]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/dmaengine.c
Merge branches 'for-4.11/upstream-fixes', 'for-4.12/accutouch', 'for-4.12/cp2112...
[mirror_ubuntu-artful-kernel.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDA(dma_ida);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71
72 /* --- sysfs implementation --- */
73
74 /**
75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76 * @dev - device node
77 *
78 * Must be called under dma_list_mutex
79 */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 struct dma_chan_dev *chan_dev;
83
84 chan_dev = container_of(dev, typeof(*chan_dev), device);
85 return chan_dev->chan;
86 }
87
88 static ssize_t memcpy_count_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90 {
91 struct dma_chan *chan;
92 unsigned long count = 0;
93 int i;
94 int err;
95
96 mutex_lock(&dma_list_mutex);
97 chan = dev_to_dma_chan(dev);
98 if (chan) {
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 err = sprintf(buf, "%lu\n", count);
102 } else
103 err = -ENODEV;
104 mutex_unlock(&dma_list_mutex);
105
106 return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109
110 static ssize_t bytes_transferred_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
117
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
127
128 return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 char *buf)
134 {
135 struct dma_chan *chan;
136 int err;
137
138 mutex_lock(&dma_list_mutex);
139 chan = dev_to_dma_chan(dev);
140 if (chan)
141 err = sprintf(buf, "%d\n", chan->client_count);
142 else
143 err = -ENODEV;
144 mutex_unlock(&dma_list_mutex);
145
146 return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149
150 static struct attribute *dma_dev_attrs[] = {
151 &dev_attr_memcpy_count.attr,
152 &dev_attr_bytes_transferred.attr,
153 &dev_attr_in_use.attr,
154 NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157
158 static void chan_dev_release(struct device *dev)
159 {
160 struct dma_chan_dev *chan_dev;
161
162 chan_dev = container_of(dev, typeof(*chan_dev), device);
163 if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 mutex_lock(&dma_list_mutex);
165 ida_remove(&dma_ida, chan_dev->dev_id);
166 mutex_unlock(&dma_list_mutex);
167 kfree(chan_dev->idr_ref);
168 }
169 kfree(chan_dev);
170 }
171
172 static struct class dma_devclass = {
173 .name = "dma",
174 .dev_groups = dma_dev_groups,
175 .dev_release = chan_dev_release,
176 };
177
178 /* --- client and device registration --- */
179
180 #define dma_device_satisfies_mask(device, mask) \
181 __dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 const dma_cap_mask_t *want)
185 {
186 dma_cap_mask_t has;
187
188 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 DMA_TX_TYPE_END);
190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 return chan->device->dev->driver->owner;
196 }
197
198 /**
199 * balance_ref_count - catch up the channel reference count
200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 *
202 * balance_ref_count must be called under dma_list_mutex
203 */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 struct module *owner = dma_chan_to_owner(chan);
207
208 while (chan->client_count < dmaengine_ref_count) {
209 __module_get(owner);
210 chan->client_count++;
211 }
212 }
213
214 /**
215 * dma_chan_get - try to grab a dma channel's parent driver module
216 * @chan - channel to grab
217 *
218 * Must be called under dma_list_mutex
219 */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 struct module *owner = dma_chan_to_owner(chan);
223 int ret;
224
225 /* The channel is already in use, update client count */
226 if (chan->client_count) {
227 __module_get(owner);
228 goto out;
229 }
230
231 if (!try_module_get(owner))
232 return -ENODEV;
233
234 /* allocate upon first client reference */
235 if (chan->device->device_alloc_chan_resources) {
236 ret = chan->device->device_alloc_chan_resources(chan);
237 if (ret < 0)
238 goto err_out;
239 }
240
241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 balance_ref_count(chan);
243
244 out:
245 chan->client_count++;
246 return 0;
247
248 err_out:
249 module_put(owner);
250 return ret;
251 }
252
253 /**
254 * dma_chan_put - drop a reference to a dma channel's parent driver module
255 * @chan - channel to release
256 *
257 * Must be called under dma_list_mutex
258 */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 /* This channel is not in use, bail out */
262 if (!chan->client_count)
263 return;
264
265 chan->client_count--;
266 module_put(dma_chan_to_owner(chan));
267
268 /* This channel is not in use anymore, free it */
269 if (!chan->client_count && chan->device->device_free_chan_resources) {
270 /* Make sure all operations have completed */
271 dmaengine_synchronize(chan);
272 chan->device->device_free_chan_resources(chan);
273 }
274
275 /* If the channel is used via a DMA request router, free the mapping */
