]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/dmaengine.c
DMA: PL330: Add missing static storage class specifier
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21
22 /*
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
27 *
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
31 *
32 * LOCKING:
33 *
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
36 *
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
41 *
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
44 *
45 * See Documentation/dmaengine.txt for more details
46 */
47
48 #include <linux/dma-mapping.h>
49 #include <linux/init.h>
50 #include <linux/module.h>
51 #include <linux/mm.h>
52 #include <linux/device.h>
53 #include <linux/dmaengine.h>
54 #include <linux/hardirq.h>
55 #include <linux/spinlock.h>
56 #include <linux/percpu.h>
57 #include <linux/rcupdate.h>
58 #include <linux/mutex.h>
59 #include <linux/jiffies.h>
60 #include <linux/rculist.h>
61 #include <linux/idr.h>
62 #include <linux/slab.h>
63
64 static DEFINE_MUTEX(dma_list_mutex);
65 static DEFINE_IDR(dma_idr);
66 static LIST_HEAD(dma_device_list);
67 static long dmaengine_ref_count;
68
69 /* --- sysfs implementation --- */
70
71 /**
72 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
73 * @dev - device node
74 *
75 * Must be called under dma_list_mutex
76 */
77 static struct dma_chan *dev_to_dma_chan(struct device *dev)
78 {
79 struct dma_chan_dev *chan_dev;
80
81 chan_dev = container_of(dev, typeof(*chan_dev), device);
82 return chan_dev->chan;
83 }
84
85 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
86 {
87 struct dma_chan *chan;
88 unsigned long count = 0;
89 int i;
90 int err;
91
92 mutex_lock(&dma_list_mutex);
93 chan = dev_to_dma_chan(dev);
94 if (chan) {
95 for_each_possible_cpu(i)
96 count += per_cpu_ptr(chan->local, i)->memcpy_count;
97 err = sprintf(buf, "%lu\n", count);
98 } else
99 err = -ENODEV;
100 mutex_unlock(&dma_list_mutex);
101
102 return err;
103 }
104
105 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
106 char *buf)
107 {
108 struct dma_chan *chan;
109 unsigned long count = 0;
110 int i;
111 int err;
112
113 mutex_lock(&dma_list_mutex);
114 chan = dev_to_dma_chan(dev);
115 if (chan) {
116 for_each_possible_cpu(i)
117 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
118 err = sprintf(buf, "%lu\n", count);
119 } else
120 err = -ENODEV;
121 mutex_unlock(&dma_list_mutex);
122
123 return err;
124 }
125
126 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
127 {
128 struct dma_chan *chan;
129 int err;
130
131 mutex_lock(&dma_list_mutex);
132 chan = dev_to_dma_chan(dev);
133 if (chan)
134 err = sprintf(buf, "%d\n", chan->client_count);
135 else
136 err = -ENODEV;
137 mutex_unlock(&dma_list_mutex);
138
139 return err;
140 }
141
142 static struct device_attribute dma_attrs[] = {
143 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
144 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
145 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
146 __ATTR_NULL
147 };
148
149 static void chan_dev_release(struct device *dev)
150 {
151 struct dma_chan_dev *chan_dev;
152
153 chan_dev = container_of(dev, typeof(*chan_dev), device);
154 if (atomic_dec_and_test(chan_dev->idr_ref)) {
155 mutex_lock(&dma_list_mutex);
156 idr_remove(&dma_idr, chan_dev->dev_id);
157 mutex_unlock(&dma_list_mutex);
158 kfree(chan_dev->idr_ref);
159 }
160 kfree(chan_dev);
161 }
162
163 static struct class dma_devclass = {
164 .name = "dma",
165 .dev_attrs = dma_attrs,
166 .dev_release = chan_dev_release,
167 };
168
169 /* --- client and device registration --- */
170
171 #define dma_device_satisfies_mask(device, mask) \
172 __dma_device_satisfies_mask((device), &(mask))
173 static int
174 __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
175 {
176 dma_cap_mask_t has;
177
178 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
179 DMA_TX_TYPE_END);
180 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
181 }
182
183 static struct module *dma_chan_to_owner(struct dma_chan *chan)
184 {
185 return chan->device->dev->driver->owner;
186 }
187
188 /**
189 * balance_ref_count - catch up the channel reference count
190 * @chan - channel to balance ->client_count versus dmaengine_ref_count
191 *
192 * balance_ref_count must be called under dma_list_mutex
193 */
194 static void balance_ref_count(struct dma_chan *chan)
195 {
196 struct module *owner = dma_chan_to_owner(chan);
197
198 while (chan->client_count < dmaengine_ref_count) {
199 __module_get(owner);
200 chan->client_count++;
201 }
202 }
203
204 /**
205 * dma_chan_get - try to grab a dma channel's parent driver module
206 * @chan - channel to grab
207 *
208 * Must be called under dma_list_mutex
209 */
210 static int dma_chan_get(struct dma_chan *chan)
211 {
212 int err = -ENODEV;
213 struct module *owner = dma_chan_to_owner(chan);
214
215 if (chan->client_count) {
216 __module_get(owner);
217 err = 0;
218 } else if (try_module_get(owner))
219 err = 0;
220
221 if (err == 0)
222 chan->client_count++;
223
224 /* allocate upon first client reference */
225 if (chan->client_count == 1 && err == 0) {
226 int desc_cnt = chan->device->device_alloc_chan_resources(chan);
227
228 if (desc_cnt < 0) {
229 err = desc_cnt;
230 chan->client_count = 0;
231 module_put(owner);
232 } else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
233 balance_ref_count(chan);
234 }
235
236 return err;
237 }
238
239 /**
240 * dma_chan_put - drop a reference to a dma channel's parent driver module
241 * @chan - channel to release
242 *
243 * Must be called under dma_list_mutex
244 */
245 static void dma_chan_put(struct dma_chan *chan)
246 {
247 if (!chan->client_count)
248 return; /* this channel failed alloc_chan_resources */
249 chan->client_count--;
250 module_put(dma_chan_to_owner(chan));
251 if (chan->client_count == 0)
252 chan->device->device_free_chan_resources(chan);
253 }
254
255 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
256 {
257 enum dma_status status;
258 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
259
260 dma_async_issue_pending(chan);
261 do {
262 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
263 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
264 printk(KERN_ERR "dma_sync_wait_timeout!\n");
265 return DMA_ERROR;
266 }
267 } while (status == DMA_IN_PROGRESS);
268
269 return status;
270 }
271 EXPORT_SYMBOL(dma_sync_wait);
272
273 /**
274 * dma_cap_mask_all - enable iteration over all operation types
275 */
276 static dma_cap_mask_t dma_cap_mask_all;
277
278 /**
279 * dma_chan_tbl_ent - tracks channel allocations per core/operation
280 * @chan - associated channel for this entry
281 */
282 struct dma_chan_tbl_ent {
283 struct dma_chan *chan;
284 };
285
286 /**
287 * channel_table - percpu lookup table for memory-to-memory offload providers
288 */
289 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
290
291 static int __init dma_channel_table_init(void)
292 {
293 enum dma_transaction_type cap;
294 int err = 0;
295
296 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
297
298 /* 'interrupt', 'private', and 'slave' are channel capabilities,
299 * but are not associated with an operation so they do not need
300 * an entry in the channel_table
301 */
302 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
303 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
304 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
305
306 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
307 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
308 if (!channel_table[cap]) {
309 err = -ENOMEM;
310 break;
311 }
312 }
313
314 if (err) {
315 pr_err("dmaengine: initialization failure\n");
316 for_each_dma_cap_mask(cap, dma_cap_mask_all)
317 if (channel_table[cap])
318 free_percpu(channel_table[cap]);
319 }
320
321 return err;
322 }
323 arch_initcall(dma_channel_table_init);
324
325 /**
326 * dma_find_channel - find a channel to carry out the operation
327 * @tx_type: transaction type
328 */
329 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
330 {
331 return this_cpu_read(channel_table[tx_type]->chan);
332 }
333 EXPORT_SYMBOL(dma_find_channel);
334
335 /*
336 * net_dma_find_channel - find a channel for net_dma
337 * net_dma has alignment requirements
338 */
339 struct dma_chan *net_dma_find_channel(void)
340 {
341 struct dma_chan *chan = dma_find_channel(DMA_MEMCPY);
342 if (chan && !is_dma_copy_aligned(chan->device, 1, 1, 1))
343 return NULL;
344
345 return chan;
346 }
347 EXPORT_SYMBOL(net_dma_find_channel);
348
349 /**
350 * dma_issue_pending_all - flush all pending operations across all channels
351 */
352 void dma_issue_pending_all(void)
353 {
354 struct dma_device *device;
355 struct dma_chan *chan;
356
357 rcu_read_lock();
358 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
359 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
360 continue;
361 list_for_each_entry(chan, &device->channels, device_node)
362 if (chan->client_count)
363 device->device_issue_pending(chan);
364 }
365 rcu_read_unlock();
366 }
367 EXPORT_SYMBOL(dma_issue_pending_all);
368
369 /**
370 * nth_chan - returns the nth channel of the given capability
371 * @cap: capability to match
372 * @n: nth channel desired
373 *
374 * Defaults to returning the channel with the desired capability and the
375 * lowest reference count when 'n' cannot be satisfied. Must be called
376 * under dma_list_mutex.
