]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/dma/at_hdmac.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / dma / at_hdmac.c
1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS 10
52
53 /*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72 {
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83 }
84
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89 }
90
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95 }
96
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109 {
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 INIT_LIST_HEAD(&desc->tx_list);
117 dma_async_tx_descriptor_init(&desc->txd, chan);
118 /* txd.flags will be overwritten in prep functions */
119 desc->txd.flags = DMA_CTRL_ACK;
120 desc->txd.tx_submit = atc_tx_submit;
121 desc->txd.phys = phys;
122 }
123
124 return desc;
125 }
126
127 /**
128 * atc_desc_get - get an unused descriptor from free_list
129 * @atchan: channel we want a new descriptor for
130 */
131 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
132 {
133 struct at_desc *desc, *_desc;
134 struct at_desc *ret = NULL;
135 unsigned long flags;
136 unsigned int i = 0;
137 LIST_HEAD(tmp_list);
138
139 spin_lock_irqsave(&atchan->lock, flags);
140 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
141 i++;
142 if (async_tx_test_ack(&desc->txd)) {
143 list_del(&desc->desc_node);
144 ret = desc;
145 break;
146 }
147 dev_dbg(chan2dev(&atchan->chan_common),
148 "desc %p not ACKed\n", desc);
149 }
150 spin_unlock_irqrestore(&atchan->lock, flags);
151 dev_vdbg(chan2dev(&atchan->chan_common),
152 "scanned %u descriptors on freelist\n", i);
153
154 /* no more descriptor available in initial pool: create one more */
155 if (!ret) {
156 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
157 if (ret) {
158 spin_lock_irqsave(&atchan->lock, flags);
159 atchan->descs_allocated++;
160 spin_unlock_irqrestore(&atchan->lock, flags);
161 } else {
162 dev_err(chan2dev(&atchan->chan_common),
163 "not enough descriptors available\n");
164 }
165 }
166
167 return ret;
168 }
169
170 /**
171 * atc_desc_put - move a descriptor, including any children, to the free list
172 * @atchan: channel we work on
173 * @desc: descriptor, at the head of a chain, to move to free list
174 */
175 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
176 {
177 if (desc) {
178 struct at_desc *child;
179 unsigned long flags;
180
181 spin_lock_irqsave(&atchan->lock, flags);
182 list_for_each_entry(child, &desc->tx_list, desc_node)
183 dev_vdbg(chan2dev(&atchan->chan_common),
184 "moving child desc %p to freelist\n",
185 child);
186 list_splice_init(&desc->tx_list, &atchan->free_list);
187 dev_vdbg(chan2dev(&atchan->chan_common),
188 "moving desc %p to freelist\n", desc);
189 list_add(&desc->desc_node, &atchan->free_list);
190 spin_unlock_irqrestore(&atchan->lock, flags);
191 }
192 }
193
194 /**
195 * atc_desc_chain - build chain adding a descriptor
196 * @first: address of first descriptor of the chain
197 * @prev: address of previous descriptor of the chain
198 * @desc: descriptor to queue
199 *
200 * Called from prep_* functions
201 */
202 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
203 struct at_desc *desc)
204 {
205 if (!(*first)) {
206 *first = desc;
207 } else {
208 /* inform the HW lli about chaining */
209 (*prev)->lli.dscr = desc->txd.phys;
210 /* insert the link descriptor to the LD ring */
211 list_add_tail(&desc->desc_node,
212 &(*first)->tx_list);
213 }
214 *prev = desc;
215 }
216
217 /**
218 * atc_dostart - starts the DMA engine for real
219 * @atchan: the channel we want to start
220 * @first: first descriptor in the list we want to begin with
221 *
222 * Called with atchan->lock held and bh disabled
223 */
224 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
225 {
226 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
227
228 /* ASSERT: channel is idle */
229 if (atc_chan_is_enabled(atchan)) {
230 dev_err(chan2dev(&atchan->chan_common),
231 "BUG: Attempted to start non-idle channel\n");
232 dev_err(chan2dev(&atchan->chan_common),
233 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
234 channel_readl(atchan, SADDR),
235 channel_readl(atchan, DADDR),
236 channel_readl(atchan, CTRLA),
237 channel_readl(atchan, CTRLB),
238 channel_readl(atchan, DSCR));
239
240 /* The tasklet will hopefully advance the queue... */
241 return;
242 }
243
244 vdbg_dump_regs(atchan);
245
246 channel_writel(atchan, SADDR, 0);
247 channel_writel(atchan, DADDR, 0);
248 channel_writel(atchan, CTRLA, 0);
249 channel_writel(atchan, CTRLB, 0);
250 channel_writel(atchan, DSCR, first->txd.phys);
251 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
252 ATC_SPIP_BOUNDARY(first->boundary));
253 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
254 ATC_DPIP_BOUNDARY(first->boundary));
255 dma_writel(atdma, CHER, atchan->mask);
256
257 vdbg_dump_regs(atchan);
258 }
259
260 /*
261 * atc_get_desc_by_cookie - get the descriptor of a cookie
262 * @atchan: the DMA channel
263 * @cookie: the cookie to get the descriptor for
264 */
265 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
266 dma_cookie_t cookie)
267 {
268 struct at_desc *desc, *_desc;
269
270 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
271 if (desc->txd.cookie == cookie)
272 return desc;
273 }
274
275 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
276 if (desc->txd.cookie == cookie)
277 return desc;
278 }
279
280 return NULL;
281 }
282
283 /**
284 * atc_calc_bytes_left - calculates the number of bytes left according to the
285 * value read from CTRLA.
286 *
287 * @current_len: the number of bytes left before reading CTRLA
288 * @ctrla: the value of CTRLA
289 */
290 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
291 {
292 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
293 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
294
295 /*
296 * According to the datasheet, when reading the Control A Register
297 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
298 * number of transfers completed on the Source Interface.
299 * So btsize is always a number of source width transfers.
300 */
301 return current_len - (btsize << src_width);
302 }
303
304 /**
305 * atc_get_bytes_left - get the number of bytes residue for a cookie
306 * @chan: DMA channel
307 * @cookie: transaction identifier to check status of
308 */
309 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
310 {
311 struct at_dma_chan *atchan = to_at_dma_chan(chan);
312 struct at_desc *desc_first = atc_first_active(atchan);
313 struct at_desc *desc;
314 int ret;
315 u32 ctrla, dscr, trials;
316
317 /*
318 * If the cookie doesn't match to the currently running transfer then
319 * we can return the total length of the associated DMA transfer,
320 * because it is still queued.
321 */
322 desc = atc_get_desc_by_cookie(atchan, cookie);
323 if (desc == NULL)
324 return -EINVAL;
325 else if (desc != desc_first)
326 return desc->total_len;
327
328 /* cookie matches to the currently running transfer */
329 ret = desc_first->total_len;
330
331 if (desc_first->lli.dscr) {
332 /* hardware linked list transfer */
333
334 /*
335 * Calculate the residue by removing the length of the child
336 * descriptors already transferred from the total length.
337 * To get the current child descriptor we can use the value of
338 * the channel's DSCR register and compare it against the value
339 * of the hardware linked list structure of each child
340 * descriptor.
341 *
342 * The CTRLA register provides us with the amount of data
343 * already read from the source for the current child
344 * descriptor. So we can compute a more accurate residue by also
345 * removing the number of bytes corresponding to this amount of
346 * data.
347 *
348 * However, the DSCR and CTRLA registers cannot be read both
349 * atomically. Hence a race condition may occur: the first read
350 * register may refer to one child descriptor whereas the second
351 * read may refer to a later child descriptor in the list
352 * because of the DMA transfer progression inbetween the two
353 * reads.
354 *
355 * One solution could have been to pause the DMA transfer, read
356 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
357 * this approach presents some drawbacks:
358 * - If the DMA transfer is paused, RX overruns or TX underruns
359 * are more likey to occur depending on the system latency.
