struct virt_dma_chan vc;
231 struct pl08x_phy_chan *phychan;
232 const char *name;
233 const struct pl08x_channel_data *cd;
234 struct dma_slave_config cfg;
235 struct pl08x_txd *at;
236 struct pl08x_driver_data *host;
237 enum pl08x_dma_chan_state state;
238 bool slave;
239 int signal;
240 unsigned mux_use;
241 };
242
243 /**
244 * struct pl08x_driver_data - the local state holder for the PL08x
245 * @slave: slave engine for this instance
246 * @memcpy: memcpy engine for this instance
247 * @base: virtual memory base (remapped) for the PL08x
248 * @adev: the corresponding AMBA (PrimeCell) bus entry
249 * @vd: vendor data for this PL08x variant
250 * @pd: platform data passed in from the platform/machine
251 * @phy_chans: array of data for the physical channels
252 * @pool: a pool for the LLI descriptors
253 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
254 * fetches
255 * @mem_buses: set to indicate memory transfers on AHB2.
256 * @lock: a spinlock for this struct
257 */
258 struct pl08x_driver_data {
259 struct dma_device slave;
260 struct dma_device memcpy;
261 void __iomem *base;
262 struct amba_device *adev;
263 const struct vendor_data *vd;
264 struct pl08x_platform_data *pd;
265 struct pl08x_phy_chan *phy_chans;
266 struct dma_pool *pool;
267 u8 lli_buses;
268 u8 mem_buses;
269 u8 lli_words;
270 };
271
272 /*
273 * PL08X specific defines
274 */
275
276 /* The order of words in an LLI. */
277 #define PL080_LLI_SRC 0
278 #define PL080_LLI_DST 1
279 #define PL080_LLI_LLI 2
280 #define PL080_LLI_CCTL 3
281 #define PL080S_LLI_CCTL2 4
282
283 /* Total words in an LLI. */
284 #define PL080_LLI_WORDS 4
285 #define PL080S_LLI_WORDS 8
286
287 /*
288 * Number of LLIs in each LLI buffer allocated for one transfer
289 * (maximum times we call dma_pool_alloc on this pool without freeing)
290 */
291 #define MAX_NUM_TSFR_LLIS 512
292 #define PL08X_ALIGN 8
293
294 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
295 {
296 return container_of(chan, struct pl08x_dma_chan, vc.chan);
297 }
298
299 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
300 {
301 return container_of(tx, struct pl08x_txd, vd.tx);
302 }
303
304 /*
305 * Mux handling.
306 *
307 * This gives us the DMA request input to the PL08x primecell which the
308 * peripheral described by the channel data will be routed to, possibly
309 * via a board/SoC specific external MUX. One important point to note
310 * here is that this does not depend on the physical channel.
311 */
312 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
313 {
314 const struct pl08x_platform_data *pd = plchan->host->pd;
315 int ret;
316
317 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
318 ret = pd->get_xfer_signal(plchan->cd);
319 if (ret < 0) {
320 plchan->mux_use = 0;
321 return ret;
322 }
323
324 plchan->signal = ret;
325 }
326 return 0;
327 }
328
329 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
330 {
331 const struct pl08x_platform_data *pd = plchan->host->pd;
332
333 if (plchan->signal >= 0) {
334 WARN_ON(plchan->mux_use == 0);
335
336 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
337 pd->put_xfer_signal(plchan->cd, plchan->signal);
338 plchan->signal = -1;
339 }
340 }
341 }
342
343 /*
344 * Physical channel handling
345 */
346
347 /* Whether a certain channel is busy or not */
348 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
349 {
350 unsigned int val;
351
352 val = readl(ch->reg_config);
353 return val & PL080_CONFIG_ACTIVE;
354 }
355
356 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
357 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
358 {
359 if (pl08x->vd->pl080s)
360 dev_vdbg(&pl08x->adev->dev,
361 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
362 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
363 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
364 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
365 lli[PL080S_LLI_CCTL2], ccfg);
366 else
367 dev_vdbg(&pl08x->adev->dev,
368 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
369 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
370 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
371 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
372
373 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
374 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
375 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
376 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
377
378 if (pl08x->vd->pl080s)
379 writel_relaxed(lli[PL080S_LLI_CCTL2],
380 phychan->base + PL080S_CH_CONTROL2);
381
382 writel(ccfg, phychan->reg_config);
383 }
384
385 /*
386 * Set the initial DMA register values i.e. those for the first LLI
387 * The next LLI pointer and the configuration interrupt bit have
388 * been set when the LLIs were constructed. Poke them into the hardware
389 * and start the transfer.
390 */
391 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
392 {
393 struct pl08x_driver_data *pl08x = plchan->host;
394 struct pl08x_phy_chan *phychan = plchan->phychan;
395 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
396 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
397 u32 val;
398
399 list_del(&txd->vd.node);
400
401 plchan->at = txd;
402
403 /* Wait for channel inactive */
404 while (pl08x_phy_channel_busy(phychan))
405 cpu_relax();
406
407 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
408
409 /* Enable the DMA channel */
410 /* Do not access config register until channel shows as disabled */
411 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
412 cpu_relax();
413
414 /* Do not access config register until channel shows as inactive */
415 val = readl(phychan->reg_config);
416 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
417 val = readl(phychan->reg_config);
418
419 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
420 }
421
422 /*
423 * Pause the channel by setting the HALT bit.
424 *
425 * For M->P transfers, pause the DMAC first and then stop the peripheral -
426 * the FIFO can only drain if the peripheral is still requesting data.
427 * (note: this can still timeout if the DMAC FIFO never drains of data.)
428 *
429 * For P->M transfers, disable the peripheral first to stop it filling
430 * the DMAC FIFO, and then pause the DMAC.
431 */
432 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
433 {
434 u32 val;
435 int timeout;
436
437 /* Set the HALT bit and wait for the FIFO to drain */
438 val = readl(ch->reg_config);
439 val |= PL080_CONFIG_HALT;
440 writel(val, ch->reg_config);
441
442 /* Wait for channel inactive */
443 for (timeout = 1000; timeout; timeout--) {
444 if (!pl08x_phy_channel_busy(ch))
445 break;
446 udelay(1);
447 }
448 if (pl08x_phy_channel_busy(ch))
449 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
450 }
451
452 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
453 {
454 u32 val;
455
456 /* Clear the HALT bit */
457 val = readl(ch->reg_config);
458 val &= ~PL080_CONFIG_HALT;
459 writel(val, ch->reg_config);
460 }
461
462 /*
463 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
464 * clears any pending interrupt status. This should not be used for
465 * an on-going transfer, but as a method of shutting down a channel
466 * (eg, when it's no longer used) or terminating a transfer.
