]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/dma/dmaengine.c
dmaengine: core: Introduce new, universal API to request a channel
[mirror_ubuntu-zesty-kernel.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/init.h>
49 #include <linux/module.h>
50 #include <linux/mm.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
61 #include <linux/slab.h>
62 #include <linux/acpi.h>
63 #include <linux/acpi_dma.h>
64 #include <linux/of_dma.h>
65 #include <linux/mempool.h>
66
67 static DEFINE_MUTEX(dma_list_mutex);
68 static DEFINE_IDR(dma_idr);
69 static LIST_HEAD(dma_device_list);
70 static long dmaengine_ref_count;
71
72 /* --- sysfs implementation --- */
73
74 /**
75 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
76 * @dev - device node
77 *
78 * Must be called under dma_list_mutex
79 */
80 static struct dma_chan *dev_to_dma_chan(struct device *dev)
81 {
82 struct dma_chan_dev *chan_dev;
83
84 chan_dev = container_of(dev, typeof(*chan_dev), device);
85 return chan_dev->chan;
86 }
87
88 static ssize_t memcpy_count_show(struct device *dev,
89 struct device_attribute *attr, char *buf)
90 {
91 struct dma_chan *chan;
92 unsigned long count = 0;
93 int i;
94 int err;
95
96 mutex_lock(&dma_list_mutex);
97 chan = dev_to_dma_chan(dev);
98 if (chan) {
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->memcpy_count;
101 err = sprintf(buf, "%lu\n", count);
102 } else
103 err = -ENODEV;
104 mutex_unlock(&dma_list_mutex);
105
106 return err;
107 }
108 static DEVICE_ATTR_RO(memcpy_count);
109
110 static ssize_t bytes_transferred_show(struct device *dev,
111 struct device_attribute *attr, char *buf)
112 {
113 struct dma_chan *chan;
114 unsigned long count = 0;
115 int i;
116 int err;
117
118 mutex_lock(&dma_list_mutex);
119 chan = dev_to_dma_chan(dev);
120 if (chan) {
121 for_each_possible_cpu(i)
122 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
123 err = sprintf(buf, "%lu\n", count);
124 } else
125 err = -ENODEV;
126 mutex_unlock(&dma_list_mutex);
127
128 return err;
129 }
130 static DEVICE_ATTR_RO(bytes_transferred);
131
132 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
133 char *buf)
134 {
135 struct dma_chan *chan;
136 int err;
137
138 mutex_lock(&dma_list_mutex);
139 chan = dev_to_dma_chan(dev);
140 if (chan)
141 err = sprintf(buf, "%d\n", chan->client_count);
142 else
143 err = -ENODEV;
144 mutex_unlock(&dma_list_mutex);
145
146 return err;
147 }
148 static DEVICE_ATTR_RO(in_use);
149
150 static struct attribute *dma_dev_attrs[] = {
151 &dev_attr_memcpy_count.attr,
152 &dev_attr_bytes_transferred.attr,
153 &dev_attr_in_use.attr,
154 NULL,
155 };
156 ATTRIBUTE_GROUPS(dma_dev);
157
158 static void chan_dev_release(struct device *dev)
159 {
160 struct dma_chan_dev *chan_dev;
161
162 chan_dev = container_of(dev, typeof(*chan_dev), device);
163 if (atomic_dec_and_test(chan_dev->idr_ref)) {
164 mutex_lock(&dma_list_mutex);
165 idr_remove(&dma_idr, chan_dev->dev_id);
166 mutex_unlock(&dma_list_mutex);
167 kfree(chan_dev->idr_ref);
168 }
169 kfree(chan_dev);
170 }
171
172 static struct class dma_devclass = {
173 .name = "dma",
174 .dev_groups = dma_dev_groups,
175 .dev_release = chan_dev_release,
176 };
177
178 /* --- client and device registration --- */
179
180 #define dma_device_satisfies_mask(device, mask) \
181 __dma_device_satisfies_mask((device), &(mask))
182 static int
183 __dma_device_satisfies_mask(struct dma_device *device,
184 const dma_cap_mask_t *want)
185 {
186 dma_cap_mask_t has;
187
188 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
189 DMA_TX_TYPE_END);
190 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
191 }
192
193 static struct module *dma_chan_to_owner(struct dma_chan *chan)
194 {
195 return chan->device->dev->driver->owner;
196 }
197
198 /**
199 * balance_ref_count - catch up the channel reference count
200 * @chan - channel to balance ->client_count versus dmaengine_ref_count
201 *
202 * balance_ref_count must be called under dma_list_mutex
203 */
204 static void balance_ref_count(struct dma_chan *chan)
205 {
206 struct module *owner = dma_chan_to_owner(chan);
207
208 while (chan->client_count < dmaengine_ref_count) {
209 __module_get(owner);
210 chan->client_count++;
211 }
212 }
213
214 /**
215 * dma_chan_get - try to grab a dma channel's parent driver module
216 * @chan - channel to grab
217 *
218 * Must be called under dma_list_mutex
219 */
220 static int dma_chan_get(struct dma_chan *chan)
221 {
222 struct module *owner = dma_chan_to_owner(chan);
223 int ret;
224
225 /* The channel is already in use, update client count */
226 if (chan->client_count) {
227 __module_get(owner);
228 goto out;
229 }
230
231 if (!try_module_get(owner))
232 return -ENODEV;
233
234 /* allocate upon first client reference */
235 if (chan->device->device_alloc_chan_resources) {
236 ret = chan->device->device_alloc_chan_resources(chan);
237 if (ret < 0)
238 goto err_out;
239 }
240
241 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
242 balance_ref_count(chan);
243
244 out:
245 chan->client_count++;
246 return 0;
247
248 err_out:
249 module_put(owner);
250 return ret;
251 }
252
253 /**
254 * dma_chan_put - drop a reference to a dma channel's parent driver module
255 * @chan - channel to release
256 *
257 * Must be called under dma_list_mutex
258 */
259 static void dma_chan_put(struct dma_chan *chan)
260 {
261 /* This channel is not in use, bail out */
262 if (!chan->client_count)
263 return;
264
265 chan->client_count--;
266 module_put(dma_chan_to_owner(chan));
267
268 /* This channel is not in use anymore, free it */
269 if (!chan->client_count && chan->device->device_free_chan_resources)
270 chan->device->device_free_chan_resources(chan);
271
272 /* If the channel is used via a DMA request router, free the mapping */
273 if (chan->router && chan->router->route_free) {
274 chan->router->route_free(chan->router->dev, chan->route_data);
275 chan->router = NULL;
276 chan->route_data = NULL;
277 }
278 }
279
280 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
281 {
282 enum dma_status status;
283 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
284
285 dma_async_issue_pending(chan);
286 do {
287 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
288 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
289 pr_err("%s: timeout!\n", __func__);
290 return DMA_ERROR;
291 }
292 if (status != DMA_IN_PROGRESS)
293 break;
294 cpu_relax();
295 } while (1);
296
297 return status;
298 }
299 EXPORT_SYMBOL(dma_sync_wait);
300
301 /**
302 * dma_cap_mask_all - enable iteration over all operation types
303 */
304 static dma_cap_mask_t dma_cap_mask_all;
305
306 /**
307 * dma_chan_tbl_ent - tracks channel allocations per core/operation
308 * @chan - associated channel for this entry
309 */
310 struct dma_chan_tbl_ent {
311 struct dma_chan *chan;
312 };
313
314 /**
315 * channel_table - percpu lookup table for memory-to-memory offload providers
316 */
317 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
318
319 static int __init dma_channel_table_init(void)
320 {
321 enum dma_transaction_type cap;
322 int err = 0;
323
324 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
325
326 /* 'interrupt', 'private', and 'slave' are channel capabilities,
327 * but are not associated with an operation so they do not need
328 * an entry in the channel_table
329 */
330 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
331 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
332 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
333
334 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
335 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
336 if (!channel_table[cap]) {
337 err = -ENOMEM;
338 break;
339 }
340 }
341
342 if (err) {
343 pr_err("initialization failure\n");
344 for_each_dma_cap_mask(cap, dma_cap_mask_all)
345 free_percpu(channel_table[cap]);
346 }
347
348 return err;
349 }
350 arch_initcall(dma_channel_table_init);
351
352 /**
353 * dma_find_channel - find a channel to carry out the operation
354 * @tx_type: transaction type
355 */
356 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
357 {
358 return this_cpu_read(channel_table[tx_type]->chan);
359 }
360 EXPORT_SYMBOL(dma_find_channel);
361
362 /**
363 * dma_issue_pending_all - flush all pending operations across all channels
364 */
365 void dma_issue_pending_all(void)
366 {
367 struct dma_device *device;
368 struct dma_chan *chan;
369
370 rcu_read_lock();
371 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
372 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
373 continue;
374 list_for_each_entry(chan, &device->channels, device_node)
375 if (chan->client_count)
376 device->device_issue_pending(chan);
377 }
378 rcu_read_unlock();
379 }
380 EXPORT_SYMBOL(dma_issue_pending_all);
381
382 /**
383 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
384 */
385 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
386 {
387 int node = dev_to_node(chan->device->dev);
388 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
389 }
390
391 /**
392 * min_chan - returns the channel with min count and in the same numa-node as the cpu
393 * @cap: capability to match
394 * @cpu: cpu index which the channel should be close to
395 *
396 * If some channels are close to the given cpu, the one with the lowest
397 * reference count is returned. Otherwise, cpu is ignored and only the
398 * reference count is taken into account.
399 * Must be called under dma_list_mutex.
400 */
401 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
402 {
403 struct dma_device *device;
404 struct dma_chan *chan;
405 struct dma_chan *min = NULL;
406 struct dma_chan *localmin = NULL;
407
408 list_for_each_entry(device, &dma_device_list, global_node) {
409 if (!dma_has_cap(cap, device->cap_mask) ||
410 dma_has_cap(DMA_PRIVATE, device->cap_mask))
411 continue;
412 list_for_each_entry(chan, &device->channels, device_node) {
413 if (!chan->client_count)
414 continue;
415 if (!min || chan->table_count < min->table_count)
416 min = chan;
417
418 if (dma_chan_is_local(chan, cpu))
419 if (!localmin ||
420 chan->table_count < localmin->table_count)
421 localmin = chan;
422 }
423 }
424
425 chan = localmin ? localmin : min;
426
427 if (chan)
428 chan->table_count++;
429
430 return chan;
431 }
432
433 /**
434 * dma_channel_rebalance - redistribute the available channels
435 *
436 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
437 * operation type) in the SMP case, and operation isolation (avoid
438 * multi-tasking channels) in the non-SMP case. Must be called under
439 * dma_list_mutex.
440 */
441 static void dma_channel_rebalance(void)
442 {
443 struct dma_chan *chan;
444 struct dma_device *device;
445 int cpu;
446 int cap;
447
448 /* undo the last distribution */
449 for_each_dma_cap_mask(cap, dma_cap_mask_all)
450 for_each_possible_cpu(cpu)
451 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
452
453 list_for_each_entry(device, &dma_device_list, global_node) {
454 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
455 continue;
456 list_for_each_entry(chan, &device->channels, device_node)
457 chan->table_count = 0;
458 }
459
460 /* don't populate the channel_table if no clients are available */
461 if (!dmaengine_ref_count)
462 return;
463
464 /* redistribute available channels */
465 for_each_dma_cap_mask(cap, dma_cap_mask_all)
466 for_each_online_cpu(cpu) {
467 chan = min_chan(cap, cpu);
468 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
469 }
470 }
471
472 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
473 {
474 struct dma_device *device;
475
476 if (!chan || !caps)
477 return -EINVAL;
478
479 device = chan->device;
480
481 /* check if the channel supports slave transactions */
482 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
483 return -ENXIO;
484
485 /*
486 * Check whether it reports it uses the generic slave
487 * capabilities, if not, that means it doesn't support any
488 * kind of slave capabilities reporting.
489 */
490 if (!device->directions)
491 return -ENXIO;
492
493 caps->src_addr_widths = device->src_addr_widths;
494 caps->dst_addr_widths = device->dst_addr_widths;
495 caps->directions = device->directions;
496 caps->residue_granularity = device->residue_granularity;
497
498 /*
499 * Some devices implement only pause (e.g. to get residuum) but no
500 * resume. However cmd_pause is advertised as pause AND resume.
501 */
502 caps->cmd_pause = !!(device->device_pause && device->device_resume);
503 caps->cmd_terminate = !!device->device_terminate_all;
504
505 return 0;
506 }
507 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
508
509 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
510 struct dma_device *dev,
511 dma_filter_fn fn, void *fn_param)
512 {
513 struct dma_chan *chan;
514
515 if (mask && !__dma_device_satisfies_mask(dev, mask)) {
516 pr_debug("%s: wrong capabilities\n", __func__);
517 return NULL;
518 }
519 /* devices with multiple channels need special handling as we need to
520 * ensure that all channels are either private or public.
521 */
522 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
523 list_for_each_entry(chan, &dev->channels, device_node) {
524 /* some channels are already publicly allocated */
525 if (chan->client_count)
526 return NULL;
527 }
528
529 list_for_each_entry(chan, &dev->channels, device_node) {
530 if (chan->client_count) {
531 pr_debug("%s: %s busy\n",
532 __func__, dma_chan_name(chan));
533 continue;
534 }
535 if (fn && !fn(chan, fn_param)) {
536 pr_debug("%s: %s filter said false\n",
537 __func__, dma_chan_name(chan));
538 continue;
539 }
540 return chan;
541 }
542
543 return NULL;
544 }
545
546 static struct dma_chan *find_candidate(struct dma_device *device,
547 const dma_cap_mask_t *mask,
548 dma_filter_fn fn, void *fn_param)
549 {
550 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
551 int err;
552
553 if (chan) {
554 /* Found a suitable channel, try to grab, prep, and return it.
555 * We first set DMA_PRIVATE to disable balance_ref_count as this
556 * channel will not be published in the general-purpose
557 * allocator
558 */
559 dma_cap_set(DMA_PRIVATE, device->cap_mask);
560 device->privatecnt++;
561 err = dma_chan_get(chan);
562
563 if (err) {
564 if (err == -ENODEV) {
565 pr_debug("%s: %s module removed\n", __func__,
566 dma_chan_name(chan));
567 list_del_rcu(&device->global_node);
568 } else
569 pr_debug("%s: failed to get %s: (%d)\n",
570 __func__, dma_chan_name(chan), err);
571
572 if (--device->privatecnt == 0)
573 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
574
575 chan = ERR_PTR(err);
576 }
577 }
578
579 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
580 }
581
582 /**
583 * dma_get_slave_channel - try to get specific channel exclusively
584 * @chan: target channel
585 */
586 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
587 {
588 int err = -EBUSY;
589
590 /* lock against __dma_request_channel */
591 mutex_lock(&dma_list_mutex);
592
593 if (chan->client_count == 0) {
594 struct dma_device *device = chan->device;
595
596 dma_cap_set(DMA_PRIVATE, device->cap_mask);
597 device->privatecnt++;
598 err = dma_chan_get(chan);
599 if (err) {
600 pr_debug("%s: failed to get %s: (%d)\n",
601 __func__, dma_chan_name(chan), err);
602 chan = NULL;
603 if (--device->privatecnt == 0)
604 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
605 }
606 } else
607 chan = NULL;
608
609 mutex_unlock(&dma_list_mutex);
610
611
612 return chan;
613 }
614 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
615
616 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
617 {
618 dma_cap_mask_t mask;
619 struct dma_chan *chan;
620
621 dma_cap_zero(mask);
622 dma_cap_set(DMA_SLAVE, mask);
623
624 /* lock against __dma_request_channel */
625 mutex_lock(&dma_list_mutex);
626
627 chan = find_candidate(device, &mask, NULL, NULL);
628
629 mutex_unlock(&dma_list_mutex);
630
631 return IS_ERR(chan) ? NULL : chan;
632 }
633 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
634
635 /**
636 * __dma_request_channel - try to allocate an exclusive channel
637 * @mask: capabilities that the channel must satisfy
638 * @fn: optional callback to disposition available channels
639 * @fn_param: opaque parameter to pass to dma_filter_fn
640 *
641 * Returns pointer to appropriate DMA channel on success or NULL.
642 */
643 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
644 dma_filter_fn fn, void *fn_param)
645 {
646 struct dma_device *device, *_d;
647 struct dma_chan *chan = NULL;
648
649 /* Find a channel */
650 mutex_lock(&dma_list_mutex);
651 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
652 chan = find_candidate(device, mask, fn, fn_param);
653 if (!IS_ERR(chan))
654 break;
655
656 chan = NULL;
657 }
658 mutex_unlock(&dma_list_mutex);
659
660 pr_debug("%s: %s (%s)\n",
661 __func__,
662 chan ? "success" : "fail",
663 chan ? dma_chan_name(chan) : NULL);
664
665 return chan;
666 }
667 EXPORT_SYMBOL_GPL(__dma_request_channel);
668
669 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
670 const char *name,
671 struct device *dev)
672 {
673 int i;
674
675 if (!device->filter.mapcnt)
676 return NULL;
677
678 for (i = 0; i < device->filter.mapcnt; i++) {
679 const struct dma_slave_map *map = &device->filter.map[i];
680
681 if (!strcmp(map->devname, dev_name(dev)) &&
682 !strcmp(map->slave, name))
683 return map;
684 }
685
686 return NULL;
687 }
688
689 /**
690 * dma_request_chan - try to allocate an exclusive slave channel
691 * @dev: pointer to client device structure
692 * @name: slave channel name
693 *
694 * Returns pointer to appropriate DMA channel on success or an error pointer.
