]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/edma.c
dmaengine: edma: Use correct type for of_find_property() third parameter
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / edma.c
1 /*
2 * TI EDMA DMA engine driver
3 *
4 * Copyright 2012 Texas Instruments
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
9 *
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "dmaengine.h"
37 #include "virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
48
49 #define PARM_SIZE 0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
97
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
115
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
118
119 /*
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
125 */
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
129
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param {
138 u32 opt;
139 u32 src;
140 u32 a_b_cnt;
141 u32 dst;
142 u32 src_dst_bidx;
143 u32 link_bcntrld;
144 u32 src_dst_cidx;
145 u32 ccnt;
146 } __packed;
147
148 /* fields in edmacc_param.opt */
149 #define SAM BIT(0)
150 #define DAM BIT(1)
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
160
161 struct edma_pset {
162 u32 len;
163 dma_addr_t addr;
164 struct edmacc_param param;
165 };
166
167 struct edma_desc {
168 struct virt_dma_desc vdesc;
169 struct list_head node;
170 enum dma_transfer_direction direction;
171 int cyclic;
172 int absync;
173 int pset_nr;
174 struct edma_chan *echan;
175 int processed;
176
177 /*
178 * The following 4 elements are used for residue accounting.
179 *
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
186 *
187 * - residue: The amount of bytes we have left to transfer for this desc
188 *
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
192 *
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
196 */
197 int processed_stat;
198 u32 sg_len;
199 u32 residue;
200 u32 residue_stat;
201
202 struct edma_pset pset[0];
203 };
204
205 struct edma_cc;
206
207 struct edma_tc {
208 struct device_node *node;
209 u16 id;
210 };
211
212 struct edma_chan {
213 struct virt_dma_chan vchan;
214 struct list_head node;
215 struct edma_desc *edesc;
216 struct edma_cc *ecc;
217 struct edma_tc *tc;
218 int ch_num;
219 bool alloced;
220 bool hw_triggered;
221 int slot[EDMA_MAX_SLOTS];
222 int missed;
223 struct dma_slave_config cfg;
224 };
225
226 struct edma_cc {
227 struct device *dev;
228 struct edma_soc_info *info;
229 void __iomem *base;
230 int id;
231 bool legacy_mode;
232
233 /* eDMA3 resource information */
234 unsigned num_channels;
235 unsigned num_qchannels;
236 unsigned num_region;
237 unsigned num_slots;
238 unsigned num_tc;
239 bool chmap_exist;
240 enum dma_event_q default_queue;
241
242 unsigned int ccint;
243 unsigned int ccerrint;
244
245 /*
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
248 */
249 unsigned long *slot_inuse;
250
251 struct dma_device dma_slave;
252 struct dma_device *dma_memcpy;
253 struct edma_chan *slave_chans;
254 struct edma_tc *tc_list;
255 int dummy_slot;
256 };
257
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset = {
260 .link_bcntrld = 0xffff,
261 .ccnt = 1,
262 };
263
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const u32 edma_binding_type[] = {
267 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
268 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
269 };
270
271 static const struct of_device_id edma_of_ids[] = {
272 {
273 .compatible = "ti,edma3",
274 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
275 },
276 {
277 .compatible = "ti,edma3-tpcc",
278 .data = &edma_binding_type[EDMA_BINDING_TPCC],
279 },
280 {}
281 };
282 MODULE_DEVICE_TABLE(of, edma_of_ids);
283
284 static const struct of_device_id edma_tptc_of_ids[] = {
285 { .compatible = "ti,edma3-tptc", },
286 {}
287 };
288 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
289
290 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
291 {
292 return (unsigned int)__raw_readl(ecc->base + offset);
293 }
294
295 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
296 {
297 __raw_writel(val, ecc->base + offset);
298 }
299
300 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
301 unsigned or)
302 {
303 unsigned val = edma_read(ecc, offset);
304
305 val &= and;
306 val |= or;
307 edma_write(ecc, offset, val);
308 }
309
310 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
311 {
312 unsigned val = edma_read(ecc, offset);
313
314 val &= and;
315 edma_write(ecc, offset, val);
316 }
317
318 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
319 {
320 unsigned val = edma_read(ecc, offset);
321
322 val |= or;
323 edma_write(ecc, offset, val);
324 }
325
326 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
327 int i)
328 {
329 return edma_read(ecc, offset + (i << 2));
330 }
331
332 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
333 unsigned val)
334 {
335 edma_write(ecc, offset + (i << 2), val);
336 }
337
338 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
339 unsigned and, unsigned or)
340 {
341 edma_modify(ecc, offset + (i << 2), and, or);
342 }
343
344 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
345 unsigned or)
346 {
347 edma_or(ecc, offset + (i << 2), or);
348 }
349
350 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
351 unsigned or)
352 {
353 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
354 }
355
356 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
357 int j, unsigned val)
358 {
359 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
360 }
361
362 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
363 {
364 return edma_read(ecc, EDMA_SHADOW0 + offset);
365 }
366
367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 int offset, int i)
369 {
370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
371 }
372
373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 unsigned val)
375 {
376 edma_write(ecc, EDMA_SHADOW0 + offset, val);
377 }
378
379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 int i, unsigned val)
381 {
382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
383 }
384
385 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
386 int param_no)
387 {
388 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
389 }
390
391 static inline void edma_param_write(struct edma_cc *ecc, int offset,
392 int param_no, unsigned val)
393 {
394 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
395 }
396
397 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
398 int param_no, unsigned and, unsigned or)
399 {
400 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
401 }
402
403 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
404 unsigned and)
405 {
406 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
407 }
408
409 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
410 unsigned or)
411 {
412 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
413 }
414
415 static inline void set_bits(int offset, int len, unsigned long *p)
416 {
417 for (; len > 0; len--)
418 set_bit(offset + (len - 1), p);
419 }
420
421 static inline void clear_bits(int offset, int len, unsigned long *p)
422 {
423 for (; len > 0; len--)
424 clear_bit(offset + (len - 1), p);
425 }
426
427 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
428 int priority)
429 {
430 int bit = queue_no * 4;
431
432 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
433 }
434
435 static void edma_set_chmap(struct edma_chan *echan, int slot)
436 {
437 struct edma_cc *ecc = echan->ecc;
438 int channel = EDMA_CHAN_SLOT(echan->ch_num);
439
440 if (ecc->chmap_exist) {
441 slot = EDMA_CHAN_SLOT(slot);
442 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
443 }
444 }
445
446 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
447 {
448 struct edma_cc *ecc = echan->ecc;
449 int channel = EDMA_CHAN_SLOT(echan->ch_num);
450
451 if (enable) {
452 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
453 BIT(channel & 0x1f));
454 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
455 BIT(channel & 0x1f));
456 } else {
457 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
458 BIT(channel & 0x1f));
459 }
460 }
461
462 /*
463 * paRAM slot management functions
464 */
465 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
466 const struct edmacc_param *param)
467 {
468 slot = EDMA_CHAN_SLOT(slot);
469 if (slot >= ecc->num_slots)
470 return;
471 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
472 }
473
474 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
475 struct edmacc_param *param)
476 {
477 slot = EDMA_CHAN_SLOT(slot);
478 if (slot >= ecc->num_slots)
479 return;
480 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
481 }
482
483 /**
484 * edma_alloc_slot - allocate DMA parameter RAM
485 * @ecc: pointer to edma_cc struct
486 * @slot: specific slot to allocate; negative for "any unused slot"
487 *
488 * This allocates a parameter RAM slot, initializing it to hold a
489 * dummy transfer. Slots allocated using this routine have not been
490 * mapped to a hardware DMA channel, and will normally be used by
491 * linking to them from a slot associated with a DMA channel.
492 *
493 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
494 * slots may be allocated on behalf of DSP firmware.
495 *
496 * Returns the number of the slot, else negative errno.
497 */
498 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
499 {
500 if (slot >= 0) {
501 slot = EDMA_CHAN_SLOT(slot);
502 /* Requesting entry paRAM slot for a HW triggered channel. */
503 if (ecc->chmap_exist && slot < ecc->num_channels)
504 slot = EDMA_SLOT_ANY;
505 }
506
507 if (slot < 0) {
508 if (ecc->chmap_exist)
509 slot = 0;
510 else
511 slot = ecc->num_channels;
512 for (;;) {
513 slot = find_next_zero_bit(ecc->slot_inuse,
514 ecc->num_slots,
515 slot);
516 if (slot == ecc->num_slots)
517 return -ENOMEM;
518 if (!test_and_set_bit(slot, ecc->slot_inuse))
519 break;
520 }
521 } else if (slot >= ecc->num_slots) {
522 return -EINVAL;
523 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
524 return -EBUSY;
525 }
526
527 edma_write_slot(ecc, slot, &dummy_paramset);
528
529 return EDMA_CTLR_CHAN(ecc->id, slot);
530 }
531
532 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
533 {
534 slot = EDMA_CHAN_SLOT(slot);
535 if (slot >= ecc->num_slots)
536 return;
537
538 edma_write_slot(ecc, slot, &dummy_paramset);
539 clear_bit(slot, ecc->slot_inuse);
540 }
541
542 /**
543 * edma_link - link one parameter RAM slot to another
544 * @ecc: pointer to edma_cc struct
545 * @from: parameter RAM slot originating the link
546 * @to: parameter RAM slot which is the link target
547 *
548 * The originating slot should not be part of any active DMA transfer.
