]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/fsldma.c
dmaengine: fsldma: Remove chancnt affectations
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39 #include <linux/fsldma.h>
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51 * Register Helpers
52 */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93
94 /*
95 * Descriptor Helpers
96 */
97
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 u64 snoop_bits;
108
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 u64 snoop_bits;
118
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 u64 snoop_bits;
128
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 u64 snoop_bits;
137
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
140
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
144 }
145
146 /*
147 * DMA Engine Hardware Control Helpers
148 */
149
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 /* Reset the channel */
153 set_mr(chan, 0);
154
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
161 */
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
169 */
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
172 }
173 }
174
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180
181 /*
182 * Start the DMA controller
183 *
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
187 */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 u32 mode;
191
192 mode = get_mr(chan);
193
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
199 }
200
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
206 }
207
208 set_mr(chan, mode);
209 }
210
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 u32 mode;
214 int i;
215
216 /* read the mode register */
217 mode = get_mr(chan);
218
219 /*
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
223 */
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
227
228 mode &= ~FSL_DMA_MR_CA;
229 }
230
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
234
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
239
240 udelay(10);
241 }
242
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
245 }
246
247 /**
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
251 *
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
257 */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 u32 mode;
261
262 mode = get_mr(chan);
263
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
274 }
275
276 set_mr(chan, mode);
277 }
278
279 /**
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
283 *
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
289 */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 u32 mode;
293
294 mode = get_mr(chan);
295
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
306 }
307
308 set_mr(chan, mode);
309 }
310
311 /**
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
315 *
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
320 *
321 * A size of 0 disables external pause control. The maximum size is 1024.
322 */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 u32 mode;
326
327 BUG_ON(size > 1024);
328
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
331
332 set_mr(chan, mode);
333 }
334
335 /**
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
339 *
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
343 */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351
352 /**
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
356 *
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
361 */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369
370 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
371 {
372 struct fsldma_chan *chan;
373
374 if (!dchan)
375 return -EINVAL;
376
377 chan = to_fsl_chan(dchan);
378
379 fsl_chan_toggle_ext_start(chan, enable);
380 return 0;
381 }
382 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
383
384 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
385 {
386 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
387
388 if (list_empty(&chan->ld_pending))
389 goto out_splice;
390
391 /*
392 * Add the hardware descriptor to the chain of hardware descriptors
393 * that already exists in memory.
394 *
395 * This will un-set the EOL bit of the existing transaction, and the
396 * last link in this transaction will become the EOL descriptor.
397 */
398 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
399
400 /*
401 * Add the software descriptor and all children to the list
402 * of pending transactions
403 */
404 out_splice:
405 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
406 }
407
408 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
409 {
410 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
411 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
412 struct fsl_desc_sw *child;
413 dma_cookie_t cookie = -EINVAL;
414
415 spin_lock_bh(&chan->desc_lock);
416
417 #ifdef CONFIG_PM
418 if (unlikely(chan->pm_state != RUNNING)) {
419 chan_dbg(chan, "cannot submit due to suspend\n");
420 spin_unlock_bh(&chan->desc_lock);
421 return -1;
422 }
423 #endif
424
425 /*
426 * assign cookies to all of the software descriptors
427 * that make up this transaction
428 */
429 list_for_each_entry(child, &desc->tx_list, node) {
430 cookie = dma_cookie_assign(&child->async_tx);
431 }
432
433 /* put this transaction onto the tail of the pending queue */
434 append_ld_queue(chan, desc);
435
436 spin_unlock_bh(&chan->desc_lock);
437
438 return cookie;
439 }
440
441 /**
442 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
443 * @chan : Freescale DMA channel
444 * @desc: descriptor to be freed
445 */
446 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
447 struct fsl_desc_sw *desc)
448 {
449 list_del(&desc->node);
450 chan_dbg(chan, "LD %p free\n", desc);
451 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
452 }
453
454 /**
455 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
456 * @chan : Freescale DMA channel
457 *
458 * Return - The descriptor allocated. NULL for failed.
459 */
460 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
461 {
462 struct fsl_desc_sw *desc;
463 dma_addr_t pdesc;
464
465 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
466 if (!desc) {
467 chan_dbg(chan, "out of memory for link descriptor\n");
468 return NULL;
469 }
470
471 memset(desc, 0, sizeof(*desc));
472 INIT_LIST_HEAD(&desc->tx_list);
473 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
474 desc->async_tx.tx_submit = fsl_dma_tx_submit;
475 desc->async_tx.phys = pdesc;
476
477 chan_dbg(chan, "LD %p allocated\n", desc);
478
479 return desc;
480 }
481
482 /**
483 * fsldma_clean_completed_descriptor - free all descriptors which
484 * has been completed and acked
485 * @chan: Freescale DMA channel
486 *
487 * This function is used on all completed and acked descriptors.
488 * All descriptors should only be freed in this function.
489 */
490 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
491 {
492 struct fsl_desc_sw *desc, *_desc;
493
494 /* Run the callback for each descriptor, in order */
495 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
496 if (async_tx_test_ack(&desc->async_tx))
497 fsl_dma_free_descriptor(chan, desc);
498 }
499
500 /**
501 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
502 * @chan: Freescale DMA channel
503 * @desc: descriptor to cleanup and free
504 * @cookie: Freescale DMA transaction identifier
505 *
506 * This function is used on a descriptor which has been executed by the DMA
507 * controller. It will run any callbacks, submit any dependencies.
508 */
509 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
510 struct fsl_desc_sw *desc, dma_cookie_t cookie)
511 {
512 struct dma_async_tx_descriptor *txd = &desc->async_tx;
513 dma_cookie_t ret = cookie;
514
515 BUG_ON(txd->cookie < 0);
516
517 if (txd->cookie > 0) {
518 ret = txd->cookie;
519
520 /* Run the link descriptor callback function */
521 if (txd->callback) {
522 chan_dbg(chan, "LD %p callback\n", desc);
523 txd->callback(txd->callback_param);
524 }
525 }
526
527 /* Run any dependencies */
528 dma_run_dependencies(txd);
529
530 return ret;
531 }
532
533 /**
534 * fsldma_clean_running_descriptor - move the completed descriptor from
535 * ld_running to ld_completed
536 * @chan: Freescale DMA channel
537 * @desc: the descriptor which is completed
538 *
539 * Free the descriptor directly if acked by async_tx api, or move it to
540 * queue ld_completed.
541 */
542 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
543 struct fsl_desc_sw *desc)
544 {
545 /* Remove from the list of transactions */
546 list_del(&desc->node);
547
548 /*
549 * the client is allowed to attach dependent operations
550 * until 'ack' is set
551 */
552 if (!async_tx_test_ack(&desc->async_tx)) {
553 /*
554 * Move this descriptor to the list of descriptors which is
555 * completed, but still awaiting the 'ack' bit to be set.
556 */
557 list_add_tail(&desc->node, &chan->ld_completed);
558 return;
559 }
560
561 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
562 }
563
564 /**
565 * fsl_chan_xfer_ld_queue - transfer any pending transactions
566 * @chan : Freescale DMA channel
567 *
568 * HARDWARE STATE: idle
569 * LOCKING: must hold chan->desc_lock
570 */
571 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
572 {
573 struct fsl_desc_sw *desc;
574
575 /*
576 * If the list of pending descriptors is empty, then we
577 * don't need to do any work at all
578 */
579 if (list_empty(&chan->ld_pending)) {
580 chan_dbg(chan, "no pending LDs\n");
581 return;
582 }
583
584 /*
585 * The DMA controller is not idle, which means that the interrupt
586 * handler will start any queued transactions when it runs after
587 * this transaction finishes
588 */
589 if (!chan->idle) {
590 chan_dbg(chan, "DMA controller still busy\n");
591 return;
592 }
593
594 /*
595 * If there are some link descriptors which have not been
596 * transferred, we need to start the controller
597 */
598
599 /*
600 * Move all elements from the queue of pending transactions
601 * onto the list of running transactions
602 */
603 chan_dbg(chan, "idle, starting controller\n");
604 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
605 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
606
607 /*
608 * The 85xx DMA controller doesn't clear the channel start bit
609 * automatically at the end of a transfer. Therefore we must clear
610 * it in software before starting the transfer.
611 */
612 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
613 u32 mode;
614
615 mode = get_mr(chan);
616 mode &= ~FSL_DMA_MR_CS;
617 set_mr(chan, mode);
618 }
619
620 /*
621 * Program the descriptor's address into the DMA controller,
622 * then start the DMA transaction
623 */
624 set_cdar(chan, desc->async_tx.phys);
625 get_cdar(chan);
626
627 dma_start(chan);
628 chan->idle = false;
629 }
630
631 /**
632 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
633 * and move them to ld_completed to free until flag 'ack' is set
634 * @chan: Freescale DMA channel
635 *
636 * This function is used on descriptors which have been executed by the DMA
637 * controller. It will run any callbacks, submit any dependencies, then
638 * free these descriptors if flag 'ack' is set.
639 */
640 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
641 {
642 struct fsl_desc_sw *desc, *_desc;
643 dma_cookie_t cookie = 0;
644 dma_addr_t curr_phys = get_cdar(chan);
645 int seen_current = 0;
646
647 fsldma_clean_completed_descriptor(chan);
648
649 /* Run the callback for each descriptor, in order */
650 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
651 /*
652 * do not advance past the current descriptor loaded into the
653 * hardware channel, subsequent descriptors are either in
654 * process or have not been submitted
655 */
656 if (seen_current)
657 break;
658
659 /*
660 * stop the search if we reach the current descriptor and the
661 * channel is busy
662 */
663 if (desc->async_tx.phys == curr_phys) {
664 seen_current = 1;
665 if (!dma_is_idle(chan))
666 break;
667 }
668
669 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
670
671 fsldma_clean_running_descriptor(chan, desc);
672 }
673
674 /*
675 * Start any pending transactions automatically
676 *
677 * In the ideal case, we keep the DMA controller busy while we go
678 * ahead and free the descriptors below.
679 */
680 fsl_chan_xfer_ld_queue(chan);
681
682 if (cookie > 0)
683 chan->common.completed_cookie = cookie;
684 }
685
686 /**
687 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
688 * @chan : Freescale DMA channel
689 *
690 * This function will create a dma pool for descriptor allocation.
691 *
692 * Return - The number of descriptors allocated.
693 */
694 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
695 {
696 struct fsldma_chan *chan = to_fsl_chan(dchan);
697
698 /* Has this channel already been allocated? */
699 if (chan->desc_pool)
700 return 1;
701
702 /*
703 * We need the descriptor to be aligned to 32bytes
704 * for meeting FSL DMA specification requirement.
705 */
706 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
707 sizeof(struct fsl_desc_sw),
708 __alignof__(struct fsl_desc_sw), 0);
709 if (!chan->desc_pool) {
710 chan_err(chan, "unable to allocate descriptor pool\n");
711 return -ENOMEM;
712 }
713
714 /* there is at least one descriptor free to be allocated */
715 return 1;
716 }
717
718 /**
719 * fsldma_free_desc_list - Free all descriptors in a queue
720 * @chan: Freescae DMA channel
721 * @list: the list to free
722 *
723 * LOCKING: must hold chan->desc_lock
724 */
725 static void fsldma_free_desc_list(struct fsldma_chan *chan,
726 struct list_head *list)
727 {
728 struct fsl_desc_sw *desc, *_desc;
729
730 list_for_each_entry_safe(desc, _desc, list, node)
731 fsl_dma_free_descriptor(chan, desc);
732 }
733
734 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
735 struct list_head *list)
736 {
737 struct fsl_desc_sw *desc, *_desc;
738
739 list_for_each_entry_safe_reverse(desc, _desc, list, node)
740 fsl_dma_free_descriptor(chan, desc);
741 }
742
743 /**
744 * fsl_dma_free_chan_resources - Free all resources of the channel.
745 * @chan : Freescale DMA channel
746 */
747 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
748 {
749 struct fsldma_chan *chan = to_fsl_chan(dchan);
750
751 chan_dbg(chan, "free all channel resources\n");
752 spin_lock_bh(&chan->desc_lock);
753 fsldma_cleanup_descriptors(chan);
754 fsldma_free_desc_list(chan, &chan->ld_pending);
755 fsldma_free_desc_list(chan, &chan->ld_running);
756 fsldma_free_desc_list(chan, &chan->ld_completed);
757 spin_unlock_bh(&chan->desc_lock);
758
759 dma_pool_destroy(chan->desc_pool);
760 chan->desc_pool = NULL;
761 }
762
763 static struct dma_async_tx_descriptor *
764 fsl_dma_prep_memcpy(struct dma_chan *dchan,
765 dma_addr_t dma_dst, dma_addr_t dma_src,
766 size_t len, unsigned long flags)
767 {
768 struct fsldma_chan *chan;
769 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
770 size_t copy;
771
772 if (!dchan)
773 return NULL;
774
775 if (!len)
776 return NULL;
777
778 chan = to_fsl_chan(dchan);
779
780 do {
781
782 /* Allocate the link descriptor from DMA pool */
783 new = fsl_dma_alloc_descriptor(chan);
784 if (!new) {
785 chan_err(chan, "%s\n", msg_ld_oom);
786 goto fail;
787 }
788
789 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
790
791 set_desc_cnt(chan, &new->hw, copy);
792 set_desc_src(chan, &new->hw, dma_src);
793 set_desc_dst(chan, &new->hw, dma_dst);
794
795 if (!first)
796 first = new;
797 else
798 set_desc_next(chan, &prev->hw, new->async_tx.phys);
799
800 new->async_tx.cookie = 0;
801 async_tx_ack(&new->async_tx);
802
803 prev = new;
804 len -= copy;
805 dma_src += copy;
806 dma_dst += copy;
807
808 /* Insert the link descriptor to the LD ring */
809 list_add_tail(&new->node, &first->tx_list);
810 } while (len);
811
812 new->async_tx.flags = flags; /* client is in control of this ack */
813 new->async_tx.cookie = -EBUSY;
814
815 /* Set End-of-link to the last link descriptor of new list */
816 set_ld_eol(chan, new);
817
818 return &first->async_tx;
819
820 fail:
821 if (!first)
822 return NULL;
823
824 fsldma_free_desc_list_reverse(chan, &first->tx_list);
825 return NULL;
826 }
827
828 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
829 struct scatterlist *dst_sg, unsigned int dst_nents,
830 struct scatterlist *src_sg, unsigned int src_nents,
831 unsigned long flags)
832 {
833 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
834 struct fsldma_chan *chan = to_fsl_chan(dchan);
835 size_t dst_avail, src_avail;
836 dma_addr_t dst, src;
837 size_t len;
838
839 /* basic sanity checks */
840 if (dst_nents == 0 || src_nents == 0)
841 return NULL;
842
843 if (dst_sg == NULL || src_sg == NULL)
844 return NULL;
845
846 /*
847 * TODO: should we check that both scatterlists have the same
848 * TODO: number of bytes in total? Is that really an error?
849 */
850
851 /* get prepared for the loop */
852 dst_avail = sg_dma_len(dst_sg);
853 src_avail = sg_dma_len(src_sg);
854
855 /* run until we are out of scatterlist entries */
856 while (true) {
857
858 /* create the largest transaction possible */
859 len = min_t(size_t, src_avail, dst_avail);
860 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
861 if (len == 0)
862 goto fetch;
863
864 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
865 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
866
867 /* allocate and populate the descriptor */
868 new = fsl_dma_alloc_descriptor(chan);
869 if (!new) {
870 chan_err(chan, "%s\n", msg_ld_oom);
871 goto fail;
872 }
873
874 set_desc_cnt(chan, &new->hw, len);
875 set_desc_src(chan, &new->hw, src);
876 set_desc_dst(chan, &new->hw, dst);
877
878 if (!first)
879 first = new;
880 else
881 set_desc_next(chan, &prev->hw, new->async_tx.phys);
882
883 new->async_tx.cookie = 0;
884 async_tx_ack(&new->async_tx);
885 prev = new;
886
887 /* Insert the link descriptor to the LD ring */
888 list_add_tail(&new->node, &first->tx_list);
889
890 /* update metadata */
891 dst_avail -= len;
892 src_avail -= len;
893
894 fetch:
895 /* fetch the next dst scatterlist entry */
896 if (dst_avail == 0) {
897
898 /* no more entries: we're done */
899 if (dst_nents == 0)
900 break;
901
902 /* fetch the next entry: if there are no more: done */
903 dst_sg = sg_next(dst_sg);
904 if (dst_sg == NULL)
905 break;
906
907 dst_nents--;
908 dst_avail = sg_dma_len(dst_sg);
909 }
910
911 /* fetch the next src scatterlist entry */
912 if (src_avail == 0) {
913
914 /* no more entries: we're done */
915 if (src_nents == 0)
916 break;
917
918 /* fetch the next entry: if there are no more: done */
919 src_sg = sg_next(src_sg);
920 if (src_sg == NULL)
921 break;
922
923 src_nents--;
924 src_avail = sg_dma_len(src_sg);
925 }
926 }
927
928 new->async_tx.flags = flags; /* client is in control of this ack */
929 new->async_tx.cookie = -EBUSY;
930
931 /* Set End-of-link to the last link descriptor of new list */
932 set_ld_eol(chan, new);
933
934 return &first->async_tx;
935
936 fail:
937 if (!first)
938 return NULL;
939
940 fsldma_free_desc_list_reverse(chan, &first->tx_list);
941 return NULL;
942 }
943
944 /**
945 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
946 * @chan: DMA channel
947 * @sgl: scatterlist to transfer to/from
948 * @sg_len: number of entries in @scatterlist
949 * @direction: DMA direction
950 * @flags: DMAEngine flags
951 * @context: transaction context (ignored)
952 *
953 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
954 * DMA_SLAVE API, this gets the device-specific information from the
955 * chan->private variable.
956 */
957 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
958 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
959 enum dma_transfer_direction direction, unsigned long flags,
960 void *context)
961 {
962 /*
963 * This operation is not supported on the Freescale DMA controller
964 *
965 * However, we need to provide the function pointer to allow the
966 * device_control() method to work.
967 */
968 return NULL;
969 }
970
971 static int fsl_dma_device_control(struct dma_chan *dchan,
972 enum dma_ctrl_cmd cmd, unsigned long arg)
973 {
974 struct dma_slave_config *config;
975 struct fsldma_chan *chan;
976 int size;
977
978 if (!dchan)
979 return -EINVAL;
980
981 chan = to_fsl_chan(dchan);
982
983 switch (cmd) {
984 case DMA_TERMINATE_ALL:
985 spin_lock_bh(&chan->desc_lock);
986
987 /* Halt the DMA engine */
988 dma_halt(chan);
989
990 /* Remove and free all of the descriptors in the LD queue */
991 fsldma_free_desc_list(chan, &chan->ld_pending);
992 fsldma_free_desc_list(chan, &chan->ld_running);
993 fsldma_free_desc_list(chan, &chan->ld_completed);
994 chan->idle = true;
995
996 spin_unlock_bh(&chan->desc_lock);
997 return 0;
998
999 case DMA_SLAVE_CONFIG:
1000 config = (struct dma_slave_config *)arg;
1001
1002 /* make sure the channel supports setting burst size */
1003 if (!chan->set_request_count)
1004 return -ENXIO;
1005
1006 /* we set the controller burst size depending on direction */
1007 if (config->direction == DMA_MEM_TO_DEV)
1008 size = config->dst_addr_width * config->dst_maxburst;
1009 else
1010 size = config->src_addr_width * config->src_maxburst;
1011
1012 chan->set_request_count(chan, size);
1013 return 0;
1014
1015 default:
1016 return -ENXIO;
1017 }
1018
1019 return 0;
1020 }
1021
1022 /**
1023 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
1024 * @chan : Freescale DMA channel
1025 */
1026 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1027 {
1028 struct fsldma_chan *chan = to_fsl_chan(dchan);
1029
1030 spin_lock_bh(&chan->desc_lock);
1031 fsl_chan_xfer_ld_queue(chan);
1032 spin_unlock_bh(&chan->desc_lock);
1033 }
1034
1035 /**
1036 * fsl_tx_status - Determine the DMA status
1037 * @chan : Freescale DMA channel
1038 */
1039 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1040 dma_cookie_t cookie,
1041 struct dma_tx_state *txstate)
1042 {
1043 struct fsldma_chan *chan = to_fsl_chan(dchan);
1044 enum dma_status ret;
1045
1046 ret = dma_cookie_status(dchan, cookie, txstate);
1047 if (ret == DMA_COMPLETE)
1048 return ret;
1049
1050 spin_lock_bh(&chan->desc_lock);
1051 fsldma_cleanup_descriptors(chan);
1052 spin_unlock_bh(&chan->desc_lock);
1053
1054 return dma_cookie_status(dchan, cookie, txstate);
1055 }
1056
1057 /*----------------------------------------------------------------------------*/
1058 /* Interrupt Handling */
1059 /*----------------------------------------------------------------------------*/
1060
1061 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1062 {
1063 struct fsldma_chan *chan = data;
1064 u32 stat;
1065
1066 /* save and clear the status register */
1067 stat = get_sr(chan);
1068 set_sr(chan, stat);
1069 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1070
1071 /* check that this was really our device */
1072 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1073 if (!stat)
1074 return IRQ_NONE;
1075
1076 if (stat & FSL_DMA_SR_TE)
1077 chan_err(chan, "Transfer Error!\n");
1078
1079 /*
1080 * Programming Error
1081 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1082 * trigger a PE interrupt.
1083 */
1084 if (stat & FSL_DMA_SR_PE) {
1085 chan_dbg(chan, "irq: Programming Error INT\n");
1086 stat &= ~FSL_DMA_SR_PE;
1087 if (get_bcr(chan) != 0)
1088 chan_err(chan, "Programming Error!\n");
1089 }
1090
1091 /*
1092 * For MPC8349, EOCDI event need to update cookie
1093 * and start the next transfer if it exist.
1094 */
1095 if (stat & FSL_DMA_SR_EOCDI) {
1096 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1097 stat &= ~FSL_DMA_SR_EOCDI;
1098 }
1099
1100 /*
1101 * If it current transfer is the end-of-transfer,
1102 * we should clear the Channel Start bit for
1103 * prepare next transfer.
1104 */
1105 if (stat & FSL_DMA_SR_EOLNI) {
1106 chan_dbg(chan, "irq: End-of-link INT\n");
1107 stat &= ~FSL_DMA_SR_EOLNI;
1108 }
1109
1110 /* check that the DMA controller is really idle */
1111 if (!dma_is_idle(chan))
1112 chan_err(chan, "irq: controller not idle!\n");
1113
1114 /* check that we handled all of the bits */
1115 if (stat)
1116 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1117
1118 /*
1119 * Schedule the tasklet to handle all cleanup of the current
1120 * transaction. It will start a new transaction if there is
1121 * one pending.
1122 */
1123 tasklet_schedule(&chan->tasklet);
1124 chan_dbg(chan, "irq: Exit\n");
1125 return IRQ_HANDLED;
1126 }
1127
1128 static void dma_do_tasklet(unsigned long data)
1129 {
1130 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1131
1132 chan_dbg(chan, "tasklet entry\n");
1133
1134 spin_lock_bh(&chan->desc_lock);
1135
1136 /* the hardware is now idle and ready for more */
1137 chan->idle = true;
1138
1139 /* Run all cleanup for descriptors which have been completed */
1140 fsldma_cleanup_descriptors(chan);
1141
1142 spin_unlock_bh(&chan->desc_lock);
1143
1144 chan_dbg(chan, "tasklet exit\n");
1145 }
1146
1147 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1148 {
1149 struct fsldma_device *fdev = data;
1150 struct fsldma_chan *chan;
1151 unsigned int handled = 0;
1152 u32 gsr, mask;
1153 int i;
1154
1155 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1156 : in_le32(fdev->regs);
1157 mask = 0xff000000;
1158 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1159
1160 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1161 chan = fdev->chan[i];
1162 if (!chan)
1163 continue;
1164
1165 if (gsr & mask) {
1166 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1167 fsldma_chan_irq(irq, chan);
1168 handled++;
1169 }
1170
1171 gsr &= ~mask;
1172 mask >>= 8;
1173 }
1174
1175 return IRQ_RETVAL(handled);
1176 }
1177
1178 static void fsldma_free_irqs(struct fsldma_device *fdev)
1179 {
1180 struct fsldma_chan *chan;
1181 int i;
1182
1183 if (fdev->irq != NO_IRQ) {
1184 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1185 free_irq(fdev->irq, fdev);
1186 return;
1187 }
1188
1189 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1190 chan = fdev->chan[i];
1191 if (chan && chan->irq != NO_IRQ) {
1192 chan_dbg(chan, "free per-channel IRQ\n");
1193 free_irq(chan->irq, chan);
1194 }
1195 }
1196 }
1197
1198 static int fsldma_request_irqs(struct fsldma_device *fdev)
1199 {
1200 struct fsldma_chan *chan;
1201 int ret;
1202 int i;
1203
1204 /* if we have a per-controller IRQ, use that */
1205 if (fdev->irq != NO_IRQ) {
1206 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1207 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1208 "fsldma-controller", fdev);
1209 return ret;
1210 }
1211
1212 /* no per-controller IRQ, use the per-channel IRQs */
1213 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1214 chan = fdev->chan[i];
1215 if (!chan)
1216 continue;
1217
1218 if (chan->irq == NO_IRQ) {
1219 chan_err(chan, "interrupts property missing in device tree\n");
1220 ret = -ENODEV;
1221 goto out_unwind;
1222 }
1223
1224 chan_dbg(chan, "request per-channel IRQ\n");
1225 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1226 "fsldma-chan", chan);
1227 if (ret) {
1228 chan_err(chan, "unable to request per-channel IRQ\n");
1229 goto out_unwind;
1230 }
1231 }
1232
1233 return 0;
1234
1235 out_unwind:
1236 for (/* none */; i >= 0; i--) {
1237 chan = fdev->chan[i];
1238 if (!chan)
1239 continue;
1240
1241 if (chan->irq == NO_IRQ)
1242 continue;
1243
1244 free_irq(chan->irq, chan);
1245 }
1246
1247 return ret;
1248 }
1249
1250 /*----------------------------------------------------------------------------*/
1251 /* OpenFirmware Subsystem */
1252 /*----------------------------------------------------------------------------*/
1253
1254 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1255 struct device_node *node, u32 feature, const char *compatible)
1256 {
1257 struct fsldma_chan *chan;
1258 struct resource res;
1259 int err;
1260
1261 /* alloc channel */
1262 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1263 if (!chan) {
1264 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1265 err = -ENOMEM;
1266 goto out_return;
1267 }
1268
1269 /* ioremap registers for use */
1270 chan->regs = of_iomap(node, 0);
1271 if (!chan->regs) {
1272 dev_err(fdev->dev, "unable to ioremap registers\n");
1273 err = -ENOMEM;
1274 goto out_free_chan;
1275 }
1276
1277 err = of_address_to_resource(node, 0, &res);
1278 if (err) {
1279 dev_err(fdev->dev, "unable to find 'reg' property\n");
1280 goto out_iounmap_regs;
1281 }
1282
1283 chan->feature = feature;
1284 if (!fdev->feature)
1285 fdev->feature = chan->feature;
1286
1287 /*
1288 * If the DMA device's feature is different than the feature
1289 * of its channels, report the bug
1290 */
1291 WARN_ON(fdev->feature != chan->feature);
1292
1293 chan->dev = fdev->dev;
1294 chan->id = (res.start & 0xfff) < 0x300 ?
1295 ((res.start - 0x100) & 0xfff) >> 7 :
1296 ((res.start - 0x200) & 0xfff) >> 7;
1297 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1298 dev_err(fdev->dev, "too many channels for device\n");
1299 err = -EINVAL;
1300 goto out_iounmap_regs;
1301 }
1302
1303 fdev->chan[chan->id] = chan;
1304 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1305 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1306
1307 /* Initialize the channel */
1308 dma_init(chan);
1309
1310 /* Clear cdar registers */
1311 set_cdar(chan, 0);
1312
1313 switch (chan->feature & FSL_DMA_IP_MASK) {
1314 case FSL_DMA_IP_85XX:
1315 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1316 case FSL_DMA_IP_83XX:
1317 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1318 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1319 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1320 chan->set_request_count = fsl_chan_set_request_count;
1321 }
1322
1323 spin_lock_init(&chan->desc_lock);
1324 INIT_LIST_HEAD(&chan->ld_pending);
1325 INIT_LIST_HEAD(&chan->ld_running);
1326 INIT_LIST_HEAD(&chan->ld_completed);
1327 chan->idle = true;
1328 #ifdef CONFIG_PM
1329 chan->pm_state = RUNNING;
1330 #endif
1331
1332 chan->common.device = &fdev->common;
1333 dma_cookie_init(&chan->common);
1334
1335 /* find the IRQ line, if it exists in the device tree */
1336 chan->irq = irq_of_parse_and_map(node, 0);
1337
1338 /* Add the channel to DMA device channel list */
1339 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1340
1341 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1342 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1343
1344 return 0;
1345
1346 out_iounmap_regs:
1347 iounmap(chan->regs);
1348 out_free_chan:
1349 kfree(chan);
1350 out_return:
1351 return err;
1352 }
1353
1354 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1355 {
1356 irq_dispose_mapping(chan->irq);
1357 list_del(&chan->common.device_node);
1358 iounmap(chan->regs);
1359 kfree(chan);
1360 }
1361
1362 static int fsldma_of_probe(struct platform_device *op)
1363 {
1364 struct fsldma_device *fdev;
1365 struct device_node *child;
1366 int err;
1367
1368 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1369 if (!fdev) {
1370 dev_err(&op->dev, "No enough memory for 'priv'\n");
1371 err = -ENOMEM;
1372 goto out_return;
1373 }
1374
1375 fdev->dev = &op->dev;
1376 INIT_LIST_HEAD(&fdev->common.channels);
1377
1378 /* ioremap the registers for use */
1379 fdev->regs = of_iomap(op->dev.of_node, 0);
1380 if (!fdev->regs) {
1381 dev_err(&op->dev, "unable to ioremap registers\n");
1382 err = -ENOMEM;
1383 goto out_free_fdev;
1384 }
1385
1386 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1387 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1388
1389 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1390 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1391 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1392 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1393 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1394 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1395 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1396 fdev->common.device_tx_status = fsl_tx_status;
1397 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1398 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1399 fdev->common.device_control = fsl_dma_device_control;
1400 fdev->common.dev = &op->dev;
1401
1402 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1403
1404 platform_set_drvdata(op, fdev);
1405
1406 /*
1407 * We cannot use of_platform_bus_probe() because there is no
1408 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1409 * channel object.
1410 */
1411 for_each_child_of_node(op->dev.of_node, child) {
1412 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1413 fsl_dma_chan_probe(fdev, child,
1414 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1415 "fsl,eloplus-dma-channel");
1416 }
1417
1418 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1419 fsl_dma_chan_probe(fdev, child,
1420 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1421 "fsl,elo-dma-channel");
1422 }
1423 }
1424
1425 /*
1426 * Hookup the IRQ handler(s)
1427 *
1428 * If we have a per-controller interrupt, we prefer that to the
1429 * per-channel interrupts to reduce the number of shared interrupt
1430 * handlers on the same IRQ line
1431 */
1432 err = fsldma_request_irqs(fdev);
1433 if (err) {
1434 dev_err(fdev->dev, "unable to request IRQs\n");
1435 goto out_free_fdev;
1436 }
1437
1438 dma_async_device_register(&fdev->common);
1439 return 0;
1440
1441 out_free_fdev:
1442 irq_dispose_mapping(fdev->irq);
1443 kfree(fdev);
1444 out_return:
1445 return err;
1446 }
1447
1448 static int fsldma_of_remove(struct platform_device *op)
1449 {
1450 struct fsldma_device *fdev;
1451 unsigned int i;
1452
1453 fdev = platform_get_drvdata(op);
1454 dma_async_device_unregister(&fdev->common);
1455
1456 fsldma_free_irqs(fdev);
1457
1458 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1459 if (fdev->chan[i])
1460 fsl_dma_chan_remove(fdev->chan[i]);
1461 }
1462
1463 iounmap(fdev->regs);
1464 kfree(fdev);
1465
1466 return 0;
1467 }
1468
1469 #ifdef CONFIG_PM
1470 static int fsldma_suspend_late(struct device *dev)
1471 {
1472 struct platform_device *pdev = to_platform_device(dev);
1473 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1474 struct fsldma_chan *chan;
1475 int i;
1476
1477 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1478 chan = fdev->chan[i];
1479 if (!chan)
1480 continue;
1481
1482 spin_lock_bh(&chan->desc_lock);
1483 if (unlikely(!chan->idle))
1484 goto out;
1485 chan->regs_save.mr = get_mr(chan);
1486 chan->pm_state = SUSPENDED;
1487 spin_unlock_bh(&chan->desc_lock);
1488 }
1489 return 0;
1490
1491 out:
1492 for (; i >= 0; i--) {
1493 chan = fdev->chan[i];
1494 if (!chan)
1495 continue;
1496 chan->pm_state = RUNNING;
1497 spin_unlock_bh(&chan->desc_lock);
1498 }
1499 return -EBUSY;
1500 }
1501
1502 static int fsldma_resume_early(struct device *dev)
1503 {
1504 struct platform_device *pdev = to_platform_device(dev);
1505 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1506 struct fsldma_chan *chan;
1507 u32 mode;
1508 int i;
1509
1510 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1511 chan = fdev->chan[i];
1512 if (!chan)
1513 continue;
1514
1515 spin_lock_bh(&chan->desc_lock);
1516 mode = chan->regs_save.mr
1517 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1518 set_mr(chan, mode);
1519 chan->pm_state = RUNNING;
1520 spin_unlock_bh(&chan->desc_lock);
1521 }
1522
1523 return 0;
1524 }
1525
1526 static const struct dev_pm_ops fsldma_pm_ops = {
1527 .suspend_late = fsldma_suspend_late,
1528 .resume_early = fsldma_resume_early,
1529 };
1530 #endif
1531
1532 static const struct of_device_id fsldma_of_ids[] = {
1533 { .compatible = "fsl,elo3-dma", },
1534 { .compatible = "fsl,eloplus-dma", },
1535 { .compatible = "fsl,elo-dma", },
1536 {}
1537 };
1538
1539 static struct platform_driver fsldma_of_driver = {
1540 .driver = {
1541 .name = "fsl-elo-dma",
1542 .owner = THIS_MODULE,
1543 .of_match_table = fsldma_of_ids,
1544 #ifdef CONFIG_PM
1545 .pm = &fsldma_pm_ops,
1546 #endif
1547 },
1548 .probe = fsldma_of_probe,
1549 .remove = fsldma_of_remove,
1550 };
1551
1552 /*----------------------------------------------------------------------------*/
1553 /* Module Init / Exit */
1554 /*----------------------------------------------------------------------------*/
1555
1556 static __init int fsldma_init(void)
1557 {
1558 pr_info("Freescale Elo series DMA driver\n");
1559 return platform_driver_register(&fsldma_of_driver);
1560 }
1561
1562 static void __exit fsldma_exit(void)
1563 {
1564 platform_driver_unregister(&fsldma_of_driver);
1565 }
1566
1567 subsys_initcall(fsldma_init);
1568 module_exit(fsldma_exit);
1569
1570 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1571 MODULE_LICENSE("GPL");