]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/dma/dmaengine.c
Merge branches 'topic/fixes', 'topic/cleanups' and 'topic/documentation' into for...
[mirror_ubuntu-zesty-kernel.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21
22 /*
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
27 *
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
31 *
32 * LOCKING:
33 *
34 * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35 * Both of these are protected by a mutex, dma_list_mutex.
36 *
37 * Each device has a channels list, which runs unlocked but is never modified
38 * once the device is registered, it's just setup by the driver.
39 *
40 * Each client is responsible for keeping track of the channels it uses. See
41 * the definition of dma_event_callback in dmaengine.h.
42 *
43 * Each device has a kref, which is initialized to 1 when the device is
44 * registered. A kref_get is done for each device registered. When the
45 * device is released, the corresponding kref_put is done in the release
46 * method. Every time one of the device's channels is allocated to a client,
47 * a kref_get occurs. When the channel is freed, the corresponding kref_put
48 * happens. The device's release function does a completion, so
49 * unregister_device does a remove event, device_unregister, a kref_put
50 * for the first reference, then waits on the completion for all other
51 * references to finish.
52 *
53 * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54 * with a kref and a per_cpu local_t. A dma_chan_get is called when a client
55 * signals that it wants to use a channel, and dma_chan_put is called when
56 * a channel is removed or a client using it is unregistered. A client can
57 * take extra references per outstanding transaction, as is the case with
58 * the NET DMA client. The release function does a kref_put on the device.
59 * -ChrisL, DanW
60 */
61
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/mm.h>
65 #include <linux/device.h>
66 #include <linux/dmaengine.h>
67 #include <linux/hardirq.h>
68 #include <linux/spinlock.h>
69 #include <linux/percpu.h>
70 #include <linux/rcupdate.h>
71 #include <linux/mutex.h>
72 #include <linux/jiffies.h>
73
74 static DEFINE_MUTEX(dma_list_mutex);
75 static LIST_HEAD(dma_device_list);
76 static LIST_HEAD(dma_client_list);
77
78 /* --- sysfs implementation --- */
79
80 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
81 {
82 struct dma_chan *chan = to_dma_chan(dev);
83 unsigned long count = 0;
84 int i;
85
86 for_each_possible_cpu(i)
87 count += per_cpu_ptr(chan->local, i)->memcpy_count;
88
89 return sprintf(buf, "%lu\n", count);
90 }
91
92 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
93 char *buf)
94 {
95 struct dma_chan *chan = to_dma_chan(dev);
96 unsigned long count = 0;
97 int i;
98
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
101
102 return sprintf(buf, "%lu\n", count);
103 }
104
105 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
106 {
107 struct dma_chan *chan = to_dma_chan(dev);
108 int in_use = 0;
109
110 if (unlikely(chan->slow_ref) &&
111 atomic_read(&chan->refcount.refcount) > 1)
112 in_use = 1;
113 else {
114 if (local_read(&(per_cpu_ptr(chan->local,
115 get_cpu())->refcount)) > 0)
116 in_use = 1;
117 put_cpu();
118 }
119
120 return sprintf(buf, "%d\n", in_use);
121 }
122
123 static struct device_attribute dma_attrs[] = {
124 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
125 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
126 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
127 __ATTR_NULL
128 };
129
130 static void dma_async_device_cleanup(struct kref *kref);
131
132 static void dma_dev_release(struct device *dev)
133 {
134 struct dma_chan *chan = to_dma_chan(dev);
135 kref_put(&chan->device->refcount, dma_async_device_cleanup);
136 }
137
138 static struct class dma_devclass = {
139 .name = "dma",
140 .dev_attrs = dma_attrs,
141 .dev_release = dma_dev_release,
142 };
143
144 /* --- client and device registration --- */
145
146 #define dma_chan_satisfies_mask(chan, mask) \
147 __dma_chan_satisfies_mask((chan), &(mask))
148 static int
149 __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
150 {
151 dma_cap_mask_t has;
152
153 bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
154 DMA_TX_TYPE_END);
155 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
156 }
157
158 /**
159 * dma_client_chan_alloc - try to allocate channels to a client
160 * @client: &dma_client
161 *
162 * Called with dma_list_mutex held.
