]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/dma/ep93xx_dma.c
config: Add RTL8XXXU wifi module
[mirror_ubuntu-zesty-kernel.git] / drivers / dma / ep93xx_dma.c
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
3 *
4 * Copyright (C) 2011 Mika Westerberg
5 *
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
8 *
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
12 *
13 * This driver is based on dw_dmac and amba-pl08x drivers.
14 *
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
19 */
20
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #include <linux/platform_data/dma-ep93xx.h>
30
31 #include "dmaengine.h"
32
33 /* M2P registers */
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
40
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
45
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
48
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
53
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
58
59 /* M2M registers */
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT 22
76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT 25
81
82 #define M2M_INTERRUPT 0x0004
83 #define M2M_INTERRUPT_MASK 6
84
85 #define M2M_STATUS 0x000c
86 #define M2M_STATUS_CTL_SHIFT 1
87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT 4
94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE BIT(6)
99
100 #define M2M_BCR0 0x0010
101 #define M2M_BCR1 0x0014
102 #define M2M_SAR_BASE0 0x0018
103 #define M2M_SAR_BASE1 0x001c
104 #define M2M_DAR_BASE0 0x002c
105 #define M2M_DAR_BASE1 0x0030
106
107 #define DMA_MAX_CHAN_BYTES 0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS 32
109
110 struct ep93xx_dma_engine;
111
112 /**
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
121 */
122 struct ep93xx_dma_desc {
123 u32 src_addr;
124 u32 dst_addr;
125 size_t size;
126 bool complete;
127 struct dma_async_tx_descriptor txd;
128 struct list_head tx_list;
129 struct list_head node;
130 };
131
132 /**
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via .device_config before slave operation is
148 * prepared
149 * @runtime_ctrl: M2M runtime values for the control register.
150 *
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
154 *
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
158 *
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
161 * be %NULL.
162 */
163 struct ep93xx_dma_chan {
164 struct dma_chan chan;
165 const struct ep93xx_dma_engine *edma;
166 void __iomem *regs;
167 int irq;
168 struct clk *clk;
169 struct tasklet_struct tasklet;
170 /* protects the fields following */
171 spinlock_t lock;
172 unsigned long flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
175
176 int buffer;
177 struct list_head active;
178 struct list_head queue;
179 struct list_head free_list;
180 u32 runtime_addr;
181 u32 runtime_ctrl;
182 };
183
184 /**
185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186 * @dma_dev: holds the dmaengine device
187 * @m2m: is this an M2M or M2P device
188 * @hw_setup: method which sets the channel up for operation
189 * @hw_shutdown: shuts the channel down and flushes whatever is left
190 * @hw_submit: pushes active descriptor(s) to the hardware
191 * @hw_interrupt: handle the interrupt
192 * @num_channels: number of channels for this instance
193 * @channels: array of channels
194 *
195 * There is one instance of this struct for the M2P channels and one for the
196 * M2M channels. hw_xxx() methods are used to perform operations which are
197 * different on M2M and M2P channels. These methods are called with channel
198 * lock held and interrupts disabled so they cannot sleep.
199 */
200 struct ep93xx_dma_engine {
201 struct dma_device dma_dev;
202 bool m2m;
203 int (*hw_setup)(struct ep93xx_dma_chan *);
204 void (*hw_shutdown)(struct ep93xx_dma_chan *);
205 void (*hw_submit)(struct ep93xx_dma_chan *);
206 int (*hw_interrupt)(struct ep93xx_dma_chan *);
207 #define INTERRUPT_UNKNOWN 0
208 #define INTERRUPT_DONE 1
209 #define INTERRUPT_NEXT_BUFFER 2
210
211 size_t num_channels;
212 struct ep93xx_dma_chan channels[];
213 };
214
215 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
216 {
217 return &edmac->chan.dev->device;
218 }
219
220 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
221 {
222 return container_of(chan, struct ep93xx_dma_chan, chan);
223 }
224
225 /**
226 * ep93xx_dma_set_active - set new active descriptor chain
227 * @edmac: channel
228 * @desc: head of the new active descriptor chain
229 *
230 * Sets @desc to be the head of the new active descriptor chain. This is the
231 * chain which is processed next. The active list must be empty before calling
232 * this function.
233 *
234 * Called with @edmac->lock held and interrupts disabled.
235 */
236 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
237 struct ep93xx_dma_desc *desc)
238 {
239 BUG_ON(!list_empty(&edmac->active));
240
241 list_add_tail(&desc->node, &edmac->active);
242
243 /* Flatten the @desc->tx_list chain into @edmac->active list */
244 while (!list_empty(&desc->tx_list)) {
245 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
246 struct ep93xx_dma_desc, node);
247
248 /*
249 * We copy the callback parameters from the first descriptor
250 * to all the chained descriptors. This way we can call the
251 * callback without having to find out the first descriptor in
252 * the chain. Useful for cyclic transfers.
