]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/edma.c
Merge tag 'nfsd-4.15' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
115
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
118
119 /*
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
125 */
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
129
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param {
138 u32 opt;
139 u32 src;
140 u32 a_b_cnt;
141 u32 dst;
142 u32 src_dst_bidx;
143 u32 link_bcntrld;
144 u32 src_dst_cidx;
145 u32 ccnt;
146 } __packed;
147
148 /* fields in edmacc_param.opt */
149 #define SAM BIT(0)
150 #define DAM BIT(1)
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
160
161 struct edma_pset {
162 u32 len;
163 dma_addr_t addr;
164 struct edmacc_param param;
165 };
166
167 struct edma_desc {
168 struct virt_dma_desc vdesc;
169 struct list_head node;
170 enum dma_transfer_direction direction;
171 int cyclic;
172 int absync;
173 int pset_nr;
174 struct edma_chan *echan;
175 int processed;
176
177 /*
178 * The following 4 elements are used for residue accounting.
179 *
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
186 *
187 * - residue: The amount of bytes we have left to transfer for this desc
188 *
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
192 *
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
196 */
197 int processed_stat;
198 u32 sg_len;
199 u32 residue;
200 u32 residue_stat;
201
202 struct edma_pset pset[0];
203 };
204
205 struct edma_cc;
206
207 struct edma_tc {
208 struct device_node *node;
209 u16 id;
210 };
211
212 struct edma_chan {
213 struct virt_dma_chan vchan;
214 struct list_head node;
215 struct edma_desc *edesc;
216 struct edma_cc *ecc;
217 struct edma_tc *tc;
218 int ch_num;
219 bool alloced;
220 bool hw_triggered;
221 int slot[EDMA_MAX_SLOTS];
222 int missed;
223 struct dma_slave_config cfg;
224 };
225
226 struct edma_cc {
227 struct device *dev;
228 struct edma_soc_info *info;
229 void __iomem *base;
230 int id;
231 bool legacy_mode;
232
233 /* eDMA3 resource information */
234 unsigned num_channels;
235 unsigned num_qchannels;
236 unsigned num_region;
237 unsigned num_slots;
238 unsigned num_tc;
239 bool chmap_exist;
240 enum dma_event_q default_queue;
241
242 unsigned int ccint;
243 unsigned int ccerrint;
244
245 /*
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
248 */
249 unsigned long *slot_inuse;
250
251 struct dma_device dma_slave;
252 struct dma_device *dma_memcpy;
253 struct edma_chan *slave_chans;
254 struct edma_tc *tc_list;
255 int dummy_slot;
256 };
257
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset = {
260 .link_bcntrld = 0xffff,
261 .ccnt = 1,
262 };
263
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const u32 edma_binding_type[] = {
267 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
268 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
269 };
270
271 static const struct of_device_id edma_of_ids[] = {
272 {
273 .compatible = "ti,edma3",
274 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
275 },
276 {
277 .compatible = "ti,edma3-tpcc",
278 .data = &edma_binding_type[EDMA_BINDING_TPCC],
279 },
280 {}
281 };
282 MODULE_DEVICE_TABLE(of, edma_of_ids);
283
284 static const struct of_device_id edma_tptc_of_ids[] = {
285 { .compatible = "ti,edma3-tptc", },
286 {}
287 };
288 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
289
290 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
291 {
292 return (unsigned int)__raw_readl(ecc->base + offset);
293 }
294
295 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
296 {
297 __raw_writel(val, ecc->base + offset);
298 }
299
300 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
301 unsigned or)
302 {
303 unsigned val = edma_read(ecc, offset);
304
305 val &= and;
306 val |= or;
307 edma_write(ecc, offset, val);
308 }
309
310 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
311 {
312 unsigned val = edma_read(ecc, offset);
313
314 val &= and;
315 edma_write(ecc, offset, val);
316 }
317
318 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
319 {
320 unsigned val = edma_read(ecc, offset);
321
322 val |= or;
323 edma_write(ecc, offset, val);
324 }
325
326 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
327 int i)
328 {
329 return edma_read(ecc, offset + (i << 2));
330 }
331
332 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
333 unsigned val)
334 {
335 edma_write(ecc, offset + (i << 2), val);
336 }
337
338 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
339 unsigned and, unsigned or)
340 {
341 edma_modify(ecc, offset + (i << 2), and, or);
342 }
343
344 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
345 unsigned or)
346 {
347 edma_or(ecc, offset + (i << 2), or);
348 }
349
350 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
351 unsigned or)
352 {
353 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
354 }
355
356 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
357 int j, unsigned val)
358 {
359 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
360 }
361
362 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
363 {
364 return edma_read(ecc, EDMA_SHADOW0 + offset);
365 }
366
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 int offset, int i)
369 {
370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
371 }
372
373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 unsigned val)
375 {
376 edma_write(ecc, EDMA_SHADOW0 + offset, val);
377 }
378
379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 int i, unsigned val)
381 {
382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
383 }
384
385 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
386 int param_no)
387 {
388 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
389 }
390
391 static inline void edma_param_write(struct edma_cc *ecc, int offset,
392 int param_no, unsigned val)
393 {
394 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
395 }
396
397 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
398 int param_no, unsigned and, unsigned or)
399 {
400 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
401 }
402
403 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
404 unsigned and)
405 {
406 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
407 }
408
409 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
410 unsigned or)
411 {
412 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
413 }
414
415 static inline void edma_set_bits(int offset, int len, unsigned long *p)
416 {
417 for (; len > 0; len--)
418 set_bit(offset + (len - 1), p);
419 }
420
421 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
422 int priority)
423 {
424 int bit = queue_no * 4;
425
426 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
427 }
428
429 static void edma_set_chmap(struct edma_chan *echan, int slot)
430 {
431 struct edma_cc *ecc = echan->ecc;
432 int channel = EDMA_CHAN_SLOT(echan->ch_num);
433
434 if (ecc->chmap_exist) {
435 slot = EDMA_CHAN_SLOT(slot);
436 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
437 }
438 }
439
440 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
441 {
442 struct edma_cc *ecc = echan->ecc;
443 int channel = EDMA_CHAN_SLOT(echan->ch_num);
444
445 if (enable) {
446 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
447 BIT(channel & 0x1f));
448 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
449 BIT(channel & 0x1f));
450 } else {
451 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
452 BIT(channel & 0x1f));
453 }
454 }
455
456 /*
457 * paRAM slot management functions
458 */
459 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
460 const struct edmacc_param *param)
461 {
462 slot = EDMA_CHAN_SLOT(slot);
463 if (slot >= ecc->num_slots)
464 return;
465 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
466 }
467
468 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
469 struct edmacc_param *param)
470 {
471 slot = EDMA_CHAN_SLOT(slot);
472 if (slot >= ecc->num_slots)
473 return -EINVAL;
474 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
475
476 return 0;
477 }
478
479 /**
480 * edma_alloc_slot - allocate DMA parameter RAM
481 * @ecc: pointer to edma_cc struct
482 * @slot: specific slot to allocate; negative for "any unused slot"
483 *
484 * This allocates a parameter RAM slot, initializing it to hold a
485 * dummy transfer. Slots allocated using this routine have not been
486 * mapped to a hardware DMA channel, and will normally be used by
487 * linking to them from a slot associated with a DMA channel.
488 *
489 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
490 * slots may be allocated on behalf of DSP firmware.
491 *
492 * Returns the number of the slot, else negative errno.
493 */
494 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
495 {
496 if (slot >= 0) {
497 slot = EDMA_CHAN_SLOT(slot);
498 /* Requesting entry paRAM slot for a HW triggered channel. */
499 if (ecc->chmap_exist && slot < ecc->num_channels)
500 slot = EDMA_SLOT_ANY;
501 }
502
503 if (slot < 0) {
504 if (ecc->chmap_exist)
505 slot = 0;
506 else
507 slot = ecc->num_channels;
508 for (;;) {
509 slot = find_next_zero_bit(ecc->slot_inuse,
510 ecc->num_slots,
511 slot);
512 if (slot == ecc->num_slots)
513 return -ENOMEM;
514 if (!test_and_set_bit(slot, ecc->slot_inuse))
515 break;
516 }
517 } else if (slot >= ecc->num_slots) {
518 return -EINVAL;
519 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
520 return -EBUSY;
521 }
522
523 edma_write_slot(ecc, slot, &dummy_paramset);
524
525 return EDMA_CTLR_CHAN(ecc->id, slot);
526 }
527
528 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
529 {
530 slot = EDMA_CHAN_SLOT(slot);
531 if (slot >= ecc->num_slots)
532 return;
533
534 edma_write_slot(ecc, slot, &dummy_paramset);
535 clear_bit(slot, ecc->slot_inuse);
536 }
537
538 /**
539 * edma_link - link one parameter RAM slot to another
540 * @ecc: pointer to edma_cc struct
541 * @from: parameter RAM slot originating the link
542 * @to: parameter RAM slot which is the link target
543 *
544 * The originating slot should not be part of any active DMA transfer.