276 if (chan->router && chan->router->route_free) {
277 chan->router->route_free(chan->router->dev, chan->route_data);
278 chan->router = NULL;
279 chan->route_data = NULL;
280 }
281 }
282
283 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
284 {
285 enum dma_status status;
286 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
287
288 dma_async_issue_pending(chan);
289 do {
290 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
291 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
292 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
293 return DMA_ERROR;
294 }
295 if (status != DMA_IN_PROGRESS)
296 break;
297 cpu_relax();
298 } while (1);
299
300 return status;
301 }
302 EXPORT_SYMBOL(dma_sync_wait);
303
304 /**
305 * dma_cap_mask_all - enable iteration over all operation types
306 */
307 static dma_cap_mask_t dma_cap_mask_all;
308
309 /**
310 * dma_chan_tbl_ent - tracks channel allocations per core/operation
311 * @chan - associated channel for this entry
312 */
313 struct dma_chan_tbl_ent {
314 struct dma_chan *chan;
315 };
316
317 /**
318 * channel_table - percpu lookup table for memory-to-memory offload providers
319 */
320 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
321
322 static int __init dma_channel_table_init(void)
323 {
324 enum dma_transaction_type cap;
325 int err = 0;
326
327 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
328
329 /* 'interrupt', 'private', and 'slave' are channel capabilities,
330 * but are not associated with an operation so they do not need
331 * an entry in the channel_table
332 */
333 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
334 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
335 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
336
337 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
338 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
339 if (!channel_table[cap]) {
340 err = -ENOMEM;
341 break;
342 }
343 }
344
345 if (err) {
346 pr_err("initialization failure\n");
347 for_each_dma_cap_mask(cap, dma_cap_mask_all)
348 free_percpu(channel_table[cap]);
349 }
350
351 return err;
352 }
353 arch_initcall(dma_channel_table_init);
354
355 /**
356 * dma_find_channel - find a channel to carry out the operation
357 * @tx_type: transaction type
358 */
359 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
360 {
361 return this_cpu_read(channel_table[tx_type]->chan);
362 }
363 EXPORT_SYMBOL(dma_find_channel);
364
365 /**
366 * dma_issue_pending_all - flush all pending operations across all channels
367 */
368 void dma_issue_pending_all(void)
369 {
370 struct dma_device *device;
371 struct dma_chan *chan;
372
373 rcu_read_lock();
374 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
375 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
376 continue;
377 list_for_each_entry(chan, &device->channels, device_node)
378 if (chan->client_count)
379 device->device_issue_pending(chan);
380 }
381 rcu_read_unlock();
382 }
383 EXPORT_SYMBOL(dma_issue_pending_all);
384
385 /**
386 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
387 */
388 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
389 {
390 int node = dev_to_node(chan->device->dev);
391 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
392 }
393
394 /**
395 * min_chan - returns the channel with min count and in the same numa-node as the cpu
396 * @cap: capability to match
397 * @cpu: cpu index which the channel should be close to
398 *
399 * If some channels are close to the given cpu, the one with the lowest
400 * reference count is returned. Otherwise, cpu is ignored and only the
401 * reference count is taken into account.
402 * Must be called under dma_list_mutex.
403 */
404 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
405 {
406 struct dma_device *device;
407 struct dma_chan *chan;
408 struct dma_chan *min = NULL;
409 struct dma_chan *localmin = NULL;
410
411 list_for_each_entry(device, &dma_device_list, global_node) {
412 if (!dma_has_cap(cap, device->cap_mask) ||
413 dma_has_cap(DMA_PRIVATE, device->cap_mask))
414 continue;
415 list_for_each_entry(chan, &device->channels, device_node) {
416 if (!chan->client_count)
417 continue;
418 if (!min || chan->table_count < min->table_count)
419 min = chan;
420
421 if (dma_chan_is_local(chan, cpu))
422 if (!localmin ||
423 chan->table_count < localmin->table_count)
424 localmin = chan;
425 }
426 }
427
428 chan = localmin ? localmin : min;
429
430 if (chan)
431 chan->table_count++;
432
433 return chan;
434 }
435
436 /**
437 * dma_channel_rebalance - redistribute the available channels
438 *
439 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
440 * operation type) in the SMP case, and operation isolation (avoid
441 * multi-tasking channels) in the non-SMP case. Must be called under
442 * dma_list_mutex.
443 */
444 static void dma_channel_rebalance(void)
445 {
446 struct dma_chan *chan;
447 struct dma_device *device;
448 int cpu;
449 int cap;
450
451 /* undo the last distribution */
452 for_each_dma_cap_mask(cap, dma_cap_mask_all)
453 for_each_possible_cpu(cpu)
454 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
455
456 list_for_each_entry(device, &dma_device_list, global_node) {
457 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
458 continue;
459 list_for_each_entry(chan, &device->channels, device_node)
460 chan->table_count = 0;
461 }
462
463 /* don't populate the channel_table if no clients are available */
464 if (!dmaengine_ref_count)
465 return;
466
467 /* redistribute available channels */
468 for_each_dma_cap_mask(cap, dma_cap_mask_all)
469 for_each_online_cpu(cpu) {
470 chan = min_chan(cap, cpu);
471 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
472 }
473 }
474
475 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
476 {
477 struct dma_device *device;
478
479 if (!chan || !caps)
480 return -EINVAL;
481
482 device = chan->device;
483
484 /* check if the channel supports slave transactions */
485 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
486 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
487 return -ENXIO;
488
489 /*
490 * Check whether it reports it uses the generic slave
491 * capabilities, if not, that means it doesn't support any
492 * kind of slave capabilities reporting.
493 */
494 if (!device->directions)
495 return -ENXIO;
496
497 caps->src_addr_widths = device->src_addr_widths;
498 caps->dst_addr_widths = device->dst_addr_widths;
499 caps->directions = device->directions;
500 caps->max_burst = device->max_burst;
501 caps->residue_granularity = device->residue_granularity;
502 caps->descriptor_reuse = device->descriptor_reuse;
503
504 /*
505 * Some devices implement only pause (e.g. to get residuum) but no
506 * resume. However cmd_pause is advertised as pause AND resume.
507 */
508 caps->cmd_pause = !!(device->device_pause && device->device_resume);
509 caps->cmd_terminate = !!device->device_terminate_all;
510
511 return 0;
512 }
513 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
514
515 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
516 struct dma_device *dev,
517 dma_filter_fn fn, void *fn_param)
518 {
519 struct dma_chan *chan;
520
521 if (mask && !__dma_device_satisfies_mask(dev, mask)) {
522 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
523 return NULL;
524 }
525 /* devices with multiple channels need special handling as we need to
526 * ensure that all channels are either private or public.
527 */
528 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
529 list_for_each_entry(chan, &dev->channels, device_node) {
530 /* some channels are already publicly allocated */
531 if (chan->client_count)
532 return NULL;
533 }
534
535 list_for_each_entry(chan, &dev->channels, device_node) {
536 if (chan->client_count) {
537 dev_dbg(dev->dev, "%s: %s busy\n",
538 __func__, dma_chan_name(chan));
539 continue;
540 }
541 if (fn && !fn(chan, fn_param)) {
542 dev_dbg(dev->dev, "%s: %s filter said false\n",
543 __func__, dma_chan_name(chan));
544 continue;
545 }
546 return chan;
547 }
548
549 return NULL;
550 }
551
552 static struct dma_chan *find_candidate(struct dma_device *device,
553 const dma_cap_mask_t *mask,
554 dma_filter_fn fn, void *fn_param)
555 {
556 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
557 int err;
558
559 if (chan) {
560 /* Found a suitable channel, try to grab, prep, and return it.
561 * We first set DMA_PRIVATE to disable balance_ref_count as this
562 * channel will not be published in the general-purpose
563 * allocator
564 */
565 dma_cap_set(DMA_PRIVATE, device->cap_mask);
566 device->privatecnt++;
567 err = dma_chan_get(chan);
568
569 if (err) {
570 if (err == -ENODEV) {
571 dev_dbg(device->dev, "%s: %s module removed\n",
572 __func__, dma_chan_name(chan));
573 list_del_rcu(&device->global_node);
574 } else
575 dev_dbg(device->dev,
576 "%s: failed to get %s: (%d)\n",
577 __func__, dma_chan_name(chan), err);
578
579 if (--device->privatecnt == 0)
580 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
581
582 chan = ERR_PTR(err);
583 }
584 }
585
586 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
587 }
588
589 /**
590 * dma_get_slave_channel - try to get specific channel exclusively
591 * @chan: target channel
592 */
593 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
594 {
595 int err = -EBUSY;
596
597 /* lock against __dma_request_channel */
598 mutex_lock(&dma_list_mutex);
599
600 if (chan->client_count == 0) {
601 struct dma_device *device = chan->device;
602
603 dma_cap_set(DMA_PRIVATE, device->cap_mask);
604 device->privatecnt++;
605 err = dma_chan_get(chan);
606 if (err) {
607 dev_dbg(chan->device->dev,
608 "%s: failed to get %s: (%d)\n",
609 __func__, dma_chan_name(chan), err);
610 chan = NULL;
611 if (--device->privatecnt == 0)
612 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
613 }
614 } else
615 chan = NULL;
616
617 mutex_unlock(&dma_list_mutex);
618
619
620 return chan;
621 }
622 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
623
624 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
625 {
626 dma_cap_mask_t mask;
627 struct dma_chan *chan;
628
629 dma_cap_zero(mask);
630 dma_cap_set(DMA_SLAVE, mask);
631
632 /* lock against __dma_request_channel */
633 mutex_lock(&dma_list_mutex);
634
635 chan = find_candidate(device, &mask, NULL, NULL);
636
637 mutex_unlock(&dma_list_mutex);
638
639 return IS_ERR(chan) ? NULL : chan;
640 }
641 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
642
643 /**
644 * __dma_request_channel - try to allocate an exclusive channel
645 * @mask: capabilities that the channel must satisfy
646 * @fn: optional callback to disposition available channels
647 * @fn_param: opaque parameter to pass to dma_filter_fn
648 *
649 * Returns pointer to appropriate DMA channel on success or NULL.
650 */
651 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
652 dma_filter_fn fn, void *fn_param)
653 {
654 struct dma_device *device, *_d;
655 struct dma_chan *chan = NULL;
656
657 /* Find a channel */
658 mutex_lock(&dma_list_mutex);
659 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
660 chan = find_candidate(device, mask, fn, fn_param);
661 if (!IS_ERR(chan))
662 break;
663
664 chan = NULL;
665 }
666 mutex_unlock(&dma_list_mutex);
667
668 pr_debug("%s: %s (%s)\n",
669 __func__,
670 chan ? "success" : "fail",
671 chan ? dma_chan_name(chan) : NULL);
672
673 return chan;
674 }
675 EXPORT_SYMBOL_GPL(__dma_request_channel);
676
677 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
678 const char *name,
679 struct device *dev)
680 {
681 int i;
682
683 if (!device->filter.mapcnt)
684 return NULL;
685
686 for (i = 0; i < device->filter.mapcnt; i++) {
687 const struct dma_slave_map *map = &device->filter.map[i];
688
689 if (!strcmp(map->devname, dev_name(dev)) &&
690 !strcmp(map->slave, name))
691 return map;
692 }
693
694 return NULL;
695 }
696
697 /**
698 * dma_request_chan - try to allocate an exclusive slave channel
699 * @dev: pointer to client device structure
700 * @name: slave channel name
701 *
702 * Returns pointer to appropriate DMA channel on success or an error pointer.
703 */
704 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
705 {
706 struct dma_device *d, *_d;
707 struct dma_chan *chan = NULL;
708
709 /* If device-tree is present get slave info from here */
710 if (dev->of_node)
711 chan = of_dma_request_slave_channel(dev->of_node, name);
712
713 /* If device was enumerated by ACPI get slave info from here */
714 if (has_acpi_companion(dev) && !chan)
715 chan = acpi_dma_request_slave_chan_by_name(dev, name);
716
717 if (chan) {
718 /* Valid channel found or requester need to be deferred */
719 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
720 return chan;
721 }
722
723 /* Try to find the channel via the DMA filter map(s) */
724 mutex_lock(&dma_list_mutex);
725 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
726 dma_cap_mask_t mask;
727 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
728
729 if (!map)
730 continue;
731
732 dma_cap_zero(mask);
733 dma_cap_set(DMA_SLAVE, mask);
734
735 chan = find_candidate(d, &mask, d->filter.fn, map->param);
736 if (!IS_ERR(chan))
737 break;
738 }
739 mutex_unlock(&dma_list_mutex);
740
741 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
742 }
743 EXPORT_SYMBOL_GPL(dma_request_chan);
744
745 /**
746 * dma_request_slave_channel - try to allocate an exclusive slave channel
747 * @dev: pointer to client device structure
748 * @name: slave channel name
749 *
750 * Returns pointer to appropriate DMA channel on success or NULL.
751 */
752 struct dma_chan *dma_request_slave_channel(struct device *dev,
753 const char *name)
754 {
755 struct dma_chan *ch = dma_request_chan(dev, name);
756 if (IS_ERR(ch))
757 return NULL;
758
759 return ch;
760 }
761 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
762
763 /**
764 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
765 * @mask: capabilities that the channel must satisfy
766 *
767 * Returns pointer to appropriate DMA channel on success or an error pointer.
768 */
769 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
770 {
771 struct dma_chan *chan;
772
773 if (!mask)
774 return ERR_PTR(-ENODEV);
775
776 chan = __dma_request_channel(mask, NULL, NULL);
777 if (!chan)
778 chan = ERR_PTR(-ENODEV);
779
780 return chan;
781 }
782 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
783
784 void dma_release_channel(struct dma_chan *chan)
785 {
786 mutex_lock(&dma_list_mutex);
787 WARN_ONCE(chan->client_count != 1,
788 "chan reference count %d != 1\n", chan->client_count);
789 dma_chan_put(chan);
790 /* drop PRIVATE cap enabled by __dma_request_channel() */
791 if (--chan->device->privatecnt == 0)
792 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
793 mutex_unlock(&dma_list_mutex);
794 }
795 EXPORT_SYMBOL_GPL(dma_release_channel);
796
797 /**
798 * dmaengine_get - register interest in dma_channels
799 */
800 void dmaengine_get(void)
801 {
802 struct dma_device *device, *_d;
803 struct dma_chan *chan;
804 int err;
805
806 mutex_lock(&dma_list_mutex);
807 dmaengine_ref_count++;
808
809 /* try to grab channels */
810 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
811 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
812 continue;
813 list_for_each_entry(chan, &device->channels, device_node) {
814 err = dma_chan_get(chan);
815 if (err == -ENODEV) {
816 /* module removed before we could use it */
817 list_del_rcu(&device->global_node);
818 break;
819 } else if (err)
820 dev_dbg(chan->device->dev,
821 "%s: failed to get %s: (%d)\n",
822 __func__, dma_chan_name(chan), err);
823 }
824 }
825
826 /* if this is the first reference and there were channels
827 * waiting we need to rebalance to get those channels
828 * incorporated into the channel table
829 */
830 if (dmaengine_ref_count == 1)
831 dma_channel_rebalance();
832 mutex_unlock(&dma_list_mutex);
833 }
834 EXPORT_SYMBOL(dmaengine_get);
835
836 /**
837 * dmaengine_put - let dma drivers be removed when ref_count == 0
838 */
839 void dmaengine_put(void)
840 {
841 struct dma_device *device;
842 struct dma_chan *chan;
843
844 mutex_lock(&dma_list_mutex);
845 dmaengine_ref_count--;
846 BUG_ON(dmaengine_ref_count < 0);
847 /* drop channel references */
848 list_for_each_entry(device, &dma_device_list, global_node) {
849 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
850 continue;
851 list_for_each_entry(chan, &device->channels, device_node)
852 dma_chan_put(chan);
853 }
854 mutex_unlock(&dma_list_mutex);
855 }
856 EXPORT_SYMBOL(dmaengine_put);
857
858 static bool device_has_all_tx_types(struct dma_device *device)
859 {
860 /* A device that satisfies this test has channels that will never cause
861 * an async_tx channel switch event as all possible operation types can
862 * be handled.