253 */
254 d->txd.callback = desc->txd.callback;
255 d->txd.callback_param = desc->txd.callback_param;
256
257 list_move_tail(&d->node, &edmac->active);
258 }
259 }
260
261 /* Called with @edmac->lock held and interrupts disabled */
262 static struct ep93xx_dma_desc *
263 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
264 {
265 return list_first_entry_or_null(&edmac->active,
266 struct ep93xx_dma_desc, node);
267 }
268
269 /**
270 * ep93xx_dma_advance_active - advances to the next active descriptor
271 * @edmac: channel
272 *
273 * Function advances active descriptor to the next in the @edmac->active and
274 * returns %true if we still have descriptors in the chain to process.
275 * Otherwise returns %false.
276 *
277 * When the channel is in cyclic mode always returns %true.
278 *
279 * Called with @edmac->lock held and interrupts disabled.
280 */
281 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
282 {
283 struct ep93xx_dma_desc *desc;
284
285 list_rotate_left(&edmac->active);
286
287 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
288 return true;
289
290 desc = ep93xx_dma_get_active(edmac);
291 if (!desc)
292 return false;
293
294 /*
295 * If txd.cookie is set it means that we are back in the first
296 * descriptor in the chain and hence done with it.
297 */
298 return !desc->txd.cookie;
299 }
300
301 /*
302 * M2P DMA implementation
303 */
304
305 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
306 {
307 writel(control, edmac->regs + M2P_CONTROL);
308 /*
309 * EP93xx User's Guide states that we must perform a dummy read after
310 * write to the control register.
311 */
312 readl(edmac->regs + M2P_CONTROL);
313 }
314
315 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
316 {
317 struct ep93xx_dma_data *data = edmac->chan.private;
318 u32 control;
319
320 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
321
322 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
323 | M2P_CONTROL_ENABLE;
324 m2p_set_control(edmac, control);
325
326 return 0;
327 }
328
329 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
330 {
331 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
332 }
333
334 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
335 {
336 u32 control;
337
338 control = readl(edmac->regs + M2P_CONTROL);
339 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
340 m2p_set_control(edmac, control);
341
342 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
343 cpu_relax();
344
345 m2p_set_control(edmac, 0);
346
347 while (m2p_channel_state(edmac) == M2P_STATE_STALL)
348 cpu_relax();
349 }
350
351 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
352 {
353 struct ep93xx_dma_desc *desc;
354 u32 bus_addr;
355
356 desc = ep93xx_dma_get_active(edmac);
357 if (!desc) {
358 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
359 return;
360 }
361
362 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
363 bus_addr = desc->src_addr;
364 else
365 bus_addr = desc->dst_addr;
366
367 if (edmac->buffer == 0) {
368 writel(desc->size, edmac->regs + M2P_MAXCNT0);
369 writel(bus_addr, edmac->regs + M2P_BASE0);
370 } else {
371 writel(desc->size, edmac->regs + M2P_MAXCNT1);
372 writel(bus_addr, edmac->regs + M2P_BASE1);
373 }
374
375 edmac->buffer ^= 1;
376 }
377
378 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
379 {
380 u32 control = readl(edmac->regs + M2P_CONTROL);
381
382 m2p_fill_desc(edmac);
383 control |= M2P_CONTROL_STALLINT;
384
385 if (ep93xx_dma_advance_active(edmac)) {
386 m2p_fill_desc(edmac);
387 control |= M2P_CONTROL_NFBINT;
388 }
389
390 m2p_set_control(edmac, control);
391 }
392
393 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
394 {
395 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
396 u32 control;
397
398 if (irq_status & M2P_INTERRUPT_ERROR) {
399 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
400
401 /* Clear the error interrupt */
402 writel(1, edmac->regs + M2P_INTERRUPT);
403
404 /*
405 * It seems that there is no easy way of reporting errors back
406 * to client so we just report the error here and continue as
407 * usual.
408 *
409 * Revisit this when there is a mechanism to report back the
410 * errors.
411 */
412 dev_err(chan2dev(edmac),
413 "DMA transfer failed! Details:\n"
414 "\tcookie : %d\n"
415 "\tsrc_addr : 0x%08x\n"
416 "\tdst_addr : 0x%08x\n"
417 "\tsize : %zu\n",
418 desc->txd.cookie, desc->src_addr, desc->dst_addr,
419 desc->size);
420 }
421
422 /*
423 * Even latest E2 silicon revision sometimes assert STALL interrupt
424 * instead of NFB. Therefore we treat them equally, basing on the
425 * amount of data we still have to transfer.