549 */
550 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
551 {
552 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
553 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
554
555 from = EDMA_CHAN_SLOT(from);
556 to = EDMA_CHAN_SLOT(to);
557 if (from >= ecc->num_slots || to >= ecc->num_slots)
558 return;
559
560 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
561 PARM_OFFSET(to));
562 }
563
564 /**
565 * edma_get_position - returns the current transfer point
566 * @ecc: pointer to edma_cc struct
567 * @slot: parameter RAM slot being examined
568 * @dst: true selects the dest position, false the source
569 *
570 * Returns the position of the current active slot
571 */
572 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
573 bool dst)
574 {
575 u32 offs;
576
577 slot = EDMA_CHAN_SLOT(slot);
578 offs = PARM_OFFSET(slot);
579 offs += dst ? PARM_DST : PARM_SRC;
580
581 return edma_read(ecc, offs);
582 }
583
584 /*
585 * Channels with event associations will be triggered by their hardware
586 * events, and channels without such associations will be triggered by
587 * software. (At this writing there is no interface for using software
588 * triggers except with channels that don't support hardware triggers.)
589 */
590 static void edma_start(struct edma_chan *echan)
591 {
592 struct edma_cc *ecc = echan->ecc;
593 int channel = EDMA_CHAN_SLOT(echan->ch_num);
594 int j = (channel >> 5);
595 unsigned int mask = BIT(channel & 0x1f);
596
597 if (!echan->hw_triggered) {
598 /* EDMA channels without event association */
599 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
600 edma_shadow0_read_array(ecc, SH_ESR, j));
601 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
602 } else {
603 /* EDMA channel with event association */
604 dev_dbg(ecc->dev, "ER%d %08x\n", j,
605 edma_shadow0_read_array(ecc, SH_ER, j));
606 /* Clear any pending event or error */
607 edma_write_array(ecc, EDMA_ECR, j, mask);
608 edma_write_array(ecc, EDMA_EMCR, j, mask);
609 /* Clear any SER */
610 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
611 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
612 dev_dbg(ecc->dev, "EER%d %08x\n", j,
613 edma_shadow0_read_array(ecc, SH_EER, j));
614 }
615 }
616
617 static void edma_stop(struct edma_chan *echan)
618 {
619 struct edma_cc *ecc = echan->ecc;
620 int channel = EDMA_CHAN_SLOT(echan->ch_num);
621 int j = (channel >> 5);
622 unsigned int mask = BIT(channel & 0x1f);
623
624 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
625 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
626 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
627 edma_write_array(ecc, EDMA_EMCR, j, mask);
628
629 /* clear possibly pending completion interrupt */
630 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
631
632 dev_dbg(ecc->dev, "EER%d %08x\n", j,
633 edma_shadow0_read_array(ecc, SH_EER, j));
634
635 /* REVISIT: consider guarding against inappropriate event
636 * chaining by overwriting with dummy_paramset.
637 */
638 }
639
640 /*
641 * Temporarily disable EDMA hardware events on the specified channel,
642 * preventing them from triggering new transfers
643 */
644 static void edma_pause(struct edma_chan *echan)
645 {
646 int channel = EDMA_CHAN_SLOT(echan->ch_num);
647 unsigned int mask = BIT(channel & 0x1f);
648
649 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
650 }
651
652 /* Re-enable EDMA hardware events on the specified channel. */
653 static void edma_resume(struct edma_chan *echan)
654 {
655 int channel = EDMA_CHAN_SLOT(echan->ch_num);
656 unsigned int mask = BIT(channel & 0x1f);
657
658 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
659 }
660
661 static void edma_trigger_channel(struct edma_chan *echan)
662 {
663 struct edma_cc *ecc = echan->ecc;
664 int channel = EDMA_CHAN_SLOT(echan->ch_num);
665 unsigned int mask = BIT(channel & 0x1f);
666
667 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
668
669 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
670 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
671 }
672
673 static void edma_clean_channel(struct edma_chan *echan)
674 {
675 struct edma_cc *ecc = echan->ecc;
676 int channel = EDMA_CHAN_SLOT(echan->ch_num);
677 int j = (channel >> 5);
678 unsigned int mask = BIT(channel & 0x1f);
679
680 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
681 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
682 /* Clear the corresponding EMR bits */
683 edma_write_array(ecc, EDMA_EMCR, j, mask);
684 /* Clear any SER */
685 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
686 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
687 }
688
689 /* Move channel to a specific event queue */
690 static void edma_assign_channel_eventq(struct edma_chan *echan,
691 enum dma_event_q eventq_no)
692 {
693 struct edma_cc *ecc = echan->ecc;
694 int channel = EDMA_CHAN_SLOT(echan->ch_num);
695 int bit = (channel & 0x7) * 4;
696
697 /* default to low priority queue */
698 if (eventq_no == EVENTQ_DEFAULT)
699 eventq_no = ecc->default_queue;
700 if (eventq_no >= ecc->num_tc)
701 return;
702
703 eventq_no &= 7;
704 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
705 eventq_no << bit);
706 }
707
708 static int edma_alloc_channel(struct edma_chan *echan,
709 enum dma_event_q eventq_no)
710 {
711 struct edma_cc *ecc = echan->ecc;
712 int channel = EDMA_CHAN_SLOT(echan->ch_num);
713
714 /* ensure access through shadow region 0 */
715 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
716
717 /* ensure no events are pending */
718 edma_stop(echan);
719
720 edma_setup_interrupt(echan, true);
721
722 edma_assign_channel_eventq(echan, eventq_no);
723
724 return 0;
725 }
726
727 static void edma_free_channel(struct edma_chan *echan)
728 {
729 /* ensure no events are pending */
730 edma_stop(echan);
731 /* REVISIT should probably take out of shadow region 0 */
732 edma_setup_interrupt(echan, false);
733 }
734
735 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
736 {
737 return container_of(d, struct edma_cc, dma_slave);
738 }
739
740 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
741 {
742 return container_of(c, struct edma_chan, vchan.chan);
743 }
744
745 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
746 {
747 return container_of(tx, struct edma_desc, vdesc.tx);
748 }
749
750 static void edma_desc_free(struct virt_dma_desc *vdesc)
751 {
752 kfree(container_of(vdesc, struct edma_desc, vdesc));
753 }
754
755 /* Dispatch a queued descriptor to the controller (caller holds lock) */
756 static void edma_execute(struct edma_chan *echan)
757 {
758 struct edma_cc *ecc = echan->ecc;
759 struct virt_dma_desc *vdesc;
760 struct edma_desc *edesc;
761 struct device *dev = echan->vchan.chan.device->dev;
762 int i, j, left, nslots;
763
764 if (!echan->edesc) {
765 /* Setup is needed for the first transfer */
766 vdesc = vchan_next_desc(&echan->vchan);
767 if (!vdesc)
768 return;
769 list_del(&vdesc->node);
770 echan->edesc = to_edma_desc(&vdesc->tx);
771 }
772
773 edesc = echan->edesc;
774
775 /* Find out how many left */
776 left = edesc->pset_nr - edesc->processed;
777 nslots = min(MAX_NR_SG, left);
778 edesc->sg_len = 0;
779
780 /* Write descriptor PaRAM set(s) */
781 for (i = 0; i < nslots; i++) {
782 j = i + edesc->processed;
783 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
784 edesc->sg_len += edesc->pset[j].len;
785 dev_vdbg(dev,
786 "\n pset[%d]:\n"
787 " chnum\t%d\n"
788 " slot\t%d\n"
789 " opt\t%08x\n"
790 " src\t%08x\n"
791 " dst\t%08x\n"
792 " abcnt\t%08x\n"
793 " ccnt\t%08x\n"
794 " bidx\t%08x\n"
795 " cidx\t%08x\n"
796 " lkrld\t%08x\n",
797 j, echan->ch_num, echan->slot[i],
798 edesc->pset[j].param.opt,
799 edesc->pset[j].param.src,
800 edesc->pset[j].param.dst,
801 edesc->pset[j].param.a_b_cnt,
802 edesc->pset[j].param.ccnt,
803 edesc->pset[j].param.src_dst_bidx,
804 edesc->pset[j].param.src_dst_cidx,
805 edesc->pset[j].param.link_bcntrld);
806 /* Link to the previous slot if not the last set */
807 if (i != (nslots - 1))
808 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
809 }
810
811 edesc->processed += nslots;
812
813 /*
814 * If this is either the last set in a set of SG-list transactions
815 * then setup a link to the dummy slot, this results in all future
816 * events being absorbed and that's OK because we're done
817 */
818 if (edesc->processed == edesc->pset_nr) {
819 if (edesc->cyclic)
820 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
821 else
822 edma_link(ecc, echan->slot[nslots - 1],
823 echan->ecc->dummy_slot);
824 }
825
826 if (echan->missed) {
827 /*
828 * This happens due to setup times between intermediate
829 * transfers in long SG lists which have to be broken up into
830 * transfers of MAX_NR_SG
831 */
832 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
833 edma_clean_channel(echan);
834 edma_stop(echan);
835 edma_start(echan);
836 edma_trigger_channel(echan);
837 echan->missed = 0;
838 } else if (edesc->processed <= MAX_NR_SG) {
839 dev_dbg(dev, "first transfer starting on channel %d\n",
840 echan->ch_num);
841 edma_start(echan);
842 } else {
843 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
844 echan->ch_num, edesc->processed);
845 edma_resume(echan);
846 }
847 }
848
849 static int edma_terminate_all(struct dma_chan *chan)
850 {
851 struct edma_chan *echan = to_edma_chan(chan);
852 unsigned long flags;
853 LIST_HEAD(head);
854
855 spin_lock_irqsave(&echan->vchan.lock, flags);
856
857 /*
858 * Stop DMA activity: we assume the callback will not be called
859 * after edma_dma() returns (even if it does, it will see
860 * echan->edesc is NULL and exit.)
