]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/dma/dmaengine.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / drivers / dma / dmaengine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6 /*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
55
56 #include "dmaengine.h"
57
58 static DEFINE_MUTEX(dma_list_mutex);
59 static DEFINE_IDA(dma_ida);
60 static LIST_HEAD(dma_device_list);
61 static long dmaengine_ref_count;
62
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
66
67 static struct dentry *rootdir;
68
69 static void dmaengine_debug_register(struct dma_device *dma_dev)
70 {
71 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
72 rootdir);
73 if (IS_ERR(dma_dev->dbg_dev_root))
74 dma_dev->dbg_dev_root = NULL;
75 }
76
77 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
78 {
79 debugfs_remove_recursive(dma_dev->dbg_dev_root);
80 dma_dev->dbg_dev_root = NULL;
81 }
82
83 static void dmaengine_dbg_summary_show(struct seq_file *s,
84 struct dma_device *dma_dev)
85 {
86 struct dma_chan *chan;
87
88 list_for_each_entry(chan, &dma_dev->channels, device_node) {
89 if (chan->client_count) {
90 seq_printf(s, " %-13s| %s", dma_chan_name(chan),
91 chan->dbg_client_name ?: "in-use");
92
93 if (chan->router)
94 seq_printf(s, " (via router: %s)\n",
95 dev_name(chan->router->dev));
96 else
97 seq_puts(s, "\n");
98 }
99 }
100 }
101
102 static int dmaengine_summary_show(struct seq_file *s, void *data)
103 {
104 struct dma_device *dma_dev = NULL;
105
106 mutex_lock(&dma_list_mutex);
107 list_for_each_entry(dma_dev, &dma_device_list, global_node) {
108 seq_printf(s, "dma%d (%s): number of channels: %u\n",
109 dma_dev->dev_id, dev_name(dma_dev->dev),
110 dma_dev->chancnt);
111
112 if (dma_dev->dbg_summary_show)
113 dma_dev->dbg_summary_show(s, dma_dev);
114 else
115 dmaengine_dbg_summary_show(s, dma_dev);
116
117 if (!list_is_last(&dma_dev->global_node, &dma_device_list))
118 seq_puts(s, "\n");
119 }
120 mutex_unlock(&dma_list_mutex);
121
122 return 0;
123 }
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
125
126 static void __init dmaengine_debugfs_init(void)
127 {
128 rootdir = debugfs_create_dir("dmaengine", NULL);
129
130 /* /sys/kernel/debug/dmaengine/summary */
131 debugfs_create_file("summary", 0444, rootdir, NULL,
132 &dmaengine_summary_fops);
133 }
134 #else
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
137 {
138 return 0;
139 }
140
141 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
142 #endif /* DEBUG_FS */
143
144 /* --- sysfs implementation --- */
145
146 #define DMA_SLAVE_NAME "slave"
147
148 /**
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
150 * @dev: device node
151 *
152 * Must be called under dma_list_mutex.
153 */
154 static struct dma_chan *dev_to_dma_chan(struct device *dev)
155 {
156 struct dma_chan_dev *chan_dev;
157
158 chan_dev = container_of(dev, typeof(*chan_dev), device);
159 return chan_dev->chan;
160 }
161
162 static ssize_t memcpy_count_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164 {
165 struct dma_chan *chan;
166 unsigned long count = 0;
167 int i;
168 int err;
169
170 mutex_lock(&dma_list_mutex);
171 chan = dev_to_dma_chan(dev);
172 if (chan) {
173 for_each_possible_cpu(i)
174 count += per_cpu_ptr(chan->local, i)->memcpy_count;
175 err = sprintf(buf, "%lu\n", count);
176 } else
177 err = -ENODEV;
178 mutex_unlock(&dma_list_mutex);
179
180 return err;
181 }
182 static DEVICE_ATTR_RO(memcpy_count);
183
184 static ssize_t bytes_transferred_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186 {
187 struct dma_chan *chan;
188 unsigned long count = 0;
189 int i;
190 int err;
191
192 mutex_lock(&dma_list_mutex);
193 chan = dev_to_dma_chan(dev);
194 if (chan) {
195 for_each_possible_cpu(i)
196 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
197 err = sprintf(buf, "%lu\n", count);
198 } else
199 err = -ENODEV;
200 mutex_unlock(&dma_list_mutex);
201
202 return err;
203 }
204 static DEVICE_ATTR_RO(bytes_transferred);
205
206 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
207 char *buf)
208 {
209 struct dma_chan *chan;
210 int err;
211
212 mutex_lock(&dma_list_mutex);
213 chan = dev_to_dma_chan(dev);
214 if (chan)
215 err = sprintf(buf, "%d\n", chan->client_count);
216 else
217 err = -ENODEV;
218 mutex_unlock(&dma_list_mutex);
219
220 return err;
221 }
222 static DEVICE_ATTR_RO(in_use);
223
224 static struct attribute *dma_dev_attrs[] = {
225 &dev_attr_memcpy_count.attr,
226 &dev_attr_bytes_transferred.attr,
227 &dev_attr_in_use.attr,
228 NULL,
229 };
230 ATTRIBUTE_GROUPS(dma_dev);
231
232 static void chan_dev_release(struct device *dev)
233 {
234 struct dma_chan_dev *chan_dev;
235
236 chan_dev = container_of(dev, typeof(*chan_dev), device);
237 kfree(chan_dev);
238 }
239
240 static struct class dma_devclass = {
241 .name = "dma",
242 .dev_groups = dma_dev_groups,
243 .dev_release = chan_dev_release,
244 };
245
246 /* --- client and device registration --- */
247
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all;
250
251 /**
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan: associated channel for this entry
254 */
255 struct dma_chan_tbl_ent {
256 struct dma_chan *chan;
257 };
258
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
261
262 static int __init dma_channel_table_init(void)
263 {
264 enum dma_transaction_type cap;
265 int err = 0;
266
267 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
268
269 /* 'interrupt', 'private', and 'slave' are channel capabilities,
270 * but are not associated with an operation so they do not need
271 * an entry in the channel_table
272 */
273 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
274 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
275 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
276
277 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
278 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
279 if (!channel_table[cap]) {
280 err = -ENOMEM;
281 break;
282 }
283 }
284
285 if (err) {
286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
287 for_each_dma_cap_mask(cap, dma_cap_mask_all)
288 free_percpu(channel_table[cap]);
289 }
290
291 return err;
292 }
293 arch_initcall(dma_channel_table_init);
294
295 /**
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan: DMA channel to test
298 * @cpu: CPU index which the channel should be close to
299 *
300 * Returns true if the channel is in the same NUMA-node as the CPU.