426 */
427 if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
428 return INTERRUPT_UNKNOWN;
429
430 if (ep93xx_dma_advance_active(edmac)) {
431 m2p_fill_desc(edmac);
432 return INTERRUPT_NEXT_BUFFER;
433 }
434
435 /* Disable interrupts */
436 control = readl(edmac->regs + M2P_CONTROL);
437 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
438 m2p_set_control(edmac, control);
439
440 return INTERRUPT_DONE;
441 }
442
443 /*
444 * M2M DMA implementation
445 */
446
447 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
448 {
449 const struct ep93xx_dma_data *data = edmac->chan.private;
450 u32 control = 0;
451
452 if (!data) {
453 /* This is memcpy channel, nothing to configure */
454 writel(control, edmac->regs + M2M_CONTROL);
455 return 0;
456 }
457
458 switch (data->port) {
459 case EP93XX_DMA_SSP:
460 /*
461 * This was found via experimenting - anything less than 5
462 * causes the channel to perform only a partial transfer which
463 * leads to problems since we don't get DONE interrupt then.
464 */
465 control = (5 << M2M_CONTROL_PWSC_SHIFT);
466 control |= M2M_CONTROL_NO_HDSK;
467
468 if (data->direction == DMA_MEM_TO_DEV) {
469 control |= M2M_CONTROL_DAH;
470 control |= M2M_CONTROL_TM_TX;
471 control |= M2M_CONTROL_RSS_SSPTX;
472 } else {
473 control |= M2M_CONTROL_SAH;
474 control |= M2M_CONTROL_TM_RX;
475 control |= M2M_CONTROL_RSS_SSPRX;
476 }
477 break;
478
479 case EP93XX_DMA_IDE:
480 /*
481 * This IDE part is totally untested. Values below are taken
482 * from the EP93xx Users's Guide and might not be correct.
483 */
484 if (data->direction == DMA_MEM_TO_DEV) {
485 /* Worst case from the UG */
486 control = (3 << M2M_CONTROL_PWSC_SHIFT);
487 control |= M2M_CONTROL_DAH;
488 control |= M2M_CONTROL_TM_TX;
489 } else {
490 control = (2 << M2M_CONTROL_PWSC_SHIFT);
491 control |= M2M_CONTROL_SAH;
492 control |= M2M_CONTROL_TM_RX;
493 }
494
495 control |= M2M_CONTROL_NO_HDSK;
496 control |= M2M_CONTROL_RSS_IDE;
497 control |= M2M_CONTROL_PW_16;
498 break;
499
500 default:
501 return -EINVAL;
502 }
503
504 writel(control, edmac->regs + M2M_CONTROL);
505 return 0;
506 }
507
508 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
509 {
510 /* Just disable the channel */
511 writel(0, edmac->regs + M2M_CONTROL);
512 }
513
514 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
515 {
516 struct ep93xx_dma_desc *desc;
517
518 desc = ep93xx_dma_get_active(edmac);
519 if (!desc) {
520 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
521 return;
522 }
523
524 if (edmac->buffer == 0) {
525 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
526 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
527 writel(desc->size, edmac->regs + M2M_BCR0);
528 } else {
529 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
530 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
531 writel(desc->size, edmac->regs + M2M_BCR1);
532 }
533
534 edmac->buffer ^= 1;
535 }
536
537 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
538 {
539 struct ep93xx_dma_data *data = edmac->chan.private;
540 u32 control = readl(edmac->regs + M2M_CONTROL);
541
542 /*
543 * Since we allow clients to configure PW (peripheral width) we always
544 * clear PW bits here and then set them according what is given in
545 * the runtime configuration.
546 */
547 control &= ~M2M_CONTROL_PW_MASK;
548 control |= edmac->runtime_ctrl;
549
550 m2m_fill_desc(edmac);
551 control |= M2M_CONTROL_DONEINT;
552
553 if (ep93xx_dma_advance_active(edmac)) {
554 m2m_fill_desc(edmac);
555 control |= M2M_CONTROL_NFBINT;
556 }
557
558 /*
559 * Now we can finally enable the channel. For M2M channel this must be
560 * done _after_ the BCRx registers are programmed.
561 */
562 control |= M2M_CONTROL_ENABLE;
563 writel(control, edmac->regs + M2M_CONTROL);
564
565 if (!data) {
566 /*
567 * For memcpy channels the software trigger must be asserted
568 * in order to start the memcpy operation.
569 */
570 control |= M2M_CONTROL_START;
571 writel(control, edmac->regs + M2M_CONTROL);
572 }
573 }
574
575 /*
576 * According to EP93xx User's Guide, we should receive DONE interrupt when all
577 * M2M DMA controller transactions complete normally. This is not always the
578 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
579 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
580 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
581 * In effect, disabling the channel when only DONE bit is set could stop
582 * currently running DMA transfer. To avoid this, we use Buffer FSM and
583 * Control FSM to check current state of DMA channel.