863 */
864 #ifdef CONFIG_ASYNC_TX_DMA
865 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
866 return false;
867 #endif
868
869 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
870 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
871 return false;
872 #endif
873
874 #if IS_ENABLED(CONFIG_ASYNC_XOR)
875 if (!dma_has_cap(DMA_XOR, device->cap_mask))
876 return false;
877
878 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
879 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
880 return false;
881 #endif
882 #endif
883
884 #if IS_ENABLED(CONFIG_ASYNC_PQ)
885 if (!dma_has_cap(DMA_PQ, device->cap_mask))
886 return false;
887
888 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
889 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
890 return false;
891 #endif
892 #endif
893
894 return true;
895 }
896
897 static int get_dma_id(struct dma_device *device)
898 {
899 int rc;
900
901 do {
902 if (!ida_pre_get(&dma_ida, GFP_KERNEL))
903 return -ENOMEM;
904 mutex_lock(&dma_list_mutex);
905 rc = ida_get_new(&dma_ida, &device->dev_id);
906 mutex_unlock(&dma_list_mutex);
907 } while (rc == -EAGAIN);
908
909 return rc;
910 }
911
912 /**
913 * dma_async_device_register - registers DMA devices found
914 * @device: &dma_device
915 */
916 int dma_async_device_register(struct dma_device *device)
917 {
918 int chancnt = 0, rc;
919 struct dma_chan* chan;
920 atomic_t *idr_ref;
921
922 if (!device)
923 return -ENODEV;
924
925 /* validate device routines */
926 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
927 !device->device_prep_dma_memcpy);
928 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
929 !device->device_prep_dma_xor);
930 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
931 !device->device_prep_dma_xor_val);
932 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
933 !device->device_prep_dma_pq);
934 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
935 !device->device_prep_dma_pq_val);
936 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
937 !device->device_prep_dma_memset);
938 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
939 !device->device_prep_dma_interrupt);
940 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
941 !device->device_prep_dma_sg);
942 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
943 !device->device_prep_dma_cyclic);
944 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
945 !device->device_prep_interleaved_dma);
946
947 BUG_ON(!device->device_tx_status);
948 BUG_ON(!device->device_issue_pending);
949 BUG_ON(!device->dev);
950
951 /* note: this only matters in the
952 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
953 */
954 if (device_has_all_tx_types(device))
955 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
956
957 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
958 if (!idr_ref)
959 return -ENOMEM;
960 rc = get_dma_id(device);
961 if (rc != 0) {
962 kfree(idr_ref);
963 return rc;
964 }
965
966 atomic_set(idr_ref, 0);
967
968 /* represent channels in sysfs. Probably want devs too */
969 list_for_each_entry(chan, &device->channels, device_node) {
970 rc = -ENOMEM;
971 chan->local = alloc_percpu(typeof(*chan->local));
972 if (chan->local == NULL)
973 goto err_out;
974 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
975 if (chan->dev == NULL) {
976 free_percpu(chan->local);
977 chan->local = NULL;
978 goto err_out;
979 }
980
981 chan->chan_id = chancnt++;
982 chan->dev->device.class = &dma_devclass;
983 chan->dev->device.parent = device->dev;
984 chan->dev->chan = chan;
985 chan->dev->idr_ref = idr_ref;
986 chan->dev->dev_id = device->dev_id;
987 atomic_inc(idr_ref);
988 dev_set_name(&chan->dev->device, "dma%dchan%d",
989 device->dev_id, chan->chan_id);
990
991 rc = device_register(&chan->dev->device);
992 if (rc) {
993 free_percpu(chan->local);
994 chan->local = NULL;
995 kfree(chan->dev);
996 atomic_dec(idr_ref);
997 goto err_out;
998 }
999 chan->client_count = 0;
1000 }
1001
1002 if (!chancnt) {
1003 dev_err(device->dev, "%s: device has no channels!\n", __func__);
