]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/dma/fsldma.c
dmaengine: dw: introduce dw_dma_on() helper
[mirror_ubuntu-zesty-kernel.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51 * Register Helpers
52 */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_mr(struct fsldma_chan *chan, u32 val)
65 {
66 DMA_OUT(chan, &chan->regs->mr, val, 32);
67 }
68
69 static u32 get_mr(struct fsldma_chan *chan)
70 {
71 return DMA_IN(chan, &chan->regs->mr, 32);
72 }
73
74 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
75 {
76 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
77 }
78
79 static dma_addr_t get_cdar(struct fsldma_chan *chan)
80 {
81 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
82 }
83
84 static void set_bcr(struct fsldma_chan *chan, u32 val)
85 {
86 DMA_OUT(chan, &chan->regs->bcr, val, 32);
87 }
88
89 static u32 get_bcr(struct fsldma_chan *chan)
90 {
91 return DMA_IN(chan, &chan->regs->bcr, 32);
92 }
93
94 /*
95 * Descriptor Helpers
96 */
97
98 static void set_desc_cnt(struct fsldma_chan *chan,
99 struct fsl_dma_ld_hw *hw, u32 count)
100 {
101 hw->count = CPU_TO_DMA(chan, count, 32);
102 }
103
104 static void set_desc_src(struct fsldma_chan *chan,
105 struct fsl_dma_ld_hw *hw, dma_addr_t src)
106 {
107 u64 snoop_bits;
108
109 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
110 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
111 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
112 }
113
114 static void set_desc_dst(struct fsldma_chan *chan,
115 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
116 {
117 u64 snoop_bits;
118
119 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
120 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
121 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
122 }
123
124 static void set_desc_next(struct fsldma_chan *chan,
125 struct fsl_dma_ld_hw *hw, dma_addr_t next)
126 {
127 u64 snoop_bits;
128
129 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
130 ? FSL_DMA_SNEN : 0;
131 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
132 }
133
134 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
135 {
136 u64 snoop_bits;
137
138 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
139 ? FSL_DMA_SNEN : 0;
140
141 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
142 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
143 | snoop_bits, 64);
144 }
145
146 /*
147 * DMA Engine Hardware Control Helpers
148 */
149
150 static void dma_init(struct fsldma_chan *chan)
151 {
152 /* Reset the channel */
153 set_mr(chan, 0);
154
155 switch (chan->feature & FSL_DMA_IP_MASK) {
156 case FSL_DMA_IP_85XX:
157 /* Set the channel to below modes:
158 * EIE - Error interrupt enable
159 * EOLNIE - End of links interrupt enable
160 * BWC - Bandwidth sharing among channels
161 */
162 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
163 | FSL_DMA_MR_EOLNIE);
164 break;
165 case FSL_DMA_IP_83XX:
166 /* Set the channel to below modes:
167 * EOTIE - End-of-transfer interrupt enable
168 * PRC_RM - PCI read multiple
169 */
170 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
171 break;
172 }
173 }
174
175 static int dma_is_idle(struct fsldma_chan *chan)
176 {
177 u32 sr = get_sr(chan);
178 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
179 }
180
181 /*
182 * Start the DMA controller
183 *
184 * Preconditions:
185 * - the CDAR register must point to the start descriptor
186 * - the MRn[CS] bit must be cleared
187 */
188 static void dma_start(struct fsldma_chan *chan)
189 {
190 u32 mode;
191
192 mode = get_mr(chan);
193
194 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
195 set_bcr(chan, 0);
196 mode |= FSL_DMA_MR_EMP_EN;
197 } else {
198 mode &= ~FSL_DMA_MR_EMP_EN;
199 }
200
201 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
202 mode |= FSL_DMA_MR_EMS_EN;
203 } else {
204 mode &= ~FSL_DMA_MR_EMS_EN;
205 mode |= FSL_DMA_MR_CS;
206 }
207
208 set_mr(chan, mode);
209 }
210
211 static void dma_halt(struct fsldma_chan *chan)
212 {
213 u32 mode;
214 int i;
215
216 /* read the mode register */
217 mode = get_mr(chan);
218
219 /*
220 * The 85xx controller supports channel abort, which will stop
221 * the current transfer. On 83xx, this bit is the transfer error
222 * mask bit, which should not be changed.
223 */
224 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
225 mode |= FSL_DMA_MR_CA;
226 set_mr(chan, mode);
227
228 mode &= ~FSL_DMA_MR_CA;
229 }
230
231 /* stop the DMA controller */
232 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
233 set_mr(chan, mode);
234
235 /* wait for the DMA controller to become idle */
236 for (i = 0; i < 100; i++) {
237 if (dma_is_idle(chan))
238 return;
239
240 udelay(10);
241 }
242
243 if (!dma_is_idle(chan))
244 chan_err(chan, "DMA halt timeout!\n");
245 }
246
247 /**
248 * fsl_chan_set_src_loop_size - Set source address hold transfer size
249 * @chan : Freescale DMA channel
250 * @size : Address loop size, 0 for disable loop
251 *
252 * The set source address hold transfer size. The source
253 * address hold or loop transfer size is when the DMA transfer
254 * data from source address (SA), if the loop size is 4, the DMA will
255 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
256 * SA + 1 ... and so on.
257 */
258 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
259 {
260 u32 mode;
261
262 mode = get_mr(chan);
263
264 switch (size) {
265 case 0:
266 mode &= ~FSL_DMA_MR_SAHE;
267 break;
268 case 1:
269 case 2:
270 case 4:
271 case 8:
272 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
273 break;
274 }
275
276 set_mr(chan, mode);
277 }
278
279 /**
280 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
281 * @chan : Freescale DMA channel
282 * @size : Address loop size, 0 for disable loop
283 *
284 * The set destination address hold transfer size. The destination
285 * address hold or loop transfer size is when the DMA transfer
286 * data to destination address (TA), if the loop size is 4, the DMA will
287 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
288 * TA + 1 ... and so on.
289 */
290 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
291 {
292 u32 mode;
293
294 mode = get_mr(chan);
295
296 switch (size) {
297 case 0:
298 mode &= ~FSL_DMA_MR_DAHE;
299 break;
300 case 1:
301 case 2:
302 case 4:
303 case 8:
304 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
305 break;
306 }
307
308 set_mr(chan, mode);
309 }
310
311 /**
312 * fsl_chan_set_request_count - Set DMA Request Count for external control
313 * @chan : Freescale DMA channel
314 * @size : Number of bytes to transfer in a single request
315 *
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA request count is how many bytes are allowed to transfer before
318 * pausing the channel, after which a new assertