]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/fsl-edma.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / fsl-edma.c
1 /*
2 * drivers/dma/fsl-edma.c
3 *
4 * Copyright 2013-2014 Freescale Semiconductor, Inc.
5 *
6 * Driver for the Freescale eDMA engine with flexible channel multiplexing
7 * capability for DMA request sources. The eDMA block can be found on some
8 * Vybrid and Layerscape SoCs.
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 */
15
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/interrupt.h>
19 #include <linux/clk.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_dma.h>
29
30 #include "virt-dma.h"
31
32 #define EDMA_CR 0x00
33 #define EDMA_ES 0x04
34 #define EDMA_ERQ 0x0C
35 #define EDMA_EEI 0x14
36 #define EDMA_SERQ 0x1B
37 #define EDMA_CERQ 0x1A
38 #define EDMA_SEEI 0x19
39 #define EDMA_CEEI 0x18
40 #define EDMA_CINT 0x1F
41 #define EDMA_CERR 0x1E
42 #define EDMA_SSRT 0x1D
43 #define EDMA_CDNE 0x1C
44 #define EDMA_INTR 0x24
45 #define EDMA_ERR 0x2C
46
47 #define EDMA_TCD_SADDR(x) (0x1000 + 32 * (x))
48 #define EDMA_TCD_SOFF(x) (0x1004 + 32 * (x))
49 #define EDMA_TCD_ATTR(x) (0x1006 + 32 * (x))
50 #define EDMA_TCD_NBYTES(x) (0x1008 + 32 * (x))
51 #define EDMA_TCD_SLAST(x) (0x100C + 32 * (x))
52 #define EDMA_TCD_DADDR(x) (0x1010 + 32 * (x))
53 #define EDMA_TCD_DOFF(x) (0x1014 + 32 * (x))
54 #define EDMA_TCD_CITER_ELINK(x) (0x1016 + 32 * (x))
55 #define EDMA_TCD_CITER(x) (0x1016 + 32 * (x))
56 #define EDMA_TCD_DLAST_SGA(x) (0x1018 + 32 * (x))
57 #define EDMA_TCD_CSR(x) (0x101C + 32 * (x))
58 #define EDMA_TCD_BITER_ELINK(x) (0x101E + 32 * (x))
59 #define EDMA_TCD_BITER(x) (0x101E + 32 * (x))
60
61 #define EDMA_CR_EDBG BIT(1)
62 #define EDMA_CR_ERCA BIT(2)
63 #define EDMA_CR_ERGA BIT(3)
64 #define EDMA_CR_HOE BIT(4)
65 #define EDMA_CR_HALT BIT(5)
66 #define EDMA_CR_CLM BIT(6)
67 #define EDMA_CR_EMLM BIT(7)
68 #define EDMA_CR_ECX BIT(16)
69 #define EDMA_CR_CX BIT(17)
70
71 #define EDMA_SEEI_SEEI(x) ((x) & 0x1F)
72 #define EDMA_CEEI_CEEI(x) ((x) & 0x1F)
73 #define EDMA_CINT_CINT(x) ((x) & 0x1F)
74 #define EDMA_CERR_CERR(x) ((x) & 0x1F)
75
76 #define EDMA_TCD_ATTR_DSIZE(x) (((x) & 0x0007))
77 #define EDMA_TCD_ATTR_DMOD(x) (((x) & 0x001F) << 3)
78 #define EDMA_TCD_ATTR_SSIZE(x) (((x) & 0x0007) << 8)
79 #define EDMA_TCD_ATTR_SMOD(x) (((x) & 0x001F) << 11)
80 #define EDMA_TCD_ATTR_SSIZE_8BIT (0x0000)
81 #define EDMA_TCD_ATTR_SSIZE_16BIT (0x0100)
82 #define EDMA_TCD_ATTR_SSIZE_32BIT (0x0200)
83 #define EDMA_TCD_ATTR_SSIZE_64BIT (0x0300)
84 #define EDMA_TCD_ATTR_SSIZE_32BYTE (0x0500)
85 #define EDMA_TCD_ATTR_DSIZE_8BIT (0x0000)
86 #define EDMA_TCD_ATTR_DSIZE_16BIT (0x0001)
87 #define EDMA_TCD_ATTR_DSIZE_32BIT (0x0002)
88 #define EDMA_TCD_ATTR_DSIZE_64BIT (0x0003)
89 #define EDMA_TCD_ATTR_DSIZE_32BYTE (0x0005)
90
91 #define EDMA_TCD_SOFF_SOFF(x) (x)
92 #define EDMA_TCD_NBYTES_NBYTES(x) (x)
93 #define EDMA_TCD_SLAST_SLAST(x) (x)
94 #define EDMA_TCD_DADDR_DADDR(x) (x)
95 #define EDMA_TCD_CITER_CITER(x) ((x) & 0x7FFF)
96 #define EDMA_TCD_DOFF_DOFF(x) (x)
97 #define EDMA_TCD_DLAST_SGA_DLAST_SGA(x) (x)
98 #define EDMA_TCD_BITER_BITER(x) ((x) & 0x7FFF)
99
100 #define EDMA_TCD_CSR_START BIT(0)
101 #define EDMA_TCD_CSR_INT_MAJOR BIT(1)
102 #define EDMA_TCD_CSR_INT_HALF BIT(2)
103 #define EDMA_TCD_CSR_D_REQ BIT(3)
104 #define EDMA_TCD_CSR_E_SG BIT(4)
105 #define EDMA_TCD_CSR_E_LINK BIT(5)
106 #define EDMA_TCD_CSR_ACTIVE BIT(6)
107 #define EDMA_TCD_CSR_DONE BIT(7)
108
109 #define EDMAMUX_CHCFG_DIS 0x0
110 #define EDMAMUX_CHCFG_ENBL 0x80
111 #define EDMAMUX_CHCFG_SOURCE(n) ((n) & 0x3F)
112
113 #define DMAMUX_NR 2
114
115 #define FSL_EDMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
116 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
117 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
118 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
119 enum fsl_edma_pm_state {
120 RUNNING = 0,
121 SUSPENDED,
122 };
123
124 struct fsl_edma_hw_tcd {
125 __le32 saddr;
126 __le16 soff;
127 __le16 attr;
128 __le32 nbytes;
129 __le32 slast;
130 __le32 daddr;
131 __le16 doff;
132 __le16 citer;
133 __le32 dlast_sga;
134 __le16 csr;
135 __le16 biter;
136 };
137
138 struct fsl_edma_sw_tcd {
139 dma_addr_t ptcd;
140 struct fsl_edma_hw_tcd *vtcd;
141 };
142
143 struct fsl_edma_slave_config {
144 enum dma_transfer_direction dir;
145 enum dma_slave_buswidth addr_width;
146 u32 dev_addr;
147 u32 burst;
148 u32 attr;
149 };
150
151 struct fsl_edma_chan {
152 struct virt_dma_chan vchan;
153 enum dma_status status;
154 enum fsl_edma_pm_state pm_state;
155 bool idle;
156 u32 slave_id;
157 struct fsl_edma_engine *edma;
158 struct fsl_edma_desc *edesc;
159 struct fsl_edma_slave_config fsc;
160 struct dma_pool *tcd_pool;
161 };
162
163 struct fsl_edma_desc {
164 struct virt_dma_desc vdesc;
165 struct fsl_edma_chan *echan;
166 bool iscyclic;
167 unsigned int n_tcds;
168 struct fsl_edma_sw_tcd tcd[];
169 };
170
171 struct fsl_edma_engine {
172 struct dma_device dma_dev;
173 void __iomem *membase;
174 void __iomem *muxbase[DMAMUX_NR];
175 struct clk *muxclk[DMAMUX_NR];
176 struct mutex fsl_edma_mutex;
177 u32 n_chans;
178 int txirq;
179 int errirq;
180 bool big_endian;
181 struct fsl_edma_chan chans[];
182 };
183
184 /*
185 * R/W functions for big- or little-endian registers:
186 * The eDMA controller's endian is independent of the CPU core's endian.
187 * For the big-endian IP module, the offset for 8-bit or 16-bit registers
188 * should also be swapped opposite to that in little-endian IP.
189 */
190
191 static u32 edma_readl(struct fsl_edma_engine *edma, void __iomem *addr)
192 {
193 if (edma->big_endian)
194 return ioread32be(addr);
195 else
196 return ioread32(addr);
197 }
198
199 static void edma_writeb(struct fsl_edma_engine *edma, u8 val, void __iomem *addr)
200 {
201 /* swap the reg offset for these in big-endian mode */
202 if (edma->big_endian)
203 iowrite8(val, (void __iomem *)((unsigned long)addr ^ 0x3));
204 else
205 iowrite8(val, addr);
206 }
207
208 static void edma_writew(struct fsl_edma_engine *edma, u16 val, void __iomem *addr)
209 {
210 /* swap the reg offset for these in big-endian mode */
211 if (edma->big_endian)
212 iowrite16be(val, (void __iomem *)((unsigned long)addr ^ 0x2));
213 else
214 iowrite16(val, addr);
215 }
216
217 static void edma_writel(struct fsl_edma_engine *edma, u32 val, void __iomem *addr)
218 {
219 if (edma->big_endian)
220 iowrite32be(val, addr);
221 else
222 iowrite32(val, addr);
223 }
224
225 static struct fsl_edma_chan *to_fsl_edma_chan(struct dma_chan *chan)
226 {
227 return container_of(chan, struct fsl_edma_chan, vchan.chan);
228 }
229
230 static struct fsl_edma_desc *to_fsl_edma_desc(struct virt_dma_desc *vd)
231 {
232 return container_of(vd, struct fsl_edma_desc, vdesc);
233 }
234
235 static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
236 {
237 void __iomem *addr = fsl_chan->edma->membase;
238 u32 ch = fsl_chan->vchan.chan.chan_id;
239
240 edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), addr + EDMA_SEEI);
241 edma_writeb(fsl_chan->edma, ch, addr + EDMA_SERQ);
242 }
243
244 static void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
245 {
246 void __iomem *addr = fsl_chan->edma->membase;
247 u32 ch = fsl_chan->vchan.chan.chan_id;
248
249 edma_writeb(fsl_chan->edma, ch, addr + EDMA_CERQ);
250 edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), addr + EDMA_CEEI);
251 }
252
253 static void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
254 unsigned int slot, bool enable)
255 {
256 u32 ch = fsl_chan->vchan.chan.chan_id;
257 void __iomem *muxaddr;
258 unsigned chans_per_mux, ch_off;
259
260 chans_per_mux = fsl_chan->edma->n_chans / DMAMUX_NR;
261 ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
262 muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
263 slot = EDMAMUX_CHCFG_SOURCE(slot);
264
265 if (enable)
266 iowrite8(EDMAMUX_CHCFG_ENBL | slot, muxaddr + ch_off);
267 else
268 iowrite8(EDMAMUX_CHCFG_DIS, muxaddr + ch_off);
269 }
270
271 static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
272 {
273 switch (addr_width) {
274 case 1:
275 return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
276 case 2:
277 return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
278 case 4:
279 return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
280 case 8:
281 return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
282 default:
283 return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
284 }
285 }
286
287 static void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
288 {
289 struct fsl_edma_desc *fsl_desc;
290 int i;
291
292 fsl_desc = to_fsl_edma_desc(vdesc);
293 for (i = 0; i < fsl_desc->n_tcds; i++)
294 dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
295 fsl_desc->tcd[i].ptcd);
296 kfree(fsl_desc);
297 }
298
299 static int fsl_edma_terminate_all(struct dma_chan *chan)
300 {
301 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
302 unsigned long flags;
303 LIST_HEAD(head);
304
305 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
306 fsl_edma_disable_request(fsl_chan);
307 fsl_chan->edesc = NULL;
308 fsl_chan->idle = true;
309 vchan_get_all_descriptors(&fsl_chan->vchan, &head);
310 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
311 vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
312 return 0;
313 }
314
315 static int fsl_edma_pause(struct dma_chan *chan)
316 {
317 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
318 unsigned long flags;
319
320 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
321 if (fsl_chan->edesc) {
322 fsl_edma_disable_request(fsl_chan);
323 fsl_chan->status = DMA_PAUSED;
324 fsl_chan->idle = true;
325 }
326 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
327 return 0;
328 }
329
330 static int fsl_edma_resume(struct dma_chan *chan)
331 {
332 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
333 unsigned long flags;
334
335 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
336 if (fsl_chan->edesc) {
337 fsl_edma_enable_request(fsl_chan);
338 fsl_chan->status = DMA_IN_PROGRESS;
339 fsl_chan->idle = false;
340 }
341 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
342 return 0;
343 }
344
345 static int fsl_edma_slave_config(struct dma_chan *chan,
346 struct dma_slave_config *cfg)
347 {
348 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
349
350 fsl_chan->fsc.dir = cfg->direction;
351 if (cfg->direction == DMA_DEV_TO_MEM) {
352 fsl_chan->fsc.dev_addr = cfg->src_addr;
353 fsl_chan->fsc.addr_width = cfg->src_addr_width;
354 fsl_chan->fsc.burst = cfg->src_maxburst;
355 fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->src_addr_width);
356 } else if (cfg->direction == DMA_MEM_TO_DEV) {
357 fsl_chan->fsc.dev_addr = cfg->dst_addr;
358 fsl_chan->fsc.addr_width = cfg->dst_addr_width;
359 fsl_chan->fsc.burst = cfg->dst_maxburst;
360 fsl_chan->fsc.attr = fsl_edma_get_tcd_attr(cfg->dst_addr_width);
361 } else {
362 return -EINVAL;
363 }
364 return 0;
365 }
366
367 static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
368 struct virt_dma_desc *vdesc, bool in_progress)
369 {
370 struct fsl_edma_desc *edesc = fsl_chan->edesc;
371 void __iomem *addr = fsl_chan->edma->membase;
372 u32 ch = fsl_chan->vchan.chan.chan_id;
373 enum dma_transfer_direction dir = fsl_chan->fsc.dir;
374 dma_addr_t cur_addr, dma_addr;
375 size_t len, size;
376 int i;
377
378 /* calculate the total size in this desc */
379 for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
380 len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
381 * le16_to_cpu(edesc->tcd[i].vtcd->biter);
382
383 if (!in_progress)
384 return len;
385
386 if (dir == DMA_MEM_TO_DEV)
387 cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_SADDR(ch));
388 else
389 cur_addr = edma_readl(fsl_chan->edma, addr + EDMA_TCD_DADDR(ch));
390
391 /* figure out the finished and calculate the residue */
392 for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
393 size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
394 * le16_to_cpu(edesc->tcd[i].vtcd->biter);
395 if (dir == DMA_MEM_TO_DEV)
396 dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
397 else
398 dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
399
400 len -= size;
401 if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
402 len += dma_addr + size - cur_addr;
403 break;
404 }
405 }
406
407 return len;
408 }
409
410 static enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
411 dma_cookie_t cookie, struct dma_tx_state *txstate)
412 {
413 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
414 struct virt_dma_desc *vdesc;
415 enum dma_status status;
416 unsigned long flags;
417
418 status = dma_cookie_status(chan, cookie, txstate);
419 if (status == DMA_COMPLETE)
420 return status;
421
422 if (!txstate)
423 return fsl_chan->status;
424
425 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
426 vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
427 if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
428 txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, true);
429 else if (vdesc)
430 txstate->residue = fsl_edma_desc_residue(fsl_chan, vdesc, false);
431 else
432 txstate->residue = 0;
433
434 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
435
436 return fsl_chan->status;
437 }
438
439 static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
440 struct fsl_edma_hw_tcd *tcd)
441 {
442 struct fsl_edma_engine *edma = fsl_chan->edma;
443 void __iomem *addr = fsl_chan->edma->membase;
444 u32 ch = fsl_chan->vchan.chan.chan_id;
445
446 /*
447 * TCD parameters are stored in struct fsl_edma_hw_tcd in little
448 * endian format. However, we need to load the TCD registers in
449 * big- or little-endian obeying the eDMA engine model endian.
450 */
451 edma_writew(edma, 0, addr + EDMA_TCD_CSR(ch));
452 edma_writel(edma, le32_to_cpu(tcd->saddr), addr + EDMA_TCD_SADDR(ch));
453 edma_writel(edma, le32_to_cpu(tcd->daddr), addr + EDMA_TCD_DADDR(ch));
454
455 edma_writew(edma, le16_to_cpu(tcd->attr), addr + EDMA_TCD_ATTR(ch));
456 edma_writew(edma, le16_to_cpu(tcd->soff), addr + EDMA_TCD_SOFF(ch));
457
458 edma_writel(edma, le32_to_cpu(tcd->nbytes), addr + EDMA_TCD_NBYTES(ch));
459 edma_writel(edma, le32_to_cpu(tcd->slast), addr + EDMA_TCD_SLAST(ch));
460
461 edma_writew(edma, le16_to_cpu(tcd->citer), addr + EDMA_TCD_CITER(ch));
462 edma_writew(edma, le16_to_cpu(tcd->biter), addr + EDMA_TCD_BITER(ch));
463 edma_writew(edma, le16_to_cpu(tcd->doff), addr + EDMA_TCD_DOFF(ch));
464
465 edma_writel(edma, le32_to_cpu(tcd->dlast_sga), addr + EDMA_TCD_DLAST_SGA(ch));
466
467 edma_writew(edma, le16_to_cpu(tcd->csr), addr + EDMA_TCD_CSR(ch));
468 }
469
470 static inline
471 void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
472 u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
473 u16 biter, u16 doff, u32 dlast_sga, bool major_int,
474 bool disable_req, bool enable_sg)
475 {
476 u16 csr = 0;
477
478 /*
479 * eDMA hardware SGs require the TCDs to be stored in little
480 * endian format irrespective of the register endian model.
481 * So we put the value in little endian in memory, waiting
482 * for fsl_edma_set_tcd_regs doing the swap.
483 */
484 tcd->saddr = cpu_to_le32(src);
485 tcd->daddr = cpu_to_le32(dst);
486
487 tcd->attr = cpu_to_le16(attr);
488
489 tcd->soff = cpu_to_le16(EDMA_TCD_SOFF_SOFF(soff));
490
491 tcd->nbytes = cpu_to_le32(EDMA_TCD_NBYTES_NBYTES(nbytes));
492 tcd->slast = cpu_to_le32(EDMA_TCD_SLAST_SLAST(slast));
493
494 tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
495 tcd->doff = cpu_to_le16(EDMA_TCD_DOFF_DOFF(doff));
496
497 tcd->dlast_sga = cpu_to_le32(EDMA_TCD_DLAST_SGA_DLAST_SGA(dlast_sga));
498
499 tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
500 if (major_int)
501 csr |= EDMA_TCD_CSR_INT_MAJOR;
502
503 if (disable_req)
504 csr |= EDMA_TCD_CSR_D_REQ;
505
506 if (enable_sg)
507 csr |= EDMA_TCD_CSR_E_SG;
508
509 tcd->csr = cpu_to_le16(csr);
510 }
511
512 static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
513 int sg_len)
514 {
515 struct fsl_edma_desc *fsl_desc;
516 int i;
517
518 fsl_desc = kzalloc(sizeof(*fsl_desc) + sizeof(struct fsl_edma_sw_tcd) * sg_len,
519 GFP_NOWAIT);
520 if (!fsl_desc)
521 return NULL;
522
523 fsl_desc->echan = fsl_chan;
524 fsl_desc->n_tcds = sg_len;
525 for (i = 0; i < sg_len; i++) {
526 fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
527 GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
528 if (!fsl_desc->tcd[i].vtcd)
529 goto err;
530 }
531 return fsl_desc;
532
533 err:
534 while (--i >= 0)
535 dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
536 fsl_desc->tcd[i].ptcd);
537 kfree(fsl_desc);
538 return NULL;
539 }
540
541 static struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
542 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
543 size_t period_len, enum dma_transfer_direction direction,
544 unsigned long flags)
545 {
546 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
547 struct fsl_edma_desc *fsl_desc;
548 dma_addr_t dma_buf_next;
549 int sg_len, i;
550 u32 src_addr, dst_addr, last_sg, nbytes;
551 u16 soff, doff, iter;
552
553 if (!is_slave_direction(fsl_chan->fsc.dir))
554 return NULL;
555
556 sg_len = buf_len / period_len;
557 fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
558 if (!fsl_desc)
559 return NULL;
560 fsl_desc->iscyclic = true;
561
562 dma_buf_next = dma_addr;
563 nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
564 iter = period_len / nbytes;
565
566 for (i = 0; i < sg_len; i++) {
567 if (dma_buf_next >= dma_addr + buf_len)
568 dma_buf_next = dma_addr;
569
570 /* get next sg's physical address */
571 last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
572
573 if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
574 src_addr = dma_buf_next;
575 dst_addr = fsl_chan->fsc.dev_addr;