1004 rc = -ENODEV;
1005 goto err_out;
1006 }
1007
1008 device->chancnt = chancnt;
1009
1010 mutex_lock(&dma_list_mutex);
1011 /* take references on public channels */
1012 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1013 list_for_each_entry(chan, &device->channels, device_node) {
1014 /* if clients are already waiting for channels we need
1015 * to take references on their behalf
1016 */
1017 if (dma_chan_get(chan) == -ENODEV) {
1018 /* note we can only get here for the first
1019 * channel as the remaining channels are
1020 * guaranteed to get a reference
1021 */
1022 rc = -ENODEV;
1023 mutex_unlock(&dma_list_mutex);
1024 goto err_out;
1025 }
1026 }
1027 list_add_tail_rcu(&device->global_node, &dma_device_list);
1028 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1029 device->privatecnt++; /* Always private */
1030 dma_channel_rebalance();
1031 mutex_unlock(&dma_list_mutex);
1032
1033 return 0;
1034
1035 err_out:
1036 /* if we never registered a channel just release the idr */
1037 if (atomic_read(idr_ref) == 0) {
1038 mutex_lock(&dma_list_mutex);
1039 ida_remove(&dma_ida, device->dev_id);
1040 mutex_unlock(&dma_list_mutex);
1041 kfree(idr_ref);
1042 return rc;
1043 }
1044
1045 list_for_each_entry(chan, &device->channels, device_node) {
1046 if (chan->local == NULL)
1047 continue;
1048 mutex_lock(&dma_list_mutex);
1049 chan->dev->chan = NULL;
1050 mutex_unlock(&dma_list_mutex);
1051 device_unregister(&chan->dev->device);
1052 free_percpu(chan->local);
1053 }
1054 return rc;
1055 }
1056 EXPORT_SYMBOL(dma_async_device_register);
1057
1058 /**
1059 * dma_async_device_unregister - unregister a DMA device
1060 * @device: &dma_device
1061 *
1062 * This routine is called by dma driver exit routines, dmaengine holds module
1063 * references to prevent it being called while channels are in use.
1064 */
1065 void dma_async_device_unregister(struct dma_device *device)
1066 {
1067 struct dma_chan *chan;
1068
1069 mutex_lock(&dma_list_mutex);
1070 list_del_rcu(&device->global_node);
1071 dma_channel_rebalance();
1072 mutex_unlock(&dma_list_mutex);
1073
1074 list_for_each_entry(chan, &device->channels, device_node) {
1075 WARN_ONCE(chan->client_count,
1076 "%s called while %d clients hold a reference\n",
1077 __func__, chan->client_count);
1078 mutex_lock(&dma_list_mutex);
1079 chan->dev->chan = NULL;
1080 mutex_unlock(&dma_list_mutex);
1081 device_unregister(&chan->dev->device);
1082 free_percpu(chan->local);
1083 }
1084 }
1085 EXPORT_SYMBOL(dma_async_device_unregister);
1086
1087 struct dmaengine_unmap_pool {
1088 struct kmem_cache *cache;
1089 const char *name;
1090 mempool_t *pool;
1091 size_t size;
1092 };
1093
1094 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1095 static struct dmaengine_unmap_pool unmap_pool[] = {
1096 __UNMAP_POOL(2),
1097 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1098 __UNMAP_POOL(16),
1099 __UNMAP_POOL(128),
1100 __UNMAP_POOL(256),
1101 #endif
1102 };
1103
1104 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1105 {
1106 int order = get_count_order(nr);
1107
1108 switch (order) {
1109 case 0 ... 1:
1110 return &unmap_pool[0];
1111 case 2 ... 4:
1112 return &unmap_pool[1];
1113 case 5 ... 7:
1114 return &unmap_pool[2];
1115 case 8:
1116 return &unmap_pool[3];
1117 default:
1118 BUG();
1119 return NULL;
1120 }
1121 }
1122
1123 static void dmaengine_unmap(struct kref *kref)
1124 {
1125 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1126 struct device *dev = unmap->dev;
1127 int cnt, i;
1128
1129 cnt = unmap->to_cnt;
1130 for (i = 0; i < cnt; i++)
1131 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1132 DMA_TO_DEVICE);
1133 cnt += unmap->from_cnt;
1134 for (; i < cnt; i++)
1135 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1136 DMA_FROM_DEVICE);
1137 cnt += unmap->bidi_cnt;
1138 for (; i < cnt; i++) {
1139 if (unmap->addr[i] == 0)
1140 continue;
1141 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1142 DMA_BIDIRECTIONAL);
1143 }
1144 cnt = unmap->map_cnt;