861 */
862 if (echan->edesc) {
863 edma_stop(echan);
864 /* Move the cyclic channel back to default queue */
865 if (!echan->tc && echan->edesc->cyclic)
866 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
867 /*
868 * free the running request descriptor
869 * since it is not in any of the vdesc lists
870 */
871 edma_desc_free(&echan->edesc->vdesc);
872 echan->edesc = NULL;
873 }
874
875 vchan_get_all_descriptors(&echan->vchan, &head);
876 spin_unlock_irqrestore(&echan->vchan.lock, flags);
877 vchan_dma_desc_free_list(&echan->vchan, &head);
878
879 return 0;
880 }
881
882 static void edma_synchronize(struct dma_chan *chan)
883 {
884 struct edma_chan *echan = to_edma_chan(chan);
885
886 vchan_synchronize(&echan->vchan);
887 }
888
889 static int edma_slave_config(struct dma_chan *chan,
890 struct dma_slave_config *cfg)
891 {
892 struct edma_chan *echan = to_edma_chan(chan);
893
894 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
895 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
896 return -EINVAL;
897
898 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
899
900 return 0;
901 }
902
903 static int edma_dma_pause(struct dma_chan *chan)
904 {
905 struct edma_chan *echan = to_edma_chan(chan);
906
907 if (!echan->edesc)
908 return -EINVAL;
909
910 edma_pause(echan);
911 return 0;
912 }
913
914 static int edma_dma_resume(struct dma_chan *chan)
915 {
916 struct edma_chan *echan = to_edma_chan(chan);
917
918 edma_resume(echan);
919 return 0;
920 }
921
922 /*
923 * A PaRAM set configuration abstraction used by other modes
924 * @chan: Channel who's PaRAM set we're configuring
925 * @pset: PaRAM set to initialize and setup.
926 * @src_addr: Source address of the DMA
927 * @dst_addr: Destination address of the DMA
928 * @burst: In units of dev_width, how much to send
929 * @dev_width: How much is the dev_width
930 * @dma_length: Total length of the DMA transfer
931 * @direction: Direction of the transfer
932 */
933 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
934 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
935 unsigned int acnt, unsigned int dma_length,
936 enum dma_transfer_direction direction)
937 {
938 struct edma_chan *echan = to_edma_chan(chan);
939 struct device *dev = chan->device->dev;
940 struct edmacc_param *param = &epset->param;
941 int bcnt, ccnt, cidx;
942 int src_bidx, dst_bidx, src_cidx, dst_cidx;
943 int absync;
944
945 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
946 if (!burst)
947 burst = 1;
948 /*
949 * If the maxburst is equal to the fifo width, use
950 * A-synced transfers. This allows for large contiguous
951 * buffer transfers using only one PaRAM set.
952 */
953 if (burst == 1) {
954 /*
955 * For the A-sync case, bcnt and ccnt are the remainder
956 * and quotient respectively of the division of:
957 * (dma_length / acnt) by (SZ_64K -1). This is so
958 * that in case bcnt over flows, we have ccnt to use.
959 * Note: In A-sync tranfer only, bcntrld is used, but it
960 * only applies for sg_dma_len(sg) >= SZ_64K.
961 * In this case, the best way adopted is- bccnt for the
962 * first frame will be the remainder below. Then for
963 * every successive frame, bcnt will be SZ_64K-1. This
964 * is assured as bcntrld = 0xffff in end of function.
965 */
966 absync = false;
967 ccnt = dma_length / acnt / (SZ_64K - 1);
968 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
969 /*
970 * If bcnt is non-zero, we have a remainder and hence an
971 * extra frame to transfer, so increment ccnt.
972 */
973 if (bcnt)
974 ccnt++;
975 else
976 bcnt = SZ_64K - 1;
977 cidx = acnt;
978 } else {
979 /*
980 * If maxburst is greater than the fifo address_width,
981 * use AB-synced transfers where A count is the fifo
982 * address_width and B count is the maxburst. In this
983 * case, we are limited to transfers of C count frames
984 * of (address_width * maxburst) where C count is limited
985 * to SZ_64K-1. This places an upper bound on the length
986 * of an SG segment that can be handled.
987 */
988 absync = true;
989 bcnt = burst;
990 ccnt = dma_length / (acnt * bcnt);
991 if (ccnt > (SZ_64K - 1)) {
992 dev_err(dev, "Exceeded max SG segment size\n");
993 return -EINVAL;
994 }
995 cidx = acnt * bcnt;
996 }
997
998 epset->len = dma_length;
999
1000 if (direction == DMA_MEM_TO_DEV) {
1001 src_bidx = acnt;
1002 src_cidx = cidx;
1003 dst_bidx = 0;
1004 dst_cidx = 0;
1005 epset->addr = src_addr;
1006 } else if (direction == DMA_DEV_TO_MEM) {
1007 src_bidx = 0;
1008 src_cidx = 0;
1009 dst_bidx = acnt;
1010 dst_cidx = cidx;
1011 epset->addr = dst_addr;
1012 } else if (direction == DMA_MEM_TO_MEM) {
1013 src_bidx = acnt;
1014 src_cidx = cidx;
1015 dst_bidx = acnt;
1016 dst_cidx = cidx;
1017 } else {
1018 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1019 return -EINVAL;
1020 }
1021
1022 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1023 /* Configure A or AB synchronized transfers */
1024 if (absync)
1025 param->opt |= SYNCDIM;
1026
1027 param->src = src_addr;
1028 param->dst = dst_addr;
1029
1030 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1031 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1032
1033 param->a_b_cnt = bcnt << 16 | acnt;
1034 param->ccnt = ccnt;
1035 /*
1036 * Only time when (bcntrld) auto reload is required is for
1037 * A-sync case, and in this case, a requirement of reload value
1038 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1039 * and then later will be populated by edma_execute.
1040 */
1041 param->link_bcntrld = 0xffffffff;
1042 return absync;
1043 }
1044
1045 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1046 struct dma_chan *chan, struct scatterlist *sgl,
1047 unsigned int sg_len, enum dma_transfer_direction direction,
1048 unsigned long tx_flags, void *context)
1049 {
1050 struct edma_chan *echan = to_edma_chan(chan);
1051 struct device *dev = chan->device->dev;
1052 struct edma_desc *edesc;
1053 dma_addr_t src_addr = 0, dst_addr = 0;
1054 enum dma_slave_buswidth dev_width;
1055 u32 burst;
1056 struct scatterlist *sg;
1057 int i, nslots, ret;
1058
1059 if (unlikely(!echan || !sgl || !sg_len))
1060 return NULL;
1061
1062 if (direction == DMA_DEV_TO_MEM) {
1063 src_addr = echan->cfg.src_addr;
1064 dev_width = echan->cfg.src_addr_width;
1065 burst = echan->cfg.src_maxburst;
1066 } else if (direction == DMA_MEM_TO_DEV) {
1067 dst_addr = echan->cfg.dst_addr;
1068 dev_width = echan->cfg.dst_addr_width;
1069 burst = echan->cfg.dst_maxburst;
1070 } else {
1071 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1072 return NULL;
1073 }
1074
1075 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1076 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1077 return NULL;
1078 }
1079
1080 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1081 GFP_ATOMIC);
1082 if (!edesc)
1083 return NULL;
1084
1085 edesc->pset_nr = sg_len;
1086 edesc->residue = 0;
1087 edesc->direction = direction;
1088 edesc->echan = echan;
1089
1090 /* Allocate a PaRAM slot, if needed */
1091 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1092
1093 for (i = 0; i < nslots; i++) {
1094 if (echan->slot[i] < 0) {
1095 echan->slot[i] =
1096 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1097 if (echan->slot[i] < 0) {
1098 kfree(edesc);
1099 dev_err(dev, "%s: Failed to allocate slot\n",
1100 __func__);
1101 return NULL;
1102 }
1103 }
1104 }
1105
1106 /* Configure PaRAM sets for each SG */
1107 for_each_sg(sgl, sg, sg_len, i) {
1108 /* Get address for each SG */
1109 if (direction == DMA_DEV_TO_MEM)
1110 dst_addr = sg_dma_address(sg);
1111 else
1112 src_addr = sg_dma_address(sg);
1113
1114 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1115 dst_addr, burst, dev_width,
1116 sg_dma_len(sg), direction);
1117 if (ret < 0) {
1118 kfree(edesc);
1119 return NULL;
1120 }
1121
1122 edesc->absync = ret;
1123 edesc->residue += sg_dma_len(sg);
1124
1125 if (i == sg_len - 1)
1126 /* Enable completion interrupt */
1127 edesc->pset[i].param.opt |= TCINTEN;
1128 else if (!((i+1) % MAX_NR_SG))
1129 /*
1130 * Enable early completion interrupt for the
1131 * intermediateset. In this case the driver will be
1132 * notified when the paRAM set is submitted to TC. This
1133 * will allow more time to set up the next set of slots.