301 */
302 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
303 {
304 int node = dev_to_node(chan->device->dev);
305 return node == NUMA_NO_NODE ||
306 cpumask_test_cpu(cpu, cpumask_of_node(node));
307 }
308
309 /**
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap: capability to match
312 * @cpu: CPU index which the channel should be close to
313 *
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
317 *
318 * Must be called under dma_list_mutex.
319 */
320 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
321 {
322 struct dma_device *device;
323 struct dma_chan *chan;
324 struct dma_chan *min = NULL;
325 struct dma_chan *localmin = NULL;
326
327 list_for_each_entry(device, &dma_device_list, global_node) {
328 if (!dma_has_cap(cap, device->cap_mask) ||
329 dma_has_cap(DMA_PRIVATE, device->cap_mask))
330 continue;
331 list_for_each_entry(chan, &device->channels, device_node) {
332 if (!chan->client_count)
333 continue;
334 if (!min || chan->table_count < min->table_count)
335 min = chan;
336
337 if (dma_chan_is_local(chan, cpu))
338 if (!localmin ||
339 chan->table_count < localmin->table_count)
340 localmin = chan;
341 }
342 }
343
344 chan = localmin ? localmin : min;
345
346 if (chan)
347 chan->table_count++;
348
349 return chan;
350 }
351
352 /**
353 * dma_channel_rebalance - redistribute the available channels
354 *
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
358 *
359 * Must be called under dma_list_mutex.
360 */
361 static void dma_channel_rebalance(void)
362 {
363 struct dma_chan *chan;
364 struct dma_device *device;
365 int cpu;
366 int cap;
367
368 /* undo the last distribution */
369 for_each_dma_cap_mask(cap, dma_cap_mask_all)
370 for_each_possible_cpu(cpu)
371 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
372
373 list_for_each_entry(device, &dma_device_list, global_node) {
374 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
375 continue;
376 list_for_each_entry(chan, &device->channels, device_node)
377 chan->table_count = 0;
378 }
379
380 /* don't populate the channel_table if no clients are available */
381 if (!dmaengine_ref_count)
382 return;
383
384 /* redistribute available channels */
385 for_each_dma_cap_mask(cap, dma_cap_mask_all)
386 for_each_online_cpu(cpu) {
387 chan = min_chan(cap, cpu);
388 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
389 }
390 }
391
392 static int dma_device_satisfies_mask(struct dma_device *device,
393 const dma_cap_mask_t *want)
394 {
395 dma_cap_mask_t has;
396
397 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
398 DMA_TX_TYPE_END);
399 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
400 }
401
402 static struct module *dma_chan_to_owner(struct dma_chan *chan)
403 {
404 return chan->device->owner;
405 }
406
407 /**
408 * balance_ref_count - catch up the channel reference count
409 * @chan: channel to balance ->client_count versus dmaengine_ref_count
410 *
411 * Must be called under dma_list_mutex.
412 */
413 static void balance_ref_count(struct dma_chan *chan)
414 {
415 struct module *owner = dma_chan_to_owner(chan);
416
417 while (chan->client_count < dmaengine_ref_count) {
418 __module_get(owner);
419 chan->client_count++;
420 }
421 }
422
423 static void dma_device_release(struct kref *ref)
424 {
425 struct dma_device *device = container_of(ref, struct dma_device, ref);
426
427 list_del_rcu(&device->global_node);
428 dma_channel_rebalance();
429
430 if (device->device_release)
431 device->device_release(device);
432 }
433
434 static void dma_device_put(struct dma_device *device)
435 {
436 lockdep_assert_held(&dma_list_mutex);
437 kref_put(&device->ref, dma_device_release);
438 }
439
440 /**
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan: channel to grab
443 *
444 * Must be called under dma_list_mutex.
445 */
446 static int dma_chan_get(struct dma_chan *chan)
447 {
448 struct module *owner = dma_chan_to_owner(chan);
449 int ret;
450
451 /* The channel is already in use, update client count */
452 if (chan->client_count) {
453 __module_get(owner);
454 goto out;
455 }
456
457 if (!try_module_get(owner))
458 return -ENODEV;
459
460 ret = kref_get_unless_zero(&chan->device->ref);
461 if (!ret) {
462 ret = -ENODEV;
463 goto module_put_out;
464 }
465
466 /* allocate upon first client reference */
467 if (chan->device->device_alloc_chan_resources) {
468 ret = chan->device->device_alloc_chan_resources(chan);
469 if (ret < 0)
470 goto err_out;
471 }
472
473 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
474 balance_ref_count(chan);
475
476 out:
477 chan->client_count++;
478 return 0;
479
480 err_out:
481 dma_device_put(chan->device);
482 module_put_out:
483 module_put(owner);
484 return ret;
485 }
486
487 /**
488 * dma_chan_put - drop a reference to a DMA channel's parent driver module
489 * @chan: channel to release
490 *
491 * Must be called under dma_list_mutex.