360 * Taking the USART driver as an example, it uses a cyclic DMA
361 * transfer to read data from the Receive Holding Register
362 * (RHR) to avoid RX overruns since the RHR is not protected
363 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
364 * to compute the residue would break the USART driver design.
365 * - The atc_pause() function masks interrupts but we'd rather
366 * avoid to do so for system latency purpose.
367 *
368 * Then we'd rather use another solution: the DSCR is read a
369 * first time, the CTRLA is read in turn, next the DSCR is read
370 * a second time. If the two consecutive read values of the DSCR
371 * are the same then we assume both refers to the very same
372 * child descriptor as well as the CTRLA value read inbetween
373 * does. For cyclic tranfers, the assumption is that a full loop
374 * is "not so fast".
375 * If the two DSCR values are different, we read again the CTRLA
376 * then the DSCR till two consecutive read values from DSCR are
377 * equal or till the maxium trials is reach.
378 * This algorithm is very unlikely not to find a stable value for
379 * DSCR.
380 */
381
382 dscr = channel_readl(atchan, DSCR);
383 rmb(); /* ensure DSCR is read before CTRLA */
384 ctrla = channel_readl(atchan, CTRLA);
385 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
386 u32 new_dscr;
387
388 rmb(); /* ensure DSCR is read after CTRLA */
389 new_dscr = channel_readl(atchan, DSCR);
390
391 /*
392 * If the DSCR register value has not changed inside the
393 * DMA controller since the previous read, we assume
394 * that both the dscr and ctrla values refers to the
395 * very same descriptor.
396 */
397 if (likely(new_dscr == dscr))
398 break;
399
400 /*
401 * DSCR has changed inside the DMA controller, so the
402 * previouly read value of CTRLA may refer to an already
403 * processed descriptor hence could be outdated.
404 * We need to update ctrla to match the current
405 * descriptor.
406 */
407 dscr = new_dscr;
408 rmb(); /* ensure DSCR is read before CTRLA */
409 ctrla = channel_readl(atchan, CTRLA);
410 }
411 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
412 return -ETIMEDOUT;
413
414 /* for the first descriptor we can be more accurate */
415 if (desc_first->lli.dscr == dscr)
416 return atc_calc_bytes_left(ret, ctrla);
417
418 ret -= desc_first->len;
419 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
420 if (desc->lli.dscr == dscr)
421 break;
422
423 ret -= desc->len;
424 }
425
426 /*
427 * For the current descriptor in the chain we can calculate
428 * the remaining bytes using the channel's register.
429 */
430 ret = atc_calc_bytes_left(ret, ctrla);
431 } else {
432 /* single transfer */
433 ctrla = channel_readl(atchan, CTRLA);
434 ret = atc_calc_bytes_left(ret, ctrla);
435 }
436
437 return ret;
438 }
439
440 /**
441 * atc_chain_complete - finish work for one transaction chain
442 * @atchan: channel we work on
443 * @desc: descriptor at the head of the chain we want do complete
444 *
445 * Called with atchan->lock held and bh disabled */
446 static void
447 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
448 {
449 struct dma_async_tx_descriptor *txd = &desc->txd;
450 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
451
452 dev_vdbg(chan2dev(&atchan->chan_common),
453 "descriptor %u complete\n", txd->cookie);
454
455 /* mark the descriptor as complete for non cyclic cases only */
456 if (!atc_chan_is_cyclic(atchan))
457 dma_cookie_complete(txd);
458
459 /* If the transfer was a memset, free our temporary buffer */
460 if (desc->memset_buffer) {
461 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
462 desc->memset_paddr);
463 desc->memset_buffer = false;
464 }
465
466 /* move children to free_list */
467 list_splice_init(&desc->tx_list, &atchan->free_list);
468 /* move myself to free_list */
469 list_move(&desc->desc_node, &atchan->free_list);
470
471 dma_descriptor_unmap(txd);
472 /* for cyclic transfers,
473 * no need to replay callback function while stopping */
474 if (!atc_chan_is_cyclic(atchan)) {
475 /*
476 * The API requires that no submissions are done from a
477 * callback, so we don't need to drop the lock here
478 */
479 dmaengine_desc_get_callback_invoke(txd, NULL);
480 }
481
482 dma_run_dependencies(txd);
483 }
484
485 /**
486 * atc_complete_all - finish work for all transactions
487 * @atchan: channel to complete transactions for
488 *
489 * Eventually submit queued descriptors if any
490 *
491 * Assume channel is idle while calling this function
492 * Called with atchan->lock held and bh disabled
493 */
494 static void atc_complete_all(struct at_dma_chan *atchan)
495 {
496 struct at_desc *desc, *_desc;
497 LIST_HEAD(list);
498
499 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
500
501 /*
502 * Submit queued descriptors ASAP, i.e. before we go through
503 * the completed ones.
504 */
505 if (!list_empty(&atchan->queue))
506 atc_dostart(atchan, atc_first_queued(atchan));
507 /* empty active_list now it is completed */
508 list_splice_init(&atchan->active_list, &list);
509 /* empty queue list by moving descriptors (if any) to active_list */
510 list_splice_init(&atchan->queue, &atchan->active_list);
511
512 list_for_each_entry_safe(desc, _desc, &list, desc_node)
513 atc_chain_complete(atchan, desc);
514 }
515
516 /**
517 * atc_advance_work - at the end of a transaction, move forward
518 * @atchan: channel where the transaction ended
519 *
520 * Called with atchan->lock held and bh disabled
521 */
522 static void atc_advance_work(struct at_dma_chan *atchan)
523 {
524 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
525
526 if (atc_chan_is_enabled(atchan))
527 return;
528
529 if (list_empty(&atchan->active_list) ||
530 list_is_singular(&atchan->active_list)) {
531 atc_complete_all(atchan);
532 } else {
533 atc_chain_complete(atchan, atc_first_active(atchan));
534 /* advance work */
535 atc_dostart(atchan, atc_first_active(atchan));
536 }
537 }
538
539
540 /**
541 * atc_handle_error - handle errors reported by DMA controller
542 * @atchan: channel where error occurs
543 *
544 * Called with atchan->lock held and bh disabled
545 */
546 static void atc_handle_error(struct at_dma_chan *atchan)
547 {
548 struct at_desc *bad_desc;
549 struct at_desc *child;
550
551 /*
552 * The descriptor currently at the head of the active list is
553 * broked. Since we don't have any way to report errors, we'll
554 * just have to scream loudly and try to carry on.
555 */
556 bad_desc = atc_first_active(atchan);
557 list_del_init(&bad_desc->desc_node);
558
559 /* As we are stopped, take advantage to push queued descriptors
560 * in active_list */
561 list_splice_init(&atchan->queue, atchan->active_list.prev);
562
563 /* Try to restart the controller */
564 if (!list_empty(&atchan->active_list))
565 atc_dostart(atchan, atc_first_active(atchan));
566
567 /*
568 * KERN_CRITICAL may seem harsh, but since this only happens
569 * when someone submits a bad physical address in a
570 * descriptor, we should consider ourselves lucky that the
571 * controller flagged an error instead of scribbling over
572 * random memory locations.