584 */
585 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
586 {
587 u32 status = readl(edmac->regs + M2M_STATUS);
588 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
589 u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
590 bool done = status & M2M_STATUS_DONE;
591 bool last_done;
592 u32 control;
593 struct ep93xx_dma_desc *desc;
594
595 /* Accept only DONE and NFB interrupts */
596 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
597 return INTERRUPT_UNKNOWN;
598
599 if (done) {
600 /* Clear the DONE bit */
601 writel(0, edmac->regs + M2M_INTERRUPT);
602 }
603
604 /*
605 * Check whether we are done with descriptors or not. This, together
606 * with DMA channel state, determines action to take in interrupt.
607 */
608 desc = ep93xx_dma_get_active(edmac);
609 last_done = !desc || desc->txd.cookie;
610
611 /*
612 * Use M2M DMA Buffer FSM and Control FSM to check current state of
613 * DMA channel. Using DONE and NFB bits from channel status register
614 * or bits from channel interrupt register is not reliable.
615 */
616 if (!last_done &&
617 (buf_fsm == M2M_STATUS_BUF_NO ||
618 buf_fsm == M2M_STATUS_BUF_ON)) {
619 /*
620 * Two buffers are ready for update when Buffer FSM is in
621 * DMA_NO_BUF state. Only one buffer can be prepared without
622 * disabling the channel or polling the DONE bit.
623 * To simplify things, always prepare only one buffer.
624 */
625 if (ep93xx_dma_advance_active(edmac)) {
626 m2m_fill_desc(edmac);
627 if (done && !edmac->chan.private) {
628 /* Software trigger for memcpy channel */
629 control = readl(edmac->regs + M2M_CONTROL);
630 control |= M2M_CONTROL_START;
631 writel(control, edmac->regs + M2M_CONTROL);
632 }
633 return INTERRUPT_NEXT_BUFFER;
634 } else {
635 last_done = true;
636 }
637 }
638
639 /*
640 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
641 * and Control FSM is in DMA_STALL state.
642 */
643 if (last_done &&
644 buf_fsm == M2M_STATUS_BUF_NO &&
645 ctl_fsm == M2M_STATUS_CTL_STALL) {
646 /* Disable interrupts and the channel */
647 control = readl(edmac->regs + M2M_CONTROL);
648 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
649 | M2M_CONTROL_ENABLE);
650 writel(control, edmac->regs + M2M_CONTROL);
651 return INTERRUPT_DONE;
652 }
653
654 /*
655 * Nothing to do this time.
656 */
657 return INTERRUPT_NEXT_BUFFER;
658 }
659
660 /*
661 * DMA engine API implementation
662 */
663
664 static struct ep93xx_dma_desc *
665 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
666 {
667 struct ep93xx_dma_desc *desc, *_desc;
668 struct ep93xx_dma_desc *ret = NULL;
669 unsigned long flags;
670
671 spin_lock_irqsave(&edmac->lock, flags);
672 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
673 if (async_tx_test_ack(&desc->txd)) {
674 list_del_init(&desc->node);
675
676 /* Re-initialize the descriptor */
677 desc->src_addr = 0;
678 desc->dst_addr = 0;
679 desc->size = 0;
680 desc->complete = false;
681 desc->txd.cookie = 0;
682 desc->txd.callback = NULL;
683 desc->txd.callback_param = NULL;
684
685 ret = desc;
686 break;
687 }
688 }
689 spin_unlock_irqrestore(&edmac->lock, flags);
690 return ret;
691 }
692
693 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
694 struct ep93xx_dma_desc *desc)
695 {
696 if (desc) {
697 unsigned long flags;
698
699 spin_lock_irqsave(&edmac->lock, flags);
700 list_splice_init(&desc->tx_list, &edmac->free_list);
701 list_add(&desc->node, &edmac->free_list);
702 spin_unlock_irqrestore(&edmac->lock, flags);
703 }
704 }
705
706 /**
707 * ep93xx_dma_advance_work - start processing the next pending transaction
708 * @edmac: channel
709 *
710 * If we have pending transactions queued and we are currently idling, this
711 * function takes the next queued transaction from the @edmac->queue and
712 * pushes it to the hardware for execution.
713 */
714 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
715 {
716 struct ep93xx_dma_desc *new;
717 unsigned long flags;
718
719 spin_lock_irqsave(&edmac->lock, flags);
720 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
721 spin_unlock_irqrestore(&edmac->lock, flags);
722 return;
723 }
724
725 /* Take the next descriptor from the pending queue */
726 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
727 list_del_init(&new->node);
728
729 ep93xx_dma_set_active(edmac, new);
730
731 /* Push it to the hardware */
732 edmac->edma->hw_submit(edmac);
733 spin_unlock_irqrestore(&edmac->lock, flags);
734 }
735
736 static void ep93xx_dma_tasklet(unsigned long data)
737 {
738 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
739 struct ep93xx_dma_desc *desc, *d;
740 struct dmaengine_desc_callback cb;
741 LIST_HEAD(list);
742
743 memset(&cb, 0, sizeof(cb));
744 spin_lock_irq(&edmac->lock);
745 /*
746 * If dma_terminate_all() was called before we get to run, the active
747 * list has become empty. If that happens we aren't supposed to do
748 * anything more than call ep93xx_dma_advance_work().