492 */
493 static void dma_chan_put(struct dma_chan *chan)
494 {
495 /* This channel is not in use, bail out */
496 if (!chan->client_count)
497 return;
498
499 chan->client_count--;
500
501 /* This channel is not in use anymore, free it */
502 if (!chan->client_count && chan->device->device_free_chan_resources) {
503 /* Make sure all operations have completed */
504 dmaengine_synchronize(chan);
505 chan->device->device_free_chan_resources(chan);
506 }
507
508 /* If the channel is used via a DMA request router, free the mapping */
509 if (chan->router && chan->router->route_free) {
510 chan->router->route_free(chan->router->dev, chan->route_data);
511 chan->router = NULL;
512 chan->route_data = NULL;
513 }
514
515 dma_device_put(chan->device);
516 module_put(dma_chan_to_owner(chan));
517 }
518
519 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
520 {
521 enum dma_status status;
522 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
523
524 dma_async_issue_pending(chan);
525 do {
526 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
527 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
528 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
529 return DMA_ERROR;
530 }
531 if (status != DMA_IN_PROGRESS)
532 break;
533 cpu_relax();
534 } while (1);
535
536 return status;
537 }
538 EXPORT_SYMBOL(dma_sync_wait);
539
540 /**
541 * dma_find_channel - find a channel to carry out the operation
542 * @tx_type: transaction type
543 */
544 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
545 {
546 return this_cpu_read(channel_table[tx_type]->chan);
547 }
548 EXPORT_SYMBOL(dma_find_channel);
549
550 /**
551 * dma_issue_pending_all - flush all pending operations across all channels
552 */
553 void dma_issue_pending_all(void)
554 {
555 struct dma_device *device;
556 struct dma_chan *chan;
557
558 rcu_read_lock();
559 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
560 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
561 continue;
562 list_for_each_entry(chan, &device->channels, device_node)
563 if (chan->client_count)
564 device->device_issue_pending(chan);
565 }
566 rcu_read_unlock();
567 }
568 EXPORT_SYMBOL(dma_issue_pending_all);
569
570 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
571 {
572 struct dma_device *device;
573
574 if (!chan || !caps)
575 return -EINVAL;
576
577 device = chan->device;
578
579 /* check if the channel supports slave transactions */
580 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
581 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
582 return -ENXIO;
583
584 /*
585 * Check whether it reports it uses the generic slave
586 * capabilities, if not, that means it doesn't support any
587 * kind of slave capabilities reporting.
588 */
589 if (!device->directions)
590 return -ENXIO;
591
592 caps->src_addr_widths = device->src_addr_widths;
593 caps->dst_addr_widths = device->dst_addr_widths;
594 caps->directions = device->directions;
595 caps->max_burst = device->max_burst;
596 caps->residue_granularity = device->residue_granularity;
597 caps->descriptor_reuse = device->descriptor_reuse;
598 caps->cmd_pause = !!device->device_pause;
599 caps->cmd_resume = !!device->device_resume;
600 caps->cmd_terminate = !!device->device_terminate_all;
601
602 return 0;
603 }
604 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
605
606 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
607 struct dma_device *dev,
608 dma_filter_fn fn, void *fn_param)
609 {
610 struct dma_chan *chan;
611
612 if (mask && !dma_device_satisfies_mask(dev, mask)) {
613 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
614 return NULL;
615 }
616 /* devices with multiple channels need special handling as we need to
617 * ensure that all channels are either private or public.
618 */
619 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
620 list_for_each_entry(chan, &dev->channels, device_node) {
621 /* some channels are already publicly allocated */
622 if (chan->client_count)
623 return NULL;
624 }
625
626 list_for_each_entry(chan, &dev->channels, device_node) {
627 if (chan->client_count) {
628 dev_dbg(dev->dev, "%s: %s busy\n",
629 __func__, dma_chan_name(chan));
630 continue;
631 }
632 if (fn && !fn(chan, fn_param)) {
633 dev_dbg(dev->dev, "%s: %s filter said false\n",
634 __func__, dma_chan_name(chan));
635 continue;
636 }
637 return chan;
638 }
639
640 return NULL;
641 }
642
643 static struct dma_chan *find_candidate(struct dma_device *device,
644 const dma_cap_mask_t *mask,
645 dma_filter_fn fn, void *fn_param)
646 {
647 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
648 int err;
649
650 if (chan) {
651 /* Found a suitable channel, try to grab, prep, and return it.
