]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/cppi41.c
f2fs: don't bother checking for encryption key in ->write_iter()
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / cppi41.c
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15
16 #define DESC_TYPE 27
17 #define DESC_TYPE_HOST 0x10
18 #define DESC_TYPE_TEARD 0x13
19
20 #define TD_DESC_IS_RX (1 << 16)
21 #define TD_DESC_DMA_NUM 10
22
23 #define DESC_LENGTH_BITS_NUM 21
24
25 #define DESC_TYPE_USB (5 << 26)
26 #define DESC_PD_COMPLETE (1 << 31)
27
28 /* DMA engine */
29 #define DMA_TDFDQ 4
30 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
32 #define RXHPCRA0 4
33
34 #define GCR_CHAN_ENABLE (1 << 31)
35 #define GCR_TEARDOWN (1 << 30)
36 #define GCR_STARV_RETRY (1 << 24)
37 #define GCR_DESC_TYPE_HOST (1 << 14)
38
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL 0
41 #define DMA_SCHED_CTRL_EN (1 << 31)
42 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
43
44 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX (1 << 7)
46
47 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX (1 << 15)
49
50 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX (1 << 23)
52
53 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX (1 << 31)
55
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM 128
59 #define DESCS_AREAS 1
60 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
62
63 #define QMGR_LRAM0_BASE 0x80
64 #define QMGR_LRAM_SIZE 0x84
65 #define QMGR_LRAM1_BASE 0x88
66 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH 16
69 #define QMGR_MEMCTRL_DESC_SH 8
70
71 #define QMGR_NUM_PEND 5
72 #define QMGR_PEND(x) (0x90 + (x) * 4)
73
74 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
75 #define QMGR_PENDING_BIT_Q(x) (x % 32)
76
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81
82 /* Packet Descriptor */
83 #define PD2_ZERO_LENGTH (1 << 19)
84
85 struct cppi41_channel {
86 struct dma_chan chan;
87 struct dma_async_tx_descriptor txd;
88 struct cppi41_dd *cdd;
89 struct cppi41_desc *desc;
90 dma_addr_t desc_phys;
91 void __iomem *gcr_reg;
92 int is_tx;
93 u32 residue;
94
95 unsigned int q_num;
96 unsigned int q_comp_num;
97 unsigned int port_num;
98
99 unsigned td_retry;
100 unsigned td_queued:1;
101 unsigned td_seen:1;
102 unsigned td_desc_seen:1;
103
104 struct list_head node; /* Node for pending list */
105 };
106
107 struct cppi41_desc {
108 u32 pd0;
109 u32 pd1;
110 u32 pd2;
111 u32 pd3;
112 u32 pd4;
113 u32 pd5;
114 u32 pd6;
115 u32 pd7;
116 } __aligned(32);
117
118 struct chan_queues {
119 u16 submit;
120 u16 complete;
121 };
122
123 struct cppi41_dd {
124 struct dma_device ddev;
125
126 void *qmgr_scratch;
127 dma_addr_t scratch_phys;
128
129 struct cppi41_desc *cd;
130 dma_addr_t descs_phys;
131 u32 first_td_desc;
132 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
133
134 void __iomem *usbss_mem;
135 void __iomem *ctrl_mem;
136 void __iomem *sched_mem;
137 void __iomem *qmgr_mem;
138 unsigned int irq;
139 const struct chan_queues *queues_rx;
140 const struct chan_queues *queues_tx;
141 struct chan_queues td_queue;
142
143 struct list_head pending; /* Pending queued transfers */
144 spinlock_t lock; /* Lock for pending list */
145
146 /* context for suspend/resume */
147 unsigned int dma_tdfdq;
148
149 bool is_suspended;
150 };
151
152 #define FIST_COMPLETION_QUEUE 93
153 static struct chan_queues usb_queues_tx[] = {
154 /* USB0 ENDP 1 */
155 [ 0] = { .submit = 32, .complete = 93},
156 [ 1] = { .submit = 34, .complete = 94},
157 [ 2] = { .submit = 36, .complete = 95},
158 [ 3] = { .submit = 38, .complete = 96},
159 [ 4] = { .submit = 40, .complete = 97},
160 [ 5] = { .submit = 42, .complete = 98},
161 [ 6] = { .submit = 44, .complete = 99},
162 [ 7] = { .submit = 46, .complete = 100},