573 */
574 dev_crit(chan2dev(&atchan->chan_common),
575 "Bad descriptor submitted for DMA!\n");
576 dev_crit(chan2dev(&atchan->chan_common),
577 " cookie: %d\n", bad_desc->txd.cookie);
578 atc_dump_lli(atchan, &bad_desc->lli);
579 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
580 atc_dump_lli(atchan, &child->lli);
581
582 /* Pretend the descriptor completed successfully */
583 atc_chain_complete(atchan, bad_desc);
584 }
585
586 /**
587 * atc_handle_cyclic - at the end of a period, run callback function
588 * @atchan: channel used for cyclic operations
589 *
590 * Called with atchan->lock held and bh disabled
591 */
592 static void atc_handle_cyclic(struct at_dma_chan *atchan)
593 {
594 struct at_desc *first = atc_first_active(atchan);
595 struct dma_async_tx_descriptor *txd = &first->txd;
596
597 dev_vdbg(chan2dev(&atchan->chan_common),
598 "new cyclic period llp 0x%08x\n",
599 channel_readl(atchan, DSCR));
600
601 dmaengine_desc_get_callback_invoke(txd, NULL);
602 }
603
604 /*-- IRQ & Tasklet ---------------------------------------------------*/
605
606 static void atc_tasklet(unsigned long data)
607 {
608 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
609 unsigned long flags;
610
611 spin_lock_irqsave(&atchan->lock, flags);
612 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
613 atc_handle_error(atchan);
614 else if (atc_chan_is_cyclic(atchan))
615 atc_handle_cyclic(atchan);
616 else
617 atc_advance_work(atchan);
618
619 spin_unlock_irqrestore(&atchan->lock, flags);
620 }
621
622 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
623 {
624 struct at_dma *atdma = (struct at_dma *)dev_id;
625 struct at_dma_chan *atchan;
626 int i;
627 u32 status, pending, imr;
628 int ret = IRQ_NONE;
629
630 do {
631 imr = dma_readl(atdma, EBCIMR);
632 status = dma_readl(atdma, EBCISR);
633 pending = status & imr;
634
635 if (!pending)
636 break;
637
638 dev_vdbg(atdma->dma_common.dev,
639 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
640 status, imr, pending);
641
642 for (i = 0; i < atdma->dma_common.chancnt; i++) {
643 atchan = &atdma->chan[i];
644 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
645 if (pending & AT_DMA_ERR(i)) {
646 /* Disable channel on AHB error */
647 dma_writel(atdma, CHDR,
648 AT_DMA_RES(i) | atchan->mask);
649 /* Give information to tasklet */
650 set_bit(ATC_IS_ERROR, &atchan->status);
651 }
652 tasklet_schedule(&atchan->tasklet);
653 ret = IRQ_HANDLED;
654 }
655 }
656
657 } while (pending);
658
659 return ret;
660 }
661
662
663 /*-- DMA Engine API --------------------------------------------------*/
664
665 /**
666 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
667 * @desc: descriptor at the head of the transaction chain
668 *
669 * Queue chain if DMA engine is working already
670 *
671 * Cookie increment and adding to active_list or queue must be atomic
672 */
673 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
674 {
675 struct at_desc *desc = txd_to_at_desc(tx);
676 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
677 dma_cookie_t cookie;
678 unsigned long flags;
679
680 spin_lock_irqsave(&atchan->lock, flags);
681 cookie = dma_cookie_assign(tx);
682
683 if (list_empty(&atchan->active_list)) {
684 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
685 desc->txd.cookie);
686 atc_dostart(atchan, desc);
687 list_add_tail(&desc->desc_node, &atchan->active_list);
688 } else {
689 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
690 desc->txd.cookie);
691 list_add_tail(&desc->desc_node, &atchan->queue);
692 }
693
694 spin_unlock_irqrestore(&atchan->lock, flags);
695
696 return cookie;
697 }
698
699 /**
700 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
701 * @chan: the channel to prepare operation on
702 * @xt: Interleaved transfer template
703 * @flags: tx descriptor status flags
704 */
705 static struct dma_async_tx_descriptor *
706 atc_prep_dma_interleaved(struct dma_chan *chan,
707 struct dma_interleaved_template *xt,
708 unsigned long flags)
709 {
710 struct at_dma_chan *atchan = to_at_dma_chan(chan);
711 struct data_chunk *first = xt->sgl;
712 struct at_desc *desc = NULL;
713 size_t xfer_count;
714 unsigned int dwidth;
715 u32 ctrla;
716 u32 ctrlb;
717 size_t len = 0;
718 int i;
719
720 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
721 return NULL;
722
723 dev_info(chan2dev(chan),
724 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
725 __func__, &xt->src_start, &xt->dst_start, xt->numf,
726 xt->frame_size, flags);
727
728 /*
729 * The controller can only "skip" X bytes every Y bytes, so we
730 * need to make sure we are given a template that fit that
731 * description, ie a template with chunks that always have the
732 * same size, with the same ICGs.
733 */
734 for (i = 0; i < xt->frame_size; i++) {
735 struct data_chunk *chunk = xt->sgl + i;
736
737 if ((chunk->size != xt->sgl->size) ||
738 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
739 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
740 dev_err(chan2dev(chan),
741 "%s: the controller can transfer only identical chunks\n",
742 __func__);
743 return NULL;
744 }
745
746 len += chunk->size;
747 }
748
749 dwidth = atc_get_xfer_width(xt->src_start,
750 xt->dst_start, len);
751
752 xfer_count = len >> dwidth;
753 if (xfer_count > ATC_BTSIZE_MAX) {
754 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
755 return NULL;
756 }
757
758 ctrla = ATC_SRC_WIDTH(dwidth) |
759 ATC_DST_WIDTH(dwidth);
760
761 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
762 | ATC_SRC_ADDR_MODE_INCR
763 | ATC_DST_ADDR_MODE_INCR
764 | ATC_SRC_PIP
765 | ATC_DST_PIP
766 | ATC_FC_MEM2MEM;
767
768 /* create the transfer */
769 desc = atc_desc_get(atchan);
770 if (!desc) {
771 dev_err(chan2dev(chan),
772 "%s: couldn't allocate our descriptor\n", __func__);
773 return NULL;
774 }
775
776 desc->lli.saddr = xt->src_start;
777 desc->lli.daddr = xt->dst_start;
778 desc->lli.ctrla = ctrla | xfer_count;
779 desc->lli.ctrlb = ctrlb;
780
781 desc->boundary = first->size >> dwidth;
782 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
783 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
784
785 desc->txd.cookie = -EBUSY;
786 desc->total_len = desc->len = len;
787
788 /* set end-of-link to the last link descriptor of list*/
789 set_desc_eol(desc);
790
791 desc->txd.flags = flags; /* client is in control of this ack */
792
793 return &desc->txd;
794 }
795
796 /**
797 * atc_prep_dma_memcpy - prepare a memcpy operation
798 * @chan: the channel to prepare operation on
799 * @dest: operation virtual destination address
800 * @src: operation virtual source address
801 * @len: operation length
802 * @flags: tx descriptor status flags
803 */
804 static struct dma_async_tx_descriptor *
805 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
806 size_t len, unsigned long flags)
807 {
808 struct at_dma_chan *atchan = to_at_dma_chan(chan);
809 struct at_desc *desc = NULL;
810 struct at_desc *first = NULL;
811 struct at_desc *prev = NULL;
812 size_t xfer_count;
813 size_t offset;
814 unsigned int src_width;
815 unsigned int dst_width;
816 u32 ctrla;
817 u32 ctrlb;
818
819 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
820 &dest, &src, len, flags);
821
822 if (unlikely(!len)) {
823 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
824 return NULL;
825 }
826
827 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
828 | ATC_SRC_ADDR_MODE_INCR
829 | ATC_DST_ADDR_MODE_INCR
830 | ATC_FC_MEM2MEM;
831
832 /*
833 * We can be a lot more clever here, but this should take care
834 * of the most common optimization.