652 * We first set DMA_PRIVATE to disable balance_ref_count as this
653 * channel will not be published in the general-purpose
654 * allocator
655 */
656 dma_cap_set(DMA_PRIVATE, device->cap_mask);
657 device->privatecnt++;
658 err = dma_chan_get(chan);
659
660 if (err) {
661 if (err == -ENODEV) {
662 dev_dbg(device->dev, "%s: %s module removed\n",
663 __func__, dma_chan_name(chan));
664 list_del_rcu(&device->global_node);
665 } else
666 dev_dbg(device->dev,
667 "%s: failed to get %s: (%d)\n",
668 __func__, dma_chan_name(chan), err);
669
670 if (--device->privatecnt == 0)
671 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
672
673 chan = ERR_PTR(err);
674 }
675 }
676
677 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
678 }
679
680 /**
681 * dma_get_slave_channel - try to get specific channel exclusively
682 * @chan: target channel
683 */
684 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
685 {
686 int err = -EBUSY;
687
688 /* lock against __dma_request_channel */
689 mutex_lock(&dma_list_mutex);
690
691 if (chan->client_count == 0) {
692 struct dma_device *device = chan->device;
693
694 dma_cap_set(DMA_PRIVATE, device->cap_mask);
695 device->privatecnt++;
696 err = dma_chan_get(chan);
697 if (err) {
698 dev_dbg(chan->device->dev,
699 "%s: failed to get %s: (%d)\n",
700 __func__, dma_chan_name(chan), err);
701 chan = NULL;
702 if (--device->privatecnt == 0)
703 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
704 }
705 } else
706 chan = NULL;
707
708 mutex_unlock(&dma_list_mutex);
709
710
711 return chan;
712 }
713 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
714
715 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
716 {
717 dma_cap_mask_t mask;
718 struct dma_chan *chan;
719
720 dma_cap_zero(mask);
721 dma_cap_set(DMA_SLAVE, mask);
722
723 /* lock against __dma_request_channel */
724 mutex_lock(&dma_list_mutex);
725
726 chan = find_candidate(device, &mask, NULL, NULL);
727
728 mutex_unlock(&dma_list_mutex);
729
730 return IS_ERR(chan) ? NULL : chan;
731 }
732 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
733
734 /**
735 * __dma_request_channel - try to allocate an exclusive channel
736 * @mask: capabilities that the channel must satisfy
737 * @fn: optional callback to disposition available channels
738 * @fn_param: opaque parameter to pass to dma_filter_fn()
739 * @np: device node to look for DMA channels
740 *
741 * Returns pointer to appropriate DMA channel on success or NULL.
742 */
743 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
744 dma_filter_fn fn, void *fn_param,
745 struct device_node *np)
746 {
747 struct dma_device *device, *_d;
748 struct dma_chan *chan = NULL;
749
750 /* Find a channel */
751 mutex_lock(&dma_list_mutex);
752 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
753 /* Finds a DMA controller with matching device node */
754 if (np && device->dev->of_node && np != device->dev->of_node)
755 continue;
756
757 chan = find_candidate(device, mask, fn, fn_param);
758 if (!IS_ERR(chan))
759 break;
760
761 chan = NULL;
762 }
763 mutex_unlock(&dma_list_mutex);
764
765 pr_debug("%s: %s (%s)\n",
766 __func__,
767 chan ? "success" : "fail",
768 chan ? dma_chan_name(chan) : NULL);
769
770 return chan;
771 }
772 EXPORT_SYMBOL_GPL(__dma_request_channel);
773
774 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
775 const char *name,
776 struct device *dev)
777 {
778 int i;
779
780 if (!device->filter.mapcnt)
781 return NULL;
782
783 for (i = 0; i < device->filter.mapcnt; i++) {
784 const struct dma_slave_map *map = &device->filter.map[i];
785
786 if (!strcmp(map->devname, dev_name(dev)) &&
787 !strcmp(map->slave, name))
788 return map;
789 }
790
791 return NULL;
792 }
793
794 /**
795 * dma_request_chan - try to allocate an exclusive slave channel
796 * @dev: pointer to client device structure
797 * @name: slave channel name
798 *
799 * Returns pointer to appropriate DMA channel on success or an error pointer.
800 */
801 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
802 {
803 struct dma_device *d, *_d;
804 struct dma_chan *chan = NULL;
805
806 /* If device-tree is present get slave info from here */
807 if (dev->of_node)
808 chan = of_dma_request_slave_channel(dev->of_node, name);
809
810 /* If device was enumerated by ACPI get slave info from here */
811 if (has_acpi_companion(dev) && !chan)
812 chan = acpi_dma_request_slave_chan_by_name(dev, name);
813
814 if (PTR_ERR(chan) == -EPROBE_DEFER)
815 return chan;
816
817 if (!IS_ERR_OR_NULL(chan))
818 goto found;
819
820 /* Try to find the channel via the DMA filter map(s) */
821 mutex_lock(&dma_list_mutex);
822 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
823 dma_cap_mask_t mask;
824 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
825
826 if (!map)
827 continue;
828
829 dma_cap_zero(mask);
830 dma_cap_set(DMA_SLAVE, mask);
831
832 chan = find_candidate(d, &mask, d->filter.fn, map->param);
833 if (!IS_ERR(chan))
834 break;
835 }
836 mutex_unlock(&dma_list_mutex);
837
838 if (IS_ERR_OR_NULL(chan))
839 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
840
841 found:
842 #ifdef CONFIG_DEBUG_FS
843 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev),
844 name);
845 #endif
846
847 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
848 if (!chan->name)
849 return chan;
850 chan->slave = dev;
851
852 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
853 DMA_SLAVE_NAME))
854 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
855 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
856 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
857
858 return chan;
859 }
860 EXPORT_SYMBOL_GPL(dma_request_chan);
861
862 /**
863 * dma_request_slave_channel - try to allocate an exclusive slave channel
864 * @dev: pointer to client device structure
865 * @name: slave channel name
866 *
867 * Returns pointer to appropriate DMA channel on success or NULL.
868 */
869 struct dma_chan *dma_request_slave_channel(struct device *dev,
870 const char *name)
871 {
872 struct dma_chan *ch = dma_request_chan(dev, name);
873 if (IS_ERR(ch))
874 return NULL;
875
876 return ch;
877 }
878 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
879
880 /**
881 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
882 * @mask: capabilities that the channel must satisfy
883 *
884 * Returns pointer to appropriate DMA channel on success or an error pointer.