163 [ 8] = { .submit = 48, .complete = 101},
164 [ 9] = { .submit = 50, .complete = 102},
165 [10] = { .submit = 52, .complete = 103},
166 [11] = { .submit = 54, .complete = 104},
167 [12] = { .submit = 56, .complete = 105},
168 [13] = { .submit = 58, .complete = 106},
169 [14] = { .submit = 60, .complete = 107},
170
171 /* USB1 ENDP1 */
172 [15] = { .submit = 62, .complete = 125},
173 [16] = { .submit = 64, .complete = 126},
174 [17] = { .submit = 66, .complete = 127},
175 [18] = { .submit = 68, .complete = 128},
176 [19] = { .submit = 70, .complete = 129},
177 [20] = { .submit = 72, .complete = 130},
178 [21] = { .submit = 74, .complete = 131},
179 [22] = { .submit = 76, .complete = 132},
180 [23] = { .submit = 78, .complete = 133},
181 [24] = { .submit = 80, .complete = 134},
182 [25] = { .submit = 82, .complete = 135},
183 [26] = { .submit = 84, .complete = 136},
184 [27] = { .submit = 86, .complete = 137},
185 [28] = { .submit = 88, .complete = 138},
186 [29] = { .submit = 90, .complete = 139},
187 };
188
189 static const struct chan_queues usb_queues_rx[] = {
190 /* USB0 ENDP 1 */
191 [ 0] = { .submit = 1, .complete = 109},
192 [ 1] = { .submit = 2, .complete = 110},
193 [ 2] = { .submit = 3, .complete = 111},
194 [ 3] = { .submit = 4, .complete = 112},
195 [ 4] = { .submit = 5, .complete = 113},
196 [ 5] = { .submit = 6, .complete = 114},
197 [ 6] = { .submit = 7, .complete = 115},
198 [ 7] = { .submit = 8, .complete = 116},
199 [ 8] = { .submit = 9, .complete = 117},
200 [ 9] = { .submit = 10, .complete = 118},
201 [10] = { .submit = 11, .complete = 119},
202 [11] = { .submit = 12, .complete = 120},
203 [12] = { .submit = 13, .complete = 121},
204 [13] = { .submit = 14, .complete = 122},
205 [14] = { .submit = 15, .complete = 123},
206
207 /* USB1 ENDP 1 */
208 [15] = { .submit = 16, .complete = 141},
209 [16] = { .submit = 17, .complete = 142},
210 [17] = { .submit = 18, .complete = 143},
211 [18] = { .submit = 19, .complete = 144},
212 [19] = { .submit = 20, .complete = 145},
213 [20] = { .submit = 21, .complete = 146},
214 [21] = { .submit = 22, .complete = 147},
215 [22] = { .submit = 23, .complete = 148},
216 [23] = { .submit = 24, .complete = 149},
217 [24] = { .submit = 25, .complete = 150},
218 [25] = { .submit = 26, .complete = 151},
219 [26] = { .submit = 27, .complete = 152},
220 [27] = { .submit = 28, .complete = 153},
221 [28] = { .submit = 29, .complete = 154},
222 [29] = { .submit = 30, .complete = 155},
223 };
224
225 struct cppi_glue_infos {
226 irqreturn_t (*isr)(int irq, void *data);
227 const struct chan_queues *queues_rx;
228 const struct chan_queues *queues_tx;
229 struct chan_queues td_queue;
230 };
231
232 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
233 {
234 return container_of(c, struct cppi41_channel, chan);
235 }
236
237 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
238 {
239 struct cppi41_channel *c;
240 u32 descs_size;
241 u32 desc_num;
242
243 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
244
245 if (!((desc >= cdd->descs_phys) &&
246 (desc < (cdd->descs_phys + descs_size)))) {
247 return NULL;
248 }
249
250 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
251 BUG_ON(desc_num >= ALLOC_DECS_NUM);
252 c = cdd->chan_busy[desc_num];
253 cdd->chan_busy[desc_num] = NULL;
254
255 /* Usecount for chan_busy[], paired with push_desc_queue() */
256 pm_runtime_put(cdd->ddev.dev);
257
258 return c;
259 }
260
261 static void cppi_writel(u32 val, void *__iomem *mem)
262 {
263 __raw_writel(val, mem);
264 }
265
266 static u32 cppi_readl(void *__iomem *mem)
267 {
268 return __raw_readl(mem);
269 }
270
271 static u32 pd_trans_len(u32 val)
272 {
273 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
274 }
275
276 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