467 */
468 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
469 struct pl08x_phy_chan *ch)
470 {
471 u32 val = readl(ch->reg_config);
472
473 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
474 PL080_CONFIG_TC_IRQ_MASK);
475
476 writel(val, ch->reg_config);
477
478 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
479 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
480 }
481
482 static inline u32 get_bytes_in_cctl(u32 cctl)
483 {
484 /* The source width defines the number of bytes */
485 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
486
487 cctl &= PL080_CONTROL_SWIDTH_MASK;
488
489 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
490 case PL080_WIDTH_8BIT:
491 break;
492 case PL080_WIDTH_16BIT:
493 bytes *= 2;
494 break;
495 case PL080_WIDTH_32BIT:
496 bytes *= 4;
497 break;
498 }
499 return bytes;
500 }
501
502 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
503 {
504 /* The source width defines the number of bytes */
505 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
506
507 cctl &= PL080_CONTROL_SWIDTH_MASK;
508
509 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
510 case PL080_WIDTH_8BIT:
511 break;
512 case PL080_WIDTH_16BIT:
513 bytes *= 2;
514 break;
515 case PL080_WIDTH_32BIT:
516 bytes *= 4;
517 break;
518 }
519 return bytes;
520 }
521
522 /* The channel should be paused when calling this */
523 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
524 {
525 struct pl08x_driver_data *pl08x = plchan->host;
526 const u32 *llis_va, *llis_va_limit;
527 struct pl08x_phy_chan *ch;
528 dma_addr_t llis_bus;
529 struct pl08x_txd *txd;
530 u32 llis_max_words;
531 size_t bytes;
532 u32 clli;
533
534 ch = plchan->phychan;
535 txd = plchan->at;
536
537 if (!ch || !txd)
538 return 0;
539
540 /*
541 * Follow the LLIs to get the number of remaining
542 * bytes in the currently active transaction.
543 */
544 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
545
546 /* First get the remaining bytes in the active transfer */
547 if (pl08x->vd->pl080s)
548 bytes = get_bytes_in_cctl_pl080s(
549 readl(ch->base + PL080_CH_CONTROL),
550 readl(ch->base + PL080S_CH_CONTROL2));
551 else
552 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
553
554 if (!clli)
555 return bytes;
556
557 llis_va = txd->llis_va;
558 llis_bus = txd->llis_bus;
559
560 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
561 BUG_ON(clli < llis_bus || clli >= llis_bus +
562 sizeof(u32) * llis_max_words);
563
564 /*
565 * Locate the next LLI - as this is an array,
566 * it's simple maths to find.
567 */
568 llis_va += (clli - llis_bus) / sizeof(u32);
569
570 llis_va_limit = llis_va + llis_max_words;
571
572 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
573 if (pl08x->vd->pl080s)
574 bytes += get_bytes_in_cctl_pl080s(
575 llis_va[PL080_LLI_CCTL],
576 llis_va[PL080S_LLI_CCTL2]);
577 else
578 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
579
580 /*
581 * A LLI pointer going backward terminates the LLI list
582 */
583 if (llis_va[PL080_LLI_LLI] <= clli)
584 break;
585 }
586
587 return bytes;
588 }
589
590 /*
591 * Allocate a physical channel for a virtual channel
592 *
593 * Try to locate a physical channel to be used for this transfer. If all
594 * are taken return NULL and the requester will have to cope by using
595 * some fallback PIO mode or retrying later.
596 */
597 static struct pl08x_phy_chan *
598 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
599 struct pl08x_dma_chan *virt_chan)
600 {
601 struct pl08x_phy_chan *ch = NULL;
602 unsigned long flags;
603 int i;
604
605 for (i = 0; i < pl08x->vd->channels; i++) {
606 ch = &pl08x->phy_chans[i];
607
608 spin_lock_irqsave(&ch->lock, flags);
609
610 if (!ch->locked && !ch->serving) {
611 ch->serving = virt_chan;
612 spin_unlock_irqrestore(&ch->lock, flags);
613 break;
614 }
615
616 spin_unlock_irqrestore(&ch->lock, flags);
617 }
618
619 if (i == pl08x->vd->channels) {
620 /* No physical channel available, cope with it */
621 return NULL;
622 }
623
624 return ch;
625 }
626
627 /* Mark the physical channel as free. Note, this write is atomic. */
628 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
629 struct pl08x_phy_chan *ch)
630 {
631 ch->serving = NULL;
632 }
633
634 /*
635 * Try to allocate a physical channel. When successful, assign it to
636 * this virtual channel, and initiate the next descriptor. The
637 * virtual channel lock must be held at this point.
638 */
639 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
640 {
641 struct pl08x_driver_data *pl08x = plchan->host;
642 struct pl08x_phy_chan *ch;
643
644 ch = pl08x_get_phy_channel(pl08x, plchan);
645 if (!ch) {
646 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
647 plchan->state = PL08X_CHAN_WAITING;
648 return;
649 }
650
651 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
652 ch->id, plchan->name);
653
654 plchan->phychan = ch;
655 plchan->state = PL08X_CHAN_RUNNING;
656 pl08x_start_next_txd(plchan);
657 }
658
659 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
660 struct pl08x_dma_chan *plchan)
661 {
662 struct pl08x_driver_data *pl08x = plchan->host;
663
664 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
665 ch->id, plchan->name);
666
667 /*
668 * We do this without taking the lock; we're really only concerned
669 * about whether this pointer is NULL or not, and we're guaranteed
670 * that this will only be called when it _already_ is non-NULL.
671 */
672 ch->serving = plchan;
673 plchan->phychan = ch;
674 plchan->state = PL08X_CHAN_RUNNING;
675 pl08x_start_next_txd(plchan);
676 }
677
678 /*
679 * Free a physical DMA channel, potentially reallocating it to another
680 * virtual channel if we have any pending.
681 */
682 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
683 {
684 struct pl08x_driver_data *pl08x = plchan->host;
685 struct pl08x_dma_chan *p, *next;
686
687 retry:
688 next = NULL;
689
690 /* Find a waiting virtual channel for the next transfer. */
691 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
692 if (p->state == PL08X_CHAN_WAITING) {
693 next = p;
694 break;
695 }
696
697 if (!next) {
698 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
699 if (p->state == PL08X_CHAN_WAITING) {
700 next = p;
701 break;
702 }
703 }
704
705 /* Ensure that the physical channel is stopped */
706 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
707
708 if (next) {
709 bool success;
710
711 /*
712 * Eww. We know this isn't going to deadlock
713 * but lockdep probably doesn't.
714 */
715 spin_lock(&next->vc.lock);
716 /* Re-check the state now that we have the lock */
717 success = next->state == PL08X_CHAN_WAITING;
718 if (success)
719 pl08x_phy_reassign_start(plchan->phychan, next);
720 spin_unlock(&next->vc.lock);
721
722 /* If the state changed, try to find another channel */
723 if (!success)
724 goto retry;
725 } else {
726 /* No more jobs, so free up the physical channel */
727 pl08x_put_phy_channel(pl08x, plchan->phychan);
728 }
729
730 plchan->phychan = NULL;
731 plchan->state = PL08X_CHAN_IDLE;
732 }
733
734 /*
735 * LLI handling
736 */
737
738 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
739 {
740 switch (coded) {
741 case PL080_WIDTH_8BIT:
742 return 1;
743 case PL080_WIDTH_16BIT:
744 return 2;
745 case PL080_WIDTH_32BIT:
746 return 4;
747 default:
748 break;
749 }
750 BUG();
751 return 0;
752 }
753
754 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
755 size_t tsize)
756 {
757 u32 retbits = cctl;
758
759 /* Remove all src, dst and transfer size bits */
760 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
761 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
762 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
763
764 /* Then set the bits according to the parameters */
765 switch (srcwidth) {
766 case 1:
767 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
768 break;
769 case 2:
770 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
771 break;
772 case 4:
773 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
774 break;
775 default:
776 BUG();
777 break;
778 }
779
780 switch (dstwidth) {
781 case 1:
782 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
783 break;
784 case 2:
785 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
786 break;
787 case 4:
788 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
789 break;
790 default:
791 BUG();
792 break;
793 }
794
795 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
796 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
797 return retbits;
798 }
799
800 struct pl08x_lli_build_data {
801 struct pl08x_txd *txd;
802 struct pl08x_bus_data srcbus;
803 struct pl08x_bus_data dstbus;
804 size_t remainder;
805 u32 lli_bus;
806 };
807
808 /*
809 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
810 * victim in case src & dest are not similarly aligned. i.e. If after aligning
811 * masters address with width requirements of transfer (by sending few byte by
812 * byte data), slave is still not aligned, then its width will be reduced to
813 * BYTE.