576 soff = fsl_chan->fsc.addr_width;
577 doff = 0;
578 } else {
579 src_addr = fsl_chan->fsc.dev_addr;
580 dst_addr = dma_buf_next;
581 soff = 0;
582 doff = fsl_chan->fsc.addr_width;
583 }
584
585 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
586 fsl_chan->fsc.attr, soff, nbytes, 0, iter,
587 iter, doff, last_sg, true, false, true);
588 dma_buf_next += period_len;
589 }
590
591 return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
592 }
593
594 static struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
595 struct dma_chan *chan, struct scatterlist *sgl,
596 unsigned int sg_len, enum dma_transfer_direction direction,
597 unsigned long flags, void *context)
598 {
599 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
600 struct fsl_edma_desc *fsl_desc;
601 struct scatterlist *sg;
602 u32 src_addr, dst_addr, last_sg, nbytes;
603 u16 soff, doff, iter;
604 int i;
605
606 if (!is_slave_direction(fsl_chan->fsc.dir))
607 return NULL;
608
609 fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
610 if (!fsl_desc)
611 return NULL;
612 fsl_desc->iscyclic = false;
613
614 nbytes = fsl_chan->fsc.addr_width * fsl_chan->fsc.burst;
615 for_each_sg(sgl, sg, sg_len, i) {
616 /* get next sg's physical address */
617 last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
618
619 if (fsl_chan->fsc.dir == DMA_MEM_TO_DEV) {
620 src_addr = sg_dma_address(sg);
621 dst_addr = fsl_chan->fsc.dev_addr;
622 soff = fsl_chan->fsc.addr_width;
623 doff = 0;
624 } else {
625 src_addr = fsl_chan->fsc.dev_addr;
626 dst_addr = sg_dma_address(sg);
627 soff = 0;
628 doff = fsl_chan->fsc.addr_width;
629 }
630
631 iter = sg_dma_len(sg) / nbytes;
632 if (i < sg_len - 1) {
633 last_sg = fsl_desc->tcd[(i + 1)].ptcd;
634 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
635 dst_addr, fsl_chan->fsc.attr, soff,
636 nbytes, 0, iter, iter, doff, last_sg,
637 false, false, true);
638 } else {
639 last_sg = 0;
640 fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
641 dst_addr, fsl_chan->fsc.attr, soff,
642 nbytes, 0, iter, iter, doff, last_sg,
643 true, true, false);
644 }
645 }
646
647 return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
648 }
649
650 static void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
651 {
652 struct virt_dma_desc *vdesc;
653
654 vdesc = vchan_next_desc(&fsl_chan->vchan);
655 if (!vdesc)
656 return;
657 fsl_chan->edesc = to_fsl_edma_desc(vdesc);
658 fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
659 fsl_edma_enable_request(fsl_chan);
660 fsl_chan->status = DMA_IN_PROGRESS;
661 fsl_chan->idle = false;
662 }
663
664 static irqreturn_t fsl_edma_tx_handler(int irq, void *dev_id)
665 {
666 struct fsl_edma_engine *fsl_edma = dev_id;
667 unsigned int intr, ch;
668 void __iomem *base_addr;
669 struct fsl_edma_chan *fsl_chan;
670
671 base_addr = fsl_edma->membase;
672
673 intr = edma_readl(fsl_edma, base_addr + EDMA_INTR);
674 if (!intr)
675 return IRQ_NONE;
676
677 for (ch = 0; ch < fsl_edma->n_chans; ch++) {
678 if (intr & (0x1 << ch)) {
679 edma_writeb(fsl_edma, EDMA_CINT_CINT(ch),
680 base_addr + EDMA_CINT);
681
682 fsl_chan = &fsl_edma->chans[ch];
683
684 spin_lock(&fsl_chan->vchan.lock);
685 if (!fsl_chan->edesc->iscyclic) {
686 list_del(&fsl_chan->edesc->vdesc.node);
687 vchan_cookie_complete(&fsl_chan->edesc->vdesc);
688 fsl_chan->edesc = NULL;
689 fsl_chan->status = DMA_COMPLETE;
690 fsl_chan->idle = true;
691 } else {
692 vchan_cyclic_callback(&fsl_chan->edesc->vdesc);
693 }
694
695 if (!fsl_chan->edesc)
696 fsl_edma_xfer_desc(fsl_chan);
697
698 spin_unlock(&fsl_chan->vchan.lock);
699 }
700 }
701 return IRQ_HANDLED;
702 }
703
704 static irqreturn_t fsl_edma_err_handler(int irq, void *dev_id)
705 {
706 struct fsl_edma_engine *fsl_edma = dev_id;
707 unsigned int err, ch;
708
709 err = edma_readl(fsl_edma, fsl_edma->membase + EDMA_ERR);
710 if (!err)
711 return IRQ_NONE;
712
713 for (ch = 0; ch < fsl_edma->n_chans; ch++) {
714 if (err & (0x1 << ch)) {
715 fsl_edma_disable_request(&fsl_edma->chans[ch]);
716 edma_writeb(fsl_edma, EDMA_CERR_CERR(ch),