545 */
546 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
547 {
548 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
549 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
550
551 from = EDMA_CHAN_SLOT(from);
552 to = EDMA_CHAN_SLOT(to);
553 if (from >= ecc->num_slots || to >= ecc->num_slots)
554 return;
555
556 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
557 PARM_OFFSET(to));
558 }
559
560 /**
561 * edma_get_position - returns the current transfer point
562 * @ecc: pointer to edma_cc struct
563 * @slot: parameter RAM slot being examined
564 * @dst: true selects the dest position, false the source
565 *
566 * Returns the position of the current active slot
567 */
568 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
569 bool dst)
570 {
571 u32 offs;
572
573 slot = EDMA_CHAN_SLOT(slot);
574 offs = PARM_OFFSET(slot);
575 offs += dst ? PARM_DST : PARM_SRC;
576
577 return edma_read(ecc, offs);
578 }
579
580 /*
581 * Channels with event associations will be triggered by their hardware
582 * events, and channels without such associations will be triggered by
583 * software. (At this writing there is no interface for using software
584 * triggers except with channels that don't support hardware triggers.)
585 */
586 static void edma_start(struct edma_chan *echan)
587 {
588 struct edma_cc *ecc = echan->ecc;
589 int channel = EDMA_CHAN_SLOT(echan->ch_num);
590 int j = (channel >> 5);
591 unsigned int mask = BIT(channel & 0x1f);
592
593 if (!echan->hw_triggered) {
594 /* EDMA channels without event association */
595 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
596 edma_shadow0_read_array(ecc, SH_ESR, j));
597 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
598 } else {
599 /* EDMA channel with event association */
600 dev_dbg(ecc->dev, "ER%d %08x\n", j,
601 edma_shadow0_read_array(ecc, SH_ER, j));
602 /* Clear any pending event or error */
603 edma_write_array(ecc, EDMA_ECR, j, mask);
604 edma_write_array(ecc, EDMA_EMCR, j, mask);
605 /* Clear any SER */
606 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
607 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
608 dev_dbg(ecc->dev, "EER%d %08x\n", j,
609 edma_shadow0_read_array(ecc, SH_EER, j));
610 }
611 }
612
613 static void edma_stop(struct edma_chan *echan)
614 {
615 struct edma_cc *ecc = echan->ecc;
616 int channel = EDMA_CHAN_SLOT(echan->ch_num);
617 int j = (channel >> 5);
618 unsigned int mask = BIT(channel & 0x1f);
619
620 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
621 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
622 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
623 edma_write_array(ecc, EDMA_EMCR, j, mask);
624
625 /* clear possibly pending completion interrupt */
626 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
627
628 dev_dbg(ecc->dev, "EER%d %08x\n", j,
629 edma_shadow0_read_array(ecc, SH_EER, j));
630
631 /* REVISIT: consider guarding against inappropriate event
632 * chaining by overwriting with dummy_paramset.
633 */
634 }
635
636 /*
637 * Temporarily disable EDMA hardware events on the specified channel,
638 * preventing them from triggering new transfers
639 */
640 static void edma_pause(struct edma_chan *echan)
641 {
642 int channel = EDMA_CHAN_SLOT(echan->ch_num);
643 unsigned int mask = BIT(channel & 0x1f);
644
645 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
646 }
647
648 /* Re-enable EDMA hardware events on the specified channel. */
649 static void edma_resume(struct edma_chan *echan)
650 {
651 int channel = EDMA_CHAN_SLOT(echan->ch_num);
652 unsigned int mask = BIT(channel & 0x1f);
653
654 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
655 }
656
657 static void edma_trigger_channel(struct edma_chan *echan)
658 {
659 struct edma_cc *ecc = echan->ecc;
660 int channel = EDMA_CHAN_SLOT(echan->ch_num);
661 unsigned int mask = BIT(channel & 0x1f);
662
663 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
664
665 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
666 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
667 }
668
669 static void edma_clean_channel(struct edma_chan *echan)
670 {
671 struct edma_cc *ecc = echan->ecc;
672 int channel = EDMA_CHAN_SLOT(echan->ch_num);
673 int j = (channel >> 5);
674 unsigned int mask = BIT(channel & 0x1f);
675
676 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
677 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
678 /* Clear the corresponding EMR bits */
679 edma_write_array(ecc, EDMA_EMCR, j, mask);
680 /* Clear any SER */
681 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
682 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
683 }
684
685 /* Move channel to a specific event queue */
686 static void edma_assign_channel_eventq(struct edma_chan *echan,
687 enum dma_event_q eventq_no)
688 {
689 struct edma_cc *ecc = echan->ecc;
690 int channel = EDMA_CHAN_SLOT(echan->ch_num);
691 int bit = (channel & 0x7) * 4;
692
693 /* default to low priority queue */
694 if (eventq_no == EVENTQ_DEFAULT)
695 eventq_no = ecc->default_queue;
696 if (eventq_no >= ecc->num_tc)
697 return;
698
699 eventq_no &= 7;
700 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
701 eventq_no << bit);
702 }
703
704 static int edma_alloc_channel(struct edma_chan *echan,
705 enum dma_event_q eventq_no)
706 {
707 struct edma_cc *ecc = echan->ecc;
708 int channel = EDMA_CHAN_SLOT(echan->ch_num);
709
710 /* ensure access through shadow region 0 */
711 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
712
713 /* ensure no events are pending */
714 edma_stop(echan);
715
716 edma_setup_interrupt(echan, true);
717
718 edma_assign_channel_eventq(echan, eventq_no);
719
720 return 0;
721 }
722
723 static void edma_free_channel(struct edma_chan *echan)
724 {
725 /* ensure no events are pending */
726 edma_stop(echan);
727 /* REVISIT should probably take out of shadow region 0 */
728 edma_setup_interrupt(echan, false);
729 }
730
731 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
732 {
733 return container_of(d, struct edma_cc, dma_slave);
734 }
735
736 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
737 {
738 return container_of(c, struct edma_chan, vchan.chan);
739 }
740
741 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
742 {
743 return container_of(tx, struct edma_desc, vdesc.tx);
744 }
745
746 static void edma_desc_free(struct virt_dma_desc *vdesc)
747 {
748 kfree(container_of(vdesc, struct edma_desc, vdesc));
749 }
750
751 /* Dispatch a queued descriptor to the controller (caller holds lock) */
752 static void edma_execute(struct edma_chan *echan)
753 {
754 struct edma_cc *ecc = echan->ecc;
755 struct virt_dma_desc *vdesc;
756 struct edma_desc *edesc;
757 struct device *dev = echan->vchan.chan.device->dev;
758 int i, j, left, nslots;
759
760 if (!echan->edesc) {
761 /* Setup is needed for the first transfer */
762 vdesc = vchan_next_desc(&echan->vchan);
763 if (!vdesc)
764 return;
765 list_del(&vdesc->node);
766 echan->edesc = to_edma_desc(&vdesc->tx);
767 }
768
769 edesc = echan->edesc;
770
771 /* Find out how many left */
772 left = edesc->pset_nr - edesc->processed;
773 nslots = min(MAX_NR_SG, left);
774 edesc->sg_len = 0;
775
776 /* Write descriptor PaRAM set(s) */
777 for (i = 0; i < nslots; i++) {
778 j = i + edesc->processed;
779 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
780 edesc->sg_len += edesc->pset[j].len;
781 dev_vdbg(dev,
782 "\n pset[%d]:\n"
783 " chnum\t%d\n"
784 " slot\t%d\n"
785 " opt\t%08x\n"
786 " src\t%08x\n"
787 " dst\t%08x\n"
788 " abcnt\t%08x\n"
789 " ccnt\t%08x\n"
790 " bidx\t%08x\n"
791 " cidx\t%08x\n"
792 " lkrld\t%08x\n",
793 j, echan->ch_num, echan->slot[i],
794 edesc->pset[j].param.opt,
795 edesc->pset[j].param.src,
796 edesc->pset[j].param.dst,
797 edesc->pset[j].param.a_b_cnt,
798 edesc->pset[j].param.ccnt,
799 edesc->pset[j].param.src_dst_bidx,
800 edesc->pset[j].param.src_dst_cidx,
801 edesc->pset[j].param.link_bcntrld);
802 /* Link to the previous slot if not the last set */
803 if (i != (nslots - 1))
804 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
805 }
806
807 edesc->processed += nslots;
808
809 /*
810 * If this is either the last set in a set of SG-list transactions
811 * then setup a link to the dummy slot, this results in all future
812 * events being absorbed and that's OK because we're done
813 */
814 if (edesc->processed == edesc->pset_nr) {
815 if (edesc->cyclic)
816 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
817 else
818 edma_link(ecc, echan->slot[nslots - 1],
819 echan->ecc->dummy_slot);
820 }
821
822 if (echan->missed) {
823 /*
824 * This happens due to setup times between intermediate
825 * transfers in long SG lists which have to be broken up into
826 * transfers of MAX_NR_SG
827 */
828 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
829 edma_clean_channel(echan);
830 edma_stop(echan);
831 edma_start(echan);
832 edma_trigger_channel(echan);
833 echan->missed = 0;
834 } else if (edesc->processed <= MAX_NR_SG) {
835 dev_dbg(dev, "first transfer starting on channel %d\n",
836 echan->ch_num);
837 edma_start(echan);
838 } else {
839 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
840 echan->ch_num, edesc->processed);
841 edma_resume(echan);
842 }
843 }
844
845 static int edma_terminate_all(struct dma_chan *chan)
846 {
847 struct edma_chan *echan = to_edma_chan(chan);
848 unsigned long flags;
849 LIST_HEAD(head);
850
851 spin_lock_irqsave(&echan->vchan.lock, flags);
852
853 /*
854 * Stop DMA activity: we assume the callback will not be called
855 * after edma_dma() returns (even if it does, it will see
856 * echan->edesc is NULL and exit.)
857 */
858 if (echan->edesc) {
859 edma_stop(echan);
860 /* Move the cyclic channel back to default queue */
861 if (!echan->tc && echan->edesc->cyclic)
862 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
863 /*
864 * free the running request descriptor
865 * since it is not in any of the vdesc lists
866 */
867 edma_desc_free(&echan->edesc->vdesc);
868 echan->edesc = NULL;
869 }
870
871 vchan_get_all_descriptors(&echan->vchan, &head);
872 spin_unlock_irqrestore(&echan->vchan.lock, flags);
873 vchan_dma_desc_free_list(&echan->vchan, &head);
874
875 return 0;
876 }
877
878 static void edma_synchronize(struct dma_chan *chan)
879 {
880 struct edma_chan *echan = to_edma_chan(chan);
881
882 vchan_synchronize(&echan->vchan);
883 }
884
885 static int edma_slave_config(struct dma_chan *chan,
886 struct dma_slave_config *cfg)
887 {
888 struct edma_chan *echan = to_edma_chan(chan);
889
890 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
891 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
892 return -EINVAL;
893
894 if (cfg->src_maxburst > chan->device->max_burst ||
895 cfg->dst_maxburst > chan->device->max_burst)
896 return -EINVAL;
897
898 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
899
900 return 0;
901 }
902
903 static int edma_dma_pause(struct dma_chan *chan)
904 {
905 struct edma_chan *echan = to_edma_chan(chan);
906
907 if (!echan->edesc)
908 return -EINVAL;
909
910 edma_pause(echan);
911 return 0;
912 }
913
914 static int edma_dma_resume(struct dma_chan *chan)
915 {
916 struct edma_chan *echan = to_edma_chan(chan);
917
918 edma_resume(echan);
919 return 0;
920 }
921
922 /*
923 * A PaRAM set configuration abstraction used by other modes
924 * @chan: Channel who's PaRAM set we're configuring
925 * @pset: PaRAM set to initialize and setup.
926 * @src_addr: Source address of the DMA
927 * @dst_addr: Destination address of the DMA
928 * @burst: In units of dev_width, how much to send
929 * @dev_width: How much is the dev_width
930 * @dma_length: Total length of the DMA transfer
931 * @direction: Direction of the transfer
932 */
933 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
934 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
935 unsigned int acnt, unsigned int dma_length,
936 enum dma_transfer_direction direction)
937 {
938 struct edma_chan *echan = to_edma_chan(chan);
939 struct device *dev = chan->device->dev;
940 struct edmacc_param *param = &epset->param;
941 int bcnt, ccnt, cidx;
942 int src_bidx, dst_bidx, src_cidx, dst_cidx;
943 int absync;
944
945 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
946 if (!burst)
947 burst = 1;
948 /*
949 * If the maxburst is equal to the fifo width, use
950 * A-synced transfers. This allows for large contiguous
951 * buffer transfers using only one PaRAM set.
952 */
953 if (burst == 1) {
954 /*
955 * For the A-sync case, bcnt and ccnt are the remainder
956 * and quotient respectively of the division of:
957 * (dma_length / acnt) by (SZ_64K -1). This is so
958 * that in case bcnt over flows, we have ccnt to use.
959 * Note: In A-sync tranfer only, bcntrld is used, but it
960 * only applies for sg_dma_len(sg) >= SZ_64K.
961 * In this case, the best way adopted is- bccnt for the
962 * first frame will be the remainder below. Then for
963 * every successive frame, bcnt will be SZ_64K-1. This
964 * is assured as bcntrld = 0xffff in end of function.
965 */
966 absync = false;
967 ccnt = dma_length / acnt / (SZ_64K - 1);
968 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
969 /*
970 * If bcnt is non-zero, we have a remainder and hence an
971 * extra frame to transfer, so increment ccnt.
972 */
973 if (bcnt)
974 ccnt++;
975 else
976 bcnt = SZ_64K - 1;
977 cidx = acnt;
978 } else {
979 /*
980 * If maxburst is greater than the fifo address_width,
981 * use AB-synced transfers where A count is the fifo
982 * address_width and B count is the maxburst. In this
983 * case, we are limited to transfers of C count frames
984 * of (address_width * maxburst) where C count is limited
985 * to SZ_64K-1. This places an upper bound on the length
986 * of an SG segment that can be handled.
987 */
988 absync = true;
989 bcnt = burst;
990 ccnt = dma_length / (acnt * bcnt);
991 if (ccnt > (SZ_64K - 1)) {
992 dev_err(dev, "Exceeded max SG segment size\n");
993 return -EINVAL;
994 }
995 cidx = acnt * bcnt;
996 }
997
998 epset->len = dma_length;
999
1000 if (direction == DMA_MEM_TO_DEV) {
1001 src_bidx = acnt;
1002 src_cidx = cidx;
1003 dst_bidx = 0;
1004 dst_cidx = 0;
1005 epset->addr = src_addr;
1006 } else if (direction == DMA_DEV_TO_MEM) {
1007 src_bidx = 0;
1008 src_cidx = 0;
1009 dst_bidx = acnt;
1010 dst_cidx = cidx;
1011 epset->addr = dst_addr;
1012 } else if (direction == DMA_MEM_TO_MEM) {
1013 src_bidx = acnt;
1014 src_cidx = cidx;
1015 dst_bidx = acnt;
1016 dst_cidx = cidx;
1017 } else {
1018 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1019 return -EINVAL;
1020 }
1021
1022 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1023 /* Configure A or AB synchronized transfers */
1024 if (absync)
1025 param->opt |= SYNCDIM;
1026
1027 param->src = src_addr;
1028 param->dst = dst_addr;
1029
1030 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1031 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1032
1033 param->a_b_cnt = bcnt << 16 | acnt;
1034 param->ccnt = ccnt;
1035 /*
1036 * Only time when (bcntrld) auto reload is required is for
1037 * A-sync case, and in this case, a requirement of reload value
1038 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1039 * and then later will be populated by edma_execute.
1040 */
1041 param->link_bcntrld = 0xffffffff;
1042 return absync;
1043 }
1044
1045 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1046 struct dma_chan *chan, struct scatterlist *sgl,
1047 unsigned int sg_len, enum dma_transfer_direction direction,
1048 unsigned long tx_flags, void *context)
1049 {
1050 struct edma_chan *echan = to_edma_chan(chan);
1051 struct device *dev = chan->device->dev;
1052 struct edma_desc *edesc;
1053 dma_addr_t src_addr = 0, dst_addr = 0;
1054 enum dma_slave_buswidth dev_width;
1055 u32 burst;
1056 struct scatterlist *sg;
1057 int i, nslots, ret;
1058
1059 if (unlikely(!echan || !sgl || !sg_len))
1060 return NULL;
1061
1062 if (direction == DMA_DEV_TO_MEM) {
1063 src_addr = echan->cfg.src_addr;
1064 dev_width = echan->cfg.src_addr_width;
1065 burst = echan->cfg.src_maxburst;
1066 } else if (direction == DMA_MEM_TO_DEV) {
1067 dst_addr = echan->cfg.dst_addr;
1068 dev_width = echan->cfg.dst_addr_width;
1069 burst = echan->cfg.dst_maxburst;
1070 } else {
1071 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1072 return NULL;
1073 }
1074
1075 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1076 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1077 return NULL;
1078 }
1079
1080 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1081 GFP_ATOMIC);
1082 if (!edesc)
1083 return NULL;
1084
1085 edesc->pset_nr = sg_len;
1086 edesc->residue = 0;
1087 edesc->direction = direction;
1088 edesc->echan = echan;
1089
1090 /* Allocate a PaRAM slot, if needed */
1091 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1092
1093 for (i = 0; i < nslots; i++) {
1094 if (echan->slot[i] < 0) {
1095 echan->slot[i] =
1096 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1097 if (echan->slot[i] < 0) {
1098 kfree(edesc);
1099 dev_err(dev, "%s: Failed to allocate slot\n",
1100 __func__);
1101 return NULL;
1102 }
1103 }
1104 }
1105
1106 /* Configure PaRAM sets for each SG */
1107 for_each_sg(sgl, sg, sg_len, i) {
1108 /* Get address for each SG */
1109 if (direction == DMA_DEV_TO_MEM)
1110 dst_addr = sg_dma_address(sg);
1111 else
1112 src_addr = sg_dma_address(sg);
1113
1114 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1115 dst_addr, burst, dev_width,
1116 sg_dma_len(sg), direction);
1117 if (ret < 0) {
1118 kfree(edesc);
1119 return NULL;
1120 }
1121
1122 edesc->absync = ret;
1123 edesc->residue += sg_dma_len(sg);
1124
1125 if (i == sg_len - 1)
1126 /* Enable completion interrupt */
1127 edesc->pset[i].param.opt |= TCINTEN;
1128 else if (!((i+1) % MAX_NR_SG))
1129 /*
1130 * Enable early completion interrupt for the
1131 * intermediateset. In this case the driver will be
1132 * notified when the paRAM set is submitted to TC. This
1133 * will allow more time to set up the next set of slots.