749 */
750 desc = ep93xx_dma_get_active(edmac);
751 if (desc) {
752 if (desc->complete) {
753 /* mark descriptor complete for non cyclic case only */
754 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
755 dma_cookie_complete(&desc->txd);
756 list_splice_init(&edmac->active, &list);
757 }
758 dmaengine_desc_get_callback(&desc->txd, &cb);
759 }
760 spin_unlock_irq(&edmac->lock);
761
762 /* Pick up the next descriptor from the queue */
763 ep93xx_dma_advance_work(edmac);
764
765 /* Now we can release all the chained descriptors */
766 list_for_each_entry_safe(desc, d, &list, node) {
767 dma_descriptor_unmap(&desc->txd);
768 ep93xx_dma_desc_put(edmac, desc);
769 }
770
771 dmaengine_desc_callback_invoke(&cb, NULL);
772 }
773
774 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
775 {
776 struct ep93xx_dma_chan *edmac = dev_id;
777 struct ep93xx_dma_desc *desc;
778 irqreturn_t ret = IRQ_HANDLED;
779
780 spin_lock(&edmac->lock);
781
782 desc = ep93xx_dma_get_active(edmac);
783 if (!desc) {
784 dev_warn(chan2dev(edmac),
785 "got interrupt while active list is empty\n");
786 spin_unlock(&edmac->lock);
787 return IRQ_NONE;
788 }
789
790 switch (edmac->edma->hw_interrupt(edmac)) {
791 case INTERRUPT_DONE:
792 desc->complete = true;
793 tasklet_schedule(&edmac->tasklet);
794 break;
795
796 case INTERRUPT_NEXT_BUFFER:
797 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
798 tasklet_schedule(&edmac->tasklet);
799 break;
800
801 default:
802 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
803 ret = IRQ_NONE;
804 break;
805 }
806
807 spin_unlock(&edmac->lock);
808 return ret;
809 }
810
811 /**
812 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
813 * @tx: descriptor to be executed
814 *
815 * Function will execute given descriptor on the hardware or if the hardware
816 * is busy, queue the descriptor to be executed later on. Returns cookie which
817 * can be used to poll the status of the descriptor.
818 */
819 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
820 {
821 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
822 struct ep93xx_dma_desc *desc;
823 dma_cookie_t cookie;
824 unsigned long flags;
825
826 spin_lock_irqsave(&edmac->lock, flags);
827 cookie = dma_cookie_assign(tx);
828
829 desc = container_of(tx, struct ep93xx_dma_desc, txd);
830
831 /*
832 * If nothing is currently prosessed, we push this descriptor
833 * directly to the hardware. Otherwise we put the descriptor
834 * to the pending queue.
835 */
836 if (list_empty(&edmac->active)) {
837 ep93xx_dma_set_active(edmac, desc);
838 edmac->edma->hw_submit(edmac);
839 } else {
840 list_add_tail(&desc->node, &edmac->queue);
841 }
842
843 spin_unlock_irqrestore(&edmac->lock, flags);
844 return cookie;
845 }
846
847 /**
848 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
849 * @chan: channel to allocate resources
850 *
851 * Function allocates necessary resources for the given DMA channel and
852 * returns number of allocated descriptors for the channel. Negative errno
853 * is returned in case of failure.
854 */
855 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
856 {
857 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
858 struct ep93xx_dma_data *data = chan->private;
859 const char *name = dma_chan_name(chan);
860 int ret, i;
861
862 /* Sanity check the channel parameters */
863 if (!edmac->edma->m2m) {
864 if (!data)
865 return -EINVAL;
866 if (data->port < EP93XX_DMA_I2S1 ||
867 data->port > EP93XX_DMA_IRDA)
868 return -EINVAL;
869 if (data->direction != ep93xx_dma_chan_direction(chan))
870 return -EINVAL;
871 } else {
872 if (data) {
873 switch (data->port) {
874 case EP93XX_DMA_SSP:
875 case EP93XX_DMA_IDE:
876 if (!is_slave_direction(data->direction))
877 return -EINVAL;
878 break;
879 default:
880 return -EINVAL;
881 }
882 }
883 }
884
885 if (data && data->name)
886 name = data->name;
887
888 ret = clk_enable(edmac->clk);
889 if (ret)
890 return ret;
891
892 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
893 if (ret)
894 goto fail_clk_disable;
895
896 spin_lock_irq(&edmac->lock);
897 dma_cookie_init(&edmac->chan);
898 ret = edmac->edma->hw_setup(edmac);
899 spin_unlock_irq(&edmac->lock);
900
901 if (ret)
902 goto fail_free_irq;
903
904 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
905 struct ep93xx_dma_desc *desc;
906
907 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
908 if (!desc) {
909 dev_warn(chan2dev(edmac), "not enough descriptors\n");
910 break;
911 }
912
913 INIT_LIST_HEAD(&desc->tx_list);
914
915 dma_async_tx_descriptor_init(&desc->txd, chan);
916 desc->txd.flags = DMA_CTRL_ACK;
917 desc->txd.tx_submit = ep93xx_dma_tx_submit;
918
919 ep93xx_dma_desc_put(edmac, desc);
920 }
921
922 return i;
923
924 fail_free_irq:
925 free_irq(edmac->irq, edmac);
926 fail_clk_disable:
927 clk_disable(edmac->clk);
928
929 return ret;
930 }
931
932 /**
933 * ep93xx_dma_free_chan_resources - release resources for the channel
934 * @chan: channel
935 *
936 * Function releases all the resources allocated for the given channel.