1145 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1146 }
1147
1148 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1149 {
1150 if (unmap)
1151 kref_put(&unmap->kref, dmaengine_unmap);
1152 }
1153 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1154
1155 static void dmaengine_destroy_unmap_pool(void)
1156 {
1157 int i;
1158
1159 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1160 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1161
1162 mempool_destroy(p->pool);
1163 p->pool = NULL;
1164 kmem_cache_destroy(p->cache);
1165 p->cache = NULL;
1166 }
1167 }
1168
1169 static int __init dmaengine_init_unmap_pool(void)
1170 {
1171 int i;
1172
1173 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1174 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1175 size_t size;
1176
1177 size = sizeof(struct dmaengine_unmap_data) +
1178 sizeof(dma_addr_t) * p->size;
1179
1180 p->cache = kmem_cache_create(p->name, size, 0,
1181 SLAB_HWCACHE_ALIGN, NULL);
1182 if (!p->cache)
1183 break;
1184 p->pool = mempool_create_slab_pool(1, p->cache);
1185 if (!p->pool)
1186 break;
1187 }
1188
1189 if (i == ARRAY_SIZE(unmap_pool))
1190 return 0;
1191
1192 dmaengine_destroy_unmap_pool();
1193 return -ENOMEM;
1194 }
1195
1196 struct dmaengine_unmap_data *
1197 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1198 {
1199 struct dmaengine_unmap_data *unmap;
1200
1201 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1202 if (!unmap)
1203 return NULL;
1204
1205 memset(unmap, 0, sizeof(*unmap));
1206 kref_init(&unmap->kref);
1207 unmap->dev = dev;
1208 unmap->map_cnt = nr;
1209
1210 return unmap;
1211 }
1212 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1213
1214 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1215 struct dma_chan *chan)
1216 {
1217 tx->chan = chan;
1218 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1219 spin_lock_init(&tx->lock);
1220 #endif
1221 }
1222 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1223
1224 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1225 * @tx: in-flight transaction to wait on
1226 */
1227 enum dma_status
1228 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1229 {
1230 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1231
1232 if (!tx)
1233 return DMA_COMPLETE;
1234
1235 while (tx->cookie == -EBUSY) {
1236 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1237 dev_err(tx->chan->device->dev,
1238 "%s timeout waiting for descriptor submission\n",
1239 __func__);
1240 return DMA_ERROR;
1241 }
1242 cpu_relax();
1243 }
1244 return dma_sync_wait(tx->chan, tx->cookie);
1245 }
1246 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1247
1248 /* dma_run_dependencies - helper routine for dma drivers to process
1249 * (start) dependent operations on their target channel
1250 * @tx: transaction with dependencies
1251 */
1252 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1253 {
1254 struct dma_async_tx_descriptor *dep = txd_next(tx);
1255 struct dma_async_tx_descriptor *dep_next;
1256 struct dma_chan *chan;
1257
1258 if (!dep)
1259 return;
1260
1261 /* we'll submit tx->next now, so clear the link */
1262 txd_clear_next(tx);
1263 chan = dep->chan;
1264
1265 /* keep submitting up until a channel switch is detected
1266 * in that case we will be called again as a result of
1267 * processing the interrupt from async_tx_channel_switch
1268 */
1269 for (; dep; dep = dep_next) {
1270 txd_lock(dep);
1271 txd_clear_parent(dep);
1272 dep_next = txd_next(dep);
1273 if (dep_next && dep_next->chan == chan)
1274 txd_clear_next(dep); /* ->next will be submitted */
1275 else
1276 dep_next = NULL; /* submit current dep and terminate */
1277 txd_unlock(dep);
1278
1279 dep->tx_submit(dep);
1280 }
1281
1282 chan->device->device_issue_pending(chan);
1283 }
1284 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1285
1286 static int __init dma_bus_init(void)
1287 {
1288 int err = dmaengine_init_unmap_pool();
1289
1290 if (err)
1291 return err;
1292 return class_register(&dma_devclass);
1293 }
1294 arch_initcall(dma_bus_init);
1295
1296