]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/at_hdmac.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-artful-kernel.git] / drivers / dma / at_hdmac.c
1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS 10
52
53 /*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72 {
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83 }
84
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89 }
90
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95 }
96
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109 {
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 INIT_LIST_HEAD(&desc->tx_list);
117 dma_async_tx_descriptor_init(&desc->txd, chan);
118 /* txd.flags will be overwritten in prep functions */
119 desc->txd.flags = DMA_CTRL_ACK;
120 desc->txd.tx_submit = atc_tx_submit;
121 desc->txd.phys = phys;
122 }
123
124 return desc;
125 }
126
127 /**
128 * atc_desc_get - get an unused descriptor from free_list
129 * @atchan: channel we want a new descriptor for
130 */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 struct at_desc *desc, *_desc;
134 struct at_desc *ret = NULL;
135 unsigned long flags;
136 unsigned int i = 0;
137 LIST_HEAD(tmp_list);
138
139 spin_lock_irqsave(&atchan->lock, flags);
140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 i++;
142 if (async_tx_test_ack(&desc->txd)) {
143 list_del(&desc->desc_node);
144 ret = desc;
145 break;
146 }
147 dev_dbg(chan2dev(&atchan->chan_common),
148 "desc %p not ACKed\n", desc);
149 }
150 spin_unlock_irqrestore(&atchan->lock, flags);
151 dev_vdbg(chan2dev(&atchan->chan_common),
152 "scanned %u descriptors on freelist\n", i);
153
154 /* no more descriptor available in initial pool: create one more */
155 if (!ret) {
156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 if (ret) {
158 spin_lock_irqsave(&atchan->lock, flags);
159 atchan->descs_allocated++;
160 spin_unlock_irqrestore(&atchan->lock, flags);
161 } else {
162 dev_err(chan2dev(&atchan->chan_common),
163 "not enough descriptors available\n");
164 }
165 }
166
167 return ret;
168 }
169
170 /**
171 * atc_desc_put - move a descriptor, including any children, to the free list
172 * @atchan: channel we work on
173 * @desc: descriptor, at the head of a chain, to move to free list
174 */
175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 if (desc) {
178 struct at_desc *child;
179 unsigned long flags;
180
181 spin_lock_irqsave(&atchan->lock, flags);
182 list_for_each_entry(child, &desc->tx_list, desc_node)
183 dev_vdbg(chan2dev(&atchan->chan_common),
184 "moving child desc %p to freelist\n",
185 child);
186 list_splice_init(&desc->tx_list, &atchan->free_list);
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving desc %p to freelist\n", desc);
189 list_add(&desc->desc_node, &atchan->free_list);
190 spin_unlock_irqrestore(&atchan->lock, flags);
191 }
192 }
193
194 /**
195 * atc_desc_chain - build chain adding a descriptor
196 * @first: address of first descriptor of the chain
197 * @prev: address of previous descriptor of the chain
198 * @desc: descriptor to queue
199 *
200 * Called from prep_* functions
201 */
202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 struct at_desc *desc)
204 {
205 if (!(*first)) {
206 *first = desc;
207 } else {
208 /* inform the HW lli about chaining */
209 (*prev)->lli.dscr = desc->txd.phys;
210 /* insert the link descriptor to the LD ring */
211 list_add_tail(&desc->desc_node,
212 &(*first)->tx_list);
213 }
214 *prev = desc;
215 }
216
217 /**
218 * atc_dostart - starts the DMA engine for real
219 * @atchan: the channel we want to start
220 * @first: first descriptor in the list we want to begin with
221 *
222 * Called with atchan->lock held and bh disabled
223 */
224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
227
228 /* ASSERT: channel is idle */
229 if (atc_chan_is_enabled(atchan)) {
230 dev_err(chan2dev(&atchan->chan_common),
231 "BUG: Attempted to start non-idle channel\n");
232 dev_err(chan2dev(&atchan->chan_common),
233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 channel_readl(atchan, SADDR),
235 channel_readl(atchan, DADDR),
236 channel_readl(atchan, CTRLA),
237 channel_readl(atchan, CTRLB),
238 channel_readl(atchan, DSCR));
239
240 /* The tasklet will hopefully advance the queue... */
241 return;
242 }
243
244 vdbg_dump_regs(atchan);
245
246 channel_writel(atchan, SADDR, 0);
247 channel_writel(atchan, DADDR, 0);
248 channel_writel(atchan, CTRLA, 0);
249 channel_writel(atchan, CTRLB, 0);
250 channel_writel(atchan, DSCR, first->txd.phys);
251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 ATC_SPIP_BOUNDARY(first->boundary));
253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 ATC_DPIP_BOUNDARY(first->boundary));
255 dma_writel(atdma, CHER, atchan->mask);
256
257 vdbg_dump_regs(atchan);
258 }
259
260 /*
261 * atc_get_desc_by_cookie - get the descriptor of a cookie
262 * @atchan: the DMA channel
263 * @cookie: the cookie to get the descriptor for
264 */
265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 dma_cookie_t cookie)
267 {
268 struct at_desc *desc, *_desc;
269
270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 if (desc->txd.cookie == cookie)
272 return desc;
273 }
274
275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 if (desc->txd.cookie == cookie)
277 return desc;
278 }
279
280 return NULL;
281 }
282
283 /**
284 * atc_calc_bytes_left - calculates the number of bytes left according to the
285 * value read from CTRLA.
286 *
287 * @current_len: the number of bytes left before reading CTRLA
288 * @ctrla: the value of CTRLA
289 */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294
295 /*
296 * According to the datasheet, when reading the Control A Register
297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 * number of transfers completed on the Source Interface.
299 * So btsize is always a number of source width transfers.
300 */
301 return current_len - (btsize << src_width);
302 }
303
304 /**
305 * atc_get_bytes_left - get the number of bytes residue for a cookie
306 * @chan: DMA channel
307 * @cookie: transaction identifier to check status of
308 */
309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 struct at_dma_chan *atchan = to_at_dma_chan(chan);
312 struct at_desc *desc_first = atc_first_active(atchan);
313 struct at_desc *desc;
314 int ret;
315 u32 ctrla, dscr, trials;
316
317 /*
318 * If the cookie doesn't match to the currently running transfer then
319 * we can return the total length of the associated DMA transfer,
320 * because it is still queued.
321 */
322 desc = atc_get_desc_by_cookie(atchan, cookie);
323 if (desc == NULL)
324 return -EINVAL;
325 else if (desc != desc_first)
326 return desc->total_len;
327
328 /* cookie matches to the currently running transfer */
329 ret = desc_first->total_len;
330
331 if (desc_first->lli.dscr) {
332 /* hardware linked list transfer */
333
334 /*
335 * Calculate the residue by removing the length of the child
336 * descriptors already transferred from the total length.
337 * To get the current child descriptor we can use the value of
338 * the channel's DSCR register and compare it against the value
339 * of the hardware linked list structure of each child
340 * descriptor.
341 *
342 * The CTRLA register provides us with the amount of data
343 * already read from the source for the current child
344 * descriptor. So we can compute a more accurate residue by also
345 * removing the number of bytes corresponding to this amount of
346 * data.
347 *
348 * However, the DSCR and CTRLA registers cannot be read both
349 * atomically. Hence a race condition may occur: the first read
350 * register may refer to one child descriptor whereas the second
351 * read may refer to a later child descriptor in the list
352 * because of the DMA transfer progression inbetween the two
353 * reads.
354 *
355 * One solution could have been to pause the DMA transfer, read
356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 * this approach presents some drawbacks:
358 * - If the DMA transfer is paused, RX overruns or TX underruns
359 * are more likey to occur depending on the system latency.
360 * Taking the USART driver as an example, it uses a cyclic DMA
361 * transfer to read data from the Receive Holding Register
362 * (RHR) to avoid RX overruns since the RHR is not protected
363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 * to compute the residue would break the USART driver design.
365 * - The atc_pause() function masks interrupts but we'd rather
366 * avoid to do so for system latency purpose.
367 *
368 * Then we'd rather use another solution: the DSCR is read a
369 * first time, the CTRLA is read in turn, next the DSCR is read
370 * a second time. If the two consecutive read values of the DSCR
371 * are the same then we assume both refers to the very same
372 * child descriptor as well as the CTRLA value read inbetween
373 * does. For cyclic tranfers, the assumption is that a full loop
374 * is "not so fast".