1134 */
1135 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1136 }
1137 edesc->residue_stat = edesc->residue;
1138
1139 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1140 }
1141
1142 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1143 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1144 size_t len, unsigned long tx_flags)
1145 {
1146 int ret, nslots;
1147 struct edma_desc *edesc;
1148 struct device *dev = chan->device->dev;
1149 struct edma_chan *echan = to_edma_chan(chan);
1150 unsigned int width, pset_len;
1151
1152 if (unlikely(!echan || !len))
1153 return NULL;
1154
1155 if (len < SZ_64K) {
1156 /*
1157 * Transfer size less than 64K can be handled with one paRAM
1158 * slot and with one burst.
1159 * ACNT = length
1160 */
1161 width = len;
1162 pset_len = len;
1163 nslots = 1;
1164 } else {
1165 /*
1166 * Transfer size bigger than 64K will be handled with maximum of
1167 * two paRAM slots.
1168 * slot1: (full_length / 32767) times 32767 bytes bursts.
1169 * ACNT = 32767, length1: (full_length / 32767) * 32767
1170 * slot2: the remaining amount of data after slot1.
1171 * ACNT = full_length - length1, length2 = ACNT
1172 *
1173 * When the full_length is multibple of 32767 one slot can be
1174 * used to complete the transfer.
1175 */
1176 width = SZ_32K - 1;
1177 pset_len = rounddown(len, width);
1178 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1179 if (unlikely(pset_len == len))
1180 nslots = 1;
1181 else
1182 nslots = 2;
1183 }
1184
1185 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1186 GFP_ATOMIC);
1187 if (!edesc)
1188 return NULL;
1189
1190 edesc->pset_nr = nslots;
1191 edesc->residue = edesc->residue_stat = len;
1192 edesc->direction = DMA_MEM_TO_MEM;
1193 edesc->echan = echan;
1194
1195 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1196 width, pset_len, DMA_MEM_TO_MEM);
1197 if (ret < 0) {
1198 kfree(edesc);
1199 return NULL;
1200 }
1201
1202 edesc->absync = ret;
1203
1204 edesc->pset[0].param.opt |= ITCCHEN;
1205 if (nslots == 1) {
1206 /* Enable transfer complete interrupt */
1207 edesc->pset[0].param.opt |= TCINTEN;
1208 } else {
1209 /* Enable transfer complete chaining for the first slot */
1210 edesc->pset[0].param.opt |= TCCHEN;
1211
1212 if (echan->slot[1] < 0) {
1213 echan->slot[1] = edma_alloc_slot(echan->ecc,
1214 EDMA_SLOT_ANY);
1215 if (echan->slot[1] < 0) {
1216 kfree(edesc);
1217 dev_err(dev, "%s: Failed to allocate slot\n",
1218 __func__);
1219 return NULL;
1220 }
1221 }
1222 dest += pset_len;
1223 src += pset_len;
1224 pset_len = width = len % (SZ_32K - 1);
1225
1226 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1227 width, pset_len, DMA_MEM_TO_MEM);
1228 if (ret < 0) {
1229 kfree(edesc);
1230 return NULL;
1231 }
1232
1233 edesc->pset[1].param.opt |= ITCCHEN;
1234 edesc->pset[1].param.opt |= TCINTEN;
1235 }
1236
1237 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1238 }
1239
1240 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1241 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1242 size_t period_len, enum dma_transfer_direction direction,
1243 unsigned long tx_flags)
1244 {
1245 struct edma_chan *echan = to_edma_chan(chan);
1246 struct device *dev = chan->device->dev;
1247 struct edma_desc *edesc;
1248 dma_addr_t src_addr, dst_addr;
1249 enum dma_slave_buswidth dev_width;
1250 bool use_intermediate = false;
1251 u32 burst;
1252 int i, ret, nslots;
1253
1254 if (unlikely(!echan || !buf_len || !period_len))
1255 return NULL;
1256
1257 if (direction == DMA_DEV_TO_MEM) {
1258 src_addr = echan->cfg.src_addr;
1259 dst_addr = buf_addr;
1260 dev_width = echan->cfg.src_addr_width;
1261 burst = echan->cfg.src_maxburst;
1262 } else if (direction == DMA_MEM_TO_DEV) {
1263 src_addr = buf_addr;
1264 dst_addr = echan->cfg.dst_addr;
1265 dev_width = echan->cfg.dst_addr_width;
1266 burst = echan->cfg.dst_maxburst;
1267 } else {
1268 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1269 return NULL;
1270 }
1271
1272 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1273 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1274 return NULL;
1275 }
1276
1277 if (unlikely(buf_len % period_len)) {
1278 dev_err(dev, "Period should be multiple of Buffer length\n");
1279 return NULL;
1280 }
1281
1282 nslots = (buf_len / period_len) + 1;
1283
1284 /*
1285 * Cyclic DMA users such as audio cannot tolerate delays introduced
1286 * by cases where the number of periods is more than the maximum
1287 * number of SGs the EDMA driver can handle at a time. For DMA types
1288 * such as Slave SGs, such delays are tolerable and synchronized,
1289 * but the synchronization is difficult to achieve with Cyclic and
1290 * cannot be guaranteed, so we error out early.
1291 */
1292 if (nslots > MAX_NR_SG) {
1293 /*
1294 * If the burst and period sizes are the same, we can put
1295 * the full buffer into a single period and activate
1296 * intermediate interrupts. This will produce interrupts
1297 * after each burst, which is also after each desired period.