717 fsl_edma->membase + EDMA_CERR);
718 fsl_edma->chans[ch].status = DMA_ERROR;
719 fsl_edma->chans[ch].idle = true;
720 }
721 }
722 return IRQ_HANDLED;
723 }
724
725 static irqreturn_t fsl_edma_irq_handler(int irq, void *dev_id)
726 {
727 if (fsl_edma_tx_handler(irq, dev_id) == IRQ_HANDLED)
728 return IRQ_HANDLED;
729
730 return fsl_edma_err_handler(irq, dev_id);
731 }
732
733 static void fsl_edma_issue_pending(struct dma_chan *chan)
734 {
735 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
736 unsigned long flags;
737
738 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
739
740 if (unlikely(fsl_chan->pm_state != RUNNING)) {
741 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
742 /* cannot submit due to suspend */
743 return;
744 }
745
746 if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
747 fsl_edma_xfer_desc(fsl_chan);
748
749 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
750 }
751
752 static struct dma_chan *fsl_edma_xlate(struct of_phandle_args *dma_spec,
753 struct of_dma *ofdma)
754 {
755 struct fsl_edma_engine *fsl_edma = ofdma->of_dma_data;
756 struct dma_chan *chan, *_chan;
757 struct fsl_edma_chan *fsl_chan;
758 unsigned long chans_per_mux = fsl_edma->n_chans / DMAMUX_NR;
759
760 if (dma_spec->args_count != 2)
761 return NULL;
762
763 mutex_lock(&fsl_edma->fsl_edma_mutex);
764 list_for_each_entry_safe(chan, _chan, &fsl_edma->dma_dev.channels, device_node) {
765 if (chan->client_count)
766 continue;
767 if ((chan->chan_id / chans_per_mux) == dma_spec->args[0]) {
768 chan = dma_get_slave_channel(chan);
769 if (chan) {
770 chan->device->privatecnt++;
771 fsl_chan = to_fsl_edma_chan(chan);
772 fsl_chan->slave_id = dma_spec->args[1];
773 fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id,
774 true);
775 mutex_unlock(&fsl_edma->fsl_edma_mutex);
776 return chan;
777 }
778 }
779 }
780 mutex_unlock(&fsl_edma->fsl_edma_mutex);
781 return NULL;
782 }
783
784 static int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
785 {
786 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
787
788 fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
789 sizeof(struct fsl_edma_hw_tcd),
790 32, 0);
791 return 0;
792 }
793
794 static void fsl_edma_free_chan_resources(struct dma_chan *chan)
795 {
796 struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
797 unsigned long flags;
798 LIST_HEAD(head);
799
800 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
801 fsl_edma_disable_request(fsl_chan);
802 fsl_edma_chan_mux(fsl_chan, 0, false);
803 fsl_chan->edesc = NULL;
804 vchan_get_all_descriptors(&fsl_chan->vchan, &head);
805 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
806
807 vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
808 dma_pool_destroy(fsl_chan->tcd_pool);
809 fsl_chan->tcd_pool = NULL;
810 }
811
812 static int
813 fsl_edma_irq_init(struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
814 {
815 int ret;
816
817 fsl_edma->txirq = platform_get_irq_byname(pdev, "edma-tx");
818 if (fsl_edma->txirq < 0) {
819 dev_err(&pdev->dev, "Can't get edma-tx irq.\n");
820 return fsl_edma->txirq;
821 }
822
823 fsl_edma->errirq = platform_get_irq_byname(pdev, "edma-err");
824 if (fsl_edma->errirq < 0) {
825 dev_err(&pdev->dev, "Can't get edma-err irq.\n");
826 return fsl_edma->errirq;
827 }
828
829 if (fsl_edma->txirq == fsl_edma->errirq) {
830 ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
831 fsl_edma_irq_handler, 0, "eDMA", fsl_edma);
832 if (ret) {
833 dev_err(&pdev->dev, "Can't register eDMA IRQ.\n");
834 return ret;
835 }
836 } else {
837 ret = devm_request_irq(&pdev->dev, fsl_edma->txirq,
838 fsl_edma_tx_handler, 0, "eDMA tx", fsl_edma);
839 if (ret) {
840 dev_err(&pdev->dev, "Can't register eDMA tx IRQ.\n");
841 return ret;
842 }
843
844 ret = devm_request_irq(&pdev->dev, fsl_edma->errirq,
845 fsl_edma_err_handler, 0, "eDMA err", fsl_edma);
846 if (ret) {
847 dev_err(&pdev->dev, "Can't register eDMA err IRQ.\n");
848 return ret;
849 }
850 }
851
852 return 0;
853 }
854
855 static void fsl_edma_irq_exit(