375 * If the two DSCR values are different, we read again the CTRLA
376 * then the DSCR till two consecutive read values from DSCR are
377 * equal or till the maxium trials is reach.
378 * This algorithm is very unlikely not to find a stable value for
379 * DSCR.
380 */
381
382 dscr = channel_readl(atchan, DSCR);
383 rmb(); /* ensure DSCR is read before CTRLA */
384 ctrla = channel_readl(atchan, CTRLA);
385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 u32 new_dscr;
387
388 rmb(); /* ensure DSCR is read after CTRLA */
389 new_dscr = channel_readl(atchan, DSCR);
390
391 /*
392 * If the DSCR register value has not changed inside the
393 * DMA controller since the previous read, we assume
394 * that both the dscr and ctrla values refers to the
395 * very same descriptor.
396 */
397 if (likely(new_dscr == dscr))
398 break;
399
400 /*
401 * DSCR has changed inside the DMA controller, so the
402 * previouly read value of CTRLA may refer to an already
403 * processed descriptor hence could be outdated.
404 * We need to update ctrla to match the current
405 * descriptor.
406 */
407 dscr = new_dscr;
408 rmb(); /* ensure DSCR is read before CTRLA */
409 ctrla = channel_readl(atchan, CTRLA);
410 }
411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 return -ETIMEDOUT;
413
414 /* for the first descriptor we can be more accurate */
415 if (desc_first->lli.dscr == dscr)
416 return atc_calc_bytes_left(ret, ctrla);
417
418 ret -= desc_first->len;
419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 if (desc->lli.dscr == dscr)
421 break;
422
423 ret -= desc->len;
424 }
425
426 /*
427 * For the current descriptor in the chain we can calculate
428 * the remaining bytes using the channel's register.
429 */
430 ret = atc_calc_bytes_left(ret, ctrla);
431 } else {
432 /* single transfer */
433 ctrla = channel_readl(atchan, CTRLA);
434 ret = atc_calc_bytes_left(ret, ctrla);
435 }
436
437 return ret;
438 }
439
440 /**
441 * atc_chain_complete - finish work for one transaction chain
442 * @atchan: channel we work on
443 * @desc: descriptor at the head of the chain we want do complete
444 *
445 * Called with atchan->lock held and bh disabled */
446 static void
447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 struct dma_async_tx_descriptor *txd = &desc->txd;
450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
451
452 dev_vdbg(chan2dev(&atchan->chan_common),
453 "descriptor %u complete\n", txd->cookie);
454
455 /* mark the descriptor as complete for non cyclic cases only */
456 if (!atc_chan_is_cyclic(atchan))
457 dma_cookie_complete(txd);
458
459 /* If the transfer was a memset, free our temporary buffer */
460 if (desc->memset_buffer) {
461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 desc->memset_paddr);
463 desc->memset_buffer = false;
464 }
465
466 /* move children to free_list */
467 list_splice_init(&desc->tx_list, &atchan->free_list);
468 /* move myself to free_list */
469 list_move(&desc->desc_node, &atchan->free_list);
470
471 dma_descriptor_unmap(txd);
472 /* for cyclic transfers,
473 * no need to replay callback function while stopping */
474 if (!atc_chan_is_cyclic(atchan)) {
475 /*
476 * The API requires that no submissions are done from a
477 * callback, so we don't need to drop the lock here
478 */
479 dmaengine_desc_get_callback_invoke(txd, NULL);
480 }
481
482 dma_run_dependencies(txd);
483 }
484
485 /**
486 * atc_complete_all - finish work for all transactions
487 * @atchan: channel to complete transactions for
488 *
489 * Eventually submit queued descriptors if any
490 *
491 * Assume channel is idle while calling this function
492 * Called with atchan->lock held and bh disabled
493 */
494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 struct at_desc *desc, *_desc;
497 LIST_HEAD(list);
498
499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500
501 /*
502 * Submit queued descriptors ASAP, i.e. before we go through
503 * the completed ones.
504 */
505 if (!list_empty(&atchan->queue))
506 atc_dostart(atchan, atc_first_queued(atchan));
507 /* empty active_list now it is completed */
508 list_splice_init(&atchan->active_list, &list);
509 /* empty queue list by moving descriptors (if any) to active_list */
510 list_splice_init(&atchan->queue, &atchan->active_list);
511
512 list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 atc_chain_complete(atchan, desc);
514 }
515
516 /**
517 * atc_advance_work - at the end of a transaction, move forward
518 * @atchan: channel where the transaction ended
519 *
520 * Called with atchan->lock held and bh disabled
521 */
522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525
526 if (atc_chan_is_enabled(atchan))
527 return;
528
529 if (list_empty(&atchan->active_list) ||
530 list_is_singular(&atchan->active_list)) {
531 atc_complete_all(atchan);
532 } else {
533 atc_chain_complete(atchan, atc_first_active(atchan));
534 /* advance work */
535 atc_dostart(atchan, atc_first_active(atchan));
536 }
537 }
538
539
540 /**
541 * atc_handle_error - handle errors reported by DMA controller
542 * @atchan: channel where error occurs
543 *
544 * Called with atchan->lock held and bh disabled
545 */
546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 struct at_desc *bad_desc;
549 struct at_desc *child;
550
551 /*
552 * The descriptor currently at the head of the active list is
553 * broked. Since we don't have any way to report errors, we'll
554 * just have to scream loudly and try to carry on.
555 */
556 bad_desc = atc_first_active(atchan);
557 list_del_init(&bad_desc->desc_node);
558
559 /* As we are stopped, take advantage to push queued descriptors
560 * in active_list */
561 list_splice_init(&atchan->queue, atchan->active_list.prev);
562
563 /* Try to restart the controller */
564 if (!list_empty(&atchan->active_list))
565 atc_dostart(atchan, atc_first_active(atchan));
566
567 /*
568 * KERN_CRITICAL may seem harsh, but since this only happens
569 * when someone submits a bad physical address in a
570 * descriptor, we should consider ourselves lucky that the
571 * controller flagged an error instead of scribbling over
572 * random memory locations.