835 */
836 src_width = dst_width = atc_get_xfer_width(src, dest, len);
837
838 ctrla = ATC_SRC_WIDTH(src_width) |
839 ATC_DST_WIDTH(dst_width);
840
841 for (offset = 0; offset < len; offset += xfer_count << src_width) {
842 xfer_count = min_t(size_t, (len - offset) >> src_width,
843 ATC_BTSIZE_MAX);
844
845 desc = atc_desc_get(atchan);
846 if (!desc)
847 goto err_desc_get;
848
849 desc->lli.saddr = src + offset;
850 desc->lli.daddr = dest + offset;
851 desc->lli.ctrla = ctrla | xfer_count;
852 desc->lli.ctrlb = ctrlb;
853
854 desc->txd.cookie = 0;
855 desc->len = xfer_count << src_width;
856
857 atc_desc_chain(&first, &prev, desc);
858 }
859
860 /* First descriptor of the chain embedds additional information */
861 first->txd.cookie = -EBUSY;
862 first->total_len = len;
863
864 /* set end-of-link to the last link descriptor of list*/
865 set_desc_eol(desc);
866
867 first->txd.flags = flags; /* client is in control of this ack */
868
869 return &first->txd;
870
871 err_desc_get:
872 atc_desc_put(atchan, first);
873 return NULL;
874 }
875
876 static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
877 dma_addr_t psrc,
878 dma_addr_t pdst,
879 size_t len)
880 {
881 struct at_dma_chan *atchan = to_at_dma_chan(chan);
882 struct at_desc *desc;
883 size_t xfer_count;
884
885 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
886 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
887 ATC_SRC_ADDR_MODE_FIXED |
888 ATC_DST_ADDR_MODE_INCR |
889 ATC_FC_MEM2MEM;
890
891 xfer_count = len >> 2;
892 if (xfer_count > ATC_BTSIZE_MAX) {
893 dev_err(chan2dev(chan), "%s: buffer is too big\n",
894 __func__);
895 return NULL;
896 }
897
898 desc = atc_desc_get(atchan);
899 if (!desc) {
900 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
901 __func__);
902 return NULL;
903 }
904
905 desc->lli.saddr = psrc;
906 desc->lli.daddr = pdst;
907 desc->lli.ctrla = ctrla | xfer_count;
908 desc->lli.ctrlb = ctrlb;
909
910 desc->txd.cookie = 0;
911 desc->len = len;
912
913 return desc;
914 }
915
916 /**
917 * atc_prep_dma_memset - prepare a memcpy operation
918 * @chan: the channel to prepare operation on
919 * @dest: operation virtual destination address
920 * @value: value to set memory buffer to
921 * @len: operation length
922 * @flags: tx descriptor status flags
923 */
924 static struct dma_async_tx_descriptor *
925 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
926 size_t len, unsigned long flags)
927 {
928 struct at_dma *atdma = to_at_dma(chan->device);
929 struct at_desc *desc;
930 void __iomem *vaddr;
931 dma_addr_t paddr;
932
933 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
934 &dest, value, len, flags);
935
936 if (unlikely(!len)) {
937 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
938 return NULL;
939 }
940
941 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
942 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
943 __func__);
944 return NULL;
945 }
946
947 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
948 if (!vaddr) {
949 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
950 __func__);
951 return NULL;
952 }
953 *(u32*)vaddr = value;
954
955 desc = atc_create_memset_desc(chan, paddr, dest, len);
956 if (!desc) {
957 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
958 __func__);
959 goto err_free_buffer;
960 }
961
962 desc->memset_paddr = paddr;
963 desc->memset_vaddr = vaddr;
964 desc->memset_buffer = true;
965
966 desc->txd.cookie = -EBUSY;
967 desc->total_len = len;
968
969 /* set end-of-link on the descriptor */
970 set_desc_eol(desc);
971
972 desc->txd.flags = flags;
973
974 return &desc->txd;
975
976 err_free_buffer:
977 dma_pool_free(atdma->memset_pool, vaddr, paddr);
978 return NULL;
979 }
980
981 static struct dma_async_tx_descriptor *
982 atc_prep_dma_memset_sg(struct dma_chan *chan,
983 struct scatterlist *sgl,
984 unsigned int sg_len, int value,
985 unsigned long flags)
986 {
987 struct at_dma_chan *atchan = to_at_dma_chan(chan);
988 struct at_dma *atdma = to_at_dma(chan->device);
989 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
990 struct scatterlist *sg;
991 void __iomem *vaddr;
992 dma_addr_t paddr;
993 size_t total_len = 0;
994 int i;
995
996 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
997 value, sg_len, flags);
998
999 if (unlikely(!sgl || !sg_len)) {
1000 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1001 __func__);
1002 return NULL;
1003 }
1004
1005 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1006 if (!vaddr) {
1007 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1008 __func__);
1009 return NULL;
1010 }
1011 *(u32*)vaddr = value;
1012
1013 for_each_sg(sgl, sg, sg_len, i) {
1014 dma_addr_t dest = sg_dma_address(sg);
1015 size_t len = sg_dma_len(sg);
1016
1017 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1018 __func__, &dest, len);
1019
1020 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1021 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1022 __func__);
1023 goto err_put_desc;
1024 }
1025
1026 desc = atc_create_memset_desc(chan, paddr, dest, len);
1027 if (!desc)
1028 goto err_put_desc;
1029
1030 atc_desc_chain(&first, &prev, desc);
1031
1032 total_len += len;
1033 }
1034
1035 /*
1036 * Only set the buffer pointers on the last descriptor to
1037 * avoid free'ing while we have our transfer still going
1038 */
1039 desc->memset_paddr = paddr;
1040 desc->memset_vaddr = vaddr;
1041 desc->memset_buffer = true;
1042
1043 first->txd.cookie = -EBUSY;
1044 first->total_len = total_len;
1045
1046 /* set end-of-link on the descriptor */
1047 set_desc_eol(desc);
1048
1049 first->txd.flags = flags;
1050
1051 return &first->txd;
1052
1053 err_put_desc:
1054 atc_desc_put(atchan, first);
1055 return NULL;
1056 }
1057
1058 /**
1059 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1060 * @chan: DMA channel
1061 * @sgl: scatterlist to transfer to/from
1062 * @sg_len: number of entries in @scatterlist
1063 * @direction: DMA direction
1064 * @flags: tx descriptor status flags
1065 * @context: transaction context (ignored)
1066 */
1067 static struct dma_async_tx_descriptor *
1068 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1069 unsigned int sg_len, enum dma_transfer_direction direction,
1070 unsigned long flags, void *context)
1071 {
1072 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1073 struct at_dma_slave *atslave = chan->private;
1074 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1075 struct at_desc *first = NULL;
1076 struct at_desc *prev = NULL;
1077 u32 ctrla;
1078 u32 ctrlb;
1079 dma_addr_t reg;
1080 unsigned int reg_width;
1081 unsigned int mem_width;
1082 unsigned int i;
1083 struct scatterlist *sg;
1084 size_t total_len = 0;
1085
1086 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1087 sg_len,
1088 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1089 flags);
1090
1091 if (unlikely(!atslave || !sg_len)) {
1092 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1093 return NULL;
1094 }
1095
1096 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1097 | ATC_DCSIZE(sconfig->dst_maxburst);
1098 ctrlb = ATC_IEN;
1099
1100 switch (direction) {
1101 case DMA_MEM_TO_DEV:
1102 reg_width = convert_buswidth(sconfig->dst_addr_width);
1103 ctrla |= ATC_DST_WIDTH(reg_width);
1104 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1105 | ATC_SRC_ADDR_MODE_INCR
1106 | ATC_FC_MEM2PER
1107 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1108 reg = sconfig->dst_addr;
1109 for_each_sg(sgl, sg, sg_len, i) {
1110 struct at_desc *desc;
1111 u32 len;
1112 u32 mem;
1113
1114 desc = atc_desc_get(atchan);
1115 if (!desc)
1116 goto err_desc_get;
1117
1118 mem = sg_dma_address(sg);
1119 len = sg_dma_len(sg);
1120 if (unlikely(!len)) {
1121 dev_dbg(chan2dev(chan),
1122 "prep_slave_sg: sg(%d) data length is zero\n", i);
1123 goto err;
1124 }
1125 mem_width = 2;
1126 if (unlikely(mem & 3 || len & 3))
1127 mem_width = 0;
1128
1129 desc->lli.saddr = mem;
1130 desc->lli.daddr = reg;
1131 desc->lli.ctrla = ctrla
1132 | ATC_SRC_WIDTH(mem_width)
1133 | len >> mem_width;
1134 desc->lli.ctrlb = ctrlb;
1135 desc->len = len;
1136
1137 atc_desc_chain(&first, &prev, desc);
1138 total_len += len;
1139 }
1140 break;
1141 case DMA_DEV_TO_MEM:
1142 reg_width = convert_buswidth(sconfig->src_addr_width);
1143 ctrla |= ATC_SRC_WIDTH(reg_width);
1144 ctrlb |= ATC_DST_ADDR_MODE_INCR
1145 | ATC_SRC_ADDR_MODE_FIXED
1146 | ATC_FC_PER2MEM
1147 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1148
1149 reg = sconfig->src_addr;