885 */
886 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
887 {
888 struct dma_chan *chan;
889
890 if (!mask)
891 return ERR_PTR(-ENODEV);
892
893 chan = __dma_request_channel(mask, NULL, NULL, NULL);
894 if (!chan) {
895 mutex_lock(&dma_list_mutex);
896 if (list_empty(&dma_device_list))
897 chan = ERR_PTR(-EPROBE_DEFER);
898 else
899 chan = ERR_PTR(-ENODEV);
900 mutex_unlock(&dma_list_mutex);
901 }
902
903 return chan;
904 }
905 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
906
907 void dma_release_channel(struct dma_chan *chan)
908 {
909 mutex_lock(&dma_list_mutex);
910 WARN_ONCE(chan->client_count != 1,
911 "chan reference count %d != 1\n", chan->client_count);
912 dma_chan_put(chan);
913 /* drop PRIVATE cap enabled by __dma_request_channel() */
914 if (--chan->device->privatecnt == 0)
915 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
916
917 if (chan->slave) {
918 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
919 sysfs_remove_link(&chan->slave->kobj, chan->name);
920 kfree(chan->name);
921 chan->name = NULL;
922 chan->slave = NULL;
923 }
924
925 #ifdef CONFIG_DEBUG_FS
926 kfree(chan->dbg_client_name);
927 chan->dbg_client_name = NULL;
928 #endif
929 mutex_unlock(&dma_list_mutex);
930 }
931 EXPORT_SYMBOL_GPL(dma_release_channel);
932
933 /**
934 * dmaengine_get - register interest in dma_channels
935 */
936 void dmaengine_get(void)
937 {
938 struct dma_device *device, *_d;
939 struct dma_chan *chan;
940 int err;
941
942 mutex_lock(&dma_list_mutex);
943 dmaengine_ref_count++;
944
945 /* try to grab channels */
946 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
947 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
948 continue;
949 list_for_each_entry(chan, &device->channels, device_node) {
950 err = dma_chan_get(chan);
951 if (err == -ENODEV) {
952 /* module removed before we could use it */
953 list_del_rcu(&device->global_node);
954 break;
955 } else if (err)
956 dev_dbg(chan->device->dev,
957 "%s: failed to get %s: (%d)\n",
958 __func__, dma_chan_name(chan), err);
959 }
960 }
961
962 /* if this is the first reference and there were channels
963 * waiting we need to rebalance to get those channels
964 * incorporated into the channel table
965 */
966 if (dmaengine_ref_count == 1)
967 dma_channel_rebalance();
968 mutex_unlock(&dma_list_mutex);
969 }
970 EXPORT_SYMBOL(dmaengine_get);
971
972 /**
973 * dmaengine_put - let DMA drivers be removed when ref_count == 0
974 */
975 void dmaengine_put(void)
976 {
977 struct dma_device *device, *_d;
978 struct dma_chan *chan;
979
980 mutex_lock(&dma_list_mutex);
981 dmaengine_ref_count--;
982 BUG_ON(dmaengine_ref_count < 0);
983 /* drop channel references */
984 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
985 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
986 continue;
987 list_for_each_entry(chan, &device->channels, device_node)
988 dma_chan_put(chan);
989 }
990 mutex_unlock(&dma_list_mutex);
991 }
992 EXPORT_SYMBOL(dmaengine_put);
993
994 static bool device_has_all_tx_types(struct dma_device *device)
995 {
996 /* A device that satisfies this test has channels that will never cause
997 * an async_tx channel switch event as all possible operation types can
998 * be handled.
999 */
1000 #ifdef CONFIG_ASYNC_TX_DMA
1001 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1002 return false;
1003 #endif
1004
1005 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1006 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1007 return false;
1008 #endif
1009
1010 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1011 if (!dma_has_cap(DMA_XOR, device->cap_mask))
1012 return false;
1013
1014 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1015 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1016 return false;
1017 #endif
1018 #endif
1019
1020 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1021 if (!dma_has_cap(DMA_PQ, device->cap_mask))
1022 return false;
1023
1024 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1025 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1026 return false;
1027 #endif
1028 #endif
1029
1030 return true;
1031 }
1032
1033 static int get_dma_id(struct dma_device *device)
1034 {
1035 int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1036
1037 if (rc < 0)
1038 return rc;
1039 device->dev_id = rc;
1040 return 0;
1041 }
1042
1043 static int __dma_async_device_channel_register(struct dma_device *device,
1044 struct dma_chan *chan)
1045 {
1046 int rc = 0;
1047
1048 chan->local = alloc_percpu(typeof(*chan->local));
1049 if (!chan->local)
1050 goto err_out;
1051 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1052 if (!chan->dev) {
1053 free_percpu(chan->local);
1054 chan->local = NULL;
1055 goto err_out;
1056 }
1057
1058 /*
1059 * When the chan_id is a negative value, we are dynamically adding
1060 * the channel. Otherwise we are static enumerating.