1134 */
1135 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1136 }
1137 edesc->residue_stat = edesc->residue;
1138
1139 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1140 }
1141
1142 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1143 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1144 size_t len, unsigned long tx_flags)
1145 {
1146 int ret, nslots;
1147 struct edma_desc *edesc;
1148 struct device *dev = chan->device->dev;
1149 struct edma_chan *echan = to_edma_chan(chan);
1150 unsigned int width, pset_len, array_size;
1151
1152 if (unlikely(!echan || !len))
1153 return NULL;
1154
1155 /* Align the array size (acnt block) with the transfer properties */
1156 switch (__ffs((src | dest | len))) {
1157 case 0:
1158 array_size = SZ_32K - 1;
1159 break;
1160 case 1:
1161 array_size = SZ_32K - 2;
1162 break;
1163 default:
1164 array_size = SZ_32K - 4;
1165 break;
1166 }
1167
1168 if (len < SZ_64K) {
1169 /*
1170 * Transfer size less than 64K can be handled with one paRAM
1171 * slot and with one burst.
1172 * ACNT = length
1173 */
1174 width = len;
1175 pset_len = len;
1176 nslots = 1;
1177 } else {
1178 /*
1179 * Transfer size bigger than 64K will be handled with maximum of
1180 * two paRAM slots.
1181 * slot1: (full_length / 32767) times 32767 bytes bursts.
1182 * ACNT = 32767, length1: (full_length / 32767) * 32767
1183 * slot2: the remaining amount of data after slot1.
1184 * ACNT = full_length - length1, length2 = ACNT
1185 *
1186 * When the full_length is multibple of 32767 one slot can be
1187 * used to complete the transfer.
1188 */
1189 width = array_size;
1190 pset_len = rounddown(len, width);
1191 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1192 if (unlikely(pset_len == len))
1193 nslots = 1;
1194 else
1195 nslots = 2;
1196 }
1197
1198 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1199 GFP_ATOMIC);
1200 if (!edesc)
1201 return NULL;
1202
1203 edesc->pset_nr = nslots;
1204 edesc->residue = edesc->residue_stat = len;
1205 edesc->direction = DMA_MEM_TO_MEM;
1206 edesc->echan = echan;
1207
1208 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1209 width, pset_len, DMA_MEM_TO_MEM);
1210 if (ret < 0) {
1211 kfree(edesc);
1212 return NULL;
1213 }
1214
1215 edesc->absync = ret;
1216
1217 edesc->pset[0].param.opt |= ITCCHEN;
1218 if (nslots == 1) {
1219 /* Enable transfer complete interrupt */
1220 edesc->pset[0].param.opt |= TCINTEN;
1221 } else {
1222 /* Enable transfer complete chaining for the first slot */
1223 edesc->pset[0].param.opt |= TCCHEN;
1224
1225 if (echan->slot[1] < 0) {
1226 echan->slot[1] = edma_alloc_slot(echan->ecc,
1227 EDMA_SLOT_ANY);
1228 if (echan->slot[1] < 0) {
1229 kfree(edesc);
1230 dev_err(dev, "%s: Failed to allocate slot\n",
1231 __func__);
1232 return NULL;
1233 }
1234 }
1235 dest += pset_len;
1236 src += pset_len;
1237 pset_len = width = len % array_size;
1238
1239 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1240 width, pset_len, DMA_MEM_TO_MEM);
1241 if (ret < 0) {
1242 kfree(edesc);
1243 return NULL;
1244 }
1245
1246 edesc->pset[1].param.opt |= ITCCHEN;
1247 edesc->pset[1].param.opt |= TCINTEN;
1248 }
1249
1250 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1251 }
1252
1253 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1254 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1255 size_t period_len, enum dma_transfer_direction direction,
1256 unsigned long tx_flags)
1257 {
1258 struct edma_chan *echan = to_edma_chan(chan);
1259 struct device *dev = chan->device->dev;
1260 struct edma_desc *edesc;
1261 dma_addr_t src_addr, dst_addr;
1262 enum dma_slave_buswidth dev_width;
1263 bool use_intermediate = false;
1264 u32 burst;
1265 int i, ret, nslots;
1266
1267 if (unlikely(!echan || !buf_len || !period_len))
1268 return NULL;
1269
1270 if (direction == DMA_DEV_TO_MEM) {
1271 src_addr = echan->cfg.src_addr;
1272 dst_addr = buf_addr;
1273 dev_width = echan->cfg.src_addr_width;
1274 burst = echan->cfg.src_maxburst;
1275 } else if (direction == DMA_MEM_TO_DEV) {
1276 src_addr = buf_addr;
1277 dst_addr = echan->cfg.dst_addr;
1278 dev_width = echan->cfg.dst_addr_width;
1279 burst = echan->cfg.dst_maxburst;
1280 } else {
1281 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1282 return NULL;
1283 }
1284
1285 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1286 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1287 return NULL;
1288 }
1289
1290 if (unlikely(buf_len % period_len)) {
1291 dev_err(dev, "Period should be multiple of Buffer length\n");
1292 return NULL;
1293 }
1294
1295 nslots = (buf_len / period_len) + 1;
1296
1297 /*
1298 * Cyclic DMA users such as audio cannot tolerate delays introduced
1299 * by cases where the number of periods is more than the maximum
1300 * number of SGs the EDMA driver can handle at a time. For DMA types
1301 * such as Slave SGs, such delays are tolerable and synchronized,
1302 * but the synchronization is difficult to achieve with Cyclic and
1303 * cannot be guaranteed, so we error out early.
1304 */
1305 if (nslots > MAX_NR_SG) {
1306 /*
1307 * If the burst and period sizes are the same, we can put
1308 * the full buffer into a single period and activate
1309 * intermediate interrupts. This will produce interrupts
1310 * after each burst, which is also after each desired period.