1150 for_each_sg(sgl, sg, sg_len, i) {
1151 struct at_desc *desc;
1152 u32 len;
1153 u32 mem;
1154
1155 desc = atc_desc_get(atchan);
1156 if (!desc)
1157 goto err_desc_get;
1158
1159 mem = sg_dma_address(sg);
1160 len = sg_dma_len(sg);
1161 if (unlikely(!len)) {
1162 dev_dbg(chan2dev(chan),
1163 "prep_slave_sg: sg(%d) data length is zero\n", i);
1164 goto err;
1165 }
1166 mem_width = 2;
1167 if (unlikely(mem & 3 || len & 3))
1168 mem_width = 0;
1169
1170 desc->lli.saddr = reg;
1171 desc->lli.daddr = mem;
1172 desc->lli.ctrla = ctrla
1173 | ATC_DST_WIDTH(mem_width)
1174 | len >> reg_width;
1175 desc->lli.ctrlb = ctrlb;
1176 desc->len = len;
1177
1178 atc_desc_chain(&first, &prev, desc);
1179 total_len += len;
1180 }
1181 break;
1182 default:
1183 return NULL;
1184 }
1185
1186 /* set end-of-link to the last link descriptor of list*/
1187 set_desc_eol(prev);
1188
1189 /* First descriptor of the chain embedds additional information */
1190 first->txd.cookie = -EBUSY;
1191 first->total_len = total_len;
1192
1193 /* first link descriptor of list is responsible of flags */
1194 first->txd.flags = flags; /* client is in control of this ack */
1195
1196 return &first->txd;
1197
1198 err_desc_get:
1199 dev_err(chan2dev(chan), "not enough descriptors available\n");
1200 err:
1201 atc_desc_put(atchan, first);
1202 return NULL;
1203 }
1204
1205 /**
1206 * atc_dma_cyclic_check_values
1207 * Check for too big/unaligned periods and unaligned DMA buffer
1208 */
1209 static int
1210 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1211 size_t period_len)
1212 {
1213 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1214 goto err_out;
1215 if (unlikely(period_len & ((1 << reg_width) - 1)))
1216 goto err_out;
1217 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1218 goto err_out;
1219
1220 return 0;
1221
1222 err_out:
1223 return -EINVAL;
1224 }
1225
1226 /**
1227 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1228 */
1229 static int
1230 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1231 unsigned int period_index, dma_addr_t buf_addr,
1232 unsigned int reg_width, size_t period_len,
1233 enum dma_transfer_direction direction)
1234 {
1235 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1236 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1237 u32 ctrla;
1238
1239 /* prepare common CRTLA value */
1240 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1241 | ATC_DCSIZE(sconfig->dst_maxburst)
1242 | ATC_DST_WIDTH(reg_width)
1243 | ATC_SRC_WIDTH(reg_width)
1244 | period_len >> reg_width;
1245
1246 switch (direction) {
1247 case DMA_MEM_TO_DEV:
1248 desc->lli.saddr = buf_addr + (period_len * period_index);
1249 desc->lli.daddr = sconfig->dst_addr;
1250 desc->lli.ctrla = ctrla;
1251 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1252 | ATC_SRC_ADDR_MODE_INCR
1253 | ATC_FC_MEM2PER
1254 | ATC_SIF(atchan->mem_if)
1255 | ATC_DIF(atchan->per_if);
1256 desc->len = period_len;
1257 break;
1258
1259 case DMA_DEV_TO_MEM:
1260 desc->lli.saddr = sconfig->src_addr;
1261 desc->lli.daddr = buf_addr + (period_len * period_index);
1262 desc->lli.ctrla = ctrla;
1263 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1264 | ATC_SRC_ADDR_MODE_FIXED
1265 | ATC_FC_PER2MEM
1266 | ATC_SIF(atchan->per_if)
1267 | ATC_DIF(atchan->mem_if);
1268 desc->len = period_len;
1269 break;
1270
1271 default:
1272 return -EINVAL;
1273 }
1274
1275 return 0;
1276 }
1277
1278 /**
1279 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1280 * @chan: the DMA channel to prepare
1281 * @buf_addr: physical DMA address where the buffer starts
1282 * @buf_len: total number of bytes for the entire buffer
1283 * @period_len: number of bytes for each period
1284 * @direction: transfer direction, to or from device
1285 * @flags: tx descriptor status flags
1286 */
1287 static struct dma_async_tx_descriptor *
1288 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1289 size_t period_len, enum dma_transfer_direction direction,
1290 unsigned long flags)
1291 {
1292 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1293 struct at_dma_slave *atslave = chan->private;
1294 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1295 struct at_desc *first = NULL;
1296 struct at_desc *prev = NULL;
1297 unsigned long was_cyclic;
1298 unsigned int reg_width;
1299 unsigned int periods = buf_len / period_len;
1300 unsigned int i;
1301
1302 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1303 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1304 &buf_addr,
1305 periods, buf_len, period_len);
1306
1307 if (unlikely(!atslave || !buf_len || !period_len)) {
1308 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1309 return NULL;
1310 }
1311
1312 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1313 if (was_cyclic) {
1314 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1315 return NULL;
1316 }
1317
1318 if (unlikely(!is_slave_direction(direction)))
1319 goto err_out;
1320
1321 if (sconfig->direction == DMA_MEM_TO_DEV)
1322 reg_width = convert_buswidth(sconfig->dst_addr_width);
1323 else
1324 reg_width = convert_buswidth(sconfig->src_addr_width);
1325
1326 /* Check for too big/unaligned periods and unaligned DMA buffer */
1327 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1328 goto err_out;
1329
1330 /* build cyclic linked list */
1331 for (i = 0; i < periods; i++) {
1332 struct at_desc *desc;
1333
1334 desc = atc_desc_get(atchan);
1335 if (!desc)
1336 goto err_desc_get;
1337
1338 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1339 reg_width, period_len, direction))
1340 goto err_desc_get;
1341
1342 atc_desc_chain(&first, &prev, desc);
1343 }
1344
1345 /* lets make a cyclic list */
1346 prev->lli.dscr = first->txd.phys;
1347
1348 /* First descriptor of the chain embedds additional information */
1349 first->txd.cookie = -EBUSY;
1350 first->total_len = buf_len;
1351
1352 return &first->txd;
1353
1354 err_desc_get:
1355 dev_err(chan2dev(chan), "not enough descriptors available\n");
1356 atc_desc_put(atchan, first);
1357 err_out:
1358 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1359 return NULL;
1360 }
1361
1362 static int atc_config(struct dma_chan *chan,
1363 struct dma_slave_config *sconfig)
1364 {
1365 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1366
1367 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1368
1369 /* Check if it is chan is configured for slave transfers */
1370 if (!chan->private)
1371 return -EINVAL;
1372
1373 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1374
1375 convert_burst(&atchan->dma_sconfig.src_maxburst);
1376 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1377
1378 return 0;
1379 }
1380
1381 static int atc_pause(struct dma_chan *chan)
1382 {
1383 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1384 struct at_dma *atdma = to_at_dma(chan->device);
1385 int chan_id = atchan->chan_common.chan_id;
1386 unsigned long flags;
1387
1388 LIST_HEAD(list);
1389
1390 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1391
1392 spin_lock_irqsave(&atchan->lock, flags);
1393
1394 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1395 set_bit(ATC_IS_PAUSED, &atchan->status);
1396
1397 spin_unlock_irqrestore(&atchan->lock, flags);
1398
1399 return 0;
1400 }
1401
1402 static int atc_resume(struct dma_chan *chan)
1403 {
1404 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1405 struct at_dma *atdma = to_at_dma(chan->device);
1406 int chan_id = atchan->chan_common.chan_id;
1407 unsigned long flags;
1408
1409 LIST_HEAD(list);
1410
1411 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1412
1413 if (!atc_chan_is_paused(atchan))
1414 return 0;
1415
1416 spin_lock_irqsave(&atchan->lock, flags);
1417
1418 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1419 clear_bit(ATC_IS_PAUSED, &atchan->status);
1420
1421 spin_unlock_irqrestore(&atchan->lock, flags);
1422
1423 return 0;
1424 }
1425
1426 static int atc_terminate_all(struct dma_chan *chan)
1427 {
1428 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1429 struct at_dma *atdma = to_at_dma(chan->device);
1430 int chan_id = atchan->chan_common.chan_id;
1431 struct at_desc *desc, *_desc;
1432 unsigned long flags;
1433
1434 LIST_HEAD(list);
1435
1436 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1437
1438 /*
1439 * This is only called when something went wrong elsewhere, so
1440 * we don't really care about the data. Just disable the
1441 * channel. We still have to poll the channel enable bit due
1442 * to AHB/HSB limitations.