1298 */
1299 if (burst == period_len) {
1300 period_len = buf_len;
1301 nslots = 2;
1302 use_intermediate = true;
1303 } else {
1304 return NULL;
1305 }
1306 }
1307
1308 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1309 GFP_ATOMIC);
1310 if (!edesc)
1311 return NULL;
1312
1313 edesc->cyclic = 1;
1314 edesc->pset_nr = nslots;
1315 edesc->residue = edesc->residue_stat = buf_len;
1316 edesc->direction = direction;
1317 edesc->echan = echan;
1318
1319 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1320 __func__, echan->ch_num, nslots, period_len, buf_len);
1321
1322 for (i = 0; i < nslots; i++) {
1323 /* Allocate a PaRAM slot, if needed */
1324 if (echan->slot[i] < 0) {
1325 echan->slot[i] =
1326 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1327 if (echan->slot[i] < 0) {
1328 kfree(edesc);
1329 dev_err(dev, "%s: Failed to allocate slot\n",
1330 __func__);
1331 return NULL;
1332 }
1333 }
1334
1335 if (i == nslots - 1) {
1336 memcpy(&edesc->pset[i], &edesc->pset[0],
1337 sizeof(edesc->pset[0]));
1338 break;
1339 }
1340
1341 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1342 dst_addr, burst, dev_width, period_len,
1343 direction);
1344 if (ret < 0) {
1345 kfree(edesc);
1346 return NULL;
1347 }
1348
1349 if (direction == DMA_DEV_TO_MEM)
1350 dst_addr += period_len;
1351 else
1352 src_addr += period_len;
1353
1354 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1355 dev_vdbg(dev,
1356 "\n pset[%d]:\n"
1357 " chnum\t%d\n"
1358 " slot\t%d\n"
1359 " opt\t%08x\n"
1360 " src\t%08x\n"
1361 " dst\t%08x\n"
1362 " abcnt\t%08x\n"
1363 " ccnt\t%08x\n"
1364 " bidx\t%08x\n"
1365 " cidx\t%08x\n"
1366 " lkrld\t%08x\n",
1367 i, echan->ch_num, echan->slot[i],
1368 edesc->pset[i].param.opt,
1369 edesc->pset[i].param.src,
1370 edesc->pset[i].param.dst,
1371 edesc->pset[i].param.a_b_cnt,
1372 edesc->pset[i].param.ccnt,
1373 edesc->pset[i].param.src_dst_bidx,
1374 edesc->pset[i].param.src_dst_cidx,
1375 edesc->pset[i].param.link_bcntrld);
1376
1377 edesc->absync = ret;
1378
1379 /*
1380 * Enable period interrupt only if it is requested
1381 */
1382 if (tx_flags & DMA_PREP_INTERRUPT) {
1383 edesc->pset[i].param.opt |= TCINTEN;
1384
1385 /* Also enable intermediate interrupts if necessary */
1386 if (use_intermediate)
1387 edesc->pset[i].param.opt |= ITCINTEN;
1388 }
1389 }
1390
1391 /* Place the cyclic channel to highest priority queue */
1392 if (!echan->tc)
1393 edma_assign_channel_eventq(echan, EVENTQ_0);
1394
1395 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1396 }
1397
1398 static void edma_completion_handler(struct edma_chan *echan)
1399 {
1400 struct device *dev = echan->vchan.chan.device->dev;
1401 struct edma_desc *edesc;
1402
1403 spin_lock(&echan->vchan.lock);
1404 edesc = echan->edesc;
1405 if (edesc) {
1406 if (edesc->cyclic) {
1407 vchan_cyclic_callback(&edesc->vdesc);
1408 spin_unlock(&echan->vchan.lock);
1409 return;
1410 } else if (edesc->processed == edesc->pset_nr) {
1411 edesc->residue = 0;
1412 edma_stop(echan);
1413 vchan_cookie_complete(&edesc->vdesc);
1414 echan->edesc = NULL;
1415
1416 dev_dbg(dev, "Transfer completed on channel %d\n",
1417 echan->ch_num);
1418 } else {
1419 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1420 echan->ch_num);
1421
1422 edma_pause(echan);
1423
1424 /* Update statistics for tx_status */
1425 edesc->residue -= edesc->sg_len;
1426 edesc->residue_stat = edesc->residue;
1427 edesc->processed_stat = edesc->processed;
1428 }
1429 edma_execute(echan);
1430 }
1431
1432 spin_unlock(&echan->vchan.lock);
1433 }
1434
1435 /* eDMA interrupt handler */
1436 static irqreturn_t dma_irq_handler(int irq, void *data)
1437 {
1438 struct edma_cc *ecc = data;
1439 int ctlr;
1440 u32 sh_ier;
1441 u32 sh_ipr;
1442 u32 bank;
1443
1444 ctlr = ecc->id;
1445 if (ctlr < 0)
1446 return IRQ_NONE;
1447
1448 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1449
1450 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1451 if (!sh_ipr) {
1452 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1453 if (!sh_ipr)
1454 return IRQ_NONE;
1455 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1456 bank = 1;
1457 } else {
1458 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1459 bank = 0;
1460 }
1461
1462 do {
1463 u32 slot;
1464 u32 channel;
1465
1466 slot = __ffs(sh_ipr);
1467 sh_ipr &= ~(BIT(slot));
1468
1469 if (sh_ier & BIT(slot)) {
1470 channel = (bank << 5) | slot;
1471 /* Clear the corresponding IPR bits */
1472 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1473 edma_completion_handler(&ecc->slave_chans[channel]);
1474 }
1475 } while (sh_ipr);
1476
1477 edma_shadow0_write(ecc, SH_IEVAL, 1);
1478 return IRQ_HANDLED;
1479 }
1480
1481 static void edma_error_handler(struct edma_chan *echan)
1482 {
1483 struct edma_cc *ecc = echan->ecc;
1484 struct device *dev = echan->vchan.chan.device->dev;
1485 struct edmacc_param p;
1486
1487 if (!echan->edesc)
1488 return;
1489
1490 spin_lock(&echan->vchan.lock);
1491
1492 edma_read_slot(ecc, echan->slot[0], &p);
1493 /*
1494 * Issue later based on missed flag which will be sure
1495 * to happen as:
1496 * (1) we finished transmitting an intermediate slot and
1497 * edma_execute is coming up.
1498 * (2) or we finished current transfer and issue will
1499 * call edma_execute.
1500 *
1501 * Important note: issuing can be dangerous here and
1502 * lead to some nasty recursion when we are in a NULL
1503 * slot. So we avoid doing so and set the missed flag.
1504 */
1505 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1506 dev_dbg(dev, "Error on null slot, setting miss\n");
1507 echan->missed = 1;
1508 } else {
1509 /*
1510 * The slot is already programmed but the event got
1511 * missed, so its safe to issue it here.
1512 */
1513 dev_dbg(dev, "Missed event, TRIGGERING\n");
1514 edma_clean_channel(echan);
1515 edma_stop(echan);
1516 edma_start(echan);
1517 edma_trigger_channel(echan);
1518 }
1519 spin_unlock(&echan->vchan.lock);
1520 }
1521
1522 static inline bool edma_error_pending(struct edma_cc *ecc)
1523 {
1524 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1525 edma_read_array(ecc, EDMA_EMR, 1) ||
1526 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1527 return true;
1528
1529 return false;
1530 }
1531
1532 /* eDMA error interrupt handler */
1533 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1534 {
1535 struct edma_cc *ecc = data;
1536 int i, j;
1537 int ctlr;
1538 unsigned int cnt = 0;
1539 unsigned int val;
1540
1541 ctlr = ecc->id;
1542 if (ctlr < 0)
1543 return IRQ_NONE;
1544
1545 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1546
1547 if (!edma_error_pending(ecc)) {
1548 /*
1549 * The registers indicate no pending error event but the irq
1550 * handler has been called.
1551 * Ask eDMA to re-evaluate the error registers.
1552 */
1553 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1554 __func__);
1555 edma_write(ecc, EDMA_EEVAL, 1);
1556 return IRQ_NONE;
1557 }
1558
1559 while (1) {
1560 /* Event missed register(s) */
1561 for (j = 0; j < 2; j++) {
1562 unsigned long emr;
1563
1564 val = edma_read_array(ecc, EDMA_EMR, j);
1565 if (!val)
1566 continue;
1567
1568 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1569 emr = val;
1570 for (i = find_next_bit(&emr, 32, 0); i < 32;
1571 i = find_next_bit(&emr, 32, i + 1)) {
1572 int k = (j << 5) + i;
1573
1574 /* Clear the corresponding EMR bits */
1575 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1576 /* Clear any SER */
1577 edma_shadow0_write_array(ecc, SH_SECR, j,
1578 BIT(i));
1579 edma_error_handler(&ecc->slave_chans[k]);
1580 }
1581 }
1582
1583 val = edma_read(ecc, EDMA_QEMR);
1584 if (val) {
1585 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1586 /* Not reported, just clear the interrupt reason. */
1587 edma_write(ecc, EDMA_QEMCR, val);
1588 edma_shadow0_write(ecc, SH_QSECR, val);
1589 }
1590
1591 val = edma_read(ecc, EDMA_CCERR);
1592 if (val) {
1593 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1594 /* Not reported, just clear the interrupt reason. */
1595 edma_write(ecc, EDMA_CCERRCLR, val);
1596 }
1597
1598 if (!edma_error_pending(ecc))
1599 break;
1600 cnt++;
1601 if (cnt > 10)
1602 break;
1603 }
1604 edma_write(ecc, EDMA_EEVAL, 1);
1605 return IRQ_HANDLED;
1606 }
1607
1608 /* Alloc channel resources */
1609 static int edma_alloc_chan_resources(struct dma_chan *chan)
1610 {
1611 struct edma_chan *echan = to_edma_chan(chan);
1612 struct edma_cc *ecc = echan->ecc;
1613 struct device *dev = ecc->dev;
1614 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1615 int ret;
1616
1617 if (echan->tc) {
1618 eventq_no = echan->tc->id;
1619 } else if (ecc->tc_list) {
1620 /* memcpy channel */
1621 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1622 eventq_no = echan->tc->id;
1623 }
1624
1625 ret = edma_alloc_channel(echan, eventq_no);
1626 if (ret)
1627 return ret;
1628
1629 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1630 if (echan->slot[0] < 0) {
1631 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1632 EDMA_CHAN_SLOT(echan->ch_num));
1633 goto err_slot;
1634 }
1635
1636 /* Set up channel -> slot mapping for the entry slot */
1637 edma_set_chmap(echan, echan->slot[0]);
1638 echan->alloced = true;
1639
1640 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1641 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1642 echan->hw_triggered ? "HW" : "SW");
1643
1644 return 0;
1645
1646 err_slot:
1647 edma_free_channel(echan);
1648 return ret;
1649 }
1650
1651 /* Free channel resources */
1652 static void edma_free_chan_resources(struct dma_chan *chan)
1653 {
1654 struct edma_chan *echan = to_edma_chan(chan);
1655 struct device *dev = echan->ecc->dev;
1656 int i;
1657
1658 /* Terminate transfers */
1659 edma_stop(echan);
1660
1661 vchan_free_chan_resources(&echan->vchan);
1662
1663 /* Free EDMA PaRAM slots */
1664 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1665 if (echan->slot[i] >= 0) {
1666 edma_free_slot(echan->ecc, echan->slot[i]);
1667 echan->slot[i] = -1;
1668 }
1669 }
1670
1671 /* Set entry slot to the dummy slot */
1672 edma_set_chmap(echan, echan->ecc->dummy_slot);
1673
1674 /* Free EDMA channel */
1675 if (echan->alloced) {
1676 edma_free_channel(echan);
1677 echan->alloced = false;
1678 }
1679
1680 echan->tc = NULL;
1681 echan->hw_triggered = false;
1682
1683 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1684 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1685 }
1686
1687 /* Send pending descriptor to hardware */
1688 static void edma_issue_pending(struct dma_chan *chan)
1689 {
1690 struct edma_chan *echan = to_edma_chan(chan);
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&echan->vchan.lock, flags);
1694 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1695 edma_execute(echan);
1696 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1697 }
1698
1699 /*
1700 * This limit exists to avoid a possible infinite loop when waiting for proof
1701 * that a particular transfer is completed. This limit can be hit if there
1702 * are large bursts to/from slow devices or the CPU is never able to catch
1703 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1704 * RX-FIFO, as many as 55 loops have been seen.