1061 */
1062 mutex_lock(&device->chan_mutex);
1063 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1064 mutex_unlock(&device->chan_mutex);
1065 if (chan->chan_id < 0) {
1066 pr_err("%s: unable to alloc ida for chan: %d\n",
1067 __func__, chan->chan_id);
1068 goto err_out;
1069 }
1070
1071 chan->dev->device.class = &dma_devclass;
1072 chan->dev->device.parent = device->dev;
1073 chan->dev->chan = chan;
1074 chan->dev->dev_id = device->dev_id;
1075 dev_set_name(&chan->dev->device, "dma%dchan%d",
1076 device->dev_id, chan->chan_id);
1077 rc = device_register(&chan->dev->device);
1078 if (rc)
1079 goto err_out_ida;
1080 chan->client_count = 0;
1081 device->chancnt++;
1082
1083 return 0;
1084
1085 err_out_ida:
1086 mutex_lock(&device->chan_mutex);
1087 ida_free(&device->chan_ida, chan->chan_id);
1088 mutex_unlock(&device->chan_mutex);
1089 err_out:
1090 free_percpu(chan->local);
1091 kfree(chan->dev);
1092 return rc;
1093 }
1094
1095 int dma_async_device_channel_register(struct dma_device *device,
1096 struct dma_chan *chan)
1097 {
1098 int rc;
1099
1100 rc = __dma_async_device_channel_register(device, chan);
1101 if (rc < 0)
1102 return rc;
1103
1104 dma_channel_rebalance();
1105 return 0;
1106 }
1107 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1108
1109 static void __dma_async_device_channel_unregister(struct dma_device *device,
1110 struct dma_chan *chan)
1111 {
1112 WARN_ONCE(!device->device_release && chan->client_count,
1113 "%s called while %d clients hold a reference\n",
1114 __func__, chan->client_count);
1115 mutex_lock(&dma_list_mutex);
1116 list_del(&chan->device_node);
1117 device->chancnt--;
1118 chan->dev->chan = NULL;
1119 mutex_unlock(&dma_list_mutex);
1120 mutex_lock(&device->chan_mutex);
1121 ida_free(&device->chan_ida, chan->chan_id);
1122 mutex_unlock(&device->chan_mutex);
1123 device_unregister(&chan->dev->device);
1124 free_percpu(chan->local);
1125 }
1126
1127 void dma_async_device_channel_unregister(struct dma_device *device,
1128 struct dma_chan *chan)
1129 {
1130 __dma_async_device_channel_unregister(device, chan);
1131 dma_channel_rebalance();
1132 }
1133 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1134
1135 /**
1136 * dma_async_device_register - registers DMA devices found
1137 * @device: pointer to &struct dma_device
1138 *
1139 * After calling this routine the structure should not be freed except in the
1140 * device_release() callback which will be called after
1141 * dma_async_device_unregister() is called and no further references are taken.
1142 */
1143 int dma_async_device_register(struct dma_device *device)
1144 {
1145 int rc;
1146 struct dma_chan* chan;
1147
1148 if (!device)
1149 return -ENODEV;
1150
1151 /* validate device routines */
1152 if (!device->dev) {
1153 pr_err("DMAdevice must have dev\n");
1154 return -EIO;
1155 }
1156
1157 device->owner = device->dev->driver->owner;
1158
1159 if (dma_has_cap(DMA_MEMCPY, device->cap_mask) && !device->device_prep_dma_memcpy) {
1160 dev_err(device->dev,
1161 "Device claims capability %s, but op is not defined\n",
1162 "DMA_MEMCPY");
1163 return -EIO;
1164 }
1165
1166 if (dma_has_cap(DMA_XOR, device->cap_mask) && !device->device_prep_dma_xor) {
1167 dev_err(device->dev,
1168 "Device claims capability %s, but op is not defined\n",
1169 "DMA_XOR");
1170 return -EIO;
1171 }
1172
1173 if (dma_has_cap(DMA_XOR_VAL, device->cap_mask) && !device->device_prep_dma_xor_val) {
1174 dev_err(device->dev,
1175 "Device claims capability %s, but op is not defined\n",
1176 "DMA_XOR_VAL");
1177 return -EIO;
1178 }
1179
1180 if (dma_has_cap(DMA_PQ, device->cap_mask) && !device->device_prep_dma_pq) {
1181 dev_err(device->dev,
1182 "Device claims capability %s, but op is not defined\n",
1183 "DMA_PQ");
1184 return -EIO;
1185 }
1186
1187 if (dma_has_cap(DMA_PQ_VAL, device->cap_mask) && !device->device_prep_dma_pq_val) {
1188 dev_err(device->dev,
1189 "Device claims capability %s, but op is not defined\n",
1190 "DMA_PQ_VAL");
1191 return -EIO;
1192 }
1193
1194 if (dma_has_cap(DMA_MEMSET, device->cap_mask) && !device->device_prep_dma_memset) {
1195 dev_err(device->dev,
1196 "Device claims capability %s, but op is not defined\n",
1197 "DMA_MEMSET");
1198 return -EIO;
1199 }
1200
1201 if (dma_has_cap(DMA_INTERRUPT, device->cap_mask) && !device->device_prep_dma_interrupt) {
1202 dev_err(device->dev,
1203 "Device claims capability %s, but op is not defined\n",
1204 "DMA_INTERRUPT");
1205 return -EIO;
1206 }
1207
1208 if (dma_has_cap(DMA_CYCLIC, device->cap_mask) && !device->device_prep_dma_cyclic) {
1209 dev_err(device->dev,
1210 "Device claims capability %s, but op is not defined\n",
1211 "DMA_CYCLIC");
1212 return -EIO;
1213 }
1214
1215 if (dma_has_cap(DMA_INTERLEAVE, device->cap_mask) && !device->device_prep_interleaved_dma) {
1216 dev_err(device->dev,
1217 "Device claims capability %s, but op is not defined\n",
1218 "DMA_INTERLEAVE");
1219 return -EIO;
1220 }
1221
1222
1223 if (!device->device_tx_status) {
1224 dev_err(device->dev, "Device tx_status is not defined\n");
1225 return -EIO;
1226 }
1227
1228
1229 if (!device->device_issue_pending) {
1230 dev_err(device->dev, "Device issue_pending is not defined\n");
1231 return -EIO;
1232 }
1233
1234 if (!device->device_release)
1235 dev_dbg(device->dev,
1236 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1237
1238 kref_init(&device->ref);
1239
1240 /* note: this only matters in the
1241 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1242 */
1243 if (device_has_all_tx_types(device))
1244 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1245
1246 rc = get_dma_id(device);
1247 if (rc != 0)
1248 return rc;
1249