573 */
574 dev_crit(chan2dev(&atchan->chan_common),
575 "Bad descriptor submitted for DMA!\n");
576 dev_crit(chan2dev(&atchan->chan_common),
577 " cookie: %d\n", bad_desc->txd.cookie);
578 atc_dump_lli(atchan, &bad_desc->lli);
579 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 atc_dump_lli(atchan, &child->lli);
581
582 /* Pretend the descriptor completed successfully */
583 atc_chain_complete(atchan, bad_desc);
584 }
585
586 /**
587 * atc_handle_cyclic - at the end of a period, run callback function
588 * @atchan: channel used for cyclic operations
589 *
590 * Called with atchan->lock held and bh disabled
591 */
592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 struct at_desc *first = atc_first_active(atchan);
595 struct dma_async_tx_descriptor *txd = &first->txd;
596
597 dev_vdbg(chan2dev(&atchan->chan_common),
598 "new cyclic period llp 0x%08x\n",
599 channel_readl(atchan, DSCR));
600
601 dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603
604 /*-- IRQ & Tasklet ---------------------------------------------------*/
605
606 static void atc_tasklet(unsigned long data)
607 {
608 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 unsigned long flags;
610
611 spin_lock_irqsave(&atchan->lock, flags);
612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 atc_handle_error(atchan);
614 else if (atc_chan_is_cyclic(atchan))
615 atc_handle_cyclic(atchan);
616 else
617 atc_advance_work(atchan);
618
619 spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 struct at_dma *atdma = (struct at_dma *)dev_id;
625 struct at_dma_chan *atchan;
626 int i;
627 u32 status, pending, imr;
628 int ret = IRQ_NONE;
629
630 do {
631 imr = dma_readl(atdma, EBCIMR);
632 status = dma_readl(atdma, EBCISR);
633 pending = status & imr;
634
635 if (!pending)
636 break;
637
638 dev_vdbg(atdma->dma_common.dev,
639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 status, imr, pending);
641
642 for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 atchan = &atdma->chan[i];
644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 if (pending & AT_DMA_ERR(i)) {
646 /* Disable channel on AHB error */
647 dma_writel(atdma, CHDR,
648 AT_DMA_RES(i) | atchan->mask);
649 /* Give information to tasklet */
650 set_bit(ATC_IS_ERROR, &atchan->status);
651 }
652 tasklet_schedule(&atchan->tasklet);
653 ret = IRQ_HANDLED;
654 }
655 }
656
657 } while (pending);
658
659 return ret;
660 }
661
662
663 /*-- DMA Engine API --------------------------------------------------*/
664
665 /**
666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667 * @desc: descriptor at the head of the transaction chain
668 *
669 * Queue chain if DMA engine is working already
670 *
671 * Cookie increment and adding to active_list or queue must be atomic
672 */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 struct at_desc *desc = txd_to_at_desc(tx);
676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
677 dma_cookie_t cookie;
678 unsigned long flags;
679
680 spin_lock_irqsave(&atchan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682
683 if (list_empty(&atchan->active_list)) {
684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 desc->txd.cookie);
686 atc_dostart(atchan, desc);
687 list_add_tail(&desc->desc_node, &atchan->active_list);
688 } else {
689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 desc->txd.cookie);
691 list_add_tail(&desc->desc_node, &atchan->queue);
692 }
693
694 spin_unlock_irqrestore(&atchan->lock, flags);
695
696 return cookie;
697 }
698
699 /**
700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701 * @chan: the channel to prepare operation on
702 * @xt: Interleaved transfer template
703 * @flags: tx descriptor status flags
704 */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 struct dma_interleaved_template *xt,
708 unsigned long flags)
709 {
710 struct at_dma_chan *atchan = to_at_dma_chan(chan);
711 struct data_chunk *first = xt->sgl;
712 struct at_desc *desc = NULL;
713 size_t xfer_count;
714 unsigned int dwidth;
715 u32 ctrla;
716 u32 ctrlb;
717 size_t len = 0;
718 int i;
719
720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 return NULL;
722
723 dev_info(chan2dev(chan),
724 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
725 __func__, &xt->src_start, &xt->dst_start, xt->numf,
726 xt->frame_size, flags);
727
728 /*
729 * The controller can only "skip" X bytes every Y bytes, so we
730 * need to make sure we are given a template that fit that
731 * description, ie a template with chunks that always have the
732 * same size, with the same ICGs.
733 */
734 for (i = 0; i < xt->frame_size; i++) {
735 struct data_chunk *chunk = xt->sgl + i;
736
737 if ((chunk->size != xt->sgl->size) ||
738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 dev_err(chan2dev(chan),
741 "%s: the controller can transfer only identical chunks\n",
742 __func__);
743 return NULL;
744 }
745
746 len += chunk->size;
747 }
748
749 dwidth = atc_get_xfer_width(xt->src_start,
750 xt->dst_start, len);
751
752 xfer_count = len >> dwidth;
753 if (xfer_count > ATC_BTSIZE_MAX) {
754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 return NULL;
756 }
757
758 ctrla = ATC_SRC_WIDTH(dwidth) |
759 ATC_DST_WIDTH(dwidth);
760
761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
762 | ATC_SRC_ADDR_MODE_INCR
763 | ATC_DST_ADDR_MODE_INCR
764 | ATC_SRC_PIP
765 | ATC_DST_PIP
766 | ATC_FC_MEM2MEM;
767
768 /* create the transfer */
769 desc = atc_desc_get(atchan);
770 if (!desc) {
771 dev_err(chan2dev(chan),
772 "%s: couldn't allocate our descriptor\n", __func__);
773 return NULL;
774 }
775
776 desc->lli.saddr = xt->src_start;
777 desc->lli.daddr = xt->dst_start;
778 desc->lli.ctrla = ctrla | xfer_count;
779 desc->lli.ctrlb = ctrlb;
780
781 desc->boundary = first->size >> dwidth;
782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784
785 desc->txd.cookie = -EBUSY;
786 desc->total_len = desc->len = len;
787
788 /* set end-of-link to the last link descriptor of list*/
789 set_desc_eol(desc);
790
791 desc->txd.flags = flags; /* client is in control of this ack */
792
793 return &desc->txd;
794 }
795
796 /**
797 * atc_prep_dma_memcpy - prepare a memcpy operation
798 * @chan: the channel to prepare operation on
799 * @dest: operation virtual destination address
800 * @src: operation virtual source address
801 * @len: operation length
802 * @flags: tx descriptor status flags
803 */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 size_t len, unsigned long flags)
807 {
808 struct at_dma_chan *atchan = to_at_dma_chan(chan);
809 struct at_desc *desc = NULL;
810 struct at_desc *first = NULL;
811 struct at_desc *prev = NULL;
812 size_t xfer_count;
813 size_t offset;
814 unsigned int src_width;
815 unsigned int dst_width;
816 u32 ctrla;
817 u32 ctrlb;
818
819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
820 &dest, &src, len, flags);
821
822 if (unlikely(!len)) {
823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 return NULL;
825 }
826
827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
828 | ATC_SRC_ADDR_MODE_INCR
829 | ATC_DST_ADDR_MODE_INCR
830 | ATC_FC_MEM2MEM;
831
832 /*
833 * We can be a lot more clever here, but this should take care
834 * of the most common optimization.
835 */
836 src_width = dst_width = atc_get_xfer_width(src, dest, len);
837
838 ctrla = ATC_SRC_WIDTH(src_width) |
839 ATC_DST_WIDTH(dst_width);
840
841 for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 xfer_count = min_t(size_t, (len - offset) >> src_width,
843 ATC_BTSIZE_MAX);
844
845 desc = atc_desc_get(atchan);
846 if (!desc)
847 goto err_desc_get;
848
849 desc->lli.saddr = src + offset;
850 desc->lli.daddr = dest + offset;
851 desc->lli.ctrla = ctrla | xfer_count;
852 desc->lli.ctrlb = ctrlb;
853
854 desc->txd.cookie = 0;
855 desc->len = xfer_count << src_width;
856
857 atc_desc_chain(&first, &prev, desc);
858 }
859
860 /* First descriptor of the chain embedds additional information */
861 first->txd.cookie = -EBUSY;
862 first->total_len = len;
863
864 /* set end-of-link to the last link descriptor of list*/
865 set_desc_eol(desc);
866
867 first->txd.flags = flags; /* client is in control of this ack */
868
869 return &first->txd;
870
871 err_desc_get:
872 atc_desc_put(atchan, first);
873 return NULL;
874 }
875
876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
877 dma_addr_t psrc,
878 dma_addr_t pdst,
879 size_t len)
880 {
881 struct at_dma_chan *atchan = to_at_dma_chan(chan);
882 struct at_desc *desc;
883 size_t xfer_count;
884
885 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
886 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
887 ATC_SRC_ADDR_MODE_FIXED |
888 ATC_DST_ADDR_MODE_INCR |
889 ATC_FC_MEM2MEM;
890
891 xfer_count = len >> 2;
892 if (xfer_count > ATC_BTSIZE_MAX) {
893 dev_err(chan2dev(chan), "%s: buffer is too big\n",
894 __func__);
895 return NULL;
896 }
897
898 desc = atc_desc_get(atchan);
899 if (!desc) {
900 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
901 __func__);
902 return NULL;
903 }
904
905 desc->lli.saddr = psrc;
906 desc->lli.daddr = pdst;
907 desc->lli.ctrla = ctrla | xfer_count;
908 desc->lli.ctrlb = ctrlb;
909
910 desc->txd.cookie = 0;
911 desc->len = len;
912
913 return desc;
914 }
915
916 /**
917 * atc_prep_dma_memset - prepare a memcpy operation
918 * @chan: the channel to prepare operation on
919 * @dest: operation virtual destination address
920 * @value: value to set memory buffer to
921 * @len: operation length
922 * @flags: tx descriptor status flags
923 */
924 static struct dma_async_tx_descriptor *
925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
926 size_t len, unsigned long flags)
927 {