377 */
378 static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
379 {
380 struct dma_device *device;
381 struct dma_chan *chan;
382 struct dma_chan *ret = NULL;
383 struct dma_chan *min = NULL;
384
385 list_for_each_entry(device, &dma_device_list, global_node) {
386 if (!dma_has_cap(cap, device->cap_mask) ||
387 dma_has_cap(DMA_PRIVATE, device->cap_mask))
388 continue;
389 list_for_each_entry(chan, &device->channels, device_node) {
390 if (!chan->client_count)
391 continue;
392 if (!min)
393 min = chan;
394 else if (chan->table_count < min->table_count)
395 min = chan;
396
397 if (n-- == 0) {
398 ret = chan;
399 break; /* done */
400 }
401 }
402 if (ret)
403 break; /* done */
404 }
405
406 if (!ret)
407 ret = min;
408
409 if (ret)
410 ret->table_count++;
411
412 return ret;
413 }
414
415 /**
416 * dma_channel_rebalance - redistribute the available channels
417 *
418 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
419 * operation type) in the SMP case, and operation isolation (avoid
420 * multi-tasking channels) in the non-SMP case. Must be called under
421 * dma_list_mutex.
422 */
423 static void dma_channel_rebalance(void)
424 {
425 struct dma_chan *chan;
426 struct dma_device *device;
427 int cpu;
428 int cap;
429 int n;
430
431 /* undo the last distribution */
432 for_each_dma_cap_mask(cap, dma_cap_mask_all)
433 for_each_possible_cpu(cpu)
434 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
435
436 list_for_each_entry(device, &dma_device_list, global_node) {
437 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
438 continue;
439 list_for_each_entry(chan, &device->channels, device_node)
440 chan->table_count = 0;
441 }
442
443 /* don't populate the channel_table if no clients are available */
444 if (!dmaengine_ref_count)
445 return;
446
447 /* redistribute available channels */
448 n = 0;
449 for_each_dma_cap_mask(cap, dma_cap_mask_all)
450 for_each_online_cpu(cpu) {
451 if (num_possible_cpus() > 1)
452 chan = nth_chan(cap, n++);
453 else
454 chan = nth_chan(cap, -1);
455
456 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
457 }
458 }
459
460 static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
461 dma_filter_fn fn, void *fn_param)
462 {
463 struct dma_chan *chan;
464
465 if (!__dma_device_satisfies_mask(dev, mask)) {
466 pr_debug("%s: wrong capabilities\n", __func__);
467 return NULL;
468 }
469 /* devices with multiple channels need special handling as we need to
470 * ensure that all channels are either private or public.