1311 */
1312 if (burst == period_len) {
1313 period_len = buf_len;
1314 nslots = 2;
1315 use_intermediate = true;
1316 } else {
1317 return NULL;
1318 }
1319 }
1320
1321 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1322 GFP_ATOMIC);
1323 if (!edesc)
1324 return NULL;
1325
1326 edesc->cyclic = 1;
1327 edesc->pset_nr = nslots;
1328 edesc->residue = edesc->residue_stat = buf_len;
1329 edesc->direction = direction;
1330 edesc->echan = echan;
1331
1332 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1333 __func__, echan->ch_num, nslots, period_len, buf_len);
1334
1335 for (i = 0; i < nslots; i++) {
1336 /* Allocate a PaRAM slot, if needed */
1337 if (echan->slot[i] < 0) {
1338 echan->slot[i] =
1339 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1340 if (echan->slot[i] < 0) {
1341 kfree(edesc);
1342 dev_err(dev, "%s: Failed to allocate slot\n",
1343 __func__);
1344 return NULL;
1345 }
1346 }
1347
1348 if (i == nslots - 1) {
1349 memcpy(&edesc->pset[i], &edesc->pset[0],
1350 sizeof(edesc->pset[0]));
1351 break;
1352 }
1353
1354 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1355 dst_addr, burst, dev_width, period_len,
1356 direction);
1357 if (ret < 0) {
1358 kfree(edesc);
1359 return NULL;
1360 }
1361
1362 if (direction == DMA_DEV_TO_MEM)
1363 dst_addr += period_len;
1364 else
1365 src_addr += period_len;
1366
1367 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1368 dev_vdbg(dev,
1369 "\n pset[%d]:\n"
1370 " chnum\t%d\n"
1371 " slot\t%d\n"
1372 " opt\t%08x\n"
1373 " src\t%08x\n"
1374 " dst\t%08x\n"
1375 " abcnt\t%08x\n"
1376 " ccnt\t%08x\n"
1377 " bidx\t%08x\n"
1378 " cidx\t%08x\n"
1379 " lkrld\t%08x\n",
1380 i, echan->ch_num, echan->slot[i],
1381 edesc->pset[i].param.opt,
1382 edesc->pset[i].param.src,
1383 edesc->pset[i].param.dst,
1384 edesc->pset[i].param.a_b_cnt,
1385 edesc->pset[i].param.ccnt,
1386 edesc->pset[i].param.src_dst_bidx,
1387 edesc->pset[i].param.src_dst_cidx,
1388 edesc->pset[i].param.link_bcntrld);
1389
1390 edesc->absync = ret;
1391
1392 /*
1393 * Enable period interrupt only if it is requested
1394 */
1395 if (tx_flags & DMA_PREP_INTERRUPT) {
1396 edesc->pset[i].param.opt |= TCINTEN;
1397
1398 /* Also enable intermediate interrupts if necessary */
1399 if (use_intermediate)
1400 edesc->pset[i].param.opt |= ITCINTEN;
1401 }
1402 }
1403
1404 /* Place the cyclic channel to highest priority queue */
1405 if (!echan->tc)
1406 edma_assign_channel_eventq(echan, EVENTQ_0);
1407
1408 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1409 }
1410
1411 static void edma_completion_handler(struct edma_chan *echan)
1412 {
1413 struct device *dev = echan->vchan.chan.device->dev;
1414 struct edma_desc *edesc;
1415
1416 spin_lock(&echan->vchan.lock);
1417 edesc = echan->edesc;
1418 if (edesc) {
1419 if (edesc->cyclic) {
1420 vchan_cyclic_callback(&edesc->vdesc);
1421 spin_unlock(&echan->vchan.lock);
1422 return;
1423 } else if (edesc->processed == edesc->pset_nr) {
1424 edesc->residue = 0;
1425 edma_stop(echan);
1426 vchan_cookie_complete(&edesc->vdesc);
1427 echan->edesc = NULL;
1428
1429 dev_dbg(dev, "Transfer completed on channel %d\n",
1430 echan->ch_num);
1431 } else {
1432 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1433 echan->ch_num);
1434
1435 edma_pause(echan);
1436
1437 /* Update statistics for tx_status */
1438 edesc->residue -= edesc->sg_len;
1439 edesc->residue_stat = edesc->residue;
1440 edesc->processed_stat = edesc->processed;
1441 }
1442 edma_execute(echan);
1443 }
1444
1445 spin_unlock(&echan->vchan.lock);
1446 }
1447
1448 /* eDMA interrupt handler */
1449 static irqreturn_t dma_irq_handler(int irq, void *data)
1450 {
1451 struct edma_cc *ecc = data;
1452 int ctlr;
1453 u32 sh_ier;
1454 u32 sh_ipr;
1455 u32 bank;
1456
1457 ctlr = ecc->id;
1458 if (ctlr < 0)
1459 return IRQ_NONE;
1460
1461 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1462
1463 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1464 if (!sh_ipr) {
1465 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1466 if (!sh_ipr)
1467 return IRQ_NONE;
1468 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1469 bank = 1;
1470 } else {
1471 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1472 bank = 0;
1473 }
1474
1475 do {
1476 u32 slot;
1477 u32 channel;
1478
1479 slot = __ffs(sh_ipr);
1480 sh_ipr &= ~(BIT(slot));
1481
1482 if (sh_ier & BIT(slot)) {
1483 channel = (bank << 5) | slot;
1484 /* Clear the corresponding IPR bits */
1485 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1486 edma_completion_handler(&ecc->slave_chans[channel]);
1487 }
1488 } while (sh_ipr);
1489
1490 edma_shadow0_write(ecc, SH_IEVAL, 1);
1491 return IRQ_HANDLED;
1492 }
1493
1494 static void edma_error_handler(struct edma_chan *echan)
1495 {
1496 struct edma_cc *ecc = echan->ecc;
1497 struct device *dev = echan->vchan.chan.device->dev;
1498 struct edmacc_param p;
1499 int err;
1500
1501 if (!echan->edesc)
1502 return;
1503
1504 spin_lock(&echan->vchan.lock);
1505
1506 err = edma_read_slot(ecc, echan->slot[0], &p);
1507
1508 /*
1509 * Issue later based on missed flag which will be sure
1510 * to happen as:
1511 * (1) we finished transmitting an intermediate slot and
1512 * edma_execute is coming up.
1513 * (2) or we finished current transfer and issue will
1514 * call edma_execute.
1515 *
1516 * Important note: issuing can be dangerous here and
1517 * lead to some nasty recursion when we are in a NULL
1518 * slot. So we avoid doing so and set the missed flag.
1519 */
1520 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1521 dev_dbg(dev, "Error on null slot, setting miss\n");
1522 echan->missed = 1;
1523 } else {
1524 /*
1525 * The slot is already programmed but the event got
1526 * missed, so its safe to issue it here.
1527 */
1528 dev_dbg(dev, "Missed event, TRIGGERING\n");
1529 edma_clean_channel(echan);
1530 edma_stop(echan);
1531 edma_start(echan);
1532 edma_trigger_channel(echan);
1533 }
1534 spin_unlock(&echan->vchan.lock);
1535 }
1536
1537 static inline bool edma_error_pending(struct edma_cc *ecc)
1538 {
1539 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1540 edma_read_array(ecc, EDMA_EMR, 1) ||
1541 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1542 return true;
1543
1544 return false;
1545 }
1546
1547 /* eDMA error interrupt handler */
1548 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1549 {
1550 struct edma_cc *ecc = data;
1551 int i, j;
1552 int ctlr;
1553 unsigned int cnt = 0;
1554 unsigned int val;
1555
1556 ctlr = ecc->id;
1557 if (ctlr < 0)
1558 return IRQ_NONE;
1559
1560 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1561
1562 if (!edma_error_pending(ecc)) {
1563 /*
1564 * The registers indicate no pending error event but the irq
1565 * handler has been called.
1566 * Ask eDMA to re-evaluate the error registers.
1567 */
1568 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1569 __func__);
1570 edma_write(ecc, EDMA_EEVAL, 1);
1571 return IRQ_NONE;
1572 }
1573
1574 while (1) {
1575 /* Event missed register(s) */
1576 for (j = 0; j < 2; j++) {
1577 unsigned long emr;
1578
1579 val = edma_read_array(ecc, EDMA_EMR, j);
1580 if (!val)
1581 continue;
1582
1583 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1584 emr = val;
1585 for (i = find_next_bit(&emr, 32, 0); i < 32;
1586 i = find_next_bit(&emr, 32, i + 1)) {
1587 int k = (j << 5) + i;
1588
1589 /* Clear the corresponding EMR bits */
1590 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1591 /* Clear any SER */
1592 edma_shadow0_write_array(ecc, SH_SECR, j,
1593 BIT(i));
1594 edma_error_handler(&ecc->slave_chans[k]);
1595 }
1596 }
1597
1598 val = edma_read(ecc, EDMA_QEMR);
1599 if (val) {
1600 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1601 /* Not reported, just clear the interrupt reason. */
1602 edma_write(ecc, EDMA_QEMCR, val);
1603 edma_shadow0_write(ecc, SH_QSECR, val);
1604 }
1605
1606 val = edma_read(ecc, EDMA_CCERR);
1607 if (val) {
1608 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1609 /* Not reported, just clear the interrupt reason. */
1610 edma_write(ecc, EDMA_CCERRCLR, val);
1611 }
1612
1613 if (!edma_error_pending(ecc))
1614 break;
1615 cnt++;
1616 if (cnt > 10)
1617 break;
1618 }
1619 edma_write(ecc, EDMA_EEVAL, 1);
1620 return IRQ_HANDLED;
1621 }
1622
1623 /* Alloc channel resources */
1624 static int edma_alloc_chan_resources(struct dma_chan *chan)
1625 {
1626 struct edma_chan *echan = to_edma_chan(chan);
1627 struct edma_cc *ecc = echan->ecc;
1628 struct device *dev = ecc->dev;
1629 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1630 int ret;
1631
1632 if (echan->tc) {
1633 eventq_no = echan->tc->id;
1634 } else if (ecc->tc_list) {
1635 /* memcpy channel */
1636 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1637 eventq_no = echan->tc->id;
1638 }
1639
1640 ret = edma_alloc_channel(echan, eventq_no);
1641 if (ret)
1642 return ret;
1643
1644 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1645 if (echan->slot[0] < 0) {
1646 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1647 EDMA_CHAN_SLOT(echan->ch_num));
1648 ret = echan->slot[0];
1649 goto err_slot;
1650 }
1651
1652 /* Set up channel -> slot mapping for the entry slot */
1653 edma_set_chmap(echan, echan->slot[0]);
1654 echan->alloced = true;
1655
1656 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1657 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1658 echan->hw_triggered ? "HW" : "SW");
1659
1660 return 0;
1661
1662 err_slot:
1663 edma_free_channel(echan);
1664 return ret;
1665 }
1666
1667 /* Free channel resources */
1668 static void edma_free_chan_resources(struct dma_chan *chan)
1669 {
1670 struct edma_chan *echan = to_edma_chan(chan);
1671 struct device *dev = echan->ecc->dev;
1672 int i;
1673
1674 /* Terminate transfers */
1675 edma_stop(echan);
1676
1677 vchan_free_chan_resources(&echan->vchan);
1678
1679 /* Free EDMA PaRAM slots */
1680 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1681 if (echan->slot[i] >= 0) {
1682 edma_free_slot(echan->ecc, echan->slot[i]);
1683 echan->slot[i] = -1;
1684 }
1685 }
1686
1687 /* Set entry slot to the dummy slot */
1688 edma_set_chmap(echan, echan->ecc->dummy_slot);
1689
1690 /* Free EDMA channel */
1691 if (echan->alloced) {
1692 edma_free_channel(echan);
1693 echan->alloced = false;
1694 }
1695
1696 echan->tc = NULL;
1697 echan->hw_triggered = false;
1698
1699 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1700 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1701 }
1702
1703 /* Send pending descriptor to hardware */
1704 static void edma_issue_pending(struct dma_chan *chan)
1705 {
1706 struct edma_chan *echan = to_edma_chan(chan);
1707 unsigned long flags;
1708
1709 spin_lock_irqsave(&echan->vchan.lock, flags);
1710 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1711 edma_execute(echan);
1712 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1713 }
1714
1715 /*
1716 * This limit exists to avoid a possible infinite loop when waiting for proof
1717 * that a particular transfer is completed. This limit can be hit if there
1718 * are large bursts to/from slow devices or the CPU is never able to catch
1719 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1720 * RX-FIFO, as many as 55 loops have been seen.