1705 */
1706 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1707
1708 static u32 edma_residue(struct edma_desc *edesc)
1709 {
1710 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1711 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1712 struct edma_chan *echan = edesc->echan;
1713 struct edma_pset *pset = edesc->pset;
1714 dma_addr_t done, pos;
1715 int i;
1716
1717 /*
1718 * We always read the dst/src position from the first RamPar
1719 * pset. That's the one which is active now.
1720 */
1721 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1722
1723 /*
1724 * "pos" may represent a transfer request that is still being
1725 * processed by the EDMACC or EDMATC. We will busy wait until
1726 * any one of the situations occurs:
1727 * 1. the DMA hardware is idle
1728 * 2. a new transfer request is setup
1729 * 3. we hit the loop limit
1730 */
1731 while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1732 /* check if a new transfer request is setup */
1733 if (edma_get_position(echan->ecc,
1734 echan->slot[0], dst) != pos) {
1735 break;
1736 }
1737
1738 if (!--loop_count) {
1739 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1740 "%s: timeout waiting for PaRAM update\n",
1741 __func__);
1742 break;
1743 }
1744
1745 cpu_relax();
1746 }
1747
1748 /*
1749 * Cyclic is simple. Just subtract pset[0].addr from pos.
1750 *
1751 * We never update edesc->residue in the cyclic case, so we
1752 * can tell the remaining room to the end of the circular
1753 * buffer.
1754 */
1755 if (edesc->cyclic) {
1756 done = pos - pset->addr;
1757 edesc->residue_stat = edesc->residue - done;
1758 return edesc->residue_stat;
1759 }
1760
1761 /*
1762 * For SG operation we catch up with the last processed
1763 * status.
1764 */
1765 pset += edesc->processed_stat;
1766
1767 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1768 /*
1769 * If we are inside this pset address range, we know
1770 * this is the active one. Get the current delta and
1771 * stop walking the psets.
1772 */
1773 if (pos >= pset->addr && pos < pset->addr + pset->len)
1774 return edesc->residue_stat - (pos - pset->addr);
1775
1776 /* Otherwise mark it done and update residue_stat. */
1777 edesc->processed_stat++;
1778 edesc->residue_stat -= pset->len;
1779 }
1780 return edesc->residue_stat;
1781 }
1782
1783 /* Check request completion status */
1784 static enum dma_status edma_tx_status(struct dma_chan *chan,
1785 dma_cookie_t cookie,
1786 struct dma_tx_state *txstate)
1787 {
1788 struct edma_chan *echan = to_edma_chan(chan);
1789 struct virt_dma_desc *vdesc;
1790 enum dma_status ret;
1791 unsigned long flags;
1792
1793 ret = dma_cookie_status(chan, cookie, txstate);
1794 if (ret == DMA_COMPLETE || !txstate)
1795 return ret;
1796
1797 spin_lock_irqsave(&echan->vchan.lock, flags);
1798 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1799 txstate->residue = edma_residue(echan->edesc);
1800 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1801 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1802 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1803
1804 return ret;
1805 }
1806
1807 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1808 {
1809 if (!memcpy_channels)
1810 return false;
1811 while (*memcpy_channels != -1) {
1812 if (*memcpy_channels == ch_num)
1813 return true;
1814 memcpy_channels++;
1815 }
1816 return false;
1817 }
1818
1819 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1820 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1821 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1822 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1823
1824 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1825 {
1826 struct dma_device *s_ddev = &ecc->dma_slave;
1827 struct dma_device *m_ddev = NULL;
1828 s32 *memcpy_channels = ecc->info->memcpy_channels;
1829 int i, j;
1830
1831 dma_cap_zero(s_ddev->cap_mask);
1832 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1833 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1834 if (ecc->legacy_mode && !memcpy_channels) {
1835 dev_warn(ecc->dev,
1836 "Legacy memcpy is enabled, things might not work\n");
1837
1838 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1839 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1840 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1841 }
1842
1843 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1844 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1845 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1846 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1847 s_ddev->device_issue_pending = edma_issue_pending;
1848 s_ddev->device_tx_status = edma_tx_status;
1849 s_ddev->device_config = edma_slave_config;
1850 s_ddev->device_pause = edma_dma_pause;
1851 s_ddev->device_resume = edma_dma_resume;
1852 s_ddev->device_terminate_all = edma_terminate_all;
1853 s_ddev->device_synchronize = edma_synchronize;
1854
1855 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1856 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1857 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1858 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1859
1860 s_ddev->dev = ecc->dev;
1861 INIT_LIST_HEAD(&s_ddev->channels);
1862
1863 if (memcpy_channels) {
1864 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1865 ecc->dma_memcpy = m_ddev;
1866
1867 dma_cap_zero(m_ddev->cap_mask);
1868 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1869
1870 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1871 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1872 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1873 m_ddev->device_issue_pending = edma_issue_pending;
1874 m_ddev->device_tx_status = edma_tx_status;
1875 m_ddev->device_config = edma_slave_config;
1876 m_ddev->device_pause = edma_dma_pause;
1877 m_ddev->device_resume = edma_dma_resume;
1878 m_ddev->device_terminate_all = edma_terminate_all;
1879 m_ddev->device_synchronize = edma_synchronize;
1880
1881 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1882 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1883 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1884 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1885
1886 m_ddev->dev = ecc->dev;
1887 INIT_LIST_HEAD(&m_ddev->channels);
1888 } else if (!ecc->legacy_mode) {
1889 dev_info(ecc->dev, "memcpy is disabled\n");
1890 }
1891
1892 for (i = 0; i < ecc->num_channels; i++) {
1893 struct edma_chan *echan = &ecc->slave_chans[i];
1894 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1895 echan->ecc = ecc;
1896 echan->vchan.desc_free = edma_desc_free;
1897
1898 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1899 vchan_init(&echan->vchan, m_ddev);
1900 else
1901 vchan_init(&echan->vchan, s_ddev);
1902
1903 INIT_LIST_HEAD(&echan->node);
1904 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1905 echan->slot[j] = -1;
1906 }
1907 }
1908
1909 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1910 struct edma_cc *ecc)
1911 {
1912 int i;
1913 u32 value, cccfg;
1914 s8 (*queue_priority_map)[2];
1915
1916 /* Decode the eDMA3 configuration from CCCFG register */
1917 cccfg = edma_read(ecc, EDMA_CCCFG);
1918
1919 value = GET_NUM_REGN(cccfg);
1920 ecc->num_region = BIT(value);
1921
1922 value = GET_NUM_DMACH(cccfg);
1923 ecc->num_channels = BIT(value + 1);
1924
1925 value = GET_NUM_QDMACH(cccfg);
1926 ecc->num_qchannels = value * 2;
1927
1928 value = GET_NUM_PAENTRY(cccfg);
1929 ecc->num_slots = BIT(value + 4);
1930
1931 value = GET_NUM_EVQUE(cccfg);
1932 ecc->num_tc = value + 1;
1933
1934 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1935
1936 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1937 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1938 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1939 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1940 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1941 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1942 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1943
1944 /* Nothing need to be done if queue priority is provided */
1945 if (pdata->queue_priority_mapping)
1946 return 0;
1947
1948 /*
1949 * Configure TC/queue priority as follows:
1950 * Q0 - priority 0
1951 * Q1 - priority 1
1952 * Q2 - priority 2
1953 * ...