856 struct platform_device *pdev, struct fsl_edma_engine *fsl_edma)
857 {
858 if (fsl_edma->txirq == fsl_edma->errirq) {
859 devm_free_irq(&pdev->dev, fsl_edma->txirq, fsl_edma);
860 } else {
861 devm_free_irq(&pdev->dev, fsl_edma->txirq, fsl_edma);
862 devm_free_irq(&pdev->dev, fsl_edma->errirq, fsl_edma);
863 }
864 }
865
866 static void fsl_disable_clocks(struct fsl_edma_engine *fsl_edma, int nr_clocks)
867 {
868 int i;
869
870 for (i = 0; i < nr_clocks; i++)
871 clk_disable_unprepare(fsl_edma->muxclk[i]);
872 }
873
874 static int fsl_edma_probe(struct platform_device *pdev)
875 {
876 struct device_node *np = pdev->dev.of_node;
877 struct fsl_edma_engine *fsl_edma;
878 struct fsl_edma_chan *fsl_chan;
879 struct resource *res;
880 int len, chans;
881 int ret, i;
882
883 ret = of_property_read_u32(np, "dma-channels", &chans);
884 if (ret) {
885 dev_err(&pdev->dev, "Can't get dma-channels.\n");
886 return ret;
887 }
888
889 len = sizeof(*fsl_edma) + sizeof(*fsl_chan) * chans;
890 fsl_edma = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
891 if (!fsl_edma)
892 return -ENOMEM;
893
894 fsl_edma->n_chans = chans;
895 mutex_init(&fsl_edma->fsl_edma_mutex);
896
897 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
898 fsl_edma->membase = devm_ioremap_resource(&pdev->dev, res);
899 if (IS_ERR(fsl_edma->membase))
900 return PTR_ERR(fsl_edma->membase);
901
902 for (i = 0; i < DMAMUX_NR; i++) {
903 char clkname[32];
904
905 res = platform_get_resource(pdev, IORESOURCE_MEM, 1 + i);
906 fsl_edma->muxbase[i] = devm_ioremap_resource(&pdev->dev, res);
907 if (IS_ERR(fsl_edma->muxbase[i])) {
908 /* on error: disable all previously enabled clks */
909 fsl_disable_clocks(fsl_edma, i);
910 return PTR_ERR(fsl_edma->muxbase[i]);
911 }
912
913 sprintf(clkname, "dmamux%d", i);
914 fsl_edma->muxclk[i] = devm_clk_get(&pdev->dev, clkname);
915 if (IS_ERR(fsl_edma->muxclk[i])) {
916 dev_err(&pdev->dev, "Missing DMAMUX block clock.\n");
917 /* on error: disable all previously enabled clks */
918 fsl_disable_clocks(fsl_edma, i);
919 return PTR_ERR(fsl_edma->muxclk[i]);
920 }
921
922 ret = clk_prepare_enable(fsl_edma->muxclk[i]);
923 if (ret)
924 /* on error: disable all previously enabled clks */
925 fsl_disable_clocks(fsl_edma, i);
926
927 }
928
929 fsl_edma->big_endian = of_property_read_bool(np, "big-endian");
930
931 INIT_LIST_HEAD(&fsl_edma->dma_dev.channels);
932 for (i = 0; i < fsl_edma->n_chans; i++) {
933 struct fsl_edma_chan *fsl_chan = &fsl_edma->chans[i];
934
935 fsl_chan->edma = fsl_edma;
936 fsl_chan->pm_state = RUNNING;
937 fsl_chan->slave_id = 0;
938 fsl_chan->idle = true;
939 fsl_chan->vchan.desc_free = fsl_edma_free_desc;
940 vchan_init(&fsl_chan->vchan, &fsl_edma->dma_dev);
941
942 edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
943 fsl_edma_chan_mux(fsl_chan, 0, false);
944 }
945
946 edma_writel(fsl_edma, ~0, fsl_edma->membase + EDMA_INTR);
947 ret = fsl_edma_irq_init(pdev, fsl_edma);
948 if (ret)
949 return ret;
950
951 dma_cap_set(DMA_PRIVATE, fsl_edma->dma_dev.cap_mask);
952 dma_cap_set(DMA_SLAVE, fsl_edma->dma_dev.cap_mask);
953 dma_cap_set(DMA_CYCLIC, fsl_edma->dma_dev.cap_mask);
954
955 fsl_edma->dma_dev.dev = &pdev->dev;
956 fsl_edma->dma_dev.device_alloc_chan_resources
957 = fsl_edma_alloc_chan_resources;
958 fsl_edma->dma_dev.device_free_chan_resources
959 = fsl_edma_free_chan_resources;
960 fsl_edma->dma_dev.device_tx_status = fsl_edma_tx_status;
961 fsl_edma->dma_dev.device_prep_slave_sg = fsl_edma_prep_slave_sg;
962 fsl_edma->dma_dev.device_prep_dma_cyclic = fsl_edma_prep_dma_cyclic;
963 fsl_edma->dma_dev.device_config = fsl_edma_slave_config;
964 fsl_edma->dma_dev.device_pause = fsl_edma_pause;
965 fsl_edma->dma_dev.device_resume = fsl_edma_resume;
966 fsl_edma->dma_dev.device_terminate_all = fsl_edma_terminate_all;
967 fsl_edma->dma_dev.device_issue_pending = fsl_edma_issue_pending;
968
969 fsl_edma->dma_dev.src_addr_widths = FSL_EDMA_BUSWIDTHS;
970 fsl_edma->dma_dev.dst_addr_widths = FSL_EDMA_BUSWIDTHS;
971 fsl_edma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
972