695 */
696 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
697 {
698 struct dma_device *d, *_d;
699 struct dma_chan *chan = NULL;
700
701 /* If device-tree is present get slave info from here */
702 if (dev->of_node)
703 chan = of_dma_request_slave_channel(dev->of_node, name);
704
705 /* If device was enumerated by ACPI get slave info from here */
706 if (has_acpi_companion(dev) && !chan)
707 chan = acpi_dma_request_slave_chan_by_name(dev, name);
708
709 if (chan) {
710 /* Valid channel found or requester need to be deferred */
711 if (!IS_ERR(chan) || PTR_ERR(chan) == -EPROBE_DEFER)
712 return chan;
713 }
714
715 /* Try to find the channel via the DMA filter map(s) */
716 mutex_lock(&dma_list_mutex);
717 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
718 dma_cap_mask_t mask;
719 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
720
721 if (!map)
722 continue;
723
724 dma_cap_zero(mask);
725 dma_cap_set(DMA_SLAVE, mask);
726
727 chan = find_candidate(d, &mask, d->filter.fn, map->param);
728 if (!IS_ERR(chan))
729 break;
730 }
731 mutex_unlock(&dma_list_mutex);
732
733 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
734 }
735 EXPORT_SYMBOL_GPL(dma_request_chan);
736
737 /**
738 * dma_request_slave_channel - try to allocate an exclusive slave channel
739 * @dev: pointer to client device structure
740 * @name: slave channel name
741 *
742 * Returns pointer to appropriate DMA channel on success or NULL.
743 */
744 struct dma_chan *dma_request_slave_channel(struct device *dev,
745 const char *name)
746 {
747 struct dma_chan *ch = dma_request_chan(dev, name);
748 if (IS_ERR(ch))
749 return NULL;
750
751 return ch;
752 }
753 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
754
755 /**
756 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
757 * @mask: capabilities that the channel must satisfy
758 *
759 * Returns pointer to appropriate DMA channel on success or an error pointer.
760 */
761 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
762 {
763 struct dma_chan *chan;
764
765 if (!mask)
766 return ERR_PTR(-ENODEV);
767
768 chan = __dma_request_channel(mask, NULL, NULL);
769 if (!chan)
770 chan = ERR_PTR(-ENODEV);
771
772 return chan;
773 }
774 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
775
776 void dma_release_channel(struct dma_chan *chan)
777 {
778 mutex_lock(&dma_list_mutex);
779 WARN_ONCE(chan->client_count != 1,
780 "chan reference count %d != 1\n", chan->client_count);
781 dma_chan_put(chan);
782 /* drop PRIVATE cap enabled by __dma_request_channel() */
783 if (--chan->device->privatecnt == 0)
784 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
785 mutex_unlock(&dma_list_mutex);
786 }
787 EXPORT_SYMBOL_GPL(dma_release_channel);
788
789 /**
790 * dmaengine_get - register interest in dma_channels
791 */
792 void dmaengine_get(void)
793 {
794 struct dma_device *device, *_d;
795 struct dma_chan *chan;
796 int err;
797
798 mutex_lock(&dma_list_mutex);
799 dmaengine_ref_count++;
800
801 /* try to grab channels */
802 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
803 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
804 continue;
805 list_for_each_entry(chan, &device->channels, device_node) {
806 err = dma_chan_get(chan);
807 if (err == -ENODEV) {
808 /* module removed before we could use it */
809 list_del_rcu(&device->global_node);
810 break;
811 } else if (err)
812 pr_debug("%s: failed to get %s: (%d)\n",
813 __func__, dma_chan_name(chan), err);
814 }
815 }
816
817 /* if this is the first reference and there were channels
818 * waiting we need to rebalance to get those channels
819 * incorporated into the channel table
820 */
821 if (dmaengine_ref_count == 1)
822 dma_channel_rebalance();
823 mutex_unlock(&dma_list_mutex);
824 }
825 EXPORT_SYMBOL(dmaengine_get);
826
827 /**
828 * dmaengine_put - let dma drivers be removed when ref_count == 0
829 */
830 void dmaengine_put(void)
831 {
832 struct dma_device *device;
833 struct dma_chan *chan;
834
835 mutex_lock(&dma_list_mutex);
836 dmaengine_ref_count--;
837 BUG_ON(dmaengine_ref_count < 0);
838 /* drop channel references */
839 list_for_each_entry(device, &dma_device_list, global_node) {
840 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
841 continue;
842 list_for_each_entry(chan, &device->channels, device_node)
843 dma_chan_put(chan);
844 }
845 mutex_unlock(&dma_list_mutex);
846 }
847 EXPORT_SYMBOL(dmaengine_put);
848
849 static bool device_has_all_tx_types(struct dma_device *device)
850 {
851 /* A device that satisfies this test has channels that will never cause
852 * an async_tx channel switch event as all possible operation types can
853 * be handled.