471 */
472 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
473 list_for_each_entry(chan, &dev->channels, device_node) {
474 /* some channels are already publicly allocated */
475 if (chan->client_count)
476 return NULL;
477 }
478
479 list_for_each_entry(chan, &dev->channels, device_node) {
480 if (chan->client_count) {
481 pr_debug("%s: %s busy\n",
482 __func__, dma_chan_name(chan));
483 continue;
484 }
485 if (fn && !fn(chan, fn_param)) {
486 pr_debug("%s: %s filter said false\n",
487 __func__, dma_chan_name(chan));
488 continue;
489 }
490 return chan;
491 }
492
493 return NULL;
494 }
495
496 /**
497 * dma_request_channel - try to allocate an exclusive channel
498 * @mask: capabilities that the channel must satisfy
499 * @fn: optional callback to disposition available channels
500 * @fn_param: opaque parameter to pass to dma_filter_fn
501 */
502 struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
503 {
504 struct dma_device *device, *_d;
505 struct dma_chan *chan = NULL;
506 int err;
507
508 /* Find a channel */
509 mutex_lock(&dma_list_mutex);
510 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
511 chan = private_candidate(mask, device, fn, fn_param);
512 if (chan) {
513 /* Found a suitable channel, try to grab, prep, and
514 * return it. We first set DMA_PRIVATE to disable
515 * balance_ref_count as this channel will not be
516 * published in the general-purpose allocator
517 */
518 dma_cap_set(DMA_PRIVATE, device->cap_mask);
519 device->privatecnt++;
520 err = dma_chan_get(chan);
521
522 if (err == -ENODEV) {
523 pr_debug("%s: %s module removed\n", __func__,
524 dma_chan_name(chan));
525 list_del_rcu(&device->global_node);
526 } else if (err)
527 pr_debug("%s: failed to get %s: (%d)\n",
528 __func__, dma_chan_name(chan), err);
529 else
530 break;
531 if (--device->privatecnt == 0)
532 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
533 chan = NULL;
534 }
535 }
536 mutex_unlock(&dma_list_mutex);
537
538 pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
539 chan ? dma_chan_name(chan) : NULL);
540
541 return chan;
542 }
543 EXPORT_SYMBOL_GPL(__dma_request_channel);
544
545 void dma_release_channel(struct dma_chan *chan)
546 {
547 mutex_lock(&dma_list_mutex);
548 WARN_ONCE(chan->client_count != 1,
549 "chan reference count %d != 1\n", chan->client_count);
550 dma_chan_put(chan);
551 /* drop PRIVATE cap enabled by __dma_request_channel() */
552 if (--chan->device->privatecnt == 0)
553 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
554 mutex_unlock(&dma_list_mutex);
555 }
556 EXPORT_SYMBOL_GPL(dma_release_channel);
557
558 /**
559 * dmaengine_get - register interest in dma_channels
560 */
561 void dmaengine_get(void)
562 {
563 struct dma_device *device, *_d;
564 struct dma_chan *chan;
565 int err;
566
567 mutex_lock(&dma_list_mutex);
568 dmaengine_ref_count++;
569
570 /* try to grab channels */
571 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
572 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
573 continue;
574 list_for_each_entry(chan, &device->channels, device_node) {
575 err = dma_chan_get(chan);
576 if (err == -ENODEV) {
577 /* module removed before we could use it */
578 list_del_rcu(&device->global_node);
579 break;
580 } else if (err)
581 pr_err("%s: failed to get %s: (%d)\n",
582 __func__, dma_chan_name(chan), err);
583 }
584 }
585
586 /* if this is the first reference and there were channels
587 * waiting we need to rebalance to get those channels
588 * incorporated into the channel table
589 */
590 if (dmaengine_ref_count == 1)
591 dma_channel_rebalance();
592 mutex_unlock(&dma_list_mutex);
593 }
594 EXPORT_SYMBOL(dmaengine_get);
595
596 /**
597 * dmaengine_put - let dma drivers be removed when ref_count == 0
598 */
599 void dmaengine_put(void)
600 {
601 struct dma_device *device;
602 struct dma_chan *chan;
603
604 mutex_lock(&dma_list_mutex);
605 dmaengine_ref_count--;
606 BUG_ON(dmaengine_ref_count < 0);
607 /* drop channel references */
608 list_for_each_entry(device, &dma_device_list, global_node) {
609 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
610 continue;
611 list_for_each_entry(chan, &device->channels, device_node)
612 dma_chan_put(chan);
613 }
614 mutex_unlock(&dma_list_mutex);
615 }
616 EXPORT_SYMBOL(dmaengine_put);
617
618 static bool device_has_all_tx_types(struct dma_device *device)
619 {
620 /* A device that satisfies this test has channels that will never cause
621 * an async_tx channel switch event as all possible operation types can
622 * be handled.