937 * The channel must be idle when this is called.
938 */
939 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
940 {
941 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
942 struct ep93xx_dma_desc *desc, *d;
943 unsigned long flags;
944 LIST_HEAD(list);
945
946 BUG_ON(!list_empty(&edmac->active));
947 BUG_ON(!list_empty(&edmac->queue));
948
949 spin_lock_irqsave(&edmac->lock, flags);
950 edmac->edma->hw_shutdown(edmac);
951 edmac->runtime_addr = 0;
952 edmac->runtime_ctrl = 0;
953 edmac->buffer = 0;
954 list_splice_init(&edmac->free_list, &list);
955 spin_unlock_irqrestore(&edmac->lock, flags);
956
957 list_for_each_entry_safe(desc, d, &list, node)
958 kfree(desc);
959
960 clk_disable(edmac->clk);
961 free_irq(edmac->irq, edmac);
962 }
963
964 /**
965 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
966 * @chan: channel
967 * @dest: destination bus address
968 * @src: source bus address
969 * @len: size of the transaction
970 * @flags: flags for the descriptor
971 *
972 * Returns a valid DMA descriptor or %NULL in case of failure.
973 */
974 static struct dma_async_tx_descriptor *
975 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
976 dma_addr_t src, size_t len, unsigned long flags)
977 {
978 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
979 struct ep93xx_dma_desc *desc, *first;
980 size_t bytes, offset;
981
982 first = NULL;
983 for (offset = 0; offset < len; offset += bytes) {
984 desc = ep93xx_dma_desc_get(edmac);
985 if (!desc) {
986 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
987 goto fail;
988 }
989
990 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
991
992 desc->src_addr = src + offset;
993 desc->dst_addr = dest + offset;
994 desc->size = bytes;
995
996 if (!first)
997 first = desc;
998 else
999 list_add_tail(&desc->node, &first->tx_list);
1000 }
1001
1002 first->txd.cookie = -EBUSY;
1003 first->txd.flags = flags;
1004
1005 return &first->txd;
1006 fail:
1007 ep93xx_dma_desc_put(edmac, first);
1008 return NULL;
1009 }
1010
1011 /**
1012 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1013 * @chan: channel
1014 * @sgl: list of buffers to transfer
1015 * @sg_len: number of entries in @sgl
1016 * @dir: direction of tha DMA transfer
1017 * @flags: flags for the descriptor
1018 * @context: operation context (ignored)
1019 *
1020 * Returns a valid DMA descriptor or %NULL in case of failure.
1021 */
1022 static struct dma_async_tx_descriptor *
1023 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1024 unsigned int sg_len, enum dma_transfer_direction dir,
1025 unsigned long flags, void *context)
1026 {
1027 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1028 struct ep93xx_dma_desc *desc, *first;
1029 struct scatterlist *sg;
1030 int i;
1031
1032 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1033 dev_warn(chan2dev(edmac),
1034 "channel was configured with different direction\n");
1035 return NULL;
1036 }
1037
1038 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1039 dev_warn(chan2dev(edmac),
1040 "channel is already used for cyclic transfers\n");
1041 return NULL;
1042 }
1043
1044 first = NULL;
1045 for_each_sg(sgl, sg, sg_len, i) {
1046 size_t len = sg_dma_len(sg);
1047
1048 if (len > DMA_MAX_CHAN_BYTES) {
1049 dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1050 len);
1051 goto fail;
1052 }
1053
1054 desc = ep93xx_dma_desc_get(edmac);
1055 if (!desc) {
1056 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1057 goto fail;
1058 }
1059
1060 if (dir == DMA_MEM_TO_DEV) {
1061 desc->src_addr = sg_dma_address(sg);
1062 desc->dst_addr = edmac->runtime_addr;
1063 } else {
1064 desc->src_addr = edmac->runtime_addr;
1065 desc->dst_addr = sg_dma_address(sg);
1066 }
1067 desc->size = len;
1068
1069 if (!first)
1070 first = desc;
1071 else
1072 list_add_tail(&desc->node, &first->tx_list);
1073 }
1074
1075 first->txd.cookie = -EBUSY;
1076 first->txd.flags = flags;
1077
1078 return &first->txd;
1079
1080 fail:
1081 ep93xx_dma_desc_put(edmac, first);
1082 return NULL;
1083 }
1084
1085 /**
1086 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1087 * @chan: channel
1088 * @dma_addr: DMA mapped address of the buffer
1089 * @buf_len: length of the buffer (in bytes)
1090 * @period_len: length of a single period
1091 * @dir: direction of the operation
1092 * @flags: tx descriptor status flags
1093 *
1094 * Prepares a descriptor for cyclic DMA operation. This means that once the
1095 * descriptor is submitted, we will be submitting in a @period_len sized
1096 * buffers and calling callback once the period has been elapsed. Transfer
1097 * terminates only when client calls dmaengine_terminate_all() for this
1098 * channel.