854 */
855 #ifdef CONFIG_ASYNC_TX_DMA
856 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
857 return false;
858 #endif
859
860 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
861 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
862 return false;
863 #endif
864
865 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
866 if (!dma_has_cap(DMA_XOR, device->cap_mask))
867 return false;
868
869 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
870 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
871 return false;
872 #endif
873 #endif
874
875 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
876 if (!dma_has_cap(DMA_PQ, device->cap_mask))
877 return false;
878
879 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
880 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
881 return false;
882 #endif
883 #endif
884
885 return true;
886 }
887
888 static int get_dma_id(struct dma_device *device)
889 {
890 int rc;
891
892 mutex_lock(&dma_list_mutex);
893
894 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
895 if (rc >= 0)
896 device->dev_id = rc;
897
898 mutex_unlock(&dma_list_mutex);
899 return rc < 0 ? rc : 0;
900 }
901
902 /**
903 * dma_async_device_register - registers DMA devices found
904 * @device: &dma_device
905 */
906 int dma_async_device_register(struct dma_device *device)
907 {
908 int chancnt = 0, rc;
909 struct dma_chan* chan;
910 atomic_t *idr_ref;
911
912 if (!device)
913 return -ENODEV;
914
915 /* validate device routines */
916 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
917 !device->device_prep_dma_memcpy);
918 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
919 !device->device_prep_dma_xor);
920 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
921 !device->device_prep_dma_xor_val);
922 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
923 !device->device_prep_dma_pq);
924 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
925 !device->device_prep_dma_pq_val);
926 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
927 !device->device_prep_dma_memset);
928 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
929 !device->device_prep_dma_interrupt);
930 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
931 !device->device_prep_dma_sg);
932 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
933 !device->device_prep_dma_cyclic);
934 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
935 !device->device_prep_interleaved_dma);
936
937 BUG_ON(!device->device_tx_status);
938 BUG_ON(!device->device_issue_pending);
939 BUG_ON(!device->dev);
940
941 /* note: this only matters in the
942 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
943 */
944 if (device_has_all_tx_types(device))
945 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
946
947 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
948 if (!idr_ref)
949 return -ENOMEM;
950 rc = get_dma_id(device);
951 if (rc != 0) {
952 kfree(idr_ref);
953 return rc;
954 }
955
956 atomic_set(idr_ref, 0);
957
958 /* represent channels in sysfs. Probably want devs too */
959 list_for_each_entry(chan, &device->channels, device_node) {
960 rc = -ENOMEM;
961 chan->local = alloc_percpu(typeof(*chan->local));
962 if (chan->local == NULL)
963 goto err_out;
964 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
965 if (chan->dev == NULL) {
966 free_percpu(chan->local);
967 chan->local = NULL;
968 goto err_out;
969 }
970
971 chan->chan_id = chancnt++;
972 chan->dev->device.class = &dma_devclass;
973 chan->dev->device.parent = device->dev;
974 chan->dev->chan = chan;
975 chan->dev->idr_ref = idr_ref;
976 chan->dev->dev_id = device->dev_id;
977 atomic_inc(idr_ref);
978 dev_set_name(&chan->dev->device, "dma%dchan%d",
979 device->dev_id, chan->chan_id);
980
981 rc = device_register(&chan->dev->device);
982 if (rc) {
983 free_percpu(chan->local);
984 chan->local = NULL;
985 kfree(chan->dev);
986 atomic_dec(idr_ref);
987 goto err_out;
988 }
989 chan->client_count = 0;
990 }
991 device->chancnt = chancnt;
992
993 mutex_lock(&dma_list_mutex);
994 /* take references on public channels */
995 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
996 list_for_each_entry(chan, &device->channels, device_node) {
997 /* if clients are already waiting for channels we need
998 * to take references on their behalf
999 */
1000 if (dma_chan_get(chan) == -ENODEV) {
1001 /* note we can only get here for the first
1002 * channel as the remaining channels are
1003 * guaranteed to get a reference
1004 */
1005 rc = -ENODEV;
1006 mutex_unlock(&dma_list_mutex);
1007 goto err_out;
1008 }
1009 }
1010 list_add_tail_rcu(&device->global_node, &dma_device_list);
1011 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1012 device->privatecnt++; /* Always private */
1013 dma_channel_rebalance();
1014 mutex_unlock(&dma_list_mutex);
1015
1016 return 0;
1017
1018 err_out:
1019 /* if we never registered a channel just release the idr */
1020 if (atomic_read(idr_ref) == 0) {
1021 mutex_lock(&dma_list_mutex);
1022 idr_remove(&dma_idr, device->dev_id);
1023 mutex_unlock(&dma_list_mutex);
1024 kfree(idr_ref);
1025 return rc;
1026 }
1027
1028 list_for_each_entry(chan, &device->channels, device_node) {
1029 if (chan->local == NULL)
1030 continue;
1031 mutex_lock(&dma_list_mutex);
1032 chan->dev->chan = NULL;
1033 mutex_unlock(&dma_list_mutex);
1034 device_unregister(&chan->dev->device);
1035 free_percpu(chan->local);
1036 }
1037 return rc;
1038 }
1039 EXPORT_SYMBOL(dma_async_device_register);
1040
1041 /**
1042 * dma_async_device_unregister - unregister a DMA device
1043 * @device: &dma_device
1044 *
1045 * This routine is called by dma driver exit routines, dmaengine holds module
1046 * references to prevent it being called while channels are in use.
1047 */
1048 void dma_async_device_unregister(struct dma_device *device)
1049 {
1050 struct dma_chan *chan;
1051
1052 mutex_lock(&dma_list_mutex);
1053 list_del_rcu(&device->global_node);
1054 dma_channel_rebalance();
1055 mutex_unlock(&dma_list_mutex);
1056
1057 list_for_each_entry(chan, &device->channels, device_node) {
1058 WARN_ONCE(chan->client_count,
1059 "%s called while %d clients hold a reference\n",
1060 __func__, chan->client_count);
1061 mutex_lock(&dma_list_mutex);
1062 chan->dev->chan = NULL;
1063 mutex_unlock(&dma_list_mutex);
1064 device_unregister(&chan->dev->device);
1065 free_percpu(chan->local);
1066 }
1067 }
1068 EXPORT_SYMBOL(dma_async_device_unregister);
1069
1070 struct dmaengine_unmap_pool {
1071 struct kmem_cache *cache;
1072 const char *name;
1073 mempool_t *pool;
1074 size_t size;
1075 };
1076
1077 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1078 static struct dmaengine_unmap_pool unmap_pool[] = {
1079 __UNMAP_POOL(2),
1080 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1081 __UNMAP_POOL(16),
1082 __UNMAP_POOL(128),
1083 __UNMAP_POOL(256),
1084 #endif
1085 };
1086
1087 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1088 {
1089 int order = get_count_order(nr);
1090
1091 switch (order) {
1092 case 0 ... 1:
1093 return &unmap_pool[0];
1094 case 2 ... 4:
1095 return &unmap_pool[1];
1096 case 5 ... 7:
1097 return &unmap_pool[2];
1098 case 8:
1099 return &unmap_pool[3];
1100 default:
1101 BUG();
1102 return NULL;
1103 }
1104 }
1105
1106 static void dmaengine_unmap(struct kref *kref)
1107 {
1108 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1109 struct device *dev = unmap->dev;
1110 int cnt, i;
1111
1112 cnt = unmap->to_cnt;
1113 for (i = 0; i < cnt; i++)
1114 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1115 DMA_TO_DEVICE);
1116 cnt += unmap->from_cnt;
1117 for (; i < cnt; i++)
1118 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1119 DMA_FROM_DEVICE);
1120 cnt += unmap->bidi_cnt;
1121 for (; i < cnt; i++) {
1122 if (unmap->addr[i] == 0)
1123 continue;
1124 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1125 DMA_BIDIRECTIONAL);
1126 }
1127 cnt = unmap->map_cnt;
1128 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1129 }