163 */
164 static void dma_client_chan_alloc(struct dma_client *client)
165 {
166 struct dma_device *device;
167 struct dma_chan *chan;
168 int desc; /* allocated descriptor count */
169 enum dma_state_client ack;
170
171 /* Find a channel */
172 list_for_each_entry(device, &dma_device_list, global_node) {
173 /* Does the client require a specific DMA controller? */
174 if (client->slave && client->slave->dma_dev
175 && client->slave->dma_dev != device->dev)
176 continue;
177
178 list_for_each_entry(chan, &device->channels, device_node) {
179 if (!dma_chan_satisfies_mask(chan, client->cap_mask))
180 continue;
181
182 desc = chan->device->device_alloc_chan_resources(
183 chan, client);
184 if (desc >= 0) {
185 ack = client->event_callback(client,
186 chan,
187 DMA_RESOURCE_AVAILABLE);
188
189 /* we are done once this client rejects
190 * an available resource
191 */
192 if (ack == DMA_ACK) {
193 dma_chan_get(chan);
194 chan->client_count++;
195 } else if (ack == DMA_NAK)
196 return;
197 }
198 }
199 }
200 }
201
202 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
203 {
204 enum dma_status status;
205 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
206
207 dma_async_issue_pending(chan);
208 do {
209 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
210 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
211 printk(KERN_ERR "dma_sync_wait_timeout!\n");
212 return DMA_ERROR;
213 }
214 } while (status == DMA_IN_PROGRESS);
215
216 return status;
217 }
218 EXPORT_SYMBOL(dma_sync_wait);
219
220 /**
221 * dma_chan_cleanup - release a DMA channel's resources
222 * @kref: kernel reference structure that contains the DMA channel device
223 */
224 void dma_chan_cleanup(struct kref *kref)
225 {
226 struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
227 chan->device->device_free_chan_resources(chan);
228 kref_put(&chan->device->refcount, dma_async_device_cleanup);
229 }
230 EXPORT_SYMBOL(dma_chan_cleanup);
231
232 static void dma_chan_free_rcu(struct rcu_head *rcu)
233 {
234 struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
235 int bias = 0x7FFFFFFF;
236 int i;
237 for_each_possible_cpu(i)
238 bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
239 atomic_sub(bias, &chan->refcount.refcount);
240 kref_put(&chan->refcount, dma_chan_cleanup);
241 }
242
243 static void dma_chan_release(struct dma_chan *chan)
244 {
245 atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
246 chan->slow_ref = 1;
247 call_rcu(&chan->rcu, dma_chan_free_rcu);
248 }
249
250 /**
251 * dma_chans_notify_available - broadcast available channels to the clients
252 */
253 static void dma_clients_notify_available(void)
254 {
255 struct dma_client *client;
256
257 mutex_lock(&dma_list_mutex);
258
259 list_for_each_entry(client, &dma_client_list, global_node)
260 dma_client_chan_alloc(client);
261
262 mutex_unlock(&dma_list_mutex);
263 }
264
265 /**
266 * dma_chans_notify_available - tell the clients that a channel is going away
267 * @chan: channel on its way out
268 */
269 static void dma_clients_notify_removed(struct dma_chan *chan)
270 {
271 struct dma_client *client;
272 enum dma_state_client ack;
273
274 mutex_lock(&dma_list_mutex);
275
276 list_for_each_entry(client, &dma_client_list, global_node) {
277 ack = client->event_callback(client, chan,
278 DMA_RESOURCE_REMOVED);
279
280 /* client was holding resources for this channel so
281 * free it
282 */
283 if (ack == DMA_ACK) {
284 dma_chan_put(chan);
285 chan->client_count--;
286 }
287 }
288
289 mutex_unlock(&dma_list_mutex);
290 }
291
292 /**
293 * dma_async_client_register - register a &dma_client
294 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
295 */
296 void dma_async_client_register(struct dma_client *client)
297 {
298 /* validate client data */
299 BUG_ON(dma_has_cap(DMA_SLAVE, client->cap_mask) &&
300 !client->slave);
301
302 mutex_lock(&dma_list_mutex);
303 list_add_tail(&client->global_node, &dma_client_list);
304 mutex_unlock(&dma_list_mutex);
305 }
306 EXPORT_SYMBOL(dma_async_client_register);
307
308 /**
309 * dma_async_client_unregister - unregister a client and free the &dma_client
310 * @client: &dma_client to free
311 *
312 * Force frees any allocated DMA channels, frees the &dma_client memory
313 */
314 void dma_async_client_unregister(struct dma_client *client)
315 {
316 struct dma_device *device;
317 struct dma_chan *chan;
318 enum dma_state_client ack;
319
320 if (!client)
321 return;
322
323 mutex_lock(&dma_list_mutex);
324 /* free all channels the client is holding */
325 list_for_each_entry(device, &dma_device_list, global_node)
326 list_for_each_entry(chan, &device->channels, device_node) {
327 ack = client->event_callback(client, chan,
328 DMA_RESOURCE_REMOVED);
329
330 if (ack == DMA_ACK) {
331 dma_chan_put(chan);
332 chan->client_count--;
333 }
334 }
335
336 list_del(&client->global_node);
337 mutex_unlock(&dma_list_mutex);
338 }
339 EXPORT_SYMBOL(dma_async_client_unregister);
340
341 /**
342 * dma_async_client_chan_request - send all available channels to the
343 * client that satisfy the capability mask
344 * @client - requester
345 */
346 void dma_async_client_chan_request(struct dma_client *client)
347 {
348 mutex_lock(&dma_list_mutex);
349 dma_client_chan_alloc(client);
350 mutex_unlock(&dma_list_mutex);
351 }
352 EXPORT_SYMBOL(dma_async_client_chan_request);
353
354 /**
355 * dma_async_device_register - registers DMA devices found
356 * @device: &dma_device
357 */
358 int dma_async_device_register(struct dma_device *device)
359 {
360 static int id;
361 int chancnt = 0, rc;
362 struct dma_chan* chan;
363
364 if (!device)
365 return -ENODEV;
366
367 /* validate device routines */
368 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
369 !device->device_prep_dma_memcpy);
370 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
371 !device->device_prep_dma_xor);
372 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
373 !device->device_prep_dma_zero_sum);
374 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
375 !device->device_prep_dma_memset);
376 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
377 !device->device_prep_dma_interrupt);
378 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
379 !device->device_prep_slave_sg);
380 BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
381 !device->device_terminate_all);
382
383 BUG_ON(!device->device_alloc_chan_resources);
384 BUG_ON(!device->device_free_chan_resources);
385 BUG_ON(!device->device_is_tx_complete);
386 BUG_ON(!device->device_issue_pending);
387 BUG_ON(!device->dev);
388
389 init_completion(&device->done);
390 kref_init(&device->refcount);
391
392 mutex_lock(&dma_list_mutex);
393 device->dev_id = id++;
394 mutex_unlock(&dma_list_mutex);
395
396 /* represent channels in sysfs. Probably want devs too */
397 list_for_each_entry(chan, &device->channels, device_node) {
398 chan->local = alloc_percpu(typeof(*chan->local));
399 if (chan->local == NULL)
400 continue;
401
402 chan->chan_id = chancnt++;
403 chan->dev.class = &dma_devclass;
404 chan->dev.parent = device->dev;
405 dev_set_name(&chan->dev, "dma%dchan%d",
406 device->dev_id, chan->chan_id);
407
408 rc = device_register(&chan->dev);
409 if (rc) {
410 chancnt--;
411 free_percpu(chan->local);
412 chan->local = NULL;
413 goto err_out;
414 }
415
416 /* One for the channel, one of the class device */
417 kref_get(&device->refcount);
418 kref_get(&device->refcount);
419 kref_init(&chan->refcount);
420 chan->client_count = 0;
421 chan->slow_ref = 0;
422 INIT_RCU_HEAD(&chan->rcu);
423 }
424
425 mutex_lock(&dma_list_mutex);
426 list_add_tail(&device->global_node, &dma_device_list);
427 mutex_unlock(&dma_list_mutex);
428
429 dma_clients_notify_available();
430
431 return 0;
432
433 err_out:
434 list_for_each_entry(chan, &device->channels, device_node) {
435 if (chan->local == NULL)
436 continue;
437 kref_put(&device->refcount, dma_async_device_cleanup);
438 device_unregister(&chan->dev);
439 chancnt--;
440 free_percpu(chan->local);
441 }
442 return rc;
443 }
444 EXPORT_SYMBOL(dma_async_device_register);
445
446 /**
447 * dma_async_device_cleanup - function called when all references are released
448 * @kref: kernel reference object
449 */
450 static void dma_async_device_cleanup(struct kref *kref)
451 {
452 struct dma_device *device;
453
454 device = container_of(kref, struct dma_device, refcount);
455 complete(&device->done);
456 }
457
458 /**
459 * dma_async_device_unregister - unregisters DMA devices
460 * @device: &dma_device
461 */
462 void dma_async_device_unregister(struct dma_device *device)
463 {
464 struct dma_chan *chan;
465
466 mutex_lock(&dma_list_mutex);
467 list_del(&device->global_node);
468 mutex_unlock(&dma_list_mutex);
469
470 list_for_each_entry(chan, &device->channels, device_node) {
471 dma_clients_notify_removed(chan);
472 device_unregister(&chan->dev);
473 dma_chan_release(chan);
474 }
475
476 kref_put(&device->refcount, dma_async_device_cleanup);
477 wait_for_completion(&device->done);
478 }
479 EXPORT_SYMBOL(dma_async_device_unregister);
480
481 /**
482 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
483 * @chan: DMA channel to offload copy to
484 * @dest: destination address (virtual)
485 * @src: source address (virtual)
486 * @len: length
487 *
488 * Both @dest and @src must be mappable to a bus address according to the
489 * DMA mapping API rules for streaming mappings.