1099 *
1100 * Returns a valid DMA descriptor or %NULL in case of failure.
1101 */
1102 static struct dma_async_tx_descriptor *
1103 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1104 size_t buf_len, size_t period_len,
1105 enum dma_transfer_direction dir, unsigned long flags)
1106 {
1107 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1108 struct ep93xx_dma_desc *desc, *first;
1109 size_t offset = 0;
1110
1111 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1112 dev_warn(chan2dev(edmac),
1113 "channel was configured with different direction\n");
1114 return NULL;
1115 }
1116
1117 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1118 dev_warn(chan2dev(edmac),
1119 "channel is already used for cyclic transfers\n");
1120 return NULL;
1121 }
1122
1123 if (period_len > DMA_MAX_CHAN_BYTES) {
1124 dev_warn(chan2dev(edmac), "too big period length %zu\n",
1125 period_len);
1126 return NULL;
1127 }
1128
1129 /* Split the buffer into period size chunks */
1130 first = NULL;
1131 for (offset = 0; offset < buf_len; offset += period_len) {
1132 desc = ep93xx_dma_desc_get(edmac);
1133 if (!desc) {
1134 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1135 goto fail;
1136 }
1137
1138 if (dir == DMA_MEM_TO_DEV) {
1139 desc->src_addr = dma_addr + offset;
1140 desc->dst_addr = edmac->runtime_addr;
1141 } else {
1142 desc->src_addr = edmac->runtime_addr;
1143 desc->dst_addr = dma_addr + offset;
1144 }
1145
1146 desc->size = period_len;
1147
1148 if (!first)
1149 first = desc;
1150 else
1151 list_add_tail(&desc->node, &first->tx_list);
1152 }
1153
1154 first->txd.cookie = -EBUSY;
1155
1156 return &first->txd;
1157
1158 fail:
1159 ep93xx_dma_desc_put(edmac, first);
1160 return NULL;
1161 }
1162
1163 /**
1164 * ep93xx_dma_terminate_all - terminate all transactions
1165 * @chan: channel
1166 *
1167 * Stops all DMA transactions. All descriptors are put back to the
1168 * @edmac->free_list and callbacks are _not_ called.
1169 */
1170 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1171 {
1172 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1173 struct ep93xx_dma_desc *desc, *_d;
1174 unsigned long flags;
1175 LIST_HEAD(list);
1176
1177 spin_lock_irqsave(&edmac->lock, flags);
1178 /* First we disable and flush the DMA channel */
1179 edmac->edma->hw_shutdown(edmac);
1180 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1181 list_splice_init(&edmac->active, &list);
1182 list_splice_init(&edmac->queue, &list);
1183 /*
1184 * We then re-enable the channel. This way we can continue submitting
1185 * the descriptors by just calling ->hw_submit() again.