814 * - prefers the destination bus if both available
815 * - prefers bus with fixed address (i.e. peripheral)
816 */
817 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
818 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
819 {
820 if (!(cctl & PL080_CONTROL_DST_INCR)) {
821 *mbus = &bd->dstbus;
822 *sbus = &bd->srcbus;
823 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
824 *mbus = &bd->srcbus;
825 *sbus = &bd->dstbus;
826 } else {
827 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
828 *mbus = &bd->dstbus;
829 *sbus = &bd->srcbus;
830 } else {
831 *mbus = &bd->srcbus;
832 *sbus = &bd->dstbus;
833 }
834 }
835 }
836
837 /*
838 * Fills in one LLI for a certain transfer descriptor and advance the counter
839 */
840 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
841 struct pl08x_lli_build_data *bd,
842 int num_llis, int len, u32 cctl, u32 cctl2)
843 {
844 u32 offset = num_llis * pl08x->lli_words;
845 u32 *llis_va = bd->txd->llis_va + offset;
846 dma_addr_t llis_bus = bd->txd->llis_bus;
847
848 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
849
850 /* Advance the offset to next LLI. */
851 offset += pl08x->lli_words;
852
853 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
854 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
855 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
856 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
857 llis_va[PL080_LLI_CCTL] = cctl;
858 if (pl08x->vd->pl080s)
859 llis_va[PL080S_LLI_CCTL2] = cctl2;
860
861 if (cctl & PL080_CONTROL_SRC_INCR)
862 bd->srcbus.addr += len;
863 if (cctl & PL080_CONTROL_DST_INCR)
864 bd->dstbus.addr += len;
865
866 BUG_ON(bd->remainder < len);
867
868 bd->remainder -= len;
869 }
870
871 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
872 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
873 int num_llis, size_t *total_bytes)
874 {
875 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
876 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
877 (*total_bytes) += len;
878 }
879
880 #ifdef VERBOSE_DEBUG
881 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
882 const u32 *llis_va, int num_llis)
883 {
884 int i;
885
886 if (pl08x->vd->pl080s) {
887 dev_vdbg(&pl08x->adev->dev,
888 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
889 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
890 for (i = 0; i < num_llis; i++) {
891 dev_vdbg(&pl08x->adev->dev,
892 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
893 i, llis_va, llis_va[PL080_LLI_SRC],
894 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
895 llis_va[PL080_LLI_CCTL],
896 llis_va[PL080S_LLI_CCTL2]);
897 llis_va += pl08x->lli_words;
898 }
899 } else {
900 dev_vdbg(&pl08x->adev->dev,
901 "%-3s %-9s %-10s %-10s %-10s %s\n",
902 "lli", "", "csrc", "cdst", "clli", "cctl");
903 for (i = 0; i < num_llis; i++) {
904 dev_vdbg(&pl08x->adev->dev,
905 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
906 i, llis_va, llis_va[PL080_LLI_SRC],
907 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
908 llis_va[PL080_LLI_CCTL]);
909 llis_va += pl08x->lli_words;
910 }
911 }
912 }
913 #else
914 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
915 const u32 *llis_va, int num_llis) {}
916 #endif
917
918 /*
919 * This fills in the table of LLIs for the transfer descriptor
920 * Note that we assume we never have to change the burst sizes
921 * Return 0 for error
922 */
923 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
924 struct pl08x_txd *txd)
925 {
926 struct pl08x_bus_data *mbus, *sbus;
927 struct pl08x_lli_build_data bd;
928 int num_llis = 0;
929 u32 cctl, early_bytes = 0;
930 size_t max_bytes_per_lli, total_bytes;
931 u32 *llis_va, *last_lli;
932 struct pl08x_sg *dsg;
933
934 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
935 if (!txd->llis_va) {
936 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
937 return 0;
938 }
939
940 bd.txd = txd;
941 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
942 cctl = txd->cctl;
943
944 /* Find maximum width of the source bus */
945 bd.srcbus.maxwidth =
946 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
947 PL080_CONTROL_SWIDTH_SHIFT);
948
949 /* Find maximum width of the destination bus */
950 bd.dstbus.maxwidth =
951 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
952 PL080_CONTROL_DWIDTH_SHIFT);
953
954 list_for_each_entry(dsg, &txd->dsg_list, node) {
955 total_bytes = 0;
956 cctl = txd->cctl;
957
958 bd.srcbus.addr = dsg->src_addr;
959 bd.dstbus.addr = dsg->dst_addr;
960 bd.remainder = dsg->len;
961 bd.srcbus.buswidth = bd.srcbus.maxwidth;
962 bd.dstbus.buswidth = bd.dstbus.maxwidth;
963
964 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
965
966 dev_vdbg(&pl08x->adev->dev,
967 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
968 (u64)bd.srcbus.addr,
969 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
970 bd.srcbus.buswidth,
971 (u64)bd.dstbus.addr,
972 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
973 bd.dstbus.buswidth,
974 bd.remainder);
975 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
976 mbus == &bd.srcbus ? "src" : "dst",
977 sbus == &bd.srcbus ? "src" : "dst");
978
979 /*
980 * Zero length is only allowed if all these requirements are
981 * met:
982 * - flow controller is peripheral.
983 * - src.addr is aligned to src.width
984 * - dst.addr is aligned to dst.width
985 *
986 * sg_len == 1 should be true, as there can be two cases here:
987 *
988 * - Memory addresses are contiguous and are not scattered.
989 * Here, Only one sg will be passed by user driver, with
990 * memory address and zero length. We pass this to controller
991 * and after the transfer it will receive the last burst
992 * request from peripheral and so transfer finishes.
993 *
994 * - Memory addresses are scattered and are not contiguous.
995 * Here, Obviously as DMA controller doesn't know when a lli's
996 * transfer gets over, it can't load next lli. So in this
997 * case, there has to be an assumption that only one lli is
998 * supported. Thus, we can't have scattered addresses.