1443 */
1444 spin_lock_irqsave(&atchan->lock, flags);
1445
1446 /* disabling channel: must also remove suspend state */
1447 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1448
1449 /* confirm that this channel is disabled */
1450 while (dma_readl(atdma, CHSR) & atchan->mask)
1451 cpu_relax();
1452
1453 /* active_list entries will end up before queued entries */
1454 list_splice_init(&atchan->queue, &list);
1455 list_splice_init(&atchan->active_list, &list);
1456
1457 /* Flush all pending and queued descriptors */
1458 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1459 atc_chain_complete(atchan, desc);
1460
1461 clear_bit(ATC_IS_PAUSED, &atchan->status);
1462 /* if channel dedicated to cyclic operations, free it */
1463 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1464
1465 spin_unlock_irqrestore(&atchan->lock, flags);
1466
1467 return 0;
1468 }
1469
1470 /**
1471 * atc_tx_status - poll for transaction completion
1472 * @chan: DMA channel
1473 * @cookie: transaction identifier to check status of
1474 * @txstate: if not %NULL updated with transaction state
1475 *
1476 * If @txstate is passed in, upon return it reflect the driver
1477 * internal state and can be used with dma_async_is_complete() to check
1478 * the status of multiple cookies without re-checking hardware state.
1479 */
1480 static enum dma_status
1481 atc_tx_status(struct dma_chan *chan,
1482 dma_cookie_t cookie,
1483 struct dma_tx_state *txstate)
1484 {
1485 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1486 unsigned long flags;
1487 enum dma_status ret;
1488 int bytes = 0;
1489
1490 ret = dma_cookie_status(chan, cookie, txstate);
1491 if (ret == DMA_COMPLETE)
1492 return ret;
1493 /*
1494 * There's no point calculating the residue if there's
1495 * no txstate to store the value.
1496 */
1497 if (!txstate)
1498 return DMA_ERROR;
1499
1500 spin_lock_irqsave(&atchan->lock, flags);
1501
1502 /* Get number of bytes left in the active transactions */
1503 bytes = atc_get_bytes_left(chan, cookie);
1504
1505 spin_unlock_irqrestore(&atchan->lock, flags);
1506
1507 if (unlikely(bytes < 0)) {
1508 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1509 return DMA_ERROR;
1510 } else {
1511 dma_set_residue(txstate, bytes);
1512 }
1513
1514 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1515 ret, cookie, bytes);
1516
1517 return ret;
1518 }
1519
1520 /**
1521 * atc_issue_pending - try to finish work
1522 * @chan: target DMA channel
1523 */
1524 static void atc_issue_pending(struct dma_chan *chan)
1525 {
1526 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1527 unsigned long flags;
1528
1529 dev_vdbg(chan2dev(chan), "issue_pending\n");
1530
1531 /* Not needed for cyclic transfers */
1532 if (atc_chan_is_cyclic(atchan))
1533 return;
1534
1535 spin_lock_irqsave(&atchan->lock, flags);
1536 atc_advance_work(atchan);
1537 spin_unlock_irqrestore(&atchan->lock, flags);
1538 }
1539
1540 /**
1541 * atc_alloc_chan_resources - allocate resources for DMA channel
1542 * @chan: allocate descriptor resources for this channel
1543 * @client: current client requesting the channel be ready for requests
1544 *
1545 * return - the number of allocated descriptors
1546 */
1547 static int atc_alloc_chan_resources(struct dma_chan *chan)
1548 {
1549 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1550 struct at_dma *atdma = to_at_dma(chan->device);
1551 struct at_desc *desc;
1552 struct at_dma_slave *atslave;
1553 unsigned long flags;
1554 int i;
1555 u32 cfg;
1556 LIST_HEAD(tmp_list);
1557
1558 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1559
1560 /* ASSERT: channel is idle */
1561 if (atc_chan_is_enabled(atchan)) {
1562 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1563 return -EIO;
1564 }
1565
1566 cfg = ATC_DEFAULT_CFG;
1567
1568 atslave = chan->private;
1569 if (atslave) {
1570 /*
1571 * We need controller-specific data to set up slave
1572 * transfers.
1573 */
1574 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1575
1576 /* if cfg configuration specified take it instead of default */
1577 if (atslave->cfg)
1578 cfg = atslave->cfg;
1579 }
1580
1581 /* have we already been set up?
1582 * reconfigure channel but no need to reallocate descriptors */
1583 if (!list_empty(&atchan->free_list))
1584 return atchan->descs_allocated;
1585
1586 /* Allocate initial pool of descriptors */
1587 for (i = 0; i < init_nr_desc_per_channel; i++) {
1588 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1589 if (!desc) {
1590 dev_err(atdma->dma_common.dev,
1591 "Only %d initial descriptors\n", i);
1592 break;
1593 }
1594 list_add_tail(&desc->desc_node, &tmp_list);
1595 }
1596
1597 spin_lock_irqsave(&atchan->lock, flags);
1598 atchan->descs_allocated = i;
1599 list_splice(&tmp_list, &atchan->free_list);
1600 dma_cookie_init(chan);
1601 spin_unlock_irqrestore(&atchan->lock, flags);
1602
1603 /* channel parameters */
1604 channel_writel(atchan, CFG, cfg);
1605
1606 dev_dbg(chan2dev(chan),
1607 "alloc_chan_resources: allocated %d descriptors\n",
1608 atchan->descs_allocated);
1609
1610 return atchan->descs_allocated;
1611 }
1612
1613 /**
1614 * atc_free_chan_resources - free all channel resources
1615 * @chan: DMA channel
1616 */
1617 static void atc_free_chan_resources(struct dma_chan *chan)
1618 {
1619 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1620 struct at_dma *atdma = to_at_dma(chan->device);
1621 struct at_desc *desc, *_desc;
1622 LIST_HEAD(list);
1623
1624 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1625 atchan->descs_allocated);
1626
1627 /* ASSERT: channel is idle */
1628 BUG_ON(!list_empty(&atchan->active_list));
1629 BUG_ON(!list_empty(&atchan->queue));
1630 BUG_ON(atc_chan_is_enabled(atchan));
1631
1632 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1633 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1634 list_del(&desc->desc_node);
1635 /* free link descriptor */
1636 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1637 }
1638 list_splice_init(&atchan->free_list, &list);
1639 atchan->descs_allocated = 0;
1640 atchan->status = 0;
1641
1642 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1643 }
1644
1645 #ifdef CONFIG_OF
1646 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1647 {
1648 struct at_dma_slave *atslave = slave;
1649
1650 if (atslave->dma_dev == chan->device->dev) {
1651 chan->private = atslave;
1652 return true;
1653 } else {
1654 return false;
1655 }
1656 }
1657
1658 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1659 struct of_dma *of_dma)
1660 {
1661 struct dma_chan *chan;
1662 struct at_dma_chan *atchan;
1663 struct at_dma_slave *atslave;
1664 dma_cap_mask_t mask;
1665 unsigned int per_id;
1666 struct platform_device *dmac_pdev;
1667
1668 if (dma_spec->args_count != 2)
1669 return NULL;
1670
1671 dmac_pdev = of_find_device_by_node(dma_spec->np);
1672
1673 dma_cap_zero(mask);
1674 dma_cap_set(DMA_SLAVE, mask);
1675
1676 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1677 if (!atslave)
1678 return NULL;
1679
1680 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1681 /*
1682 * We can fill both SRC_PER and DST_PER, one of these fields will be
1683 * ignored depending on DMA transfer direction.