973 platform_set_drvdata(pdev, fsl_edma);
974
975 ret = dma_async_device_register(&fsl_edma->dma_dev);
976 if (ret) {
977 dev_err(&pdev->dev,
978 "Can't register Freescale eDMA engine. (%d)\n", ret);
979 fsl_disable_clocks(fsl_edma, DMAMUX_NR);
980 return ret;
981 }
982
983 ret = of_dma_controller_register(np, fsl_edma_xlate, fsl_edma);
984 if (ret) {
985 dev_err(&pdev->dev,
986 "Can't register Freescale eDMA of_dma. (%d)\n", ret);
987 dma_async_device_unregister(&fsl_edma->dma_dev);
988 fsl_disable_clocks(fsl_edma, DMAMUX_NR);
989 return ret;
990 }
991
992 /* enable round robin arbitration */
993 edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA, fsl_edma->membase + EDMA_CR);
994
995 return 0;
996 }
997
998 static void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
999 {
1000 struct fsl_edma_chan *chan, *_chan;
1001
1002 list_for_each_entry_safe(chan, _chan,
1003 &dmadev->channels, vchan.chan.device_node) {
1004 list_del(&chan->vchan.chan.device_node);
1005 tasklet_kill(&chan->vchan.task);
1006 }
1007 }
1008
1009 static int fsl_edma_remove(struct platform_device *pdev)
1010 {
1011 struct device_node *np = pdev->dev.of_node;
1012 struct fsl_edma_engine *fsl_edma = platform_get_drvdata(pdev);
1013
1014 fsl_edma_irq_exit(pdev, fsl_edma);
1015 fsl_edma_cleanup_vchan(&fsl_edma->dma_dev);
1016 of_dma_controller_free(np);
1017 dma_async_device_unregister(&fsl_edma->dma_dev);
1018 fsl_disable_clocks(fsl_edma, DMAMUX_NR);
1019
1020 return 0;
1021 }
1022
1023 static int fsl_edma_suspend_late(struct device *dev)
1024 {
1025 struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev);
1026 struct fsl_edma_chan *fsl_chan;
1027 unsigned long flags;
1028 int i;
1029
1030 for (i = 0; i < fsl_edma->n_chans; i++) {
1031 fsl_chan = &fsl_edma->chans[i];
1032 spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
1033 /* Make sure chan is idle or will force disable. */
1034 if (unlikely(!fsl_chan->idle)) {
1035 dev_warn(dev, "WARN: There is non-idle channel.");
1036 fsl_edma_disable_request(fsl_chan);
1037 fsl_edma_chan_mux(fsl_chan, 0, false);
1038 }
1039
1040 fsl_chan->pm_state = SUSPENDED;
1041 spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
1042 }
1043
1044 return 0;
1045 }
1046
1047 static int fsl_edma_resume_early(struct device *dev)
1048 {
1049 struct fsl_edma_engine *fsl_edma = dev_get_drvdata(dev);
1050 struct fsl_edma_chan *fsl_chan;
1051 int i;
1052
1053 for (i = 0; i < fsl_edma->n_chans; i++) {
1054 fsl_chan = &fsl_edma->chans[i];
1055 fsl_chan->pm_state = RUNNING;
1056 edma_writew(fsl_edma, 0x0, fsl_edma->membase + EDMA_TCD_CSR(i));
1057 if (fsl_chan->slave_id != 0)
1058 fsl_edma_chan_mux(fsl_chan, fsl_chan->slave_id, true);
1059 }
1060
1061 edma_writel(fsl_edma, EDMA_CR_ERGA | EDMA_CR_ERCA,
1062 fsl_edma->membase + EDMA_CR);
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * eDMA provides the service to others, so it should be suspend late
1069 * and resume early. When eDMA suspend, all of the clients should stop
1070 * the DMA data transmission and let the channel idle.
1071 */
1072 static const struct dev_pm_ops fsl_edma_pm_ops = {
1073 .suspend_late = fsl_edma_suspend_late,
1074 .resume_early = fsl_edma_resume_early,
1075 };
1076
1077 static const struct of_device_id fsl_edma_dt_ids[] = {
1078 { .compatible = "fsl,vf610-edma", },
1079 { /* sentinel */ }
1080 };
1081 MODULE_DEVICE_TABLE(of, fsl_edma_dt_ids);
1082
1083 static struct platform_driver fsl_edma_driver = {
1084 .driver = {
1085 .name = "fsl-edma",
1086 .of_match_table = fsl_edma_dt_ids,
1087 .pm = &fsl_edma_pm_ops,
1088 },
1089 .probe = fsl_edma_probe,
1090 .remove = fsl_edma_remove,
1091 };
1092
1093 static int __init fsl_edma_init(void)
1094 {
1095 return platform_driver_register(&fsl_edma_driver);
1096 }
1097 subsys_initcall(fsl_edma_init);
1098
1099 static void __exit fsl_edma_exit(void)
1100 {
1101 platform_driver_unregister(&fsl_edma_driver);
1102 }
1103 module_exit(fsl_edma_exit);
1104
1105 MODULE_ALIAS("platform:fsl-edma");
1106 MODULE_DESCRIPTION("Freescale eDMA engine driver");
1107 MODULE_LICENSE("GPL v2");