1721 */
1722 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1723
1724 static u32 edma_residue(struct edma_desc *edesc)
1725 {
1726 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1727 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1728 struct edma_chan *echan = edesc->echan;
1729 struct edma_pset *pset = edesc->pset;
1730 dma_addr_t done, pos;
1731 int i;
1732
1733 /*
1734 * We always read the dst/src position from the first RamPar
1735 * pset. That's the one which is active now.
1736 */
1737 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1738
1739 /*
1740 * "pos" may represent a transfer request that is still being
1741 * processed by the EDMACC or EDMATC. We will busy wait until
1742 * any one of the situations occurs:
1743 * 1. the DMA hardware is idle
1744 * 2. a new transfer request is setup
1745 * 3. we hit the loop limit
1746 */
1747 while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1748 /* check if a new transfer request is setup */
1749 if (edma_get_position(echan->ecc,
1750 echan->slot[0], dst) != pos) {
1751 break;
1752 }
1753
1754 if (!--loop_count) {
1755 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1756 "%s: timeout waiting for PaRAM update\n",
1757 __func__);
1758 break;
1759 }
1760
1761 cpu_relax();
1762 }
1763
1764 /*
1765 * Cyclic is simple. Just subtract pset[0].addr from pos.
1766 *
1767 * We never update edesc->residue in the cyclic case, so we
1768 * can tell the remaining room to the end of the circular
1769 * buffer.
1770 */
1771 if (edesc->cyclic) {
1772 done = pos - pset->addr;
1773 edesc->residue_stat = edesc->residue - done;
1774 return edesc->residue_stat;
1775 }
1776
1777 /*
1778 * For SG operation we catch up with the last processed
1779 * status.
1780 */
1781 pset += edesc->processed_stat;
1782
1783 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1784 /*
1785 * If we are inside this pset address range, we know
1786 * this is the active one. Get the current delta and
1787 * stop walking the psets.
1788 */
1789 if (pos >= pset->addr && pos < pset->addr + pset->len)
1790 return edesc->residue_stat - (pos - pset->addr);
1791
1792 /* Otherwise mark it done and update residue_stat. */
1793 edesc->processed_stat++;
1794 edesc->residue_stat -= pset->len;
1795 }
1796 return edesc->residue_stat;
1797 }
1798
1799 /* Check request completion status */
1800 static enum dma_status edma_tx_status(struct dma_chan *chan,
1801 dma_cookie_t cookie,
1802 struct dma_tx_state *txstate)
1803 {
1804 struct edma_chan *echan = to_edma_chan(chan);
1805 struct virt_dma_desc *vdesc;
1806 enum dma_status ret;
1807 unsigned long flags;
1808
1809 ret = dma_cookie_status(chan, cookie, txstate);
1810 if (ret == DMA_COMPLETE || !txstate)
1811 return ret;
1812
1813 spin_lock_irqsave(&echan->vchan.lock, flags);
1814 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1815 txstate->residue = edma_residue(echan->edesc);
1816 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1817 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1818 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1819
1820 return ret;
1821 }
1822
1823 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1824 {
1825 if (!memcpy_channels)
1826 return false;
1827 while (*memcpy_channels != -1) {
1828 if (*memcpy_channels == ch_num)
1829 return true;
1830 memcpy_channels++;
1831 }
1832 return false;
1833 }
1834
1835 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1836 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1837 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1838 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1839
1840 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1841 {
1842 struct dma_device *s_ddev = &ecc->dma_slave;
1843 struct dma_device *m_ddev = NULL;
1844 s32 *memcpy_channels = ecc->info->memcpy_channels;
1845 int i, j;
1846
1847 dma_cap_zero(s_ddev->cap_mask);
1848 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1849 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1850 if (ecc->legacy_mode && !memcpy_channels) {
1851 dev_warn(ecc->dev,
1852 "Legacy memcpy is enabled, things might not work\n");
1853
1854 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1855 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1856 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1857 }
1858
1859 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1860 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1861 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1862 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1863 s_ddev->device_issue_pending = edma_issue_pending;
1864 s_ddev->device_tx_status = edma_tx_status;
1865 s_ddev->device_config = edma_slave_config;
1866 s_ddev->device_pause = edma_dma_pause;
1867 s_ddev->device_resume = edma_dma_resume;
1868 s_ddev->device_terminate_all = edma_terminate_all;
1869 s_ddev->device_synchronize = edma_synchronize;
1870
1871 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1872 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1873 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1874 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1875 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1876
1877 s_ddev->dev = ecc->dev;
1878 INIT_LIST_HEAD(&s_ddev->channels);
1879
1880 if (memcpy_channels) {
1881 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1882 ecc->dma_memcpy = m_ddev;
1883
1884 dma_cap_zero(m_ddev->cap_mask);
1885 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1886
1887 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1888 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1889 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1890 m_ddev->device_issue_pending = edma_issue_pending;
1891 m_ddev->device_tx_status = edma_tx_status;
1892 m_ddev->device_config = edma_slave_config;
1893 m_ddev->device_pause = edma_dma_pause;
1894 m_ddev->device_resume = edma_dma_resume;
1895 m_ddev->device_terminate_all = edma_terminate_all;
1896 m_ddev->device_synchronize = edma_synchronize;
1897
1898 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1899 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1900 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1901 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1902
1903 m_ddev->dev = ecc->dev;
1904 INIT_LIST_HEAD(&m_ddev->channels);
1905 } else if (!ecc->legacy_mode) {
1906 dev_info(ecc->dev, "memcpy is disabled\n");
1907 }
1908
1909 for (i = 0; i < ecc->num_channels; i++) {
1910 struct edma_chan *echan = &ecc->slave_chans[i];
1911 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1912 echan->ecc = ecc;
1913 echan->vchan.desc_free = edma_desc_free;
1914
1915 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1916 vchan_init(&echan->vchan, m_ddev);
1917 else
1918 vchan_init(&echan->vchan, s_ddev);
1919
1920 INIT_LIST_HEAD(&echan->node);
1921 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1922 echan->slot[j] = -1;
1923 }
1924 }
1925
1926 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1927 struct edma_cc *ecc)
1928 {
1929 int i;
1930 u32 value, cccfg;
1931 s8 (*queue_priority_map)[2];
1932
1933 /* Decode the eDMA3 configuration from CCCFG register */
1934 cccfg = edma_read(ecc, EDMA_CCCFG);
1935
1936 value = GET_NUM_REGN(cccfg);
1937 ecc->num_region = BIT(value);
1938
1939 value = GET_NUM_DMACH(cccfg);
1940 ecc->num_channels = BIT(value + 1);
1941
1942 value = GET_NUM_QDMACH(cccfg);
1943 ecc->num_qchannels = value * 2;
1944
1945 value = GET_NUM_PAENTRY(cccfg);
1946 ecc->num_slots = BIT(value + 4);
1947
1948 value = GET_NUM_EVQUE(cccfg);
1949 ecc->num_tc = value + 1;
1950
1951 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1952
1953 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1954 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1955 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1956 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1957 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1958 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1959 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1960
1961 /* Nothing need to be done if queue priority is provided */
1962 if (pdata->queue_priority_mapping)
1963 return 0;
1964
1965 /*
1966 * Configure TC/queue priority as follows:
1967 * Q0 - priority 0
1968 * Q1 - priority 1
1969 * Q2 - priority 2
1970 * ...