928 struct at_dma *atdma = to_at_dma(chan->device);
929 struct at_desc *desc;
930 void __iomem *vaddr;
931 dma_addr_t paddr;
932
933 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
934 &dest, value, len, flags);
935
936 if (unlikely(!len)) {
937 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
938 return NULL;
939 }
940
941 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
942 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
943 __func__);
944 return NULL;
945 }
946
947 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
948 if (!vaddr) {
949 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
950 __func__);
951 return NULL;
952 }
953 *(u32*)vaddr = value;
954
955 desc = atc_create_memset_desc(chan, paddr, dest, len);
956 if (!desc) {
957 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
958 __func__);
959 goto err_free_buffer;
960 }
961
962 desc->memset_paddr = paddr;
963 desc->memset_vaddr = vaddr;
964 desc->memset_buffer = true;
965
966 desc->txd.cookie = -EBUSY;
967 desc->total_len = len;
968
969 /* set end-of-link on the descriptor */
970 set_desc_eol(desc);
971
972 desc->txd.flags = flags;
973
974 return &desc->txd;
975
976 err_free_buffer:
977 dma_pool_free(atdma->memset_pool, vaddr, paddr);
978 return NULL;
979 }
980
981 static struct dma_async_tx_descriptor *
982 atc_prep_dma_memset_sg(struct dma_chan *chan,
983 struct scatterlist *sgl,
984 unsigned int sg_len, int value,
985 unsigned long flags)
986 {
987 struct at_dma_chan *atchan = to_at_dma_chan(chan);
988 struct at_dma *atdma = to_at_dma(chan->device);
989 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
990 struct scatterlist *sg;
991 void __iomem *vaddr;
992 dma_addr_t paddr;
993 size_t total_len = 0;
994 int i;
995
996 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
997 value, sg_len, flags);
998
999 if (unlikely(!sgl || !sg_len)) {
1000 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001 __func__);
1002 return NULL;
1003 }
1004
1005 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006 if (!vaddr) {
1007 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008 __func__);
1009 return NULL;
1010 }
1011 *(u32*)vaddr = value;
1012
1013 for_each_sg(sgl, sg, sg_len, i) {
1014 dma_addr_t dest = sg_dma_address(sg);
1015 size_t len = sg_dma_len(sg);
1016
1017 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018 __func__, &dest, len);
1019
1020 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022 __func__);
1023 goto err_put_desc;
1024 }
1025
1026 desc = atc_create_memset_desc(chan, paddr, dest, len);
1027 if (!desc)
1028 goto err_put_desc;
1029
1030 atc_desc_chain(&first, &prev, desc);
1031
1032 total_len += len;
1033 }
1034
1035 /*
1036 * Only set the buffer pointers on the last descriptor to
1037 * avoid free'ing while we have our transfer still going
1038 */
1039 desc->memset_paddr = paddr;
1040 desc->memset_vaddr = vaddr;
1041 desc->memset_buffer = true;
1042
1043 first->txd.cookie = -EBUSY;
1044 first->total_len = total_len;
1045
1046 /* set end-of-link on the descriptor */
1047 set_desc_eol(desc);
1048
1049 first->txd.flags = flags;
1050
1051 return &first->txd;
1052
1053 err_put_desc:
1054 atc_desc_put(atchan, first);
1055 return NULL;
1056 }
1057
1058 /**
1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060 * @chan: DMA channel
1061 * @sgl: scatterlist to transfer to/from
1062 * @sg_len: number of entries in @scatterlist
1063 * @direction: DMA direction
1064 * @flags: tx descriptor status flags
1065 * @context: transaction context (ignored)
1066 */
1067 static struct dma_async_tx_descriptor *
1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069 unsigned int sg_len, enum dma_transfer_direction direction,
1070 unsigned long flags, void *context)
1071 {
1072 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1073 struct at_dma_slave *atslave = chan->private;
1074 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1075 struct at_desc *first = NULL;
1076 struct at_desc *prev = NULL;
1077 u32 ctrla;
1078 u32 ctrlb;
1079 dma_addr_t reg;
1080 unsigned int reg_width;
1081 unsigned int mem_width;
1082 unsigned int i;
1083 struct scatterlist *sg;
1084 size_t total_len = 0;
1085
1086 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087 sg_len,
1088 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089 flags);
1090
1091 if (unlikely(!atslave || !sg_len)) {
1092 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093 return NULL;
1094 }
1095
1096 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1097 | ATC_DCSIZE(sconfig->dst_maxburst);
1098 ctrlb = ATC_IEN;
1099
1100 switch (direction) {
1101 case DMA_MEM_TO_DEV:
1102 reg_width = convert_buswidth(sconfig->dst_addr_width);
1103 ctrla |= ATC_DST_WIDTH(reg_width);
1104 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1105 | ATC_SRC_ADDR_MODE_INCR
1106 | ATC_FC_MEM2PER
1107 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108 reg = sconfig->dst_addr;
1109 for_each_sg(sgl, sg, sg_len, i) {
1110 struct at_desc *desc;
1111 u32 len;
1112 u32 mem;
1113
1114 desc = atc_desc_get(atchan);
1115 if (!desc)
1116 goto err_desc_get;
1117
1118 mem = sg_dma_address(sg);
1119 len = sg_dma_len(sg);
1120 if (unlikely(!len)) {
1121 dev_dbg(chan2dev(chan),
1122 "prep_slave_sg: sg(%d) data length is zero\n", i);
1123 goto err;
1124 }
1125 mem_width = 2;
1126 if (unlikely(mem & 3 || len & 3))
1127 mem_width = 0;
1128
1129 desc->lli.saddr = mem;
1130 desc->lli.daddr = reg;
1131 desc->lli.ctrla = ctrla
1132 | ATC_SRC_WIDTH(mem_width)
1133 | len >> mem_width;
1134 desc->lli.ctrlb = ctrlb;
1135 desc->len = len;
1136
1137 atc_desc_chain(&first, &prev, desc);
1138 total_len += len;
1139 }
1140 break;
1141 case DMA_DEV_TO_MEM:
1142 reg_width = convert_buswidth(sconfig->src_addr_width);
1143 ctrla |= ATC_SRC_WIDTH(reg_width);
1144 ctrlb |= ATC_DST_ADDR_MODE_INCR
1145 | ATC_SRC_ADDR_MODE_FIXED
1146 | ATC_FC_PER2MEM
1147 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148
1149 reg = sconfig->src_addr;
1150 for_each_sg(sgl, sg, sg_len, i) {
1151 struct at_desc *desc;
1152 u32 len;
1153 u32 mem;
1154
1155 desc = atc_desc_get(atchan);
1156 if (!desc)
1157 goto err_desc_get;
1158
1159 mem = sg_dma_address(sg);
1160 len = sg_dma_len(sg);
1161 if (unlikely(!len)) {
1162 dev_dbg(chan2dev(chan),
1163 "prep_slave_sg: sg(%d) data length is zero\n", i);
1164 goto err;
1165 }
1166 mem_width = 2;
1167 if (unlikely(mem & 3 || len & 3))
1168 mem_width = 0;
1169
1170 desc->lli.saddr = reg;
1171 desc->lli.daddr = mem;
1172 desc->lli.ctrla = ctrla
1173 | ATC_DST_WIDTH(mem_width)
1174 | len >> reg_width;
1175 desc->lli.ctrlb = ctrlb;
1176 desc->len = len;
1177
1178 atc_desc_chain(&first, &prev, desc);
1179 total_len += len;
1180 }
1181 break;
1182 default:
1183 return NULL;
1184 }
1185
1186 /* set end-of-link to the last link descriptor of list*/
1187 set_desc_eol(prev);
1188
1189 /* First descriptor of the chain embedds additional information */
1190 first->txd.cookie = -EBUSY;
1191 first->total_len = total_len;
1192
1193 /* first link descriptor of list is responsible of flags */
1194 first->txd.flags = flags; /* client is in control of this ack */
1195
1196 return &first->txd;
1197
1198 err_desc_get:
1199 dev_err(chan2dev(chan), "not enough descriptors available\n");
1200 err:
1201 atc_desc_put(atchan, first);
1202 return NULL;
1203 }
1204
1205 /**
1206 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1207 * @chan: the channel to prepare operation on
1208 * @dst_sg: destination scatterlist
1209 * @dst_nents: number of destination scatterlist entries
1210 * @src_sg: source scatterlist
1211 * @src_nents: number of source scatterlist entries
1212 * @flags: tx descriptor status flags
1213 */
1214 static struct dma_async_tx_descriptor *
1215 atc_prep_dma_sg(struct dma_chan *chan,
1216 struct scatterlist *dst_sg, unsigned int dst_nents,
1217 struct scatterlist *src_sg, unsigned int src_nents,
1218 unsigned long flags)
1219 {
1220 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1221 struct at_desc *desc = NULL;
1222 struct at_desc *first = NULL;
1223 struct at_desc *prev = NULL;
1224 unsigned int src_width;
1225 unsigned int dst_width;
1226 size_t xfer_count;
1227 u32 ctrla;
1228 u32 ctrlb;
1229 size_t dst_len = 0, src_len = 0;
1230 dma_addr_t dst = 0, src = 0;
1231 size_t len = 0, total_len = 0;
1232
1233 if (unlikely(dst_nents == 0 || src_nents == 0))
1234 return NULL;
1235
1236 if (unlikely(dst_sg == NULL || src_sg == NULL))
1237 return NULL;
1238
1239 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1240 | ATC_SRC_ADDR_MODE_INCR
1241 | ATC_DST_ADDR_MODE_INCR
1242 | ATC_FC_MEM2MEM;
1243
1244 /*
1245 * loop until there is either no more source or no more destination
1246 * scatterlist entry
1247 */
1248 while (true) {
1249
1250 /* prepare the next transfer */
1251 if (dst_len == 0) {
1252
1253 /* no more destination scatterlist entries */
1254 if (!dst_sg || !dst_nents)
1255 break;
1256
1257 dst = sg_dma_address(dst_sg);
1258 dst_len = sg_dma_len(dst_sg);
1259
1260 dst_sg = sg_next(dst_sg);
1261 dst_nents--;
1262 }
1263
1264 if (src_len == 0) {
1265
1266 /* no more source scatterlist entries */
1267 if (!src_sg || !src_nents)
1268 break;
1269
1270 src = sg_dma_address(src_sg);
1271 src_len = sg_dma_len(src_sg);
1272
1273 src_sg = sg_next(src_sg);
1274 src_nents--;
1275 }
1276
1277 len = min_t(size_t, src_len, dst_len);
1278 if (len == 0)
1279 continue;
1280
1281 /* take care for the alignment */
1282 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1283
1284 ctrla = ATC_SRC_WIDTH(src_width) |
1285 ATC_DST_WIDTH(dst_width);
1286
1287 /*
1288 * The number of transfers to set up refer to the source width
1289 * that depends on the alignment.
1290 */
1291 xfer_count = len >> src_width;
1292 if (xfer_count > ATC_BTSIZE_MAX) {
1293 xfer_count = ATC_BTSIZE_MAX;
1294 len = ATC_BTSIZE_MAX << src_width;
1295 }
1296
1297 /* create the transfer */
1298 desc = atc_desc_get(atchan);
1299 if (!desc)
1300 goto err_desc_get;
1301
1302 desc->lli.saddr = src;
1303 desc->lli.daddr = dst;
1304 desc->lli.ctrla = ctrla | xfer_count;
1305 desc->lli.ctrlb = ctrlb;
1306
1307 desc->txd.cookie = 0;
1308 desc->len = len;
1309
1310 atc_desc_chain(&first, &prev, desc);
1311
1312 /* update the lengths and addresses for the next loop cycle */
1313 dst_len -= len;
1314 src_len -= len;
1315 dst += len;
1316 src += len;
1317
1318 total_len += len;
1319 }
1320
1321 /* First descriptor of the chain embedds additional information */
1322 first->txd.cookie = -EBUSY;
1323 first->total_len = total_len;
1324
1325 /* set end-of-link to the last link descriptor of list*/
1326 set_desc_eol(desc);
1327
1328 first->txd.flags = flags; /* client is in control of this ack */
1329
1330 return &first->txd;
1331
1332 err_desc_get:
1333 atc_desc_put(atchan, first);
1334 return NULL;
1335 }
1336
1337 /**
1338 * atc_dma_cyclic_check_values
1339 * Check for too big/unaligned periods and unaligned DMA buffer
1340 */
1341 static int
1342 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1343 size_t period_len)
1344 {
1345 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1346 goto err_out;
1347 if (unlikely(period_len & ((1 << reg_width) - 1)))
1348 goto err_out;
1349 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1350 goto err_out;
1351
1352 return 0;
1353
1354 err_out:
1355 return -EINVAL;
1356 }
1357
1358 /**
1359 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1360 */
1361 static int
1362 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1363 unsigned int period_index, dma_addr_t buf_addr,
1364 unsigned int reg_width, size_t period_len,
1365 enum dma_transfer_direction direction)
1366 {
1367 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1368 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1369 u32 ctrla;
1370
1371 /* prepare common CRTLA value */
1372 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1373 | ATC_DCSIZE(sconfig->dst_maxburst)
1374 | ATC_DST_WIDTH(reg_width)
1375 | ATC_SRC_WIDTH(reg_width)
1376 | period_len >> reg_width;
1377
1378 switch (direction) {
1379 case DMA_MEM_TO_DEV:
1380 desc->lli.saddr = buf_addr + (period_len * period_index);
1381 desc->lli.daddr = sconfig->dst_addr;
1382 desc->lli.ctrla = ctrla;
1383 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1384 | ATC_SRC_ADDR_MODE_INCR
1385 | ATC_FC_MEM2PER
1386 | ATC_SIF(atchan->mem_if)
1387 | ATC_DIF(atchan->per_if);
1388 desc->len = period_len;
1389 break;
1390
1391 case DMA_DEV_TO_MEM:
1392 desc->lli.saddr = sconfig->src_addr;
1393 desc->lli.daddr = buf_addr + (period_len * period_index);
1394 desc->lli.ctrla = ctrla;
1395 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1396 | ATC_SRC_ADDR_MODE_FIXED
1397 | ATC_FC_PER2MEM
1398 | ATC_SIF(atchan->per_if)
1399 | ATC_DIF(atchan->mem_if);
1400 desc->len = period_len;
1401 break;
1402
1403 default:
1404 return -EINVAL;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /**
1411 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1412 * @chan: the DMA channel to prepare
1413 * @buf_addr: physical DMA address where the buffer starts
1414 * @buf_len: total number of bytes for the entire buffer
1415 * @period_len: number of bytes for each period
1416 * @direction: transfer direction, to or from device
1417 * @flags: tx descriptor status flags
1418 */
1419 static struct dma_async_tx_descriptor *
1420 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1421 size_t period_len, enum dma_transfer_direction direction,
1422 unsigned long flags)
1423 {
1424 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1425 struct at_dma_slave *atslave = chan->private;
1426 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1427 struct at_desc *first = NULL;
1428 struct at_desc *prev = NULL;
1429 unsigned long was_cyclic;
1430 unsigned int reg_width;
1431 unsigned int periods = buf_len / period_len;
1432 unsigned int i;
1433
1434 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1435 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1436 &buf_addr,
1437 periods, buf_len, period_len);
1438
1439 if (unlikely(!atslave || !buf_len || !period_len)) {
1440 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1441 return NULL;
1442 }
1443
1444 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1445 if (was_cyclic) {
1446 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1447 return NULL;
1448 }
1449
1450 if (unlikely(!is_slave_direction(direction)))
1451 goto err_out;
1452
1453 if (sconfig->direction == DMA_MEM_TO_DEV)
1454 reg_width = convert_buswidth(sconfig->dst_addr_width);
1455 else
1456 reg_width = convert_buswidth(sconfig->src_addr_width);
1457
1458 /* Check for too big/unaligned periods and unaligned DMA buffer */
1459 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1460 goto err_out;
1461
1462 /* build cyclic linked list */
1463 for (i = 0; i < periods; i++) {
1464 struct at_desc *desc;
1465
1466 desc = atc_desc_get(atchan);
1467 if (!desc)
1468 goto err_desc_get;
1469
1470 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1471 reg_width, period_len, direction))
1472 goto err_desc_get;
1473
1474 atc_desc_chain(&first, &prev, desc);
1475 }
1476
1477 /* lets make a cyclic list */
1478 prev->lli.dscr = first->txd.phys;
1479
1480 /* First descriptor of the chain embedds additional information */
1481 first->txd.cookie = -EBUSY;
1482 first->total_len = buf_len;
1483
1484 return &first->txd;
1485
1486 err_desc_get:
1487 dev_err(chan2dev(chan), "not enough descriptors available\n");
1488 atc_desc_put(atchan, first);
1489 err_out:
1490 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1491 return NULL;
1492 }
1493
1494 static int atc_config(struct dma_chan *chan,
1495 struct dma_slave_config *sconfig)
1496 {
1497 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1498
1499 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1500
1501 /* Check if it is chan is configured for slave transfers */
1502 if (!chan->private)
1503 return -EINVAL;
1504
1505 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1506
1507 convert_burst(&atchan->dma_sconfig.src_maxburst);
1508 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1509
1510 return 0;
1511 }
1512
1513 static int atc_pause(struct dma_chan *chan)
1514 {
1515 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1516 struct at_dma *atdma = to_at_dma(chan->device);
1517 int chan_id = atchan->chan_common.chan_id;
1518 unsigned long flags;
1519
1520 LIST_HEAD(list);
1521
1522 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1523
1524 spin_lock_irqsave(&atchan->lock, flags);
1525
1526 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1527 set_bit(ATC_IS_PAUSED, &atchan->status);
1528
1529 spin_unlock_irqrestore(&atchan->lock, flags);
1530
1531 return 0;
1532 }
1533
1534 static int atc_resume(struct dma_chan *chan)
1535 {
1536 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1537 struct at_dma *atdma = to_at_dma(chan->device);
1538 int chan_id = atchan->chan_common.chan_id;
1539 unsigned long flags;
1540
1541 LIST_HEAD(list);
1542
1543 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1544
1545 if (!atc_chan_is_paused(atchan))
1546 return 0;
1547
1548 spin_lock_irqsave(&atchan->lock, flags);
1549
1550 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1551 clear_bit(ATC_IS_PAUSED, &atchan->status);
1552
1553 spin_unlock_irqrestore(&atchan->lock, flags);
1554
1555 return 0;
1556 }
1557
1558 static int atc_terminate_all(struct dma_chan *chan)
1559 {
1560 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1561 struct at_dma *atdma = to_at_dma(chan->device);
1562 int chan_id = atchan->chan_common.chan_id;
1563 struct at_desc *desc, *_desc;
1564 unsigned long flags;
1565
1566 LIST_HEAD(list);
1567
1568 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1569
1570 /*
1571 * This is only called when something went wrong elsewhere, so
1572 * we don't really care about the data. Just disable the
1573 * channel. We still have to poll the channel enable bit due
1574 * to AHB/HSB limitations.