1684 */
1685 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1686 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1687 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1688 /*
1689 * We have to translate the value we get from the device tree since
1690 * the half FIFO configuration value had to be 0 to keep backward
1691 * compatibility.
1692 */
1693 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1694 case AT91_DMA_CFG_FIFOCFG_ALAP:
1695 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1696 break;
1697 case AT91_DMA_CFG_FIFOCFG_ASAP:
1698 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1699 break;
1700 case AT91_DMA_CFG_FIFOCFG_HALF:
1701 default:
1702 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1703 }
1704 atslave->dma_dev = &dmac_pdev->dev;
1705
1706 chan = dma_request_channel(mask, at_dma_filter, atslave);
1707 if (!chan)
1708 return NULL;
1709
1710 atchan = to_at_dma_chan(chan);
1711 atchan->per_if = dma_spec->args[0] & 0xff;
1712 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1713
1714 return chan;
1715 }
1716 #else
1717 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1718 struct of_dma *of_dma)
1719 {
1720 return NULL;
1721 }
1722 #endif
1723
1724 /*-- Module Management -----------------------------------------------*/
1725
1726 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1727 static struct at_dma_platform_data at91sam9rl_config = {
1728 .nr_channels = 2,
1729 };
1730 static struct at_dma_platform_data at91sam9g45_config = {
1731 .nr_channels = 8,
1732 };
1733
1734 #if defined(CONFIG_OF)
1735 static const struct of_device_id atmel_dma_dt_ids[] = {
1736 {
1737 .compatible = "atmel,at91sam9rl-dma",
1738 .data = &at91sam9rl_config,
1739 }, {
1740 .compatible = "atmel,at91sam9g45-dma",
1741 .data = &at91sam9g45_config,
1742 }, {
1743 /* sentinel */
1744 }
1745 };
1746
1747 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1748 #endif
1749
1750 static const struct platform_device_id atdma_devtypes[] = {
1751 {
1752 .name = "at91sam9rl_dma",
1753 .driver_data = (unsigned long) &at91sam9rl_config,
1754 }, {
1755 .name = "at91sam9g45_dma",
1756 .driver_data = (unsigned long) &at91sam9g45_config,
1757 }, {
1758 /* sentinel */
1759 }
1760 };
1761
1762 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1763 struct platform_device *pdev)
1764 {
1765 if (pdev->dev.of_node) {
1766 const struct of_device_id *match;
1767 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1768 if (match == NULL)
1769 return NULL;
1770 return match->data;
1771 }
1772 return (struct at_dma_platform_data *)
1773 platform_get_device_id(pdev)->driver_data;
1774 }
1775
1776 /**
1777 * at_dma_off - disable DMA controller
1778 * @atdma: the Atmel HDAMC device
1779 */
1780 static void at_dma_off(struct at_dma *atdma)
1781 {
1782 dma_writel(atdma, EN, 0);
1783
1784 /* disable all interrupts */
1785 dma_writel(atdma, EBCIDR, -1L);
1786
1787 /* confirm that all channels are disabled */
1788 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1789 cpu_relax();
1790 }
1791
1792 static int __init at_dma_probe(struct platform_device *pdev)
1793 {
1794 struct resource *io;
1795 struct at_dma *atdma;
1796 size_t size;
1797 int irq;
1798 int err;
1799 int i;
1800 const struct at_dma_platform_data *plat_dat;
1801
1802 /* setup platform data for each SoC */
1803 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1804 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1805 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1806 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1807 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1808 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1809 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1810
1811 /* get DMA parameters from controller type */
1812 plat_dat = at_dma_get_driver_data(pdev);
1813 if (!plat_dat)
1814 return -ENODEV;
1815
1816 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1817 if (!io)
1818 return -EINVAL;
1819
1820 irq = platform_get_irq(pdev, 0);
1821 if (irq < 0)
1822 return irq;
1823
1824 size = sizeof(struct at_dma);
1825 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1826 atdma = kzalloc(size, GFP_KERNEL);
1827 if (!atdma)
1828 return -ENOMEM;
1829
1830 /* discover transaction capabilities */
1831 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1832 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1833
1834 size = resource_size(io);
1835 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1836 err = -EBUSY;
1837 goto err_kfree;
1838 }
1839
1840 atdma->regs = ioremap(io->start, size);
1841 if (!atdma->regs) {
1842 err = -ENOMEM;
1843 goto err_release_r;
1844 }
1845
1846 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1847 if (IS_ERR(atdma->clk)) {
1848 err = PTR_ERR(atdma->clk);
1849 goto err_clk;
1850 }
1851 err = clk_prepare_enable(atdma->clk);
1852 if (err)
1853 goto err_clk_prepare;
1854
1855 /* force dma off, just in case */
1856 at_dma_off(atdma);
1857
1858 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1859 if (err)
1860 goto err_irq;
1861
1862 platform_set_drvdata(pdev, atdma);
1863
1864 /* create a pool of consistent memory blocks for hardware descriptors */
1865 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1866 &pdev->dev, sizeof(struct at_desc),
1867 4 /* word alignment */, 0);
1868 if (!atdma->dma_desc_pool) {
1869 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1870 err = -ENOMEM;
1871 goto err_desc_pool_create;
1872 }
1873
1874 /* create a pool of consistent memory blocks for memset blocks */
1875 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1876 &pdev->dev, sizeof(int), 4, 0);
1877 if (!atdma->memset_pool) {
1878 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1879 err = -ENOMEM;
1880 goto err_memset_pool_create;
1881 }
1882
1883 /* clear any pending interrupt */
1884 while (dma_readl(atdma, EBCISR))
1885 cpu_relax();
1886
1887 /* initialize channels related values */
1888 INIT_LIST_HEAD(&atdma->dma_common.channels);
1889 for (i = 0; i < plat_dat->nr_channels; i++) {
1890 struct at_dma_chan *atchan = &atdma->chan[i];
1891
1892 atchan->mem_if = AT_DMA_MEM_IF;
1893 atchan->per_if = AT_DMA_PER_IF;
1894 atchan->chan_common.device = &atdma->dma_common;
1895 dma_cookie_init(&atchan->chan_common);
1896 list_add_tail(&atchan->chan_common.device_node,
1897 &atdma->dma_common.channels);
1898
1899 atchan->ch_regs = atdma->regs + ch_regs(i);
1900 spin_lock_init(&atchan->lock);
1901 atchan->mask = 1 << i;
1902
1903 INIT_LIST_HEAD(&atchan->active_list);
1904 INIT_LIST_HEAD(&atchan->queue);
1905 INIT_LIST_HEAD(&atchan->free_list);
1906
1907 tasklet_init(&atchan->tasklet, atc_tasklet,
1908 (unsigned long)atchan);
1909 atc_enable_chan_irq(atdma, i);
1910 }
1911
1912 /* set base routines */
1913 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1914 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1915 atdma->dma_common.device_tx_status = atc_tx_status;
1916 atdma->dma_common.device_issue_pending = atc_issue_pending;
1917 atdma->dma_common.dev = &pdev->dev;
1918
1919 /* set prep routines based on capability */
1920 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1921 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1922
1923 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1924 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1925
1926 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1927 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1928 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1929 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1930 }
1931
1932 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1933 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1934 /* controller can do slave DMA: can trigger cyclic transfers */
1935 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1936 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1937 atdma->dma_common.device_config = atc_config;
1938 atdma->dma_common.device_pause = atc_pause;
1939 atdma->dma_common.device_resume = atc_resume;
1940 atdma->dma_common.device_terminate_all = atc_terminate_all;
1941 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1942 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1943 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1944 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1945 }
1946
1947 dma_writel(atdma, EN, AT_DMA_ENABLE);
1948
1949 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1950 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1951 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1952 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
1953 plat_dat->nr_channels);
1954
1955 dma_async_device_register(&atdma->dma_common);
1956
1957 /*
1958 * Do not return an error if the dmac node is not present in order to
1959 * not break the existing way of requesting channel with
1960 * dma_request_channel().