1971 * The meaning of priority numbers: 0 highest priority, 7 lowest
1972 * priority. So Q0 is the highest priority queue and the last queue has
1973 * the lowest priority.
1974 */
1975 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1976 GFP_KERNEL);
1977 if (!queue_priority_map)
1978 return -ENOMEM;
1979
1980 for (i = 0; i < ecc->num_tc; i++) {
1981 queue_priority_map[i][0] = i;
1982 queue_priority_map[i][1] = i;
1983 }
1984 queue_priority_map[i][0] = -1;
1985 queue_priority_map[i][1] = -1;
1986
1987 pdata->queue_priority_mapping = queue_priority_map;
1988 /* Default queue has the lowest priority */
1989 pdata->default_queue = i - 1;
1990
1991 return 0;
1992 }
1993
1994 #if IS_ENABLED(CONFIG_OF)
1995 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1996 size_t sz)
1997 {
1998 const char pname[] = "ti,edma-xbar-event-map";
1999 struct resource res;
2000 void __iomem *xbar;
2001 s16 (*xbar_chans)[2];
2002 size_t nelm = sz / sizeof(s16);
2003 u32 shift, offset, mux;
2004 int ret, i;
2005
2006 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2007 if (!xbar_chans)
2008 return -ENOMEM;
2009
2010 ret = of_address_to_resource(dev->of_node, 1, &res);
2011 if (ret)
2012 return -ENOMEM;
2013
2014 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2015 if (!xbar)
2016 return -ENOMEM;
2017
2018 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2019 nelm);
2020 if (ret)
2021 return -EIO;
2022
2023 /* Invalidate last entry for the other user of this mess */
2024 nelm >>= 1;
2025 xbar_chans[nelm][0] = -1;
2026 xbar_chans[nelm][1] = -1;
2027
2028 for (i = 0; i < nelm; i++) {
2029 shift = (xbar_chans[i][1] & 0x03) << 3;
2030 offset = xbar_chans[i][1] & 0xfffffffc;
2031 mux = readl(xbar + offset);
2032 mux &= ~(0xff << shift);
2033 mux |= xbar_chans[i][0] << shift;
2034 writel(mux, (xbar + offset));
2035 }
2036
2037 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2038 return 0;
2039 }
2040
2041 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2042 bool legacy_mode)
2043 {
2044 struct edma_soc_info *info;
2045 struct property *prop;
2046 int sz, ret;
2047
2048 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2049 if (!info)
2050 return ERR_PTR(-ENOMEM);
2051
2052 if (legacy_mode) {
2053 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2054 &sz);
2055 if (prop) {
2056 ret = edma_xbar_event_map(dev, info, sz);
2057 if (ret)
2058 return ERR_PTR(ret);
2059 }
2060 return info;
2061 }
2062
2063 /* Get the list of channels allocated to be used for memcpy */
2064 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2065 if (prop) {
2066 const char pname[] = "ti,edma-memcpy-channels";
2067 size_t nelm = sz / sizeof(s32);
2068 s32 *memcpy_ch;
2069
2070 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2071 GFP_KERNEL);
2072 if (!memcpy_ch)
2073 return ERR_PTR(-ENOMEM);
2074
2075 ret = of_property_read_u32_array(dev->of_node, pname,
2076 (u32 *)memcpy_ch, nelm);
2077 if (ret)
2078 return ERR_PTR(ret);
2079
2080 memcpy_ch[nelm] = -1;
2081 info->memcpy_channels = memcpy_ch;
2082 }
2083
2084 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2085 &sz);
2086 if (prop) {
2087 const char pname[] = "ti,edma-reserved-slot-ranges";
2088 u32 (*tmp)[2];
2089 s16 (*rsv_slots)[2];
2090 size_t nelm = sz / sizeof(*tmp);
2091 struct edma_rsv_info *rsv_info;
2092 int i;
2093
2094 if (!nelm)
2095 return info;
2096
2097 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2098 if (!tmp)
2099 return ERR_PTR(-ENOMEM);
2100
2101 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2102 if (!rsv_info) {
2103 kfree(tmp);
2104 return ERR_PTR(-ENOMEM);
2105 }
2106
2107 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2108 GFP_KERNEL);
2109 if (!rsv_slots) {
2110 kfree(tmp);
2111 return ERR_PTR(-ENOMEM);
2112 }
2113
2114 ret = of_property_read_u32_array(dev->of_node, pname,
2115 (u32 *)tmp, nelm * 2);
2116 if (ret) {
2117 kfree(tmp);
2118 return ERR_PTR(ret);
2119 }
2120
2121 for (i = 0; i < nelm; i++) {
2122 rsv_slots[i][0] = tmp[i][0];
2123 rsv_slots[i][1] = tmp[i][1];
2124 }
2125 rsv_slots[nelm][0] = -1;
2126 rsv_slots[nelm][1] = -1;
2127
2128 info->rsv = rsv_info;
2129 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2130
2131 kfree(tmp);
2132 }
2133
2134 return info;
2135 }
2136
2137 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2138 struct of_dma *ofdma)
2139 {
2140 struct edma_cc *ecc = ofdma->of_dma_data;
2141 struct dma_chan *chan = NULL;
2142 struct edma_chan *echan;
2143 int i;
2144
2145 if (!ecc || dma_spec->args_count < 1)
2146 return NULL;
2147
2148 for (i = 0; i < ecc->num_channels; i++) {
2149 echan = &ecc->slave_chans[i];
2150 if (echan->ch_num == dma_spec->args[0]) {
2151 chan = &echan->vchan.chan;
2152 break;
2153 }
2154 }
2155
2156 if (!chan)
2157 return NULL;
2158
2159 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2160 goto out;
2161
2162 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2163 dma_spec->args[1] < echan->ecc->num_tc) {
2164 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2165 goto out;
2166 }
2167
2168 return NULL;
2169 out:
2170 /* The channel is going to be used as HW synchronized */
2171 echan->hw_triggered = true;
2172 return dma_get_slave_channel(chan);
2173 }
2174 #else
2175 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2176 bool legacy_mode)
2177 {
2178 return ERR_PTR(-EINVAL);
2179 }
2180
2181 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2182 struct of_dma *ofdma)
2183 {
2184 return NULL;
2185 }
2186 #endif
2187
2188 static int edma_probe(struct platform_device *pdev)
2189 {
2190 struct edma_soc_info *info = pdev->dev.platform_data;
2191 s8 (*queue_priority_mapping)[2];
2192 int i, off, ln;
2193 const s16 (*rsv_slots)[2];
2194 const s16 (*xbar_chans)[2];
2195 int irq;
2196 char *irq_name;
2197 struct resource *mem;
2198 struct device_node *node = pdev->dev.of_node;
2199 struct device *dev = &pdev->dev;
2200 struct edma_cc *ecc;
2201 bool legacy_mode = true;
2202 int ret;
2203
2204 if (node) {
2205 const struct of_device_id *match;
2206
2207 match = of_match_node(edma_of_ids, node);
2208 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2209 legacy_mode = false;
2210
2211 info = edma_setup_info_from_dt(dev, legacy_mode);
2212 if (IS_ERR(info)) {
2213 dev_err(dev, "failed to get DT data\n");
2214 return PTR_ERR(info);
2215 }
2216 }
2217
2218 if (!info)
2219 return -ENODEV;
2220
2221 pm_runtime_enable(dev);
2222 ret = pm_runtime_get_sync(dev);
2223 if (ret < 0) {
2224 dev_err(dev, "pm_runtime_get_sync() failed\n");
2225 return ret;
2226 }
2227
2228 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2229 if (ret)
2230 return ret;
2231
2232 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2233 if (!ecc)
2234 return -ENOMEM;
2235
2236 ecc->dev = dev;
2237 ecc->id = pdev->id;
2238 ecc->legacy_mode = legacy_mode;
2239 /* When booting with DT the pdev->id is -1 */
2240 if (ecc->id < 0)
2241 ecc->id = 0;
2242
2243 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2244 if (!mem) {
2245 dev_dbg(dev, "mem resource not found, using index 0\n");
2246 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2247 if (!mem) {
2248 dev_err(dev, "no mem resource?\n");
2249 return -ENODEV;
2250 }
2251 }
2252 ecc->base = devm_ioremap_resource(dev, mem);
2253 if (IS_ERR(ecc->base))
2254 return PTR_ERR(ecc->base);
2255
2256 platform_set_drvdata(pdev, ecc);
2257
2258 /* Get eDMA3 configuration from IP */
2259 ret = edma_setup_from_hw(dev, info, ecc);
2260 if (ret)
2261 return ret;
2262
2263 /* Allocate memory based on the information we got from the IP */
2264 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2265 sizeof(*ecc->slave_chans), GFP_KERNEL);
2266 if (!ecc->slave_chans)
2267 return -ENOMEM;
2268
2269 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2270 sizeof(unsigned long), GFP_KERNEL);
2271 if (!ecc->slot_inuse)
2272 return -ENOMEM;
2273
2274 ecc->default_queue = info->default_queue;
2275
2276 for (i = 0; i < ecc->num_slots; i++)
2277 edma_write_slot(ecc, i, &dummy_paramset);
2278