277 {
278 u32 desc;
279
280 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
281 desc &= ~0x1f;
282 return desc;
283 }
284
285 static irqreturn_t cppi41_irq(int irq, void *data)
286 {
287 struct cppi41_dd *cdd = data;
288 struct cppi41_channel *c;
289 int i;
290
291 for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
292 i++) {
293 u32 val;
294 u32 q_num;
295
296 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
297 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
298 u32 mask;
299 /* set corresponding bit for completetion Q 93 */
300 mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
301 /* not set all bits for queues less than Q 93 */
302 mask--;
303 /* now invert and keep only Q 93+ set */
304 val &= ~mask;
305 }
306
307 if (val)
308 __iormb();
309
310 while (val) {
311 u32 desc, len;
312
313 /*
314 * This should never trigger, see the comments in
315 * push_desc_queue()
316 */
317 WARN_ON(cdd->is_suspended);
318
319 q_num = __fls(val);
320 val &= ~(1 << q_num);
321 q_num += 32 * i;
322 desc = cppi41_pop_desc(cdd, q_num);
323 c = desc_to_chan(cdd, desc);
324 if (WARN_ON(!c)) {
325 pr_err("%s() q %d desc %08x\n", __func__,
326 q_num, desc);
327 continue;
328 }
329
330 if (c->desc->pd2 & PD2_ZERO_LENGTH)
331 len = 0;
332 else
333 len = pd_trans_len(c->desc->pd0);
334
335 c->residue = pd_trans_len(c->desc->pd6) - len;
336 dma_cookie_complete(&c->txd);
337 dmaengine_desc_get_callback_invoke(&c->txd, NULL);
338 }
339 }
340 return IRQ_HANDLED;
341 }
342
343 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
344 {
345 dma_cookie_t cookie;
346
347 cookie = dma_cookie_assign(tx);
348
349 return cookie;
350 }
351
352 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
353 {
354 struct cppi41_channel *c = to_cpp41_chan(chan);
355 struct cppi41_dd *cdd = c->cdd;
356 int error;
357
358 error = pm_runtime_get_sync(cdd->ddev.dev);
359 if (error < 0) {
360 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
361 __func__, error);
362 pm_runtime_put_noidle(cdd->ddev.dev);
363
364 return error;
365 }
366
367 dma_cookie_init(chan);
368 dma_async_tx_descriptor_init(&c->txd, chan);
369 c->txd.tx_submit = cppi41_tx_submit;
370
371 if (!c->is_tx)
372 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
373
374 pm_runtime_mark_last_busy(cdd->ddev.dev);
375 pm_runtime_put_autosuspend(cdd->ddev.dev);
376
377 return 0;
378 }
379
380 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
381 {
382 struct cppi41_channel *c = to_cpp41_chan(chan);
383 struct cppi41_dd *cdd = c->cdd;
384 int error;
385
386 error = pm_runtime_get_sync(cdd->ddev.dev);
387 if (error < 0) {
388 pm_runtime_put_noidle(cdd->ddev.dev);
389
390 return;
391 }
392
393 WARN_ON(!list_empty(&cdd->pending));
394
395 pm_runtime_mark_last_busy(cdd->ddev.dev);
396 pm_runtime_put_autosuspend(cdd->ddev.dev);
397 }
398
399 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
400 dma_cookie_t cookie, struct dma_tx_state *txstate)
401 {
402 struct cppi41_channel *c = to_cpp41_chan(chan);
403 enum dma_status ret;
404
405 /* lock */
406 ret = dma_cookie_status(chan, cookie, txstate);
407 if (txstate && ret == DMA_COMPLETE)
408 txstate->residue = c->residue;
409 /* unlock */
410
411 return ret;
412 }
413
414 static void push_desc_queue(struct cppi41_channel *c)
415 {
416 struct cppi41_dd *cdd = c->cdd;
417 u32 desc_num;
418 u32 desc_phys;
419 u32 reg;
420
421 c->residue = 0;
422
423 reg = GCR_CHAN_ENABLE;
424 if (!c->is_tx) {
425 reg |= GCR_STARV_RETRY;
426 reg |= GCR_DESC_TYPE_HOST;
427 reg |= c->q_comp_num;
428 }
429
430 cppi_writel(reg, c->gcr_reg);
431
432 /*
433 * We don't use writel() but __raw_writel() so we have to make sure
434 * that the DMA descriptor in coherent memory made to the main memory
435 * before starting the dma engine.