490 * Both @dest and @src must stay memory resident (kernel memory or locked
491 * user space pages).
492 */
493 dma_cookie_t
494 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
495 void *src, size_t len)
496 {
497 struct dma_device *dev = chan->device;
498 struct dma_async_tx_descriptor *tx;
499 dma_addr_t dma_dest, dma_src;
500 dma_cookie_t cookie;
501 int cpu;
502
503 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
504 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
505 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
506 DMA_CTRL_ACK);
507
508 if (!tx) {
509 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
510 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
511 return -ENOMEM;
512 }
513
514 tx->callback = NULL;
515 cookie = tx->tx_submit(tx);
516
517 cpu = get_cpu();
518 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
519 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
520 put_cpu();
521
522 return cookie;
523 }
524 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
525
526 /**
527 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
528 * @chan: DMA channel to offload copy to
529 * @page: destination page
530 * @offset: offset in page to copy to
531 * @kdata: source address (virtual)
532 * @len: length
533 *
534 * Both @page/@offset and @kdata must be mappable to a bus address according
535 * to the DMA mapping API rules for streaming mappings.
536 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
537 * locked user space pages)
538 */
539 dma_cookie_t
540 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
541 unsigned int offset, void *kdata, size_t len)
542 {
543 struct dma_device *dev = chan->device;
544 struct dma_async_tx_descriptor *tx;
545 dma_addr_t dma_dest, dma_src;
546 dma_cookie_t cookie;
547 int cpu;
548
549 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
550 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
551 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
552 DMA_CTRL_ACK);
553
554 if (!tx) {
555 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
556 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
557 return -ENOMEM;
558 }
559
560 tx->callback = NULL;
561 cookie = tx->tx_submit(tx);
562
563 cpu = get_cpu();
564 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
565 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
566 put_cpu();
567
568 return cookie;
569 }
570 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
571
572 /**
573 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
574 * @chan: DMA channel to offload copy to
575 * @dest_pg: destination page
576 * @dest_off: offset in page to copy to
577 * @src_pg: source page
578 * @src_off: offset in page to copy from
579 * @len: length
580 *
581 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
582 * address according to the DMA mapping API rules for streaming mappings.
583 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
584 * (kernel memory or locked user space pages).
585 */
586 dma_cookie_t
587 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
588 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
589 size_t len)
590 {
591 struct dma_device *dev = chan->device;
592 struct dma_async_tx_descriptor *tx;
593 dma_addr_t dma_dest, dma_src;
594 dma_cookie_t cookie;
595 int cpu;
596
597 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
598 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
599 DMA_FROM_DEVICE);
600 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
601 DMA_CTRL_ACK);
602
603 if (!tx) {
604 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
605 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
606 return -ENOMEM;
607 }
608
609 tx->callback = NULL;
610 cookie = tx->tx_submit(tx);
611
612 cpu = get_cpu();
613 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
614 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
615 put_cpu();
616
617 return cookie;
618 }
619 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
620
621 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
622 struct dma_chan *chan)
623 {
624 tx->chan = chan;
625 spin_lock_init(&tx->lock);
626 }
627 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
628
629 static int __init dma_bus_init(void)
630 {
631 mutex_init(&dma_list_mutex);
632 return class_register(&dma_devclass);
633 }
634 subsys_initcall(dma_bus_init);
635