1961 */
1962 if (pdev->dev.of_node) {
1963 err = of_dma_controller_register(pdev->dev.of_node,
1964 at_dma_xlate, atdma);
1965 if (err) {
1966 dev_err(&pdev->dev, "could not register of_dma_controller\n");
1967 goto err_of_dma_controller_register;
1968 }
1969 }
1970
1971 return 0;
1972
1973 err_of_dma_controller_register:
1974 dma_async_device_unregister(&atdma->dma_common);
1975 dma_pool_destroy(atdma->memset_pool);
1976 err_memset_pool_create:
1977 dma_pool_destroy(atdma->dma_desc_pool);
1978 err_desc_pool_create:
1979 free_irq(platform_get_irq(pdev, 0), atdma);
1980 err_irq:
1981 clk_disable_unprepare(atdma->clk);
1982 err_clk_prepare:
1983 clk_put(atdma->clk);
1984 err_clk:
1985 iounmap(atdma->regs);
1986 atdma->regs = NULL;
1987 err_release_r:
1988 release_mem_region(io->start, size);
1989 err_kfree:
1990 kfree(atdma);
1991 return err;
1992 }
1993
1994 static int at_dma_remove(struct platform_device *pdev)
1995 {
1996 struct at_dma *atdma = platform_get_drvdata(pdev);
1997 struct dma_chan *chan, *_chan;
1998 struct resource *io;
1999
2000 at_dma_off(atdma);
2001 dma_async_device_unregister(&atdma->dma_common);
2002
2003 dma_pool_destroy(atdma->memset_pool);
2004 dma_pool_destroy(atdma->dma_desc_pool);
2005 free_irq(platform_get_irq(pdev, 0), atdma);
2006
2007 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2008 device_node) {
2009 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2010
2011 /* Disable interrupts */
2012 atc_disable_chan_irq(atdma, chan->chan_id);
2013
2014 tasklet_kill(&atchan->tasklet);
2015 list_del(&chan->device_node);
2016 }
2017
2018 clk_disable_unprepare(atdma->clk);
2019 clk_put(atdma->clk);
2020
2021 iounmap(atdma->regs);
2022 atdma->regs = NULL;
2023
2024 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2025 release_mem_region(io->start, resource_size(io));
2026
2027 kfree(atdma);
2028
2029 return 0;
2030 }
2031
2032 static void at_dma_shutdown(struct platform_device *pdev)
2033 {
2034 struct at_dma *atdma = platform_get_drvdata(pdev);
2035
2036 at_dma_off(platform_get_drvdata(pdev));
2037 clk_disable_unprepare(atdma->clk);
2038 }
2039
2040 static int at_dma_prepare(struct device *dev)
2041 {
2042 struct platform_device *pdev = to_platform_device(dev);
2043 struct at_dma *atdma = platform_get_drvdata(pdev);
2044 struct dma_chan *chan, *_chan;
2045
2046 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2047 device_node) {
2048 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2049 /* wait for transaction completion (except in cyclic case) */
2050 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2051 return -EAGAIN;
2052 }
2053 return 0;
2054 }
2055
2056 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2057 {
2058 struct dma_chan *chan = &atchan->chan_common;
2059
2060 /* Channel should be paused by user
2061 * do it anyway even if it is not done already */
2062 if (!atc_chan_is_paused(atchan)) {
2063 dev_warn(chan2dev(chan),
2064 "cyclic channel not paused, should be done by channel user\n");
2065 atc_pause(chan);
2066 }
2067
2068 /* now preserve additional data for cyclic operations */
2069 /* next descriptor address in the cyclic list */
2070 atchan->save_dscr = channel_readl(atchan, DSCR);
2071
2072 vdbg_dump_regs(atchan);
2073 }
2074
2075 static int at_dma_suspend_noirq(struct device *dev)
2076 {
2077 struct platform_device *pdev = to_platform_device(dev);
2078 struct at_dma *atdma = platform_get_drvdata(pdev);
2079 struct dma_chan *chan, *_chan;
2080
2081 /* preserve data */
2082 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2083 device_node) {
2084 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2085
2086 if (atc_chan_is_cyclic(atchan))
2087 atc_suspend_cyclic(atchan);
2088 atchan->save_cfg = channel_readl(atchan, CFG);
2089 }
2090 atdma->save_imr = dma_readl(atdma, EBCIMR);
2091
2092 /* disable DMA controller */
2093 at_dma_off(atdma);
2094 clk_disable_unprepare(atdma->clk);
2095 return 0;
2096 }
2097
2098 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2099 {
2100 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2101
2102 /* restore channel status for cyclic descriptors list:
2103 * next descriptor in the cyclic list at the time of suspend */
2104 channel_writel(atchan, SADDR, 0);
2105 channel_writel(atchan, DADDR, 0);
2106 channel_writel(atchan, CTRLA, 0);
2107 channel_writel(atchan, CTRLB, 0);
2108 channel_writel(atchan, DSCR, atchan->save_dscr);
2109 dma_writel(atdma, CHER, atchan->mask);
2110
2111 /* channel pause status should be removed by channel user
2112 * We cannot take the initiative to do it here */
2113
2114 vdbg_dump_regs(atchan);
2115 }
2116
2117 static int at_dma_resume_noirq(struct device *dev)
2118 {
2119 struct platform_device *pdev = to_platform_device(dev);
2120 struct at_dma *atdma = platform_get_drvdata(pdev);
2121 struct dma_chan *chan, *_chan;
2122
2123 /* bring back DMA controller */
2124 clk_prepare_enable(atdma->clk);
2125 dma_writel(atdma, EN, AT_DMA_ENABLE);
2126
2127 /* clear any pending interrupt */
2128 while (dma_readl(atdma, EBCISR))
2129 cpu_relax();
2130
2131 /* restore saved data */
2132 dma_writel(atdma, EBCIER, atdma->save_imr);
2133 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2134 device_node) {
2135 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2136
2137 channel_writel(atchan, CFG, atchan->save_cfg);
2138 if (atc_chan_is_cyclic(atchan))
2139 atc_resume_cyclic(atchan);
2140 }
2141 return 0;
2142 }
2143
2144 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2145 .prepare = at_dma_prepare,
2146 .suspend_noirq = at_dma_suspend_noirq,
2147 .resume_noirq = at_dma_resume_noirq,
2148 };
2149
2150 static struct platform_driver at_dma_driver = {
2151 .remove = at_dma_remove,
2152 .shutdown = at_dma_shutdown,
2153 .id_table = atdma_devtypes,
2154 .driver = {
2155 .name = "at_hdmac",
2156 .pm = &at_dma_dev_pm_ops,
2157 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2158 },
2159 };
2160
2161 static int __init at_dma_init(void)
2162 {
2163 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2164 }
2165 subsys_initcall(at_dma_init);
2166
2167 static void __exit at_dma_exit(void)
2168 {
2169 platform_driver_unregister(&at_dma_driver);
2170 }
2171 module_exit(at_dma_exit);
2172
2173 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2174 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2175 MODULE_LICENSE("GPL");
2176 MODULE_ALIAS("platform:at_hdmac");