1186 */
1187 edmac->edma->hw_setup(edmac);
1188 spin_unlock_irqrestore(&edmac->lock, flags);
1189
1190 list_for_each_entry_safe(desc, _d, &list, node)
1191 ep93xx_dma_desc_put(edmac, desc);
1192
1193 return 0;
1194 }
1195
1196 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1197 struct dma_slave_config *config)
1198 {
1199 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1200 enum dma_slave_buswidth width;
1201 unsigned long flags;
1202 u32 addr, ctrl;
1203
1204 if (!edmac->edma->m2m)
1205 return -EINVAL;
1206
1207 switch (config->direction) {
1208 case DMA_DEV_TO_MEM:
1209 width = config->src_addr_width;
1210 addr = config->src_addr;
1211 break;
1212
1213 case DMA_MEM_TO_DEV:
1214 width = config->dst_addr_width;
1215 addr = config->dst_addr;
1216 break;
1217
1218 default:
1219 return -EINVAL;
1220 }
1221
1222 switch (width) {
1223 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1224 ctrl = 0;
1225 break;
1226 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1227 ctrl = M2M_CONTROL_PW_16;
1228 break;
1229 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1230 ctrl = M2M_CONTROL_PW_32;
1231 break;
1232 default:
1233 return -EINVAL;
1234 }
1235
1236 spin_lock_irqsave(&edmac->lock, flags);
1237 edmac->runtime_addr = addr;
1238 edmac->runtime_ctrl = ctrl;
1239 spin_unlock_irqrestore(&edmac->lock, flags);
1240
1241 return 0;
1242 }
1243
1244 /**
1245 * ep93xx_dma_tx_status - check if a transaction is completed
1246 * @chan: channel
1247 * @cookie: transaction specific cookie
1248 * @state: state of the transaction is stored here if given
1249 *
1250 * This function can be used to query state of a given transaction.
1251 */
1252 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1253 dma_cookie_t cookie,
1254 struct dma_tx_state *state)
1255 {
1256 return dma_cookie_status(chan, cookie, state);
1257 }
1258
1259 /**
1260 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1261 * @chan: channel
1262 *
1263 * When this function is called, all pending transactions are pushed to the
1264 * hardware and executed.
1265 */
1266 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1267 {
1268 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1269 }
1270
1271 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1272 {
1273 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1274 struct ep93xx_dma_engine *edma;
1275 struct dma_device *dma_dev;
1276 size_t edma_size;
1277 int ret, i;
1278
1279 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1280 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1281 if (!edma)
1282 return -ENOMEM;
1283
1284 dma_dev = &edma->dma_dev;
1285 edma->m2m = platform_get_device_id(pdev)->driver_data;
1286 edma->num_channels = pdata->num_channels;
1287
1288 INIT_LIST_HEAD(&dma_dev->channels);
1289 for (i = 0; i < pdata->num_channels; i++) {
1290 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1291 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1292
1293 edmac->chan.device = dma_dev;
1294 edmac->regs = cdata->base;
1295 edmac->irq = cdata->irq;
1296 edmac->edma = edma;
1297
1298 edmac->clk = clk_get(NULL, cdata->name);
1299 if (IS_ERR(edmac->clk)) {
1300 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1301 cdata->name);
1302 continue;
1303 }
1304
1305 spin_lock_init(&edmac->lock);
1306 INIT_LIST_HEAD(&edmac->active);
1307 INIT_LIST_HEAD(&edmac->queue);
1308 INIT_LIST_HEAD(&edmac->free_list);
1309 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1310 (unsigned long)edmac);
1311
1312 list_add_tail(&edmac->chan.device_node,
1313 &dma_dev->channels);
1314 }
1315
1316 dma_cap_zero(dma_dev->cap_mask);
1317 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1318 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1319
1320 dma_dev->dev = &pdev->dev;
1321 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1322 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1323 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1324 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1325 dma_dev->device_config = ep93xx_dma_slave_config;
1326 dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1327 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1328 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1329
1330 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1331
1332 if (edma->m2m) {
1333 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1334 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1335
1336 edma->hw_setup = m2m_hw_setup;
1337 edma->hw_shutdown = m2m_hw_shutdown;
1338 edma->hw_submit = m2m_hw_submit;
1339 edma->hw_interrupt = m2m_hw_interrupt;
1340 } else {
1341 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1342
1343 edma->hw_setup = m2p_hw_setup;
1344 edma->hw_shutdown = m2p_hw_shutdown;
1345 edma->hw_submit = m2p_hw_submit;
1346 edma->hw_interrupt = m2p_hw_interrupt;
1347 }
1348
1349 ret = dma_async_device_register(dma_dev);
1350 if (unlikely(ret)) {
1351 for (i = 0; i < edma->num_channels; i++) {
1352 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1353 if (!IS_ERR_OR_NULL(edmac->clk))
1354 clk_put(edmac->clk);
1355 }
1356 kfree(edma);
1357 } else {
1358 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1359 edma->m2m ? "M" : "P");
1360 }
1361
1362 return ret;
1363 }
1364
1365 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1366 { "ep93xx-dma-m2p", 0 },
1367 { "ep93xx-dma-m2m", 1 },
1368 { },
1369 };
1370
1371 static struct platform_driver ep93xx_dma_driver = {
1372 .driver = {
1373 .name = "ep93xx-dma",
1374 },
1375 .id_table = ep93xx_dma_driver_ids,
1376 };
1377
1378 static int __init ep93xx_dma_module_init(void)
1379 {
1380 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1381 }
1382 subsys_initcall(ep93xx_dma_module_init);
1383
1384 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1385 MODULE_DESCRIPTION("EP93xx DMA driver");
1386 MODULE_LICENSE("GPL");