436 */
437 __iowmb();
438
439 /*
440 * DMA transfers can take at least 200ms to complete with USB mass
441 * storage connected. To prevent autosuspend timeouts, we must use
442 * pm_runtime_get/put() when chan_busy[] is modified. This will get
443 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
444 * outcome of the transfer.
445 */
446 pm_runtime_get(cdd->ddev.dev);
447
448 desc_phys = lower_32_bits(c->desc_phys);
449 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
450 WARN_ON(cdd->chan_busy[desc_num]);
451 cdd->chan_busy[desc_num] = c;
452
453 reg = (sizeof(struct cppi41_desc) - 24) / 4;
454 reg |= desc_phys;
455 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
456 }
457
458 /*
459 * Caller must hold cdd->lock to prevent push_desc_queue()
460 * getting called out of order. We have both cppi41_dma_issue_pending()
461 * and cppi41_runtime_resume() call this function.
462 */
463 static void cppi41_run_queue(struct cppi41_dd *cdd)
464 {
465 struct cppi41_channel *c, *_c;
466
467 list_for_each_entry_safe(c, _c, &cdd->pending, node) {
468 push_desc_queue(c);
469 list_del(&c->node);
470 }
471 }
472
473 static void cppi41_dma_issue_pending(struct dma_chan *chan)
474 {
475 struct cppi41_channel *c = to_cpp41_chan(chan);
476 struct cppi41_dd *cdd = c->cdd;
477 unsigned long flags;
478 int error;
479
480 error = pm_runtime_get(cdd->ddev.dev);
481 if ((error != -EINPROGRESS) && error < 0) {
482 pm_runtime_put_noidle(cdd->ddev.dev);
483 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
484 error);
485
486 return;
487 }
488
489 spin_lock_irqsave(&cdd->lock, flags);
490 list_add_tail(&c->node, &cdd->pending);
491 if (!cdd->is_suspended)
492 cppi41_run_queue(cdd);
493 spin_unlock_irqrestore(&cdd->lock, flags);
494
495 pm_runtime_mark_last_busy(cdd->ddev.dev);
496 pm_runtime_put_autosuspend(cdd->ddev.dev);
497 }
498
499 static u32 get_host_pd0(u32 length)
500 {
501 u32 reg;
502
503 reg = DESC_TYPE_HOST << DESC_TYPE;
504 reg |= length;
505
506 return reg;
507 }
508
509 static u32 get_host_pd1(struct cppi41_channel *c)
510 {
511 u32 reg;
512
513 reg = 0;
514
515 return reg;
516 }
517
518 static u32 get_host_pd2(struct cppi41_channel *c)
519 {
520 u32 reg;
521
522 reg = DESC_TYPE_USB;
523 reg |= c->q_comp_num;
524
525 return reg;
526 }
527
528 static u32 get_host_pd3(u32 length)
529 {
530 u32 reg;
531
532 /* PD3 = packet size */
533 reg = length;
534
535 return reg;
536 }
537
538 static u32 get_host_pd6(u32 length)
539 {
540 u32 reg;
541
542 /* PD6 buffer size */
543 reg = DESC_PD_COMPLETE;
544 reg |= length;
545
546 return reg;
547 }
548
549 static u32 get_host_pd4_or_7(u32 addr)
550 {
551 u32 reg;
552
553 reg = addr;
554
555 return reg;
556 }
557
558 static u32 get_host_pd5(void)
559 {
560 u32 reg;
561
562 reg = 0;
563
564 return reg;
565 }
566
567 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
568 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
569 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
570 {
571 struct cppi41_channel *c = to_cpp41_chan(chan);
572 struct cppi41_desc *d;
573 struct scatterlist *sg;
574 unsigned int i;
575
576 d = c->desc;
577 for_each_sg(sgl, sg, sg_len, i) {
578 u32 addr;
579 u32 len;
580
581 /* We need to use more than one desc once musb supports sg */
582 addr = lower_32_bits(sg_dma_address(sg));
583 len = sg_dma_len(sg);
584
585 d->pd0 = get_host_pd0(len);
586 d->pd1 = get_host_pd1(c);
587 d->pd2 = get_host_pd2(c);
588 d->pd3 = get_host_pd3(len);
589 d->pd4 = get_host_pd4_or_7(addr);
590 d->pd5 = get_host_pd5();
591 d->pd6 = get_host_pd6(len);
592 d->pd7 = get_host_pd4_or_7(addr);
593
594 d++;
595 }
596
597 return &c->txd;
598 }
599
600 static void cppi41_compute_td_desc(struct cppi41_desc *d)
601 {
602 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
603 }
604
605 static int cppi41_tear_down_chan(struct cppi41_channel *c)
606 {