1954 * The meaning of priority numbers: 0 highest priority, 7 lowest
1955 * priority. So Q0 is the highest priority queue and the last queue has
1956 * the lowest priority.
1957 */
1958 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1959 GFP_KERNEL);
1960 if (!queue_priority_map)
1961 return -ENOMEM;
1962
1963 for (i = 0; i < ecc->num_tc; i++) {
1964 queue_priority_map[i][0] = i;
1965 queue_priority_map[i][1] = i;
1966 }
1967 queue_priority_map[i][0] = -1;
1968 queue_priority_map[i][1] = -1;
1969
1970 pdata->queue_priority_mapping = queue_priority_map;
1971 /* Default queue has the lowest priority */
1972 pdata->default_queue = i - 1;
1973
1974 return 0;
1975 }
1976
1977 #if IS_ENABLED(CONFIG_OF)
1978 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1979 size_t sz)
1980 {
1981 const char pname[] = "ti,edma-xbar-event-map";
1982 struct resource res;
1983 void __iomem *xbar;
1984 s16 (*xbar_chans)[2];
1985 size_t nelm = sz / sizeof(s16);
1986 u32 shift, offset, mux;
1987 int ret, i;
1988
1989 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1990 if (!xbar_chans)
1991 return -ENOMEM;
1992
1993 ret = of_address_to_resource(dev->of_node, 1, &res);
1994 if (ret)
1995 return -ENOMEM;
1996
1997 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1998 if (!xbar)
1999 return -ENOMEM;
2000
2001 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2002 nelm);
2003 if (ret)
2004 return -EIO;
2005
2006 /* Invalidate last entry for the other user of this mess */
2007 nelm >>= 1;
2008 xbar_chans[nelm][0] = -1;
2009 xbar_chans[nelm][1] = -1;
2010
2011 for (i = 0; i < nelm; i++) {
2012 shift = (xbar_chans[i][1] & 0x03) << 3;
2013 offset = xbar_chans[i][1] & 0xfffffffc;
2014 mux = readl(xbar + offset);
2015 mux &= ~(0xff << shift);
2016 mux |= xbar_chans[i][0] << shift;
2017 writel(mux, (xbar + offset));
2018 }
2019
2020 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2021 return 0;
2022 }
2023
2024 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2025 bool legacy_mode)
2026 {
2027 struct edma_soc_info *info;
2028 struct property *prop;
2029 int sz, ret;
2030
2031 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2032 if (!info)
2033 return ERR_PTR(-ENOMEM);
2034
2035 if (legacy_mode) {
2036 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2037 &sz);
2038 if (prop) {
2039 ret = edma_xbar_event_map(dev, info, sz);
2040 if (ret)
2041 return ERR_PTR(ret);
2042 }
2043 return info;
2044 }
2045
2046 /* Get the list of channels allocated to be used for memcpy */
2047 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2048 if (prop) {
2049 const char pname[] = "ti,edma-memcpy-channels";
2050 size_t nelm = sz / sizeof(s32);
2051 s32 *memcpy_ch;
2052
2053 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2054 GFP_KERNEL);
2055 if (!memcpy_ch)
2056 return ERR_PTR(-ENOMEM);
2057
2058 ret = of_property_read_u32_array(dev->of_node, pname,
2059 (u32 *)memcpy_ch, nelm);
2060 if (ret)
2061 return ERR_PTR(ret);
2062
2063 memcpy_ch[nelm] = -1;
2064 info->memcpy_channels = memcpy_ch;
2065 }
2066
2067 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2068 &sz);
2069 if (prop) {
2070 const char pname[] = "ti,edma-reserved-slot-ranges";
2071 u32 (*tmp)[2];
2072 s16 (*rsv_slots)[2];
2073 size_t nelm = sz / sizeof(*tmp);
2074 struct edma_rsv_info *rsv_info;
2075 int i;
2076
2077 if (!nelm)
2078 return info;
2079
2080 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2081 if (!tmp)
2082 return ERR_PTR(-ENOMEM);
2083
2084 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2085 if (!rsv_info) {
2086 kfree(tmp);
2087 return ERR_PTR(-ENOMEM);
2088 }
2089
2090 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2091 GFP_KERNEL);
2092 if (!rsv_slots) {
2093 kfree(tmp);
2094 return ERR_PTR(-ENOMEM);
2095 }
2096
2097 ret = of_property_read_u32_array(dev->of_node, pname,
2098 (u32 *)tmp, nelm * 2);
2099 if (ret) {
2100 kfree(tmp);
2101 return ERR_PTR(ret);
2102 }
2103
2104 for (i = 0; i < nelm; i++) {
2105 rsv_slots[i][0] = tmp[i][0];
2106 rsv_slots[i][1] = tmp[i][1];
2107 }
2108 rsv_slots[nelm][0] = -1;
2109 rsv_slots[nelm][1] = -1;
2110
2111 info->rsv = rsv_info;
2112 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2113
2114 kfree(tmp);
2115 }
2116
2117 return info;
2118 }
2119
2120 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2121 struct of_dma *ofdma)
2122 {
2123 struct edma_cc *ecc = ofdma->of_dma_data;
2124 struct dma_chan *chan = NULL;
2125 struct edma_chan *echan;
2126 int i;
2127
2128 if (!ecc || dma_spec->args_count < 1)
2129 return NULL;
2130
2131 for (i = 0; i < ecc->num_channels; i++) {
2132 echan = &ecc->slave_chans[i];
2133 if (echan->ch_num == dma_spec->args[0]) {
2134 chan = &echan->vchan.chan;
2135 break;
2136 }
2137 }
2138
2139 if (!chan)
2140 return NULL;
2141
2142 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2143 goto out;
2144
2145 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2146 dma_spec->args[1] < echan->ecc->num_tc) {
2147 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2148 goto out;
2149 }
2150
2151 return NULL;
2152 out:
2153 /* The channel is going to be used as HW synchronized */
2154 echan->hw_triggered = true;
2155 return dma_get_slave_channel(chan);
2156 }
2157 #else
2158 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2159 bool legacy_mode)
2160 {
2161 return ERR_PTR(-EINVAL);
2162 }
2163
2164 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2165 struct of_dma *ofdma)
2166 {
2167 return NULL;
2168 }
2169 #endif
2170
2171 static int edma_probe(struct platform_device *pdev)
2172 {
2173 struct edma_soc_info *info = pdev->dev.platform_data;
2174 s8 (*queue_priority_mapping)[2];
2175 int i, off, ln;
2176 const s16 (*rsv_slots)[2];
2177 const s16 (*xbar_chans)[2];
2178 int irq;
2179 char *irq_name;
2180 struct resource *mem;
2181 struct device_node *node = pdev->dev.of_node;
2182 struct device *dev = &pdev->dev;
2183 struct edma_cc *ecc;
2184 bool legacy_mode = true;
2185 int ret;
2186
2187 if (node) {
2188 const struct of_device_id *match;
2189
2190 match = of_match_node(edma_of_ids, node);
2191 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2192 legacy_mode = false;
2193
2194 info = edma_setup_info_from_dt(dev, legacy_mode);
2195 if (IS_ERR(info)) {
2196 dev_err(dev, "failed to get DT data\n");
2197 return PTR_ERR(info);
2198 }
2199 }
2200
2201 if (!info)
2202 return -ENODEV;
2203
2204 pm_runtime_enable(dev);
2205 ret = pm_runtime_get_sync(dev);
2206 if (ret < 0) {
2207 dev_err(dev, "pm_runtime_get_sync() failed\n");
2208 return ret;
2209 }
2210
2211 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2212 if (ret)
2213 return ret;
2214
2215 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2216 if (!ecc)
2217 return -ENOMEM;
2218
2219 ecc->dev = dev;
2220 ecc->id = pdev->id;
2221 ecc->legacy_mode = legacy_mode;
2222 /* When booting with DT the pdev->id is -1 */
2223 if (ecc->id < 0)
2224 ecc->id = 0;
2225
2226 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2227 if (!mem) {
2228 dev_dbg(dev, "mem resource not found, using index 0\n");
2229 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2230 if (!mem) {
2231 dev_err(dev, "no mem resource?\n");
2232 return -ENODEV;
2233 }
2234 }
2235 ecc->base = devm_ioremap_resource(dev, mem);
2236 if (IS_ERR(ecc->base))
2237 return PTR_ERR(ecc->base);
2238
2239 platform_set_drvdata(pdev, ecc);
2240
2241 /* Get eDMA3 configuration from IP */
2242 ret = edma_setup_from_hw(dev, info, ecc);
2243 if (ret)
2244 return ret;
2245
2246 /* Allocate memory based on the information we got from the IP */
2247 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2248 sizeof(*ecc->slave_chans), GFP_KERNEL);
2249 if (!ecc->slave_chans)
2250 return -ENOMEM;
2251
2252 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2253 sizeof(unsigned long), GFP_KERNEL);
2254 if (!ecc->slot_inuse)
2255 return -ENOMEM;
2256
2257 ecc->default_queue = info->default_queue;
2258
2259 for (i = 0; i < ecc->num_slots; i++)