1575 */
1576 spin_lock_irqsave(&atchan->lock, flags);
1577
1578 /* disabling channel: must also remove suspend state */
1579 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1580
1581 /* confirm that this channel is disabled */
1582 while (dma_readl(atdma, CHSR) & atchan->mask)
1583 cpu_relax();
1584
1585 /* active_list entries will end up before queued entries */
1586 list_splice_init(&atchan->queue, &list);
1587 list_splice_init(&atchan->active_list, &list);
1588
1589 /* Flush all pending and queued descriptors */
1590 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1591 atc_chain_complete(atchan, desc);
1592
1593 clear_bit(ATC_IS_PAUSED, &atchan->status);
1594 /* if channel dedicated to cyclic operations, free it */
1595 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1596
1597 spin_unlock_irqrestore(&atchan->lock, flags);
1598
1599 return 0;
1600 }
1601
1602 /**
1603 * atc_tx_status - poll for transaction completion
1604 * @chan: DMA channel
1605 * @cookie: transaction identifier to check status of
1606 * @txstate: if not %NULL updated with transaction state
1607 *
1608 * If @txstate is passed in, upon return it reflect the driver
1609 * internal state and can be used with dma_async_is_complete() to check
1610 * the status of multiple cookies without re-checking hardware state.
1611 */
1612 static enum dma_status
1613 atc_tx_status(struct dma_chan *chan,
1614 dma_cookie_t cookie,
1615 struct dma_tx_state *txstate)
1616 {
1617 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1618 unsigned long flags;
1619 enum dma_status ret;
1620 int bytes = 0;
1621
1622 ret = dma_cookie_status(chan, cookie, txstate);
1623 if (ret == DMA_COMPLETE)
1624 return ret;
1625 /*
1626 * There's no point calculating the residue if there's
1627 * no txstate to store the value.
1628 */
1629 if (!txstate)
1630 return DMA_ERROR;
1631
1632 spin_lock_irqsave(&atchan->lock, flags);
1633
1634 /* Get number of bytes left in the active transactions */
1635 bytes = atc_get_bytes_left(chan, cookie);
1636
1637 spin_unlock_irqrestore(&atchan->lock, flags);
1638
1639 if (unlikely(bytes < 0)) {
1640 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1641 return DMA_ERROR;
1642 } else {
1643 dma_set_residue(txstate, bytes);
1644 }
1645
1646 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1647 ret, cookie, bytes);
1648
1649 return ret;
1650 }
1651
1652 /**
1653 * atc_issue_pending - try to finish work
1654 * @chan: target DMA channel
1655 */
1656 static void atc_issue_pending(struct dma_chan *chan)
1657 {
1658 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1659 unsigned long flags;
1660
1661 dev_vdbg(chan2dev(chan), "issue_pending\n");
1662
1663 /* Not needed for cyclic transfers */
1664 if (atc_chan_is_cyclic(atchan))
1665 return;
1666
1667 spin_lock_irqsave(&atchan->lock, flags);
1668 atc_advance_work(atchan);
1669 spin_unlock_irqrestore(&atchan->lock, flags);
1670 }
1671
1672 /**
1673 * atc_alloc_chan_resources - allocate resources for DMA channel
1674 * @chan: allocate descriptor resources for this channel
1675 * @client: current client requesting the channel be ready for requests
1676 *
1677 * return - the number of allocated descriptors
1678 */
1679 static int atc_alloc_chan_resources(struct dma_chan *chan)
1680 {
1681 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1682 struct at_dma *atdma = to_at_dma(chan->device);
1683 struct at_desc *desc;
1684 struct at_dma_slave *atslave;
1685 unsigned long flags;
1686 int i;
1687 u32 cfg;
1688 LIST_HEAD(tmp_list);
1689
1690 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1691
1692 /* ASSERT: channel is idle */
1693 if (atc_chan_is_enabled(atchan)) {
1694 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1695 return -EIO;
1696 }
1697
1698 cfg = ATC_DEFAULT_CFG;
1699
1700 atslave = chan->private;
1701 if (atslave) {
1702 /*
1703 * We need controller-specific data to set up slave
1704 * transfers.
1705 */
1706 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1707
1708 /* if cfg configuration specified take it instead of default */
1709 if (atslave->cfg)
1710 cfg = atslave->cfg;
1711 }
1712
1713 /* have we already been set up?
1714 * reconfigure channel but no need to reallocate descriptors */
1715 if (!list_empty(&atchan->free_list))
1716 return atchan->descs_allocated;
1717
1718 /* Allocate initial pool of descriptors */
1719 for (i = 0; i < init_nr_desc_per_channel; i++) {
1720 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1721 if (!desc) {
1722 dev_err(atdma->dma_common.dev,
1723 "Only %d initial descriptors\n", i);
1724 break;
1725 }
1726 list_add_tail(&desc->desc_node, &tmp_list);
1727 }
1728
1729 spin_lock_irqsave(&atchan->lock, flags);
1730 atchan->descs_allocated = i;
1731 list_splice(&tmp_list, &atchan->free_list);
1732 dma_cookie_init(chan);
1733 spin_unlock_irqrestore(&atchan->lock, flags);
1734
1735 /* channel parameters */
1736 channel_writel(atchan, CFG, cfg);
1737
1738 dev_dbg(chan2dev(chan),
1739 "alloc_chan_resources: allocated %d descriptors\n",
1740 atchan->descs_allocated);
1741
1742 return atchan->descs_allocated;
1743 }
1744
1745 /**
1746 * atc_free_chan_resources - free all channel resources
1747 * @chan: DMA channel
1748 */
1749 static void atc_free_chan_resources(struct dma_chan *chan)
1750 {
1751 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1752 struct at_dma *atdma = to_at_dma(chan->device);
1753 struct at_desc *desc, *_desc;
1754 LIST_HEAD(list);
1755
1756 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1757 atchan->descs_allocated);
1758
1759 /* ASSERT: channel is idle */
1760 BUG_ON(!list_empty(&atchan->active_list));
1761 BUG_ON(!list_empty(&atchan->queue));
1762 BUG_ON(atc_chan_is_enabled(atchan));
1763
1764 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1765 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1766 list_del(&desc->desc_node);
1767 /* free link descriptor */
1768 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1769 }
1770 list_splice_init(&atchan->free_list, &list);
1771 atchan->descs_allocated = 0;
1772 atchan->status = 0;
1773
1774 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1775 }
1776
1777 #ifdef CONFIG_OF
1778 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1779 {
1780 struct at_dma_slave *atslave = slave;
1781
1782 if (atslave->dma_dev == chan->device->dev) {
1783 chan->private = atslave;
1784 return true;
1785 } else {
1786 return false;
1787 }
1788 }
1789
1790 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1791 struct of_dma *of_dma)
1792 {
1793 struct dma_chan *chan;
1794 struct at_dma_chan *atchan;
1795 struct at_dma_slave *atslave;
1796 dma_cap_mask_t mask;
1797 unsigned int per_id;
1798 struct platform_device *dmac_pdev;
1799
1800 if (dma_spec->args_count != 2)
1801 return NULL;
1802
1803 dmac_pdev = of_find_device_by_node(dma_spec->np);
1804
1805 dma_cap_zero(mask);
1806 dma_cap_set(DMA_SLAVE, mask);
1807
1808 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1809 if (!atslave)
1810 return NULL;
1811
1812 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1813 /*
1814 * We can fill both SRC_PER and DST_PER, one of these fields will be
1815 * ignored depending on DMA transfer direction.