623 */
624 #ifdef CONFIG_ASYNC_TX_DMA
625 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
626 return false;
627 #endif
628
629 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
630 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
631 return false;
632 #endif
633
634 #if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
635 if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
636 return false;
637 #endif
638
639 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
640 if (!dma_has_cap(DMA_XOR, device->cap_mask))
641 return false;
642
643 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
644 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
645 return false;
646 #endif
647 #endif
648
649 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
650 if (!dma_has_cap(DMA_PQ, device->cap_mask))
651 return false;
652
653 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
654 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
655 return false;
656 #endif
657 #endif
658
659 return true;
660 }
661
662 static int get_dma_id(struct dma_device *device)
663 {
664 int rc;
665
666 idr_retry:
667 if (!idr_pre_get(&dma_idr, GFP_KERNEL))
668 return -ENOMEM;
669 mutex_lock(&dma_list_mutex);
670 rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
671 mutex_unlock(&dma_list_mutex);
672 if (rc == -EAGAIN)
673 goto idr_retry;
674 else if (rc != 0)
675 return rc;
676
677 return 0;
678 }
679
680 /**
681 * dma_async_device_register - registers DMA devices found
682 * @device: &dma_device
683 */
684 int dma_async_device_register(struct dma_device *device)
685 {
686 int chancnt = 0, rc;
687 struct dma_chan* chan;
688 atomic_t *idr_ref;
689
690 if (!device)
691 return -ENODEV;
692
693 /* validate device routines */
694 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
695 !device->device_prep_dma_memcpy);
696 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
697 !device->device_prep_dma_xor);
698 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
699 !device->device_prep_dma_xor_val);
700 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
701 !device->device_prep_dma_pq);
702 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
703 !device->device_prep_dma_pq_val);
704 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
705 !device->device_prep_dma_memset);
706 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
707 !device->device_prep_dma_interrupt);
708 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
709 !device->device_prep_dma_sg);
710 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
711 !device->device_prep_dma_cyclic);
712 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
713 !device->device_control);
714 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
715 !device->device_prep_interleaved_dma);
716
717 BUG_ON(!device->device_alloc_chan_resources);
718 BUG_ON(!device->device_free_chan_resources);
719 BUG_ON(!device->device_tx_status);
720 BUG_ON(!device->device_issue_pending);
721 BUG_ON(!device->dev);
722
723 /* note: this only matters in the
724 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
725 */
726 if (device_has_all_tx_types(device))
727 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
728
729 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
730 if (!idr_ref)
731 return -ENOMEM;
732 rc = get_dma_id(device);
733 if (rc != 0) {
734 kfree(idr_ref);
735 return rc;
736 }
737
738 atomic_set(idr_ref, 0);
739
740 /* represent channels in sysfs. Probably want devs too */
741 list_for_each_entry(chan, &device->channels, device_node) {
742 rc = -ENOMEM;
743 chan->local = alloc_percpu(typeof(*chan->local));
744 if (chan->local == NULL)
745 goto err_out;
746 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
747 if (chan->dev == NULL) {
748 free_percpu(chan->local);
749 chan->local = NULL;
750 goto err_out;
751 }
752
753 chan->chan_id = chancnt++;
754 chan->dev->device.class = &dma_devclass;
755 chan->dev->device.parent = device->dev;
756 chan->dev->chan = chan;
757 chan->dev->idr_ref = idr_ref;
758 chan->dev->dev_id = device->dev_id;
759 atomic_inc(idr_ref);
760 dev_set_name(&chan->dev->device, "dma%dchan%d",
761 device->dev_id, chan->chan_id);
762
763 rc = device_register(&chan->dev->device);
764 if (rc) {
765 free_percpu(chan->local);
766 chan->local = NULL;
767 kfree(chan->dev);