1250 mutex_init(&device->chan_mutex);
1251 ida_init(&device->chan_ida);
1252
1253 /* represent channels in sysfs. Probably want devs too */
1254 list_for_each_entry(chan, &device->channels, device_node) {
1255 rc = __dma_async_device_channel_register(device, chan);
1256 if (rc < 0)
1257 goto err_out;
1258 }
1259
1260 mutex_lock(&dma_list_mutex);
1261 /* take references on public channels */
1262 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1263 list_for_each_entry(chan, &device->channels, device_node) {
1264 /* if clients are already waiting for channels we need
1265 * to take references on their behalf
1266 */
1267 if (dma_chan_get(chan) == -ENODEV) {
1268 /* note we can only get here for the first
1269 * channel as the remaining channels are
1270 * guaranteed to get a reference
1271 */
1272 rc = -ENODEV;
1273 mutex_unlock(&dma_list_mutex);
1274 goto err_out;
1275 }
1276 }
1277 list_add_tail_rcu(&device->global_node, &dma_device_list);
1278 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1279 device->privatecnt++; /* Always private */
1280 dma_channel_rebalance();
1281 mutex_unlock(&dma_list_mutex);
1282
1283 dmaengine_debug_register(device);
1284
1285 return 0;
1286
1287 err_out:
1288 /* if we never registered a channel just release the idr */
1289 if (!device->chancnt) {
1290 ida_free(&dma_ida, device->dev_id);
1291 return rc;
1292 }
1293
1294 list_for_each_entry(chan, &device->channels, device_node) {
1295 if (chan->local == NULL)
1296 continue;
1297 mutex_lock(&dma_list_mutex);
1298 chan->dev->chan = NULL;
1299 mutex_unlock(&dma_list_mutex);
1300 device_unregister(&chan->dev->device);
1301 free_percpu(chan->local);
1302 }
1303 return rc;
1304 }
1305 EXPORT_SYMBOL(dma_async_device_register);
1306
1307 /**
1308 * dma_async_device_unregister - unregister a DMA device
1309 * @device: pointer to &struct dma_device
1310 *
1311 * This routine is called by dma driver exit routines, dmaengine holds module
1312 * references to prevent it being called while channels are in use.
1313 */
1314 void dma_async_device_unregister(struct dma_device *device)
1315 {
1316 struct dma_chan *chan, *n;
1317
1318 dmaengine_debug_unregister(device);
1319
1320 list_for_each_entry_safe(chan, n, &device->channels, device_node)
1321 __dma_async_device_channel_unregister(device, chan);
1322
1323 mutex_lock(&dma_list_mutex);
1324 /*
1325 * setting DMA_PRIVATE ensures the device being torn down will not
1326 * be used in the channel_table
1327 */
1328 dma_cap_set(DMA_PRIVATE, device->cap_mask);
1329 dma_channel_rebalance();
1330 ida_free(&dma_ida, device->dev_id);
1331 dma_device_put(device);
1332 mutex_unlock(&dma_list_mutex);
1333 }
1334 EXPORT_SYMBOL(dma_async_device_unregister);
1335
1336 static void dmam_device_release(struct device *dev, void *res)
1337 {
1338 struct dma_device *device;
1339
1340 device = *(struct dma_device **)res;
1341 dma_async_device_unregister(device);
1342 }
1343
1344 /**
1345 * dmaenginem_async_device_register - registers DMA devices found
1346 * @device: pointer to &struct dma_device
1347 *
1348 * The operation is managed and will be undone on driver detach.
1349 */
1350 int dmaenginem_async_device_register(struct dma_device *device)
1351 {
1352 void *p;
1353 int ret;
1354
1355 p = devres_alloc(dmam_device_release, sizeof(void *), GFP_KERNEL);
1356 if (!p)
1357 return -ENOMEM;
1358
1359 ret = dma_async_device_register(device);
1360 if (!ret) {
1361 *(struct dma_device **)p = device;
1362 devres_add(device->dev, p);
1363 } else {
1364 devres_free(p);
1365 }
1366
1367 return ret;
1368 }
1369 EXPORT_SYMBOL(dmaenginem_async_device_register);
1370
1371 struct dmaengine_unmap_pool {
1372 struct kmem_cache *cache;
1373 const char *name;
1374 mempool_t *pool;
1375 size_t size;
1376 };
1377
1378 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1379 static struct dmaengine_unmap_pool unmap_pool[] = {
1380 __UNMAP_POOL(2),
1381 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1382 __UNMAP_POOL(16),
1383 __UNMAP_POOL(128),
1384 __UNMAP_POOL(256),
1385 #endif
1386 };
1387
1388 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1389 {
1390 int order = get_count_order(nr);
1391
1392 switch (order) {
1393 case 0 ... 1:
1394 return &unmap_pool[0];
1395 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1396 case 2 ... 4:
1397 return &unmap_pool[1];
1398 case 5 ... 7:
1399 return &unmap_pool[2];
1400 case 8:
1401 return &unmap_pool[3];
1402 #endif
1403 default:
1404 BUG();
1405 return NULL;
1406 }
1407 }
1408
1409 static void dmaengine_unmap(struct kref *kref)
1410 {
1411 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1412 struct device *dev = unmap->dev;
1413 int cnt, i;
1414
1415 cnt = unmap->to_cnt;
1416 for (i = 0; i < cnt; i++)
1417 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1418 DMA_TO_DEVICE);
1419 cnt += unmap->from_cnt;
1420 for (; i < cnt; i++)
1421 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1422 DMA_FROM_DEVICE);
1423 cnt += unmap->bidi_cnt;
1424 for (; i < cnt; i++) {
1425 if (unmap->addr[i] == 0)
1426 continue;
1427 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1428 DMA_BIDIRECTIONAL);
1429 }
1430 cnt = unmap->map_cnt;
1431 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1432 }
1433
1434 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1435 {
1436 if (unmap)
1437 kref_put(&unmap->kref, dmaengine_unmap);
1438 }
1439 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1440
1441 static void dmaengine_destroy_unmap_pool(void)
1442 {
1443 int i;
1444
1445 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1446 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1447