1130
1131 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1132 {
1133 if (unmap)
1134 kref_put(&unmap->kref, dmaengine_unmap);
1135 }
1136 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1137
1138 static void dmaengine_destroy_unmap_pool(void)
1139 {
1140 int i;
1141
1142 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1143 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1144
1145 mempool_destroy(p->pool);
1146 p->pool = NULL;
1147 kmem_cache_destroy(p->cache);
1148 p->cache = NULL;
1149 }
1150 }
1151
1152 static int __init dmaengine_init_unmap_pool(void)
1153 {
1154 int i;
1155
1156 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1157 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1158 size_t size;
1159
1160 size = sizeof(struct dmaengine_unmap_data) +
1161 sizeof(dma_addr_t) * p->size;
1162
1163 p->cache = kmem_cache_create(p->name, size, 0,
1164 SLAB_HWCACHE_ALIGN, NULL);
1165 if (!p->cache)
1166 break;
1167 p->pool = mempool_create_slab_pool(1, p->cache);
1168 if (!p->pool)
1169 break;
1170 }
1171
1172 if (i == ARRAY_SIZE(unmap_pool))
1173 return 0;
1174
1175 dmaengine_destroy_unmap_pool();
1176 return -ENOMEM;
1177 }
1178
1179 struct dmaengine_unmap_data *
1180 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1181 {
1182 struct dmaengine_unmap_data *unmap;
1183
1184 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1185 if (!unmap)
1186 return NULL;
1187
1188 memset(unmap, 0, sizeof(*unmap));
1189 kref_init(&unmap->kref);
1190 unmap->dev = dev;
1191 unmap->map_cnt = nr;
1192
1193 return unmap;
1194 }
1195 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1196
1197 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1198 struct dma_chan *chan)
1199 {
1200 tx->chan = chan;
1201 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1202 spin_lock_init(&tx->lock);
1203 #endif
1204 }
1205 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1206
1207 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1208 * @tx: in-flight transaction to wait on
1209 */
1210 enum dma_status
1211 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1212 {
1213 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1214
1215 if (!tx)
1216 return DMA_COMPLETE;
1217
1218 while (tx->cookie == -EBUSY) {
1219 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1220 pr_err("%s timeout waiting for descriptor submission\n",
1221 __func__);
1222 return DMA_ERROR;
1223 }
1224 cpu_relax();
1225 }
1226 return dma_sync_wait(tx->chan, tx->cookie);
1227 }
1228 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1229
1230 /* dma_run_dependencies - helper routine for dma drivers to process
1231 * (start) dependent operations on their target channel
1232 * @tx: transaction with dependencies
1233 */
1234 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1235 {
1236 struct dma_async_tx_descriptor *dep = txd_next(tx);
1237 struct dma_async_tx_descriptor *dep_next;
1238 struct dma_chan *chan;
1239
1240 if (!dep)
1241 return;
1242
1243 /* we'll submit tx->next now, so clear the link */
1244 txd_clear_next(tx);
1245 chan = dep->chan;
1246
1247 /* keep submitting up until a channel switch is detected
1248 * in that case we will be called again as a result of
1249 * processing the interrupt from async_tx_channel_switch
1250 */
1251 for (; dep; dep = dep_next) {
1252 txd_lock(dep);
1253 txd_clear_parent(dep);
1254 dep_next = txd_next(dep);
1255 if (dep_next && dep_next->chan == chan)
1256 txd_clear_next(dep); /* ->next will be submitted */
1257 else
1258 dep_next = NULL; /* submit current dep and terminate */
1259 txd_unlock(dep);
1260
1261 dep->tx_submit(dep);
1262 }
1263
1264 chan->device->device_issue_pending(chan);
1265 }
1266 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1267
1268 static int __init dma_bus_init(void)
1269 {
1270 int err = dmaengine_init_unmap_pool();
1271
1272 if (err)
1273 return err;
1274 return class_register(&dma_devclass);
1275 }
1276 arch_initcall(dma_bus_init);
1277
1278