768 atomic_dec(idr_ref);
769 goto err_out;
770 }
771 chan->client_count = 0;
772 }
773 device->chancnt = chancnt;
774
775 mutex_lock(&dma_list_mutex);
776 /* take references on public channels */
777 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
778 list_for_each_entry(chan, &device->channels, device_node) {
779 /* if clients are already waiting for channels we need
780 * to take references on their behalf
781 */
782 if (dma_chan_get(chan) == -ENODEV) {
783 /* note we can only get here for the first
784 * channel as the remaining channels are
785 * guaranteed to get a reference
786 */
787 rc = -ENODEV;
788 mutex_unlock(&dma_list_mutex);
789 goto err_out;
790 }
791 }
792 list_add_tail_rcu(&device->global_node, &dma_device_list);
793 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
794 device->privatecnt++; /* Always private */
795 dma_channel_rebalance();
796 mutex_unlock(&dma_list_mutex);
797
798 return 0;
799
800 err_out:
801 /* if we never registered a channel just release the idr */
802 if (atomic_read(idr_ref) == 0) {
803 mutex_lock(&dma_list_mutex);
804 idr_remove(&dma_idr, device->dev_id);
805 mutex_unlock(&dma_list_mutex);
806 kfree(idr_ref);
807 return rc;
808 }
809
810 list_for_each_entry(chan, &device->channels, device_node) {
811 if (chan->local == NULL)
812 continue;
813 mutex_lock(&dma_list_mutex);
814 chan->dev->chan = NULL;
815 mutex_unlock(&dma_list_mutex);
816 device_unregister(&chan->dev->device);
817 free_percpu(chan->local);
818 }
819 return rc;
820 }
821 EXPORT_SYMBOL(dma_async_device_register);
822
823 /**
824 * dma_async_device_unregister - unregister a DMA device
825 * @device: &dma_device
826 *
827 * This routine is called by dma driver exit routines, dmaengine holds module
828 * references to prevent it being called while channels are in use.
829 */
830 void dma_async_device_unregister(struct dma_device *device)
831 {
832 struct dma_chan *chan;
833
834 mutex_lock(&dma_list_mutex);
835 list_del_rcu(&device->global_node);
836 dma_channel_rebalance();
837 mutex_unlock(&dma_list_mutex);
838
839 list_for_each_entry(chan, &device->channels, device_node) {
840 WARN_ONCE(chan->client_count,
841 "%s called while %d clients hold a reference\n",
842 __func__, chan->client_count);
843 mutex_lock(&dma_list_mutex);
844 chan->dev->chan = NULL;
845 mutex_unlock(&dma_list_mutex);
846 device_unregister(&chan->dev->device);
847 free_percpu(chan->local);
848 }
849 }
850 EXPORT_SYMBOL(dma_async_device_unregister);
851
852 /**
853 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
854 * @chan: DMA channel to offload copy to
855 * @dest: destination address (virtual)
856 * @src: source address (virtual)
857 * @len: length
858 *
859 * Both @dest and @src must be mappable to a bus address according to the
860 * DMA mapping API rules for streaming mappings.
861 * Both @dest and @src must stay memory resident (kernel memory or locked
862 * user space pages).
863 */
864 dma_cookie_t
865 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
866 void *src, size_t len)
867 {
868 struct dma_device *dev = chan->device;
869 struct dma_async_tx_descriptor *tx;
870 dma_addr_t dma_dest, dma_src;
871 dma_cookie_t cookie;
872 unsigned long flags;
873
874 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
875 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
876 flags = DMA_CTRL_ACK |
877 DMA_COMPL_SRC_UNMAP_SINGLE |
878 DMA_COMPL_DEST_UNMAP_SINGLE;
879 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
880
881 if (!tx) {
882 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
883 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
884 return -ENOMEM;
885 }
886
887 tx->callback = NULL;
888 cookie = tx->tx_submit(tx);
889
890 preempt_disable();
891 __this_cpu_add(chan->local->bytes_transferred, len);
892 __this_cpu_inc(chan->local->memcpy_count);
893 preempt_enable();
894
895 return cookie;
896 }
897 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
898
899 /**
900 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
901 * @chan: DMA channel to offload copy to
902 * @page: destination page
903 * @offset: offset in page to copy to
904 * @kdata: source address (virtual)
905 * @len: length
906 *
907 * Both @page/@offset and @kdata must be mappable to a bus address according
908 * to the DMA mapping API rules for streaming mappings.