1816 */
1817 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1818 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1819 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1820 /*
1821 * We have to translate the value we get from the device tree since
1822 * the half FIFO configuration value had to be 0 to keep backward
1823 * compatibility.
1824 */
1825 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1826 case AT91_DMA_CFG_FIFOCFG_ALAP:
1827 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1828 break;
1829 case AT91_DMA_CFG_FIFOCFG_ASAP:
1830 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1831 break;
1832 case AT91_DMA_CFG_FIFOCFG_HALF:
1833 default:
1834 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1835 }
1836 atslave->dma_dev = &dmac_pdev->dev;
1837
1838 chan = dma_request_channel(mask, at_dma_filter, atslave);
1839 if (!chan)
1840 return NULL;
1841
1842 atchan = to_at_dma_chan(chan);
1843 atchan->per_if = dma_spec->args[0] & 0xff;
1844 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1845
1846 return chan;
1847 }
1848 #else
1849 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1850 struct of_dma *of_dma)
1851 {
1852 return NULL;
1853 }
1854 #endif
1855
1856 /*-- Module Management -----------------------------------------------*/
1857
1858 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1859 static struct at_dma_platform_data at91sam9rl_config = {
1860 .nr_channels = 2,
1861 };
1862 static struct at_dma_platform_data at91sam9g45_config = {
1863 .nr_channels = 8,
1864 };
1865
1866 #if defined(CONFIG_OF)
1867 static const struct of_device_id atmel_dma_dt_ids[] = {
1868 {
1869 .compatible = "atmel,at91sam9rl-dma",
1870 .data = &at91sam9rl_config,
1871 }, {
1872 .compatible = "atmel,at91sam9g45-dma",
1873 .data = &at91sam9g45_config,
1874 }, {
1875 /* sentinel */
1876 }
1877 };
1878
1879 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1880 #endif
1881
1882 static const struct platform_device_id atdma_devtypes[] = {
1883 {
1884 .name = "at91sam9rl_dma",
1885 .driver_data = (unsigned long) &at91sam9rl_config,
1886 }, {
1887 .name = "at91sam9g45_dma",
1888 .driver_data = (unsigned long) &at91sam9g45_config,
1889 }, {
1890 /* sentinel */
1891 }
1892 };
1893
1894 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1895 struct platform_device *pdev)
1896 {
1897 if (pdev->dev.of_node) {
1898 const struct of_device_id *match;
1899 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1900 if (match == NULL)
1901 return NULL;
1902 return match->data;
1903 }
1904 return (struct at_dma_platform_data *)
1905 platform_get_device_id(pdev)->driver_data;
1906 }
1907
1908 /**
1909 * at_dma_off - disable DMA controller
1910 * @atdma: the Atmel HDAMC device
1911 */
1912 static void at_dma_off(struct at_dma *atdma)
1913 {
1914 dma_writel(atdma, EN, 0);
1915
1916 /* disable all interrupts */
1917 dma_writel(atdma, EBCIDR, -1L);
1918
1919 /* confirm that all channels are disabled */
1920 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1921 cpu_relax();
1922 }
1923
1924 static int __init at_dma_probe(struct platform_device *pdev)
1925 {
1926 struct resource *io;
1927 struct at_dma *atdma;
1928 size_t size;
1929 int irq;
1930 int err;
1931 int i;
1932 const struct at_dma_platform_data *plat_dat;
1933
1934 /* setup platform data for each SoC */
1935 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1936 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1937 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1938 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1939 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1940 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1941 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1942 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1943 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1944
1945 /* get DMA parameters from controller type */
1946 plat_dat = at_dma_get_driver_data(pdev);
1947 if (!plat_dat)
1948 return -ENODEV;
1949
1950 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1951 if (!io)
1952 return -EINVAL;
1953
1954 irq = platform_get_irq(pdev, 0);
1955 if (irq < 0)
1956 return irq;
1957
1958 size = sizeof(struct at_dma);
1959 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1960 atdma = kzalloc(size, GFP_KERNEL);
1961 if (!atdma)
1962 return -ENOMEM;
1963
1964 /* discover transaction capabilities */
1965 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1966 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1967
1968 size = resource_size(io);
1969 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1970 err = -EBUSY;
1971 goto err_kfree;
1972 }
1973
1974 atdma->regs = ioremap(io->start, size);
1975 if (!atdma->regs) {
1976 err = -ENOMEM;
1977 goto err_release_r;
1978 }
1979
1980 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1981 if (IS_ERR(atdma->clk)) {
1982 err = PTR_ERR(atdma->clk);
1983 goto err_clk;
1984 }
1985 err = clk_prepare_enable(atdma->clk);
1986 if (err)
1987 goto err_clk_prepare;
1988
1989 /* force dma off, just in case */
1990 at_dma_off(atdma);
1991
1992 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1993 if (err)
1994 goto err_irq;
1995
1996 platform_set_drvdata(pdev, atdma);
1997
1998 /* create a pool of consistent memory blocks for hardware descriptors */
1999 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2000 &pdev->dev, sizeof(struct at_desc),
2001 4 /* word alignment */, 0);
2002 if (!atdma->dma_desc_pool) {
2003 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2004 err = -ENOMEM;
2005 goto err_desc_pool_create;
2006 }
2007
2008 /* create a pool of consistent memory blocks for memset blocks */
2009 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2010 &pdev->dev, sizeof(int), 4, 0);
2011 if (!atdma->memset_pool) {
2012 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2013 err = -ENOMEM;
2014 goto err_memset_pool_create;
2015 }
2016
2017 /* clear any pending interrupt */
2018 while (dma_readl(atdma, EBCISR))
2019 cpu_relax();
2020
2021 /* initialize channels related values */
2022 INIT_LIST_HEAD(&atdma->dma_common.channels);
2023 for (i = 0; i < plat_dat->nr_channels; i++) {
2024 struct at_dma_chan *atchan = &atdma->chan[i];
2025
2026 atchan->mem_if = AT_DMA_MEM_IF;
2027 atchan->per_if = AT_DMA_PER_IF;
2028 atchan->chan_common.device = &atdma->dma_common;
2029 dma_cookie_init(&atchan->chan_common);
2030 list_add_tail(&atchan->chan_common.device_node,
2031 &atdma->dma_common.channels);
2032
2033 atchan->ch_regs = atdma->regs + ch_regs(i);
2034 spin_lock_init(&atchan->lock);
2035 atchan->mask = 1 << i;
2036
2037 INIT_LIST_HEAD(&atchan->active_list);
2038 INIT_LIST_HEAD(&atchan->queue);
2039 INIT_LIST_HEAD(&atchan->free_list);
2040
2041 tasklet_init(&atchan->tasklet, atc_tasklet,
2042 (unsigned long)atchan);
2043 atc_enable_chan_irq(atdma, i);
2044 }
2045
2046 /* set base routines */
2047 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2048 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2049 atdma->dma_common.device_tx_status = atc_tx_status;
2050 atdma->dma_common.device_issue_pending = atc_issue_pending;
2051 atdma->dma_common.dev = &pdev->dev;
2052
2053 /* set prep routines based on capability */
2054 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2055 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2056
2057 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2058 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2059
2060 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2061 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2062 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2063 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2064 }
2065
2066 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2067 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2068 /* controller can do slave DMA: can trigger cyclic transfers */
2069 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2070 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2071 atdma->dma_common.device_config = atc_config;
2072 atdma->dma_common.device_pause = atc_pause;
2073 atdma->dma_common.device_resume = atc_resume;
2074 atdma->dma_common.device_terminate_all = atc_terminate_all;
2075 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2076 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2077 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2078 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2079 }
2080
2081 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2082 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2083
2084 dma_writel(atdma, EN, AT_DMA_ENABLE);
2085
2086 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2087 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2088 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2089 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2090 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2091 plat_dat->nr_channels);
2092
2093 dma_async_device_register(&atdma->dma_common);
2094
2095 /*
2096 * Do not return an error if the dmac node is not present in order to
2097 * not break the existing way of requesting channel with
2098 * dma_request_channel().