607 struct dmaengine_result abort_result;
608 struct cppi41_dd *cdd = c->cdd;
609 struct cppi41_desc *td;
610 u32 reg;
611 u32 desc_phys;
612 u32 td_desc_phys;
613
614 td = cdd->cd;
615 td += cdd->first_td_desc;
616
617 td_desc_phys = cdd->descs_phys;
618 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
619
620 if (!c->td_queued) {
621 cppi41_compute_td_desc(td);
622 __iowmb();
623
624 reg = (sizeof(struct cppi41_desc) - 24) / 4;
625 reg |= td_desc_phys;
626 cppi_writel(reg, cdd->qmgr_mem +
627 QMGR_QUEUE_D(cdd->td_queue.submit));
628
629 reg = GCR_CHAN_ENABLE;
630 if (!c->is_tx) {
631 reg |= GCR_STARV_RETRY;
632 reg |= GCR_DESC_TYPE_HOST;
633 reg |= c->q_comp_num;
634 }
635 reg |= GCR_TEARDOWN;
636 cppi_writel(reg, c->gcr_reg);
637 c->td_queued = 1;
638 c->td_retry = 500;
639 }
640
641 if (!c->td_seen || !c->td_desc_seen) {
642
643 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
644 if (!desc_phys)
645 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
646
647 if (desc_phys == c->desc_phys) {
648 c->td_desc_seen = 1;
649
650 } else if (desc_phys == td_desc_phys) {
651 u32 pd0;
652
653 __iormb();
654 pd0 = td->pd0;
655 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
656 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
657 WARN_ON((pd0 & 0x1f) != c->port_num);
658 c->td_seen = 1;
659 } else if (desc_phys) {
660 WARN_ON_ONCE(1);
661 }
662 }
663 c->td_retry--;
664 /*
665 * If the TX descriptor / channel is in use, the caller needs to poke
666 * his TD bit multiple times. After that he hardware releases the
667 * transfer descriptor followed by TD descriptor. Waiting seems not to
668 * cause any difference.
669 * RX seems to be thrown out right away. However once the TearDown
670 * descriptor gets through we are done. If we have seens the transfer
671 * descriptor before the TD we fetch it from enqueue, it has to be
672 * there waiting for us.
673 */
674 if (!c->td_seen && c->td_retry) {
675 udelay(1);
676 return -EAGAIN;
677 }
678 WARN_ON(!c->td_retry);
679
680 if (!c->td_desc_seen) {
681 desc_phys = cppi41_pop_desc(cdd, c->q_num);
682 if (!desc_phys)
683 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
684 WARN_ON(!desc_phys);
685 }
686
687 c->td_queued = 0;
688 c->td_seen = 0;
689 c->td_desc_seen = 0;
690 cppi_writel(0, c->gcr_reg);
691
692 /* Invoke the callback to do the necessary clean-up */
693 abort_result.result = DMA_TRANS_ABORTED;
694 dma_cookie_complete(&c->txd);
695 dmaengine_desc_get_callback_invoke(&c->txd, &abort_result);
696
697 return 0;
698 }
699
700 static int cppi41_stop_chan(struct dma_chan *chan)
701 {
702 struct cppi41_channel *c = to_cpp41_chan(chan);
703 struct cppi41_dd *cdd = c->cdd;
704 u32 desc_num;
705 u32 desc_phys;
706 int ret;
707
708 desc_phys = lower_32_bits(c->desc_phys);
709 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
710 if (!cdd->chan_busy[desc_num])
711 return 0;
712
713 ret = cppi41_tear_down_chan(c);
714 if (ret)
715 return ret;
716
717 WARN_ON(!cdd->chan_busy[desc_num]);
718 cdd->chan_busy[desc_num] = NULL;
719
720 /* Usecount for chan_busy[], paired with push_desc_queue() */
721 pm_runtime_put(cdd->ddev.dev);
722
723 return 0;
724 }
725
726 static void cleanup_chans(struct cppi41_dd *cdd)
727 {
728 while (!list_empty(&cdd->ddev.channels)) {
729 struct cppi41_channel *cchan;
730
731 cchan = list_first_entry(&cdd->ddev.channels,
732 struct cppi41_channel, chan.device_node);
733 list_del(&cchan->chan.device_node);
734 kfree(cchan);
735 }
736 }
737
738 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
739 {
740 struct cppi41_channel *cchan;
741 int i;
742 int ret;
743 u32 n_chans;
744
745 ret = of_property_read_u32(dev->of_node, "#dma-channels",
746 &n_chans);
747 if (ret)
748 return ret;
749 /*
750 * The channels can only be used as TX or as RX. So we add twice
751 * that much dma channels because USB can only do RX or TX.