909 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
910 * locked user space pages)
911 */
912 dma_cookie_t
913 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
914 unsigned int offset, void *kdata, size_t len)
915 {
916 struct dma_device *dev = chan->device;
917 struct dma_async_tx_descriptor *tx;
918 dma_addr_t dma_dest, dma_src;
919 dma_cookie_t cookie;
920 unsigned long flags;
921
922 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
923 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
924 flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
925 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
926
927 if (!tx) {
928 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
929 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
930 return -ENOMEM;
931 }
932
933 tx->callback = NULL;
934 cookie = tx->tx_submit(tx);
935
936 preempt_disable();
937 __this_cpu_add(chan->local->bytes_transferred, len);
938 __this_cpu_inc(chan->local->memcpy_count);
939 preempt_enable();
940
941 return cookie;
942 }
943 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
944
945 /**
946 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
947 * @chan: DMA channel to offload copy to
948 * @dest_pg: destination page
949 * @dest_off: offset in page to copy to
950 * @src_pg: source page
951 * @src_off: offset in page to copy from
952 * @len: length
953 *
954 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
955 * address according to the DMA mapping API rules for streaming mappings.
956 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
957 * (kernel memory or locked user space pages).
958 */
959 dma_cookie_t
960 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
961 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
962 size_t len)
963 {
964 struct dma_device *dev = chan->device;
965 struct dma_async_tx_descriptor *tx;
966 dma_addr_t dma_dest, dma_src;
967 dma_cookie_t cookie;
968 unsigned long flags;
969
970 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
971 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
972 DMA_FROM_DEVICE);
973 flags = DMA_CTRL_ACK;
974 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
975
976 if (!tx) {
977 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
978 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
979 return -ENOMEM;
980 }
981
982 tx->callback = NULL;
983 cookie = tx->tx_submit(tx);
984
985 preempt_disable();
986 __this_cpu_add(chan->local->bytes_transferred, len);
987 __this_cpu_inc(chan->local->memcpy_count);
988 preempt_enable();
989
990 return cookie;
991 }
992 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
993
994 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
995 struct dma_chan *chan)
996 {
997 tx->chan = chan;
998 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
999 spin_lock_init(&tx->lock);
1000 #endif
1001 }
1002 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1003
1004 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1005 * @tx: in-flight transaction to wait on
1006 */
1007 enum dma_status
1008 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1009 {
1010 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1011
1012 if (!tx)
1013 return DMA_SUCCESS;
1014
1015 while (tx->cookie == -EBUSY) {
1016 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1017 pr_err("%s timeout waiting for descriptor submission\n",
1018 __func__);
1019 return DMA_ERROR;
1020 }
1021 cpu_relax();
1022 }
1023 return dma_sync_wait(tx->chan, tx->cookie);
1024 }
1025 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1026
1027 /* dma_run_dependencies - helper routine for dma drivers to process
1028 * (start) dependent operations on their target channel
1029 * @tx: transaction with dependencies
1030 */
1031 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1032 {
1033 struct dma_async_tx_descriptor *dep = txd_next(tx);
1034 struct dma_async_tx_descriptor *dep_next;
1035 struct dma_chan *chan;
1036
1037 if (!dep)
1038 return;
1039
1040 /* we'll submit tx->next now, so clear the link */
1041 txd_clear_next(tx);
1042 chan = dep->chan;
1043
1044 /* keep submitting up until a channel switch is detected
1045 * in that case we will be called again as a result of
1046 * processing the interrupt from async_tx_channel_switch
1047 */
1048 for (; dep; dep = dep_next) {
1049 txd_lock(dep);
1050 txd_clear_parent(dep);
1051 dep_next = txd_next(dep);
1052 if (dep_next && dep_next->chan == chan)
1053 txd_clear_next(dep); /* ->next will be submitted */
1054 else
1055 dep_next = NULL; /* submit current dep and terminate */
1056 txd_unlock(dep);
1057
1058 dep->tx_submit(dep);
1059 }
1060
1061 chan->device->device_issue_pending(chan);
1062 }
1063 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1064
1065 static int __init dma_bus_init(void)
1066 {
1067 return class_register(&dma_devclass);
1068 }
1069 arch_initcall(dma_bus_init);
1070
1071