2099 */
2100 if (pdev->dev.of_node) {
2101 err = of_dma_controller_register(pdev->dev.of_node,
2102 at_dma_xlate, atdma);
2103 if (err) {
2104 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2105 goto err_of_dma_controller_register;
2106 }
2107 }
2108
2109 return 0;
2110
2111 err_of_dma_controller_register:
2112 dma_async_device_unregister(&atdma->dma_common);
2113 dma_pool_destroy(atdma->memset_pool);
2114 err_memset_pool_create:
2115 dma_pool_destroy(atdma->dma_desc_pool);
2116 err_desc_pool_create:
2117 free_irq(platform_get_irq(pdev, 0), atdma);
2118 err_irq:
2119 clk_disable_unprepare(atdma->clk);
2120 err_clk_prepare:
2121 clk_put(atdma->clk);
2122 err_clk:
2123 iounmap(atdma->regs);
2124 atdma->regs = NULL;
2125 err_release_r:
2126 release_mem_region(io->start, size);
2127 err_kfree:
2128 kfree(atdma);
2129 return err;
2130 }
2131
2132 static int at_dma_remove(struct platform_device *pdev)
2133 {
2134 struct at_dma *atdma = platform_get_drvdata(pdev);
2135 struct dma_chan *chan, *_chan;
2136 struct resource *io;
2137
2138 at_dma_off(atdma);
2139 dma_async_device_unregister(&atdma->dma_common);
2140
2141 dma_pool_destroy(atdma->memset_pool);
2142 dma_pool_destroy(atdma->dma_desc_pool);
2143 free_irq(platform_get_irq(pdev, 0), atdma);
2144
2145 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2146 device_node) {
2147 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2148
2149 /* Disable interrupts */
2150 atc_disable_chan_irq(atdma, chan->chan_id);
2151
2152 tasklet_kill(&atchan->tasklet);
2153 list_del(&chan->device_node);
2154 }
2155
2156 clk_disable_unprepare(atdma->clk);
2157 clk_put(atdma->clk);
2158
2159 iounmap(atdma->regs);
2160 atdma->regs = NULL;
2161
2162 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2163 release_mem_region(io->start, resource_size(io));
2164
2165 kfree(atdma);
2166
2167 return 0;
2168 }
2169
2170 static void at_dma_shutdown(struct platform_device *pdev)
2171 {
2172 struct at_dma *atdma = platform_get_drvdata(pdev);
2173
2174 at_dma_off(platform_get_drvdata(pdev));
2175 clk_disable_unprepare(atdma->clk);
2176 }
2177
2178 static int at_dma_prepare(struct device *dev)
2179 {
2180 struct platform_device *pdev = to_platform_device(dev);
2181 struct at_dma *atdma = platform_get_drvdata(pdev);
2182 struct dma_chan *chan, *_chan;
2183
2184 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2185 device_node) {
2186 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2187 /* wait for transaction completion (except in cyclic case) */
2188 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2189 return -EAGAIN;
2190 }
2191 return 0;
2192 }
2193
2194 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2195 {
2196 struct dma_chan *chan = &atchan->chan_common;
2197
2198 /* Channel should be paused by user
2199 * do it anyway even if it is not done already */
2200 if (!atc_chan_is_paused(atchan)) {
2201 dev_warn(chan2dev(chan),
2202 "cyclic channel not paused, should be done by channel user\n");
2203 atc_pause(chan);
2204 }
2205
2206 /* now preserve additional data for cyclic operations */
2207 /* next descriptor address in the cyclic list */
2208 atchan->save_dscr = channel_readl(atchan, DSCR);
2209
2210 vdbg_dump_regs(atchan);
2211 }
2212
2213 static int at_dma_suspend_noirq(struct device *dev)
2214 {
2215 struct platform_device *pdev = to_platform_device(dev);
2216 struct at_dma *atdma = platform_get_drvdata(pdev);
2217 struct dma_chan *chan, *_chan;
2218
2219 /* preserve data */
2220 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2221 device_node) {
2222 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2223
2224 if (atc_chan_is_cyclic(atchan))
2225 atc_suspend_cyclic(atchan);
2226 atchan->save_cfg = channel_readl(atchan, CFG);
2227 }
2228 atdma->save_imr = dma_readl(atdma, EBCIMR);
2229
2230 /* disable DMA controller */
2231 at_dma_off(atdma);
2232 clk_disable_unprepare(atdma->clk);
2233 return 0;
2234 }
2235
2236 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2237 {
2238 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2239
2240 /* restore channel status for cyclic descriptors list:
2241 * next descriptor in the cyclic list at the time of suspend */
2242 channel_writel(atchan, SADDR, 0);
2243 channel_writel(atchan, DADDR, 0);
2244 channel_writel(atchan, CTRLA, 0);
2245 channel_writel(atchan, CTRLB, 0);
2246 channel_writel(atchan, DSCR, atchan->save_dscr);
2247 dma_writel(atdma, CHER, atchan->mask);
2248
2249 /* channel pause status should be removed by channel user
2250 * We cannot take the initiative to do it here */
2251
2252 vdbg_dump_regs(atchan);
2253 }
2254
2255 static int at_dma_resume_noirq(struct device *dev)
2256 {
2257 struct platform_device *pdev = to_platform_device(dev);
2258 struct at_dma *atdma = platform_get_drvdata(pdev);
2259 struct dma_chan *chan, *_chan;
2260
2261 /* bring back DMA controller */
2262 clk_prepare_enable(atdma->clk);
2263 dma_writel(atdma, EN, AT_DMA_ENABLE);
2264
2265 /* clear any pending interrupt */
2266 while (dma_readl(atdma, EBCISR))
2267 cpu_relax();
2268
2269 /* restore saved data */
2270 dma_writel(atdma, EBCIER, atdma->save_imr);
2271 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2272 device_node) {
2273 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2274
2275 channel_writel(atchan, CFG, atchan->save_cfg);
2276 if (atc_chan_is_cyclic(atchan))
2277 atc_resume_cyclic(atchan);
2278 }
2279 return 0;
2280 }
2281
2282 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2283 .prepare = at_dma_prepare,
2284 .suspend_noirq = at_dma_suspend_noirq,
2285 .resume_noirq = at_dma_resume_noirq,
2286 };
2287
2288 static struct platform_driver at_dma_driver = {
2289 .remove = at_dma_remove,
2290 .shutdown = at_dma_shutdown,
2291 .id_table = atdma_devtypes,
2292 .driver = {
2293 .name = "at_hdmac",
2294 .pm = &at_dma_dev_pm_ops,
2295 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2296 },
2297 };
2298
2299 static int __init at_dma_init(void)
2300 {
2301 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2302 }
2303 subsys_initcall(at_dma_init);
2304
2305 static void __exit at_dma_exit(void)
2306 {
2307 platform_driver_unregister(&at_dma_driver);
2308 }
2309 module_exit(at_dma_exit);
2310
2311 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2312 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2313 MODULE_LICENSE("GPL");
2314 MODULE_ALIAS("platform:at_hdmac");