2260 edma_write_slot(ecc, i, &dummy_paramset);
2261
2262 if (info->rsv) {
2263 /* Set the reserved slots in inuse list */
2264 rsv_slots = info->rsv->rsv_slots;
2265 if (rsv_slots) {
2266 for (i = 0; rsv_slots[i][0] != -1; i++) {
2267 off = rsv_slots[i][0];
2268 ln = rsv_slots[i][1];
2269 set_bits(off, ln, ecc->slot_inuse);
2270 }
2271 }
2272 }
2273
2274 /* Clear the xbar mapped channels in unused list */
2275 xbar_chans = info->xbar_chans;
2276 if (xbar_chans) {
2277 for (i = 0; xbar_chans[i][1] != -1; i++) {
2278 off = xbar_chans[i][1];
2279 }
2280 }
2281
2282 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2283 if (irq < 0 && node)
2284 irq = irq_of_parse_and_map(node, 0);
2285
2286 if (irq >= 0) {
2287 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2288 dev_name(dev));
2289 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2290 ecc);
2291 if (ret) {
2292 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2293 return ret;
2294 }
2295 ecc->ccint = irq;
2296 }
2297
2298 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2299 if (irq < 0 && node)
2300 irq = irq_of_parse_and_map(node, 2);
2301
2302 if (irq >= 0) {
2303 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2304 dev_name(dev));
2305 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2306 ecc);
2307 if (ret) {
2308 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2309 return ret;
2310 }
2311 ecc->ccerrint = irq;
2312 }
2313
2314 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2315 if (ecc->dummy_slot < 0) {
2316 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2317 return ecc->dummy_slot;
2318 }
2319
2320 queue_priority_mapping = info->queue_priority_mapping;
2321
2322 if (!ecc->legacy_mode) {
2323 int lowest_priority = 0;
2324 struct of_phandle_args tc_args;
2325
2326 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2327 sizeof(*ecc->tc_list), GFP_KERNEL);
2328 if (!ecc->tc_list)
2329 return -ENOMEM;
2330
2331 for (i = 0;; i++) {
2332 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2333 1, i, &tc_args);
2334 if (ret || i == ecc->num_tc)
2335 break;
2336
2337 ecc->tc_list[i].node = tc_args.np;
2338 ecc->tc_list[i].id = i;
2339 queue_priority_mapping[i][1] = tc_args.args[0];
2340 if (queue_priority_mapping[i][1] > lowest_priority) {
2341 lowest_priority = queue_priority_mapping[i][1];
2342 info->default_queue = i;
2343 }
2344 }
2345 }
2346
2347 /* Event queue priority mapping */
2348 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2349 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2350 queue_priority_mapping[i][1]);
2351
2352 for (i = 0; i < ecc->num_region; i++) {
2353 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2354 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2355 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2356 }
2357 ecc->info = info;
2358
2359 /* Init the dma device and channels */
2360 edma_dma_init(ecc, legacy_mode);
2361
2362 for (i = 0; i < ecc->num_channels; i++) {
2363 /* Assign all channels to the default queue */
2364 edma_assign_channel_eventq(&ecc->slave_chans[i],
2365 info->default_queue);
2366 /* Set entry slot to the dummy slot */
2367 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2368 }
2369
2370 ecc->dma_slave.filter.map = info->slave_map;
2371 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2372 ecc->dma_slave.filter.fn = edma_filter_fn;
2373
2374 ret = dma_async_device_register(&ecc->dma_slave);
2375 if (ret) {
2376 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2377 goto err_reg1;
2378 }
2379
2380 if (ecc->dma_memcpy) {
2381 ret = dma_async_device_register(ecc->dma_memcpy);
2382 if (ret) {
2383 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2384 ret);
2385 dma_async_device_unregister(&ecc->dma_slave);
2386 goto err_reg1;
2387 }
2388 }
2389
2390 if (node)
2391 of_dma_controller_register(node, of_edma_xlate, ecc);
2392
2393 dev_info(dev, "TI EDMA DMA engine driver\n");
2394
2395 return 0;
2396
2397 err_reg1:
2398 edma_free_slot(ecc, ecc->dummy_slot);
2399 return ret;
2400 }
2401
2402 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2403 {
2404 struct edma_chan *echan, *_echan;
2405
2406 list_for_each_entry_safe(echan, _echan,
2407 &dmadev->channels, vchan.chan.device_node) {
2408 list_del(&echan->vchan.chan.device_node);
2409 tasklet_kill(&echan->vchan.task);
2410 }
2411 }
2412
2413 static int edma_remove(struct platform_device *pdev)
2414 {
2415 struct device *dev = &pdev->dev;
2416 struct edma_cc *ecc = dev_get_drvdata(dev);
2417
2418 devm_free_irq(dev, ecc->ccint, ecc);
2419 devm_free_irq(dev, ecc->ccerrint, ecc);
2420
2421 edma_cleanupp_vchan(&ecc->dma_slave);
2422
2423 if (dev->of_node)
2424 of_dma_controller_free(dev->of_node);
2425 dma_async_device_unregister(&ecc->dma_slave);
2426 if (ecc->dma_memcpy)
2427 dma_async_device_unregister(ecc->dma_memcpy);
2428 edma_free_slot(ecc, ecc->dummy_slot);
2429
2430 return 0;
2431 }
2432
2433 #ifdef CONFIG_PM_SLEEP
2434 static int edma_pm_suspend(struct device *dev)
2435 {
2436 struct edma_cc *ecc = dev_get_drvdata(dev);
2437 struct edma_chan *echan = ecc->slave_chans;
2438 int i;
2439
2440 for (i = 0; i < ecc->num_channels; i++) {
2441 if (echan[i].alloced)
2442 edma_setup_interrupt(&echan[i], false);
2443 }
2444
2445 return 0;
2446 }
2447
2448 static int edma_pm_resume(struct device *dev)
2449 {
2450 struct edma_cc *ecc = dev_get_drvdata(dev);
2451 struct edma_chan *echan = ecc->slave_chans;
2452 int i;
2453 s8 (*queue_priority_mapping)[2];
2454
2455 queue_priority_mapping = ecc->info->queue_priority_mapping;
2456
2457 /* Event queue priority mapping */
2458 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2459 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2460 queue_priority_mapping[i][1]);
2461
2462 for (i = 0; i < ecc->num_channels; i++) {
2463 if (echan[i].alloced) {
2464 /* ensure access through shadow region 0 */
2465 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2466 BIT(i & 0x1f));
2467
2468 edma_setup_interrupt(&echan[i], true);
2469
2470 /* Set up channel -> slot mapping for the entry slot */
2471 edma_set_chmap(&echan[i], echan[i].slot[0]);
2472 }
2473 }
2474
2475 return 0;
2476 }
2477 #endif
2478
2479 static const struct dev_pm_ops edma_pm_ops = {
2480 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2481 };
2482
2483 static struct platform_driver edma_driver = {
2484 .probe = edma_probe,
2485 .remove = edma_remove,
2486 .driver = {
2487 .name = "edma",
2488 .pm = &edma_pm_ops,
2489 .of_match_table = edma_of_ids,
2490 },
2491 };
2492
2493 static int edma_tptc_probe(struct platform_device *pdev)
2494 {
2495 pm_runtime_enable(&pdev->dev);
2496 return pm_runtime_get_sync(&pdev->dev);
2497 }
2498
2499 static struct platform_driver edma_tptc_driver = {
2500 .probe = edma_tptc_probe,
2501 .driver = {
2502 .name = "edma3-tptc",
2503 .of_match_table = edma_tptc_of_ids,
2504 },
2505 };
2506
2507 bool edma_filter_fn(struct dma_chan *chan, void *param)
2508 {
2509 bool match = false;
2510
2511 if (chan->device->dev->driver == &edma_driver.driver) {
2512 struct edma_chan *echan = to_edma_chan(chan);
2513 unsigned ch_req = *(unsigned *)param;
2514 if (ch_req == echan->ch_num) {
2515 /* The channel is going to be used as HW synchronized */
2516 echan->hw_triggered = true;
2517 match = true;
2518 }
2519 }
2520 return match;
2521 }
2522 EXPORT_SYMBOL(edma_filter_fn);
2523
2524 static int edma_init(void)
2525 {
2526 int ret;
2527
2528 ret = platform_driver_register(&edma_tptc_driver);
2529 if (ret)
2530 return ret;
2531
2532 return platform_driver_register(&edma_driver);
2533 }
2534 subsys_initcall(edma_init);
2535
2536 static void __exit edma_exit(void)
2537 {
2538 platform_driver_unregister(&edma_driver);
2539 platform_driver_unregister(&edma_tptc_driver);
2540 }
2541 module_exit(edma_exit);
2542
2543 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2544 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2545 MODULE_LICENSE("GPL v2");