2279 if (info->rsv) {
2280 /* Set the reserved slots in inuse list */
2281 rsv_slots = info->rsv->rsv_slots;
2282 if (rsv_slots) {
2283 for (i = 0; rsv_slots[i][0] != -1; i++) {
2284 off = rsv_slots[i][0];
2285 ln = rsv_slots[i][1];
2286 edma_set_bits(off, ln, ecc->slot_inuse);
2287 }
2288 }
2289 }
2290
2291 /* Clear the xbar mapped channels in unused list */
2292 xbar_chans = info->xbar_chans;
2293 if (xbar_chans) {
2294 for (i = 0; xbar_chans[i][1] != -1; i++) {
2295 off = xbar_chans[i][1];
2296 }
2297 }
2298
2299 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2300 if (irq < 0 && node)
2301 irq = irq_of_parse_and_map(node, 0);
2302
2303 if (irq >= 0) {
2304 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2305 dev_name(dev));
2306 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2307 ecc);
2308 if (ret) {
2309 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2310 return ret;
2311 }
2312 ecc->ccint = irq;
2313 }
2314
2315 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2316 if (irq < 0 && node)
2317 irq = irq_of_parse_and_map(node, 2);
2318
2319 if (irq >= 0) {
2320 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2321 dev_name(dev));
2322 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2323 ecc);
2324 if (ret) {
2325 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2326 return ret;
2327 }
2328 ecc->ccerrint = irq;
2329 }
2330
2331 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2332 if (ecc->dummy_slot < 0) {
2333 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2334 return ecc->dummy_slot;
2335 }
2336
2337 queue_priority_mapping = info->queue_priority_mapping;
2338
2339 if (!ecc->legacy_mode) {
2340 int lowest_priority = 0;
2341 struct of_phandle_args tc_args;
2342
2343 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2344 sizeof(*ecc->tc_list), GFP_KERNEL);
2345 if (!ecc->tc_list)
2346 return -ENOMEM;
2347
2348 for (i = 0;; i++) {
2349 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2350 1, i, &tc_args);
2351 if (ret || i == ecc->num_tc)
2352 break;
2353
2354 ecc->tc_list[i].node = tc_args.np;
2355 ecc->tc_list[i].id = i;
2356 queue_priority_mapping[i][1] = tc_args.args[0];
2357 if (queue_priority_mapping[i][1] > lowest_priority) {
2358 lowest_priority = queue_priority_mapping[i][1];
2359 info->default_queue = i;
2360 }
2361 }
2362 }
2363
2364 /* Event queue priority mapping */
2365 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2366 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2367 queue_priority_mapping[i][1]);
2368
2369 for (i = 0; i < ecc->num_region; i++) {
2370 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2371 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2372 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2373 }
2374 ecc->info = info;
2375
2376 /* Init the dma device and channels */
2377 edma_dma_init(ecc, legacy_mode);
2378
2379 for (i = 0; i < ecc->num_channels; i++) {
2380 /* Assign all channels to the default queue */
2381 edma_assign_channel_eventq(&ecc->slave_chans[i],
2382 info->default_queue);
2383 /* Set entry slot to the dummy slot */
2384 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2385 }
2386
2387 ecc->dma_slave.filter.map = info->slave_map;
2388 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2389 ecc->dma_slave.filter.fn = edma_filter_fn;
2390
2391 ret = dma_async_device_register(&ecc->dma_slave);
2392 if (ret) {
2393 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2394 goto err_reg1;
2395 }
2396
2397 if (ecc->dma_memcpy) {
2398 ret = dma_async_device_register(ecc->dma_memcpy);
2399 if (ret) {
2400 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2401 ret);
2402 dma_async_device_unregister(&ecc->dma_slave);
2403 goto err_reg1;
2404 }
2405 }
2406
2407 if (node)
2408 of_dma_controller_register(node, of_edma_xlate, ecc);
2409
2410 dev_info(dev, "TI EDMA DMA engine driver\n");
2411
2412 return 0;
2413
2414 err_reg1:
2415 edma_free_slot(ecc, ecc->dummy_slot);
2416 return ret;
2417 }
2418
2419 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2420 {
2421 struct edma_chan *echan, *_echan;
2422
2423 list_for_each_entry_safe(echan, _echan,
2424 &dmadev->channels, vchan.chan.device_node) {
2425 list_del(&echan->vchan.chan.device_node);
2426 tasklet_kill(&echan->vchan.task);
2427 }
2428 }
2429
2430 static int edma_remove(struct platform_device *pdev)
2431 {
2432 struct device *dev = &pdev->dev;
2433 struct edma_cc *ecc = dev_get_drvdata(dev);
2434
2435 devm_free_irq(dev, ecc->ccint, ecc);
2436 devm_free_irq(dev, ecc->ccerrint, ecc);
2437
2438 edma_cleanupp_vchan(&ecc->dma_slave);
2439
2440 if (dev->of_node)
2441 of_dma_controller_free(dev->of_node);
2442 dma_async_device_unregister(&ecc->dma_slave);
2443 if (ecc->dma_memcpy)
2444 dma_async_device_unregister(ecc->dma_memcpy);
2445 edma_free_slot(ecc, ecc->dummy_slot);
2446
2447 return 0;
2448 }
2449
2450 #ifdef CONFIG_PM_SLEEP
2451 static int edma_pm_suspend(struct device *dev)
2452 {
2453 struct edma_cc *ecc = dev_get_drvdata(dev);
2454 struct edma_chan *echan = ecc->slave_chans;
2455 int i;
2456
2457 for (i = 0; i < ecc->num_channels; i++) {
2458 if (echan[i].alloced)
2459 edma_setup_interrupt(&echan[i], false);
2460 }
2461
2462 return 0;
2463 }
2464
2465 static int edma_pm_resume(struct device *dev)
2466 {
2467 struct edma_cc *ecc = dev_get_drvdata(dev);
2468 struct edma_chan *echan = ecc->slave_chans;
2469 int i;
2470 s8 (*queue_priority_mapping)[2];
2471
2472 /* re initialize dummy slot to dummy param set */
2473 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2474
2475 queue_priority_mapping = ecc->info->queue_priority_mapping;
2476
2477 /* Event queue priority mapping */
2478 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2479 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2480 queue_priority_mapping[i][1]);
2481
2482 for (i = 0; i < ecc->num_channels; i++) {
2483 if (echan[i].alloced) {
2484 /* ensure access through shadow region 0 */
2485 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2486 BIT(i & 0x1f));
2487
2488 edma_setup_interrupt(&echan[i], true);
2489
2490 /* Set up channel -> slot mapping for the entry slot */
2491 edma_set_chmap(&echan[i], echan[i].slot[0]);
2492 }
2493 }
2494
2495 return 0;
2496 }
2497 #endif
2498
2499 static const struct dev_pm_ops edma_pm_ops = {
2500 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2501 };
2502
2503 static struct platform_driver edma_driver = {
2504 .probe = edma_probe,
2505 .remove = edma_remove,
2506 .driver = {
2507 .name = "edma",
2508 .pm = &edma_pm_ops,
2509 .of_match_table = edma_of_ids,
2510 },
2511 };
2512
2513 static int edma_tptc_probe(struct platform_device *pdev)
2514 {
2515 pm_runtime_enable(&pdev->dev);
2516 return pm_runtime_get_sync(&pdev->dev);
2517 }
2518
2519 static struct platform_driver edma_tptc_driver = {
2520 .probe = edma_tptc_probe,
2521 .driver = {
2522 .name = "edma3-tptc",
2523 .of_match_table = edma_tptc_of_ids,
2524 },
2525 };
2526
2527 bool edma_filter_fn(struct dma_chan *chan, void *param)
2528 {
2529 bool match = false;
2530
2531 if (chan->device->dev->driver == &edma_driver.driver) {
2532 struct edma_chan *echan = to_edma_chan(chan);
2533 unsigned ch_req = *(unsigned *)param;
2534 if (ch_req == echan->ch_num) {
2535 /* The channel is going to be used as HW synchronized */
2536 echan->hw_triggered = true;
2537 match = true;
2538 }
2539 }
2540 return match;
2541 }
2542 EXPORT_SYMBOL(edma_filter_fn);
2543
2544 static int edma_init(void)
2545 {
2546 int ret;
2547
2548 ret = platform_driver_register(&edma_tptc_driver);
2549 if (ret)
2550 return ret;
2551
2552 return platform_driver_register(&edma_driver);
2553 }
2554 subsys_initcall(edma_init);
2555
2556 static void __exit edma_exit(void)
2557 {
2558 platform_driver_unregister(&edma_driver);
2559 platform_driver_unregister(&edma_tptc_driver);
2560 }
2561 module_exit(edma_exit);
2562
2563 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2564 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2565 MODULE_LICENSE("GPL v2");