752 */
753 n_chans *= 2;
754
755 for (i = 0; i < n_chans; i++) {
756 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
757 if (!cchan)
758 goto err;
759
760 cchan->cdd = cdd;
761 if (i & 1) {
762 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
763 cchan->is_tx = 1;
764 } else {
765 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
766 cchan->is_tx = 0;
767 }
768 cchan->port_num = i >> 1;
769 cchan->desc = &cdd->cd[i];
770 cchan->desc_phys = cdd->descs_phys;
771 cchan->desc_phys += i * sizeof(struct cppi41_desc);
772 cchan->chan.device = &cdd->ddev;
773 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
774 }
775 cdd->first_td_desc = n_chans;
776
777 return 0;
778 err:
779 cleanup_chans(cdd);
780 return -ENOMEM;
781 }
782
783 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
784 {
785 unsigned int mem_decs;
786 int i;
787
788 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
789
790 for (i = 0; i < DESCS_AREAS; i++) {
791
792 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
793 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
794
795 dma_free_coherent(dev, mem_decs, cdd->cd,
796 cdd->descs_phys);
797 }
798 }
799
800 static void disable_sched(struct cppi41_dd *cdd)
801 {
802 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
803 }
804
805 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
806 {
807 disable_sched(cdd);
808
809 purge_descs(dev, cdd);
810
811 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
812 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
813 dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
814 cdd->scratch_phys);
815 }
816
817 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
818 {
819 unsigned int desc_size;
820 unsigned int mem_decs;
821 int i;
822 u32 reg;
823 u32 idx;
824
825 BUILD_BUG_ON(sizeof(struct cppi41_desc) &
826 (sizeof(struct cppi41_desc) - 1));
827 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
828 BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
829
830 desc_size = sizeof(struct cppi41_desc);
831 mem_decs = ALLOC_DECS_NUM * desc_size;
832
833 idx = 0;
834 for (i = 0; i < DESCS_AREAS; i++) {
835
836 reg = idx << QMGR_MEMCTRL_IDX_SH;
837 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
838 reg |= ilog2(ALLOC_DECS_NUM) - 5;
839
840 BUILD_BUG_ON(DESCS_AREAS != 1);
841 cdd->cd = dma_alloc_coherent(dev, mem_decs,
842 &cdd->descs_phys, GFP_KERNEL);
843 if (!cdd->cd)
844 return -ENOMEM;
845
846 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
847 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
848
849 idx += ALLOC_DECS_NUM;
850 }
851 return 0;
852 }
853
854 static void init_sched(struct cppi41_dd *cdd)
855 {
856 unsigned ch;
857 unsigned word;
858 u32 reg;
859
860 word = 0;
861 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
862 for (ch = 0; ch < 15 * 2; ch += 2) {
863
864 reg = SCHED_ENTRY0_CHAN(ch);
865 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
866
867 reg |= SCHED_ENTRY2_CHAN(ch + 1);
868 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
869 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
870 word++;
871 }
872 reg = 15 * 2 * 2 - 1;
873 reg |= DMA_SCHED_CTRL_EN;
874 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
875 }
876
877 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
878 {
879 int ret;
880
881 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
882 cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
883 &cdd->scratch_phys, GFP_KERNEL);
884 if (!cdd->qmgr_scratch)
885 return -ENOMEM;
886
887 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
888 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
889 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
890
891 ret = init_descs(dev, cdd);
892 if (ret)
893 goto err_td;
894
895 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
896 init_sched(cdd);
897 return 0;
898 err_td:
899 deinit_cppi41(dev, cdd);
900 return ret;
901 }
902
903 static struct platform_driver cpp41_dma_driver;
904 /*
905 * The param format is:
906 * X Y
907 * X: Port
908 * Y: 0 = RX else TX
909 */
910 #define INFO_PORT 0
911 #define INFO_IS_TX 1
912
913 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