1448 mempool_destroy(p->pool);
1449 p->pool = NULL;
1450 kmem_cache_destroy(p->cache);
1451 p->cache = NULL;
1452 }
1453 }
1454
1455 static int __init dmaengine_init_unmap_pool(void)
1456 {
1457 int i;
1458
1459 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1460 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1461 size_t size;
1462
1463 size = sizeof(struct dmaengine_unmap_data) +
1464 sizeof(dma_addr_t) * p->size;
1465
1466 p->cache = kmem_cache_create(p->name, size, 0,
1467 SLAB_HWCACHE_ALIGN, NULL);
1468 if (!p->cache)
1469 break;
1470 p->pool = mempool_create_slab_pool(1, p->cache);
1471 if (!p->pool)
1472 break;
1473 }
1474
1475 if (i == ARRAY_SIZE(unmap_pool))
1476 return 0;
1477
1478 dmaengine_destroy_unmap_pool();
1479 return -ENOMEM;
1480 }
1481
1482 struct dmaengine_unmap_data *
1483 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1484 {
1485 struct dmaengine_unmap_data *unmap;
1486
1487 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1488 if (!unmap)
1489 return NULL;
1490
1491 memset(unmap, 0, sizeof(*unmap));
1492 kref_init(&unmap->kref);
1493 unmap->dev = dev;
1494 unmap->map_cnt = nr;
1495
1496 return unmap;
1497 }
1498 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1499
1500 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1501 struct dma_chan *chan)
1502 {
1503 tx->chan = chan;
1504 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1505 spin_lock_init(&tx->lock);
1506 #endif
1507 }
1508 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1509
1510 static inline int desc_check_and_set_metadata_mode(
1511 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1512 {
1513 /* Make sure that the metadata mode is not mixed */
1514 if (!desc->desc_metadata_mode) {
1515 if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1516 desc->desc_metadata_mode = mode;
1517 else
1518 return -ENOTSUPP;
1519 } else if (desc->desc_metadata_mode != mode) {
1520 return -EINVAL;
1521 }
1522
1523 return 0;
1524 }
1525
1526 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1527 void *data, size_t len)
1528 {
1529 int ret;
1530
1531 if (!desc)
1532 return -EINVAL;
1533
1534 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1535 if (ret)
1536 return ret;
1537
1538 if (!desc->metadata_ops || !desc->metadata_ops->attach)
1539 return -ENOTSUPP;
1540
1541 return desc->metadata_ops->attach(desc, data, len);
1542 }
1543 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1544
1545 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1546 size_t *payload_len, size_t *max_len)
1547 {
1548 int ret;
1549
1550 if (!desc)
1551 return ERR_PTR(-EINVAL);
1552
1553 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1554 if (ret)
1555 return ERR_PTR(ret);
1556
1557 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1558 return ERR_PTR(-ENOTSUPP);
1559
1560 return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1561 }
1562 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1563
1564 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1565 size_t payload_len)
1566 {
1567 int ret;
1568
1569 if (!desc)
1570 return -EINVAL;
1571
1572 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1573 if (ret)
1574 return ret;
1575
1576 if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1577 return -ENOTSUPP;
1578
1579 return desc->metadata_ops->set_len(desc, payload_len);
1580 }
1581 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1582
1583 /**
1584 * dma_wait_for_async_tx - spin wait for a transaction to complete
1585 * @tx: in-flight transaction to wait on
1586 */
1587 enum dma_status
1588 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1589 {
1590 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1591
1592 if (!tx)
1593 return DMA_COMPLETE;
1594
1595 while (tx->cookie == -EBUSY) {
1596 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1597 dev_err(tx->chan->device->dev,
1598 "%s timeout waiting for descriptor submission\n",
1599 __func__);
1600 return DMA_ERROR;
1601 }
1602 cpu_relax();
1603 }
1604 return dma_sync_wait(tx->chan, tx->cookie);
1605 }
1606 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1607
1608 /**
1609 * dma_run_dependencies - process dependent operations on the target channel
1610 * @tx: transaction with dependencies
1611 *
1612 * Helper routine for DMA drivers to process (start) dependent operations
1613 * on their target channel.
1614 */
1615 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1616 {
1617 struct dma_async_tx_descriptor *dep = txd_next(tx);
1618 struct dma_async_tx_descriptor *dep_next;
1619 struct dma_chan *chan;
1620
1621 if (!dep)
1622 return;
1623
1624 /* we'll submit tx->next now, so clear the link */
1625 txd_clear_next(tx);
1626 chan = dep->chan;
1627
1628 /* keep submitting up until a channel switch is detected
1629 * in that case we will be called again as a result of
1630 * processing the interrupt from async_tx_channel_switch
1631 */
1632 for (; dep; dep = dep_next) {
1633 txd_lock(dep);
1634 txd_clear_parent(dep);
1635 dep_next = txd_next(dep);
1636 if (dep_next && dep_next->chan == chan)
1637 txd_clear_next(dep); /* ->next will be submitted */
1638 else
1639 dep_next = NULL; /* submit current dep and terminate */
1640 txd_unlock(dep);
1641
1642 dep->tx_submit(dep);
1643 }
1644
1645 chan->device->device_issue_pending(chan);
1646 }
1647 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1648
1649 static int __init dma_bus_init(void)
1650 {
1651 int err = dmaengine_init_unmap_pool();
1652
1653 if (err)
1654 return err;
1655
1656 err = class_register(&dma_devclass);
1657 if (!err)
1658 dmaengine_debugfs_init();
1659
1660 return err;
1661 }
1662 arch_initcall(dma_bus_init);