999 */
1000 if (!bd.remainder) {
1001 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1002 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1003 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1004 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1005 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1006 __func__);
1007 return 0;
1008 }
1009
1010 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1011 !IS_BUS_ALIGNED(&bd.dstbus)) {
1012 dev_err(&pl08x->adev->dev,
1013 "%s src & dst address must be aligned to src"
1014 " & dst width if peripheral is flow controller",
1015 __func__);
1016 return 0;
1017 }
1018
1019 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1020 bd.dstbus.buswidth, 0);
1021 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1022 0, cctl, 0);
1023 break;
1024 }
1025
1026 /*
1027 * Send byte by byte for following cases
1028 * - Less than a bus width available
1029 * - until master bus is aligned
1030 */
1031 if (bd.remainder < mbus->buswidth)
1032 early_bytes = bd.remainder;
1033 else if (!IS_BUS_ALIGNED(mbus)) {
1034 early_bytes = mbus->buswidth -
1035 (mbus->addr & (mbus->buswidth - 1));
1036 if ((bd.remainder - early_bytes) < mbus->buswidth)
1037 early_bytes = bd.remainder;
1038 }
1039
1040 if (early_bytes) {
1041 dev_vdbg(&pl08x->adev->dev,
1042 "%s byte width LLIs (remain 0x%08x)\n",
1043 __func__, bd.remainder);
1044 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1045 num_llis++, &total_bytes);
1046 }
1047
1048 if (bd.remainder) {
1049 /*
1050 * Master now aligned
1051 * - if slave is not then we must set its width down
1052 */
1053 if (!IS_BUS_ALIGNED(sbus)) {
1054 dev_dbg(&pl08x->adev->dev,
1055 "%s set down bus width to one byte\n",
1056 __func__);
1057
1058 sbus->buswidth = 1;
1059 }
1060
1061 /*
1062 * Bytes transferred = tsize * src width, not
1063 * MIN(buswidths)
1064 */
1065 max_bytes_per_lli = bd.srcbus.buswidth *
1066 pl08x->vd->max_transfer_size;
1067 dev_vdbg(&pl08x->adev->dev,
1068 "%s max bytes per lli = %zu\n",
1069 __func__, max_bytes_per_lli);
1070
1071 /*
1072 * Make largest possible LLIs until less than one bus
1073 * width left
1074 */
1075 while (bd.remainder > (mbus->buswidth - 1)) {
1076 size_t lli_len, tsize, width;
1077
1078 /*
1079 * If enough left try to send max possible,
1080 * otherwise try to send the remainder
1081 */
1082 lli_len = min(bd.remainder, max_bytes_per_lli);
1083
1084 /*
1085 * Check against maximum bus alignment:
1086 * Calculate actual transfer size in relation to
1087 * bus width an get a maximum remainder of the
1088 * highest bus width - 1
1089 */
1090 width = max(mbus->buswidth, sbus->buswidth);
1091 lli_len = (lli_len / width) * width;
1092 tsize = lli_len / bd.srcbus.buswidth;
1093
1094 dev_vdbg(&pl08x->adev->dev,
1095 "%s fill lli with single lli chunk of "
1096 "size 0x%08zx (remainder 0x%08zx)\n",
1097 __func__, lli_len, bd.remainder);
1098
1099 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1100 bd.dstbus.buswidth, tsize);
1101 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1102 lli_len, cctl, tsize);
1103 total_bytes += lli_len;
1104 }
1105
1106 /*
1107 * Send any odd bytes
1108 */
1109 if (bd.remainder) {
1110 dev_vdbg(&pl08x->adev->dev,
1111 "%s align with boundary, send odd bytes (remain %zu)\n",
1112 __func__, bd.remainder);
1113 prep_byte_width_lli(pl08x, &bd, &cctl,
1114 bd.remainder, num_llis++, &total_bytes);
1115 }
1116 }
1117
1118 if (total_bytes != dsg->len) {
1119 dev_err(&pl08x->adev->dev,
1120 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1121 __func__, total_bytes, dsg->len);
1122 return 0;
1123 }
1124
1125 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1126 dev_err(&pl08x->adev->dev,
1127 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1128 __func__, MAX_NUM_TSFR_LLIS);
1129 return 0;
1130 }
1131 }
1132
1133 llis_va = txd->llis_va;
1134 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1135
1136 if (txd->cyclic) {
1137 /* Link back to the first LLI. */
1138 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1139 } else {
1140 /* The final LLI terminates the LLI. */
1141 last_lli[PL080_LLI_LLI] = 0;
1142 /* The final LLI element shall also fire an interrupt. */
1143 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1144 }
1145
1146 pl08x_dump_lli(pl08x, llis_va, num_llis);
1147
1148 return num_llis;
1149 }
1150
1151 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1152 struct pl08x_txd *txd)
1153 {
1154 struct pl08x_sg *dsg, *_dsg;
1155
1156 if (txd->llis_va)
1157 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1158
1159 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1160 list_del(&dsg->node);
1161 kfree(dsg);
1162 }
1163
1164 kfree(txd);
1165 }
1166
1167 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1168 {
1169 struct device *dev = txd->vd.tx.chan->device->dev;
1170 struct pl08x_sg *dsg;
1171
1172 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1173 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1174 list_for_each_entry(dsg, &txd->dsg_list, node)
1175 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1176 DMA_TO_DEVICE);
1177 else {
1178 list_for_each_entry(dsg, &txd->dsg_list, node)
1179 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1180 DMA_TO_DEVICE);
1181 }
1182 }
1183 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1184 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1185 list_for_each_entry(dsg, &txd->dsg_list, node)
1186 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1187 DMA_FROM_DEVICE);
1188 else
1189 list_for_each_entry(dsg, &txd->dsg_list, node)
1190 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1191 DMA_FROM_DEVICE);
1192 }
1193 }
1194
1195 static void pl08x_desc_free(struct virt_dma_desc *vd)
1196 {
1197 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1198 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1199
1200 if (!plchan->slave)
1201 pl08x_unmap_buffers(txd);
1202
1203 if (!txd->done)
1204 pl08x_release_mux(plchan);
1205
1206 pl08x_free_txd(plchan->host, txd);
1207 }
1208
1209 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1210 struct pl08x_dma_chan *plchan)
1211 {
1212 LIST_HEAD(head);
1213
1214 vchan_get_all_descriptors(&plchan->vc, &head);
1215 vchan_dma_desc_free_list(&plchan->vc, &head);
1216 }
1217
1218 /*
1219 * The DMA ENGINE API
1220 */
1221 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1222 {
1223 return 0;
1224 }
1225
1226 static void pl08x_free_chan_resources(struct dma_chan *chan)
1227 {
1228 /* Ensure all queued descriptors are freed */
1229 vchan_free_chan_resources(to_virt_chan(chan));
1230 }
1231
1232 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1233 struct dma_chan *chan, unsigned long flags)
1234 {
1235 struct dma_async_tx_descriptor *retval = NULL;
1236
1237 return retval;
1238 }
1239
1240 /*
1241 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1242 * If slaves are relying on interrupts to signal completion this function
1243 * must not be called with interrupts disabled.
1244 */
1245 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1246 dma_cookie_t cookie, struct dma_tx_state *txstate)
1247 {
1248 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1249 struct virt_dma_desc *vd;
1250 unsigned long flags;
1251 enum dma_status ret;
1252 size_t bytes = 0;
1253
1254 ret = dma_cookie_status(chan, cookie, txstate);
1255 if (ret == DMA_SUCCESS)
1256 return ret;
1257
1258 /*
1259 * There's no point calculating the residue if there's
1260 * no txstate to store the value.
1261 */
1262 if (!txstate) {
1263 if (plchan->state == PL08X_CHAN_PAUSED)
1264 ret = DMA_PAUSED;
1265 return ret;
1266 }
1267
1268 spin_lock_irqsave(&plchan->vc.lock, flags);
1269 ret = dma_cookie_status(chan, cookie, txstate);
1270 if (ret != DMA_SUCCESS) {
1271 vd = vchan_find_desc(&plchan->vc, cookie);
1272 if (vd) {
1273 /* On the issued list, so hasn't been processed yet */
1274 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1275 struct pl08x_sg *dsg;
1276
1277 list_for_each_entry(dsg, &txd->dsg_list, node)
1278 bytes += dsg->len;
1279 } else {
1280 bytes = pl08x_getbytes_chan(plchan);
1281 }
1282 }
1283 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1284
1285 /*
1286 * This cookie not complete yet
1287 * Get number of bytes left in the active transactions and queue
1288 */
1289 dma_set_residue(txstate, bytes);
1290
1291 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1292 ret = DMA_PAUSED;
1293
1294 /* Whether waiting or running, we're in progress */
1295 return ret;
1296 }
1297
1298 /* PrimeCell DMA extension */
1299 struct burst_table {
1300 u32 burstwords;
1301 u32 reg;
1302 };
1303
1304 static const struct burst_table burst_sizes[] = {
1305 {
1306 .burstwords = 256,
1307 .reg = PL080_BSIZE_256,
1308 },
1309 {
1310 .burstwords = 128,
1311 .reg = PL080_BSIZE_128,
1312 },
1313 {
1314 .burstwords = 64,
1315 .reg = PL080_BSIZE_64,
1316 },
1317 {
1318 .burstwords = 32,
1319 .reg = PL080_BSIZE_32,
1320 },
1321 {
1322 .burstwords = 16,
1323 .reg = PL080_BSIZE_16,
1324 },
1325 {
1326 .burstwords = 8,
1327 .reg = PL080_BSIZE_8,
1328 },
1329 {
1330 .burstwords = 4,
1331 .reg = PL080_BSIZE_4,
1332 },
1333 {
1334 .burstwords = 0,
1335 .reg = PL080_BSIZE_1,
1336 },
1337 };
1338
1339 /*
1340 * Given the source and destination available bus masks, select which
1341 * will be routed to each port. We try to have source and destination
1342 * on separate ports, but always respect the allowable settings.
1343 */
1344 static u32 pl08x_select_bus(u8 src, u8 dst)
1345 {
1346 u32 cctl = 0;
1347
1348 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1349 cctl |= PL080_CONTROL_DST_AHB2;
1350 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1351 cctl |= PL080_CONTROL_SRC_AHB2;
1352
1353 return cctl;
1354 }
1355
1356 static u32 pl08x_cctl(u32 cctl)
1357 {
1358 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1359 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1360 PL080_CONTROL_PROT_MASK);
1361
1362 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1363 return cctl | PL080_CONTROL_PROT_SYS;
1364 }
1365
1366 static u32 pl08x_width(enum dma_slave_buswidth width)
1367 {
1368 switch (width) {
1369 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1370 return PL080_WIDTH_8BIT;
1371 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1372 return PL080_WIDTH_16BIT;
1373 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1374 return PL080_WIDTH_32BIT;
1375 default:
1376 return ~0;
1377 }
1378 }
1379
1380 static u32 pl08x_burst(u32 maxburst)
1381 {
1382 int i;
1383
1384 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1385 if (burst_sizes[i].burstwords <= maxburst)
1386 break;
1387
1388 return burst_sizes[i].reg;
1389 }
1390
1391 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1392 enum dma_slave_buswidth addr_width, u32 maxburst)
1393 {
1394 u32 width, burst, cctl = 0;
1395
1396 width = pl08x_width(addr_width);
1397 if (width == ~0)
1398 return ~0;
1399
1400 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1401 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1402
1403 /*
1404 * If this channel will only request single transfers, set this
1405 * down to ONE element. Also select one element if no maxburst
1406 * is specified.
1407 */
1408 if (plchan->cd->single)
1409 maxburst = 1;
1410
1411 burst = pl08x_burst(maxburst);
1412 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1413 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1414
1415 return pl08x_cctl(cctl);
1416 }
1417
1418 static int dma_set_runtime_config(struct dma_chan *chan,
1419 struct dma_slave_config *config)
1420 {
1421 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1422 struct pl08x_driver_data *pl08x = plchan->host;
1423
1424 if (!plchan->slave)
1425 return -EINVAL;
1426
1427 /* Reject definitely invalid configurations */
1428 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1429 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1430 return -EINVAL;
1431
1432 if (config->device_fc && pl08x->vd->pl080s) {
1433 dev_err(&pl08x->adev->dev,
1434 "%s: PL080S does not support peripheral flow control\n",
1435 __func__);
1436 return -EINVAL;
1437 }
1438
1439 plchan->cfg = *config;
1440
1441 return 0;
1442 }
1443
1444 /*
1445 * Slave transactions callback to the slave device to allow
1446 * synchronization of slave DMA signals with the DMAC enable
1447 */
1448 static void pl08x_issue_pending(struct dma_chan *chan)
1449 {
1450 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1451 unsigned long flags;
1452
1453 spin_lock_irqsave(&plchan->vc.lock, flags);
1454 if (vchan_issue_pending(&plchan->vc)) {
1455 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1456 pl08x_phy_alloc_and_start(plchan);
1457 }
1458 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1459 }
1460
1461 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1462 {
1463 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1464
1465 if (txd) {
1466 INIT_LIST_HEAD(&txd->dsg_list);
1467
1468 /* Always enable error and terminal interrupts */
1469 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1470 PL080_CONFIG_TC_IRQ_MASK;
1471 }
1472 return txd;
1473 }
1474
1475 /*
1476 * Initialize a descriptor to be used by memcpy submit
1477 */
1478 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1479 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1480 size_t len, unsigned long flags)
1481 {
1482 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1483 struct pl08x_driver_data *pl08x = plchan->host;
1484 struct pl08x_txd *txd;
1485 struct pl08x_sg *dsg;
1486 int ret;
1487
1488 txd = pl08x_get_txd(plchan);
1489 if (!txd) {
1490 dev_err(&pl08x->adev->dev,
1491 "%s no memory for descriptor\n", __func__);
1492 return NULL;
1493 }
1494
1495 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1496 if (!dsg) {
1497 pl08x_free_txd(pl08x, txd);
1498 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1499 __func__);
1500 return NULL;
1501 }
1502 list_add_tail(&dsg->node, &txd->dsg_list);
1503
1504 dsg->src_addr = src;
1505 dsg->dst_addr = dest;
1506 dsg->len = len;
1507
1508 /* Set platform data for m2m */
1509 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1510 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1511 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1512
1513 /* Both to be incremented or the code will break */
1514 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1515
1516 if (pl08x->vd->dualmaster)
1517 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1518 pl08x->mem_buses);
1519
1520 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1521 if (!ret) {
1522 pl08x_free_txd(pl08x, txd);
1523 return NULL;
1524 }
1525
1526 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1527 }
1528
1529 static struct pl08x_txd *pl08x_init_txd(
1530 struct dma_chan *chan,
1531 enum dma_transfer_direction direction,
1532 dma_addr_t *slave_addr)
1533 {
1534 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1535 struct pl08x_driver_data *pl08x = plchan->host;
1536 struct pl08x_txd *txd;
1537 enum dma_slave_buswidth addr_width;
1538 int ret, tmp;
1539 u8 src_buses, dst_buses;
1540 u32 maxburst, cctl;
1541
1542 txd = pl08x_get_txd(plchan);
1543 if (!txd) {
1544 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1545 return NULL;
1546 }
1547
1548 /*
1549 * Set up addresses, the PrimeCell configured address
1550 * will take precedence since this may configure the
1551 * channel target address dynamically at runtime.
1552 */
1553 if (direction == DMA_MEM_TO_DEV) {
1554 cctl = PL080_CONTROL_SRC_INCR;
1555 *slave_addr = plchan->cfg.dst_addr;
1556 addr_width = plchan->cfg.dst_addr_width;
1557 maxburst = plchan->cfg.dst_maxburst;
1558 src_buses = pl08x->mem_buses;
1559 dst_buses = plchan->cd->periph_buses;
1560 } else if (direction == DMA_DEV_TO_MEM) {
1561 cctl = PL080_CONTROL_DST_INCR;
1562 *slave_addr = plchan->cfg.src_addr;
1563 addr_width = plchan->cfg.src_addr_width;
1564 maxburst = plchan->cfg.src_maxburst;
1565 src_buses = plchan->cd->periph_buses;
1566 dst_buses = pl08x->mem_buses;
1567 } else {
1568 pl08x_free_txd(pl08x, txd);
1569 dev_err(&pl08x->adev->dev,
1570 "%s direction unsupported\n", __func__);
1571 return NULL;
1572 }
1573
1574 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1575 if (cctl == ~0) {
1576 pl08x_free_txd(pl08x, txd);
1577 dev_err(&pl08x->adev->dev,
1578 "DMA slave configuration botched?\n");
1579 return NULL;
1580 }
1581
1582 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1583
1584 if (plchan->cfg.device_fc)
1585 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1586 PL080_FLOW_PER2MEM_PER;
1587 else
1588 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1589 PL080_FLOW_PER2MEM;
1590
1591 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1592
1593 ret = pl08x_request_mux(plchan);
1594 if (ret < 0) {
1595 pl08x_free_txd(pl08x, txd);
1596 dev_dbg(&pl08x->adev->dev,
1597 "unable to mux for transfer on %s due to platform restrictions\n",
1598 plchan->name);
1599 return NULL;
1600 }
1601
1602 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1603 plchan->signal, plchan->name);
1604
1605 /* Assign the flow control signal to this channel */
1606 if (direction == DMA_MEM_TO_DEV)
1607 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1608 else
1609 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1610
1611 return txd;
1612 }
1613
1614 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1615 enum dma_transfer_direction direction,
1616 dma_addr_t slave_addr,
1617 dma_addr_t buf_addr,
1618 unsigned int len)
1619 {
1620 struct pl08x_sg *dsg;
1621
1622 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1623 if (!dsg)
1624 return -ENOMEM;
1625
1626 list_add_tail(&dsg->node, &txd->dsg_list);
1627
1628 dsg->len = len;
1629 if (direction == DMA_MEM_TO_DEV) {
1630 dsg->src_addr = buf_addr;
1631 dsg->dst_addr = slave_addr;
1632 } else {
1633 dsg->src_addr = slave_addr;
1634 dsg->dst_addr = buf_addr;
1635 }
1636
1637 return 0;
1638 }
1639
1640 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1641 struct dma_chan *chan, struct scatterlist *sgl,
1642 unsigned int sg_len, enum dma_transfer_direction direction,
1643 unsigned long flags, void *context)
1644 {
1645 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1646 struct pl08x_driver_data *pl08x = plchan->host;
1647 struct pl08x_txd *txd;
1648 struct scatterlist *sg;
1649 int ret, tmp;
1650 dma_addr_t slave_addr;
1651
1652 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1653 __func__, sg_dma_len(sgl), plchan->name);
1654
1655 txd = pl08x_init_txd(chan, direction, &slave_addr);
1656 if (!txd)
1657 return NULL;
1658
1659 for_each_sg(sgl, sg, sg_len, tmp) {
1660 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1661 sg_dma_address(sg),
1662 sg_dma_len(sg));
1663 if (ret) {
1664 pl08x_release_mux(plchan);
1665 pl08x_free_txd(pl08x, txd);
1666 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1667 __func__);
1668 return NULL;
1669 }
1670 }
1671
1672 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1673 if (!ret) {
1674 pl08x_release_mux(plchan);
1675 pl08x_free_txd(pl08x, txd);
1676 return NULL;
1677 }
1678
1679 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1680 }
1681
1682 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1683 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1684 size_t period_len, enum dma_transfer_direction direction,
1685 unsigned long flags, void *context)
1686 {
1687 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1688 struct pl08x_driver_data *pl08x = plchan->host;
1689 struct pl08x_txd *txd;
1690 int ret, tmp;
1691 dma_addr_t slave_addr;
1692
1693 dev_dbg(&pl08x->adev->dev,
1694 "%s prepare cyclic transaction of %d/%d bytes %s %s\n",
1695 __func__, period_len, buf_len,
1696 direction == DMA_MEM_TO_DEV ? "to" : "from",
1697 plchan->name);
1698
1699 txd = pl08x_init_txd(chan, direction, &slave_addr);
1700 if (!txd)
1701 return NULL;
1702
1703 txd->cyclic = true;
1704 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1705 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1706 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1707 buf_addr + tmp, period_len);
1708 if (ret) {
1709 pl08x_release_mux(plchan);
1710 pl08x_free_txd(pl08x, txd);
1711 return NULL;
1712 }
1713 }
1714
1715 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1716 if (!ret) {
1717 pl08x_release_mux(plchan);
1718 pl08x_free_txd(pl08x, txd);
1719 return NULL;
1720 }
1721
1722 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1723 }
1724
1725 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1726 unsigned long arg)
1727 {
1728 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1729 struct pl08x_driver_data *pl08x = plchan->host;
1730 unsigned long flags;
1731 int ret = 0;
1732
1733 /* Controls applicable to inactive channels */
1734 if (cmd == DMA_SLAVE_CONFIG) {
1735 return dma_set_runtime_config(chan,
1736 (struct dma_slave_config *)arg);
1737 }
1738
1739 /*
1740 * Anything succeeds on channels with no physical allocation and
1741 * no queued transfers.
1742 */
1743 spin_lock_irqsave(&plchan->vc.lock, flags);
1744 if (!plchan->phychan && !plchan->at) {
1745 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1746 return 0;
1747 }
1748
1749 switch (cmd) {
1750 case DMA_TERMINATE_ALL:
1751 plchan->state = PL08X_CHAN_IDLE;
1752
1753 if (plchan->phychan) {
1754 /*
1755 * Mark physical channel as free and free any slave
1756 * signal
1757 */
1758 pl08x_phy_free(plchan);
1759 }
1760 /* Dequeue jobs and free LLIs */
1761 if (plchan->at) {
1762 pl08x_desc_free(&plchan->at->vd);
1763 plchan->at = NULL;
1764 }
1765 /* Dequeue jobs not yet fired as well */
1766 pl08x_free_txd_list(pl08x, plchan);
1767 break;
1768 case DMA_PAUSE:
1769 pl08x_pause_phy_chan(plchan->phychan);
1770 plchan->state = PL08X_CHAN_PAUSED;
1771 break;
1772 case DMA_RESUME:
1773 pl08x_resume_phy_chan(plchan->phychan);
1774 plchan->state = PL08X_CHAN_RUNNING;
1775 break;
1776 default:
1777 /* Unknown command */
1778 ret = -ENXIO;
1779 break;
1780 }
1781
1782 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1783
1784 return ret;
1785 }
1786
1787 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1788 {
1789 struct pl08x_dma_chan *plchan;
1790 char *name = chan_id;
1791
1792 /* Reject channels for devices not bound to this driver */
1793 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1794 return false;
1795
1796 plchan = to_pl08x_chan(chan);
1797
1798 /* Check that the channel is not taken! */
1799 if (!strcmp(plchan->name, name))
1800 return true;
1801
1802 return false;
1803 }
1804
1805 /*
1806 * Just check that the device is there and active
1807 * TODO: turn this bit on/off depending on the number of physical channels
1808 * actually used, if it is zero... well shut it off. That will save some
1809 * power. Cut the clock at the same time.
1810 */
1811 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1812 {
1813 /* The Nomadik variant does not have the config register */
1814 if (pl08x->vd->nomadik)
1815 return;
1816 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1817 }
1818
1819 static irqreturn_t pl08x_irq(int irq, void *dev)
1820 {
1821 struct pl08x_driver_data *pl08x = dev;
1822 u32 mask = 0, err, tc, i;
1823
1824 /* check & clear - ERR & TC interrupts */
1825 err = readl(pl08x->base + PL080_ERR_STATUS);
1826 if (err) {
1827 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1828 __func__, err);
1829 writel(err, pl08x->base + PL080_ERR_CLEAR);
1830 }
1831 tc = readl(pl08x->base + PL080_TC_STATUS);
1832 if (tc)
1833 writel(tc, pl08x->base + PL080_TC_CLEAR);
1834
1835 if (!err && !tc)
1836 return IRQ_NONE;
1837
1838 for (i = 0; i < pl08x->vd->channels; i++) {
1839 if (((1 << i) & err) || ((1 << i) & tc)) {
1840 /* Locate physical channel */
1841 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1842 struct pl08x_dma_chan *plchan = phychan->serving;
1843 struct pl08x_txd *tx;
1844
1845 if (!plchan) {
1846 dev_err(&pl08x->adev->dev,
1847 "%s Error TC interrupt on unused channel: 0x%08x\n",
1848 __func__, i);
1849 continue;
1850 }
1851
1852 spin_lock(&plchan->vc.lock);
1853 tx = plchan->at;
1854 if (tx && tx->cyclic) {
1855 vchan_cyclic_callback(&tx->vd);
1856 } else if (tx) {
1857 plchan->at = NULL;
1858 /*
1859 * This descriptor is done, release its mux
1860 * reservation.
1861 */
1862 pl08x_release_mux(plchan);
1863 tx->done = true;
1864 vchan_cookie_complete(&tx->vd);
1865
1866 /*
1867 * And start the next descriptor (if any),
1868 * otherwise free this channel.
1869 */
1870 if (vchan_next_desc(&plchan->vc))
1871 pl08x_start_next_txd(plchan);
1872 else
1873 pl08x_phy_free(plchan);
1874 }
1875 spin_unlock(&plchan->vc.lock);
1876
1877 mask |= (1 << i);
1878 }
1879 }
1880
1881 return mask ? IRQ_HANDLED : IRQ_NONE;
1882 }
1883
1884 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1885 {
1886 chan->slave = true;
1887 chan->name = chan->cd->bus_id;
1888 chan->cfg.src_addr = chan->cd->addr;
1889 chan->cfg.dst_addr = chan->cd->addr;
1890 }
1891
1892 /*
1893 * Initialise the DMAC memcpy/slave channels.
1894 * Make a local wrapper to hold required data
1895 */
1896 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1897 struct dma_device *dmadev, unsigned int channels, bool slave)
1898 {
1899 struct pl08x_dma_chan *chan;
1900 int i;
1901
1902 INIT_LIST_HEAD(&dmadev->channels);
1903
1904 /*
1905 * Register as many many memcpy as we have physical channels,
1906 * we won't always be able to use all but the code will have
1907 * to cope with that situation.
1908 */
1909 for (i = 0; i < channels; i++) {
1910 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1911 if (!chan) {
1912 dev_err(&pl08x->adev->dev,
1913 "%s no memory for channel\n", __func__);
1914 return -ENOMEM;
1915 }
1916
1917 chan->host = pl08x;
1918 chan->state = PL08X_CHAN_IDLE;
1919 chan->signal = -1;
1920
1921 if (slave) {
1922 chan->cd = &pl08x->pd->slave_channels[i];
1923 pl08x_dma_slave_init(chan);
1924 } else {
1925 chan->cd = &pl08x->pd->memcpy_channel;
1926 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1927 if (!chan->name) {
1928 kfree(chan);
1929 return -ENOMEM;
1930 }
1931 }
1932 dev_dbg(&pl08x->adev->dev,
1933 "initialize virtual channel \"%s\"\n",
1934 chan->name);
1935
1936 chan->vc.desc_free = pl08x_desc_free;
1937 vchan_init(&chan->vc, dmadev);
1938 }
1939 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1940 i, slave ? "slave" : "memcpy");
1941 return i;
1942 }
1943
1944 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1945 {
1946 struct pl08x_dma_chan *chan = NULL;
1947 struct pl08x_dma_chan *next;
1948
1949 list_for_each_entry_safe(chan,
1950 next, &dmadev->channels, vc.chan.device_node) {
1951 list_del(&chan->vc.chan.device_node);
1952 kfree(chan);
1953 }
1954 }
1955
1956 #ifdef CONFIG_DEBUG_FS
1957 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1958 {
1959 switch (state) {
1960 case PL08X_CHAN_IDLE:
1961 return "idle";
1962 case PL08X_CHAN_RUNNING:
1963 return "running";
1964 case PL08X_CHAN_PAUSED:
1965 return "paused";
1966 case PL08X_CHAN_WAITING:
1967 return "waiting";
1968 default:
1969 break;
1970 }
1971 return "UNKNOWN STATE";
1972 }
1973
1974 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1975 {
1976 struct pl08x_driver_data *pl08x = s->private;
1977 struct pl08x_dma_chan *chan;
1978 struct pl08x_phy_chan *ch;
1979 unsigned long flags;
1980 int i;
1981
1982 seq_printf(s, "PL08x physical channels:\n");
1983 seq_printf(s, "CHANNEL:\tUSER:\n");
1984 seq_printf(s, "--------\t-----\n");
1985 for (i = 0; i < pl08x->vd->channels; i++) {
1986 struct pl08x_dma_chan *virt_chan;
1987
1988 ch = &pl08x->phy_chans[i];
1989
1990 spin_lock_irqsave(&ch->lock, flags);
1991 virt_chan = ch->serving;
1992
1993 seq_printf(s, "%d\t\t%s%s\n",
1994 ch->id,
1995 virt_chan ? virt_chan->name : "(none)",
1996 ch->locked ? " LOCKED" : "");
1997
1998 spin_unlock_irqrestore(&ch->lock, flags);
1999 }
2000
2001 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2002 seq_printf(s, "CHANNEL:\tSTATE:\n");
2003 seq_printf(s, "--------\t------\n");
2004 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2005 seq_printf(s, "%s\t\t%s\n", chan->name,
2006 pl08x_state_str(chan->state));
2007 }
2008
2009 seq_printf(s, "\nPL08x virtual slave channels:\n");
2010 seq_printf(s, "CHANNEL:\tSTATE:\n");
2011 seq_printf(s, "--------\t------\n");
2012 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2013 seq_printf(s, "%s\t\t%s\n", chan->name,
2014 pl08x_state_str(chan->state));
2015 }
2016
2017 return 0;
2018 }
2019
2020 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2021 {
2022 return single_open(file, pl08x_debugfs_show, inode->i_private);
2023 }
2024
2025 static const struct file_operations pl08x_debugfs_operations = {
2026 .open = pl08x_debugfs_open,
2027 .read = seq_read,
2028 .llseek = seq_lseek,
2029 .release = single_release,
2030 };
2031
2032 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2033 {
2034 /* Expose a simple debugfs interface to view all clocks */
2035 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2036 S_IFREG | S_IRUGO, NULL, pl08x,
2037 &pl08x_debugfs_operations);
2038 }
2039
2040 #else
2041 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2042 {
2043 }
2044 #endif
2045
2046 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2047 {
2048 struct pl08x_driver_data *pl08x;
2049 const struct vendor_data *vd = id->data;
2050 u32 tsfr_size;
2051 int ret = 0;
2052 int i;
2053
2054 ret = amba_request_regions(adev, NULL);
2055 if (ret)
2056 return ret;
2057
2058 /* Create the driver state holder */
2059 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2060 if (!pl08x) {
2061 ret = -ENOMEM;
2062 goto out_no_pl08x;
2063 }
2064
2065 /* Initialize memcpy engine */
2066 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2067 pl08x->memcpy.dev = &adev->dev;
2068 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2069 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2070 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2071 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2072 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2073 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2074 pl08x->memcpy.device_control = pl08x_control;
2075
2076 /* Initialize slave engine */
2077 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2078 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2079 pl08x->slave.dev = &adev->dev;
2080 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2081 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2082 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2083 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2084 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2085 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2086 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2087 pl08x->slave.device_control = pl08x_control;
2088
2089 /* Get the platform data */
2090 pl08x->pd = dev_get_platdata(&adev->dev);
2091 if (!pl08x->pd) {
2092 dev_err(&adev->dev, "no platform data supplied\n");
2093 ret = -EINVAL;
2094 goto out_no_platdata;
2095 }
2096
2097 /* Assign useful pointers to the driver state */
2098 pl08x->adev = adev;
2099 pl08x->vd = vd;
2100
2101 /* By default, AHB1 only. If dualmaster, from platform */
2102 pl08x->lli_buses = PL08X_AHB1;
2103 pl08x->mem_buses = PL08X_AHB1;
2104 if (pl08x->vd->dualmaster) {
2105 pl08x->lli_buses = pl08x->pd->lli_buses;
2106 pl08x->mem_buses = pl08x->pd->mem_buses;
2107 }
2108
2109 if (vd->pl080s)
2110 pl08x->lli_words = PL080S_LLI_WORDS;
2111 else
2112 pl08x->lli_words = PL080_LLI_WORDS;
2113 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2114
2115 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2116 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2117 tsfr_size, PL08X_ALIGN, 0);
2118 if (!pl08x->pool) {
2119 ret = -ENOMEM;
2120 goto out_no_lli_pool;
2121 }
2122
2123 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2124 if (!pl08x->base) {
2125 ret = -ENOMEM;
2126 goto out_no_ioremap;
2127 }
2128
2129 /* Turn on the PL08x */
2130 pl08x_ensure_on(pl08x);
2131
2132 /* Attach the interrupt handler */
2133 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2134 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2135
2136 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2137 DRIVER_NAME, pl08x);
2138 if (ret) {
2139 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2140 __func__, adev->irq[0]);
2141 goto out_no_irq;
2142 }
2143
2144 /* Initialize physical channels */
2145 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2146 GFP_KERNEL);
2147 if (!pl08x->phy_chans) {
2148 dev_err(&adev->dev, "%s failed to allocate "
2149 "physical channel holders\n",
2150 __func__);
2151 ret = -ENOMEM;
2152 goto out_no_phychans;
2153 }
2154
2155 for (i = 0; i < vd->channels; i++) {
2156 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2157
2158 ch->id = i;
2159 ch->base = pl08x->base + PL080_Cx_BASE(i);
2160 ch->reg_config = ch->base + vd->config_offset;
2161 spin_lock_init(&ch->lock);
2162
2163 /*
2164 * Nomadik variants can have channels that are locked
2165 * down for the secure world only. Lock up these channels
2166 * by perpetually serving a dummy virtual channel.
2167 */
2168 if (vd->nomadik) {
2169 u32 val;
2170
2171 val = readl(ch->reg_config);
2172 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2173 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2174 ch->locked = true;
2175 }
2176 }
2177
2178 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2179 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2180 }
2181
2182 /* Register as many memcpy channels as there are physical channels */
2183 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2184 pl08x->vd->channels, false);
2185 if (ret <= 0) {
2186 dev_warn(&pl08x->adev->dev,
2187 "%s failed to enumerate memcpy channels - %d\n",
2188 __func__, ret);
2189 goto out_no_memcpy;
2190 }
2191 pl08x->memcpy.chancnt = ret;
2192
2193 /* Register slave channels */
2194 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2195 pl08x->pd->num_slave_channels, true);
2196 if (ret <= 0) {
2197 dev_warn(&pl08x->adev->dev,
2198 "%s failed to enumerate slave channels - %d\n",
2199 __func__, ret);
2200 goto out_no_slave;
2201 }
2202 pl08x->slave.chancnt = ret;
2203
2204 ret = dma_async_device_register(&pl08x->memcpy);
2205 if (ret) {
2206 dev_warn(&pl08x->adev->dev,
2207 "%s failed to register memcpy as an async device - %d\n",
2208 __func__, ret);
2209 goto out_no_memcpy_reg;
2210 }
2211
2212 ret = dma_async_device_register(&pl08x->slave);
2213 if (ret) {
2214 dev_warn(&pl08x->adev->dev,
2215 "%s failed to register slave as an async device - %d\n",
2216 __func__, ret);
2217 goto out_no_slave_reg;
2218 }
2219
2220 amba_set_drvdata(adev, pl08x);
2221 init_pl08x_debugfs(pl08x);
2222 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2223 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2224 (unsigned long long)adev->res.start, adev->irq[0]);
2225
2226 return 0;
2227
2228 out_no_slave_reg:
2229 dma_async_device_unregister(&pl08x->memcpy);
2230 out_no_memcpy_reg:
2231 pl08x_free_virtual_channels(&pl08x->slave);
2232 out_no_slave:
2233 pl08x_free_virtual_channels(&pl08x->memcpy);
2234 out_no_memcpy:
2235 kfree(pl08x->phy_chans);
2236 out_no_phychans:
2237 free_irq(adev->irq[0], pl08x);
2238 out_no_irq:
2239 iounmap(pl08x->base);
2240 out_no_ioremap:
2241 dma_pool_destroy(pl08x->pool);
2242 out_no_lli_pool:
2243 out_no_platdata:
2244 kfree(pl08x);
2245 out_no_pl08x:
2246 amba_release_regions(adev);
2247 return ret;
2248 }
2249
2250 /* PL080 has 8 channels and the PL080 have just 2 */
2251 static struct vendor_data vendor_pl080 = {
2252 .config_offset = PL080_CH_CONFIG,
2253 .channels = 8,
2254 .dualmaster = true,
2255 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2256 };
2257
2258 static struct vendor_data vendor_nomadik = {
2259 .config_offset = PL080_CH_CONFIG,
2260 .channels = 8,
2261 .dualmaster = true,
2262 .nomadik = true,
2263 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2264 };
2265
2266 static struct vendor_data vendor_pl080s = {
2267 .config_offset = PL080S_CH_CONFIG,
2268 .channels = 8,
2269 .pl080s = true,
2270 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2271 };
2272
2273 static struct vendor_data vendor_pl081 = {
2274 .config_offset = PL080_CH_CONFIG,
2275 .channels = 2,
2276 .dualmaster = false,
2277 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2278 };
2279
2280 static struct amba_id pl08x_ids[] = {
2281 /* Samsung PL080S variant */
2282 {
2283 .id = 0x0a141080,
2284 .mask = 0xffffffff,
2285 .data = &vendor_pl080s,
2286 },
2287 /* PL080 */
2288 {
2289 .id = 0x00041080,
2290 .mask = 0x000fffff,
2291 .data = &vendor_pl080,
2292 },
2293 /* PL081 */
2294 {
2295 .id = 0x00041081,
2296 .mask = 0x000fffff,
2297 .data = &vendor_pl081,
2298 },
2299 /* Nomadik 8815 PL080 variant */
2300 {
2301 .id = 0x00280080,
2302 .mask = 0x00ffffff,
2303 .data = &vendor_nomadik,
2304 },
2305 { 0, 0 },
2306 };
2307
2308 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2309
2310 static struct amba_driver pl08x_amba_driver = {
2311 .drv.name = DRIVER_NAME,
2312 .id_table = pl08x_ids,
2313 .probe = pl08x_probe,
2314 };
2315
2316 static int __init pl08x_init(void)
2317 {
2318 int retval;
2319 retval = amba_driver_register(&pl08x_amba_driver);
2320 if (retval)
2321 printk(KERN_WARNING DRIVER_NAME
2322 "failed to register as an AMBA device (%d)\n",
2323 retval);
2324 return retval;
2325 }
2326 subsys_initcall(pl08x_init);