914 {
915 struct cppi41_channel *cchan;
916 struct cppi41_dd *cdd;
917 const struct chan_queues *queues;
918 u32 *num = param;
919
920 if (chan->device->dev->driver != &cpp41_dma_driver.driver)
921 return false;
922
923 cchan = to_cpp41_chan(chan);
924
925 if (cchan->port_num != num[INFO_PORT])
926 return false;
927
928 if (cchan->is_tx && !num[INFO_IS_TX])
929 return false;
930 cdd = cchan->cdd;
931 if (cchan->is_tx)
932 queues = cdd->queues_tx;
933 else
934 queues = cdd->queues_rx;
935
936 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
937 if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
938 return false;
939
940 cchan->q_num = queues[cchan->port_num].submit;
941 cchan->q_comp_num = queues[cchan->port_num].complete;
942 return true;
943 }
944
945 static struct of_dma_filter_info cpp41_dma_info = {
946 .filter_fn = cpp41_dma_filter_fn,
947 };
948
949 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
950 struct of_dma *ofdma)
951 {
952 int count = dma_spec->args_count;
953 struct of_dma_filter_info *info = ofdma->of_dma_data;
954
955 if (!info || !info->filter_fn)
956 return NULL;
957
958 if (count != 2)
959 return NULL;
960
961 return dma_request_channel(info->dma_cap, info->filter_fn,
962 &dma_spec->args[0]);
963 }
964
965 static const struct cppi_glue_infos usb_infos = {
966 .isr = cppi41_irq,
967 .queues_rx = usb_queues_rx,
968 .queues_tx = usb_queues_tx,
969 .td_queue = { .submit = 31, .complete = 0 },
970 };
971
972 static const struct of_device_id cppi41_dma_ids[] = {
973 { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
974 {},
975 };
976 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
977
978 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
979 {
980 const struct of_device_id *of_id;
981
982 of_id = of_match_node(cppi41_dma_ids, dev->of_node);
983 if (!of_id)
984 return NULL;
985 return of_id->data;
986 }
987
988 #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
989 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
990 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
991 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
992
993 static int cppi41_dma_probe(struct platform_device *pdev)
994 {
995 struct cppi41_dd *cdd;
996 struct device *dev = &pdev->dev;
997 const struct cppi_glue_infos *glue_info;
998 int irq;
999 int ret;
1000
1001 glue_info = get_glue_info(dev);
1002 if (!glue_info)
1003 return -EINVAL;
1004
1005 cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1006 if (!cdd)
1007 return -ENOMEM;
1008
1009 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1010 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1011 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1012 cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1013 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1014 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1015 cdd->ddev.device_terminate_all = cppi41_stop_chan;
1016 cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1017 cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1018 cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1019 cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1020 cdd->ddev.dev = dev;
1021 INIT_LIST_HEAD(&cdd->ddev.channels);
1022 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1023
1024 cdd->usbss_mem = of_iomap(dev->of_node, 0);
1025 cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1026 cdd->sched_mem = of_iomap(dev->of_node, 2);
1027 cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1028 spin_lock_init(&cdd->lock);
1029 INIT_LIST_HEAD(&cdd->pending);
1030
1031 platform_set_drvdata(pdev, cdd);
1032
1033 if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1034 !cdd->qmgr_mem)
1035 return -ENXIO;
1036
1037 pm_runtime_enable(dev);
1038 pm_runtime_set_autosuspend_delay(dev, 100);
1039 pm_runtime_use_autosuspend(dev);
1040 ret = pm_runtime_get_sync(dev);
1041 if (ret < 0)
1042 goto err_get_sync;
1043
1044 cdd->queues_rx = glue_info->queues_rx;
1045 cdd->queues_tx = glue_info->queues_tx;
1046 cdd->td_queue = glue_info->td_queue;
1047
1048 ret = init_cppi41(dev, cdd);
1049 if (ret)
1050 goto err_init_cppi;
1051
1052 ret = cppi41_add_chans(dev, cdd);
1053 if (ret)
1054 goto err_chans;
1055
1056 irq = irq_of_parse_and_map(dev->of_node, 0);
1057 if (!irq) {
1058 ret = -EINVAL;
1059 goto err_irq;
1060 }
1061
1062 ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1063 dev_name(dev), cdd);
1064 if (ret)
1065 goto err_irq;
1066 cdd->irq = irq;
1067
1068 ret = dma_async_device_register(&cdd->ddev);
1069 if (ret)
1070 goto err_dma_reg;
1071
1072 ret = of_dma_controller_register(dev->of_node,
1073 cppi41_dma_xlate, &cpp41_dma_info);
1074 if (ret)
1075 goto err_of;
1076
1077 pm_runtime_mark_last_busy(dev);
1078 pm_runtime_put_autosuspend(dev);
1079
1080 return 0;
1081 err_of:
1082 dma_async_device_unregister(&cdd->ddev);
1083 err_dma_reg:
1084 err_irq:
1085 cleanup_chans(cdd);
1086 err_chans:
1087 deinit_cppi41(dev, cdd);
1088 err_init_cppi:
1089 pm_runtime_dont_use_autosuspend(dev);
1090 err_get_sync:
1091 pm_runtime_put_sync(dev);
1092 pm_runtime_disable(dev);
1093 iounmap(cdd->usbss_mem);
1094 iounmap(cdd->ctrl_mem);
1095 iounmap(cdd->sched_mem);
1096 iounmap(cdd->qmgr_mem);
1097 return ret;
1098 }
1099
1100 static int cppi41_dma_remove(struct platform_device *pdev)
1101 {
1102 struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1103 int error;
1104
1105 error = pm_runtime_get_sync(&pdev->dev);
1106 if (error < 0)
1107 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1108 __func__, error);
1109 of_dma_controller_free(pdev->dev.of_node);
1110 dma_async_device_unregister(&cdd->ddev);
1111
1112 devm_free_irq(&pdev->dev, cdd->irq, cdd);
1113 cleanup_chans(cdd);
1114 deinit_cppi41(&pdev->dev, cdd);
1115 iounmap(cdd->usbss_mem);
1116 iounmap(cdd->ctrl_mem);
1117 iounmap(cdd->sched_mem);
1118 iounmap(cdd->qmgr_mem);
1119 pm_runtime_dont_use_autosuspend(&pdev->dev);
1120 pm_runtime_put_sync(&pdev->dev);
1121 pm_runtime_disable(&pdev->dev);
1122 return 0;
1123 }
1124
1125 static int __maybe_unused cppi41_suspend(struct device *dev)
1126 {
1127 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1128
1129 cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1130 disable_sched(cdd);
1131
1132 return 0;
1133 }
1134
1135 static int __maybe_unused cppi41_resume(struct device *dev)
1136 {
1137 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1138 struct cppi41_channel *c;
1139 int i;
1140
1141 for (i = 0; i < DESCS_AREAS; i++)
1142 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1143
1144 list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1145 if (!c->is_tx)
1146 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1147
1148 init_sched(cdd);
1149
1150 cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1151 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1152 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1153 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1154
1155 return 0;
1156 }
1157
1158 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1159 {
1160 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1161 unsigned long flags;
1162
1163 spin_lock_irqsave(&cdd->lock, flags);
1164 cdd->is_suspended = true;
1165 WARN_ON(!list_empty(&cdd->pending));
1166 spin_unlock_irqrestore(&cdd->lock, flags);
1167
1168 return 0;
1169 }
1170
1171 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1172 {
1173 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&cdd->lock, flags);
1177 cdd->is_suspended = false;
1178 cppi41_run_queue(cdd);
1179 spin_unlock_irqrestore(&cdd->lock, flags);
1180
1181 return 0;
1182 }
1183
1184 static const struct dev_pm_ops cppi41_pm_ops = {
1185 SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1186 SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1187 cppi41_runtime_resume,
1188 NULL)
1189 };
1190
1191 static struct platform_driver cpp41_dma_driver = {
1192 .probe = cppi41_dma_probe,
1193 .remove = cppi41_dma_remove,
1194 .driver = {
1195 .name = "cppi41-dma-engine",
1196 .pm = &cppi41_pm_ops,
1197 .of_match_table = of_match_ptr(cppi41_dma_ids),
1198 },
1199 };
1200
1201 module_platform_driver(cpp41_dma_driver);
1202 MODULE_LICENSE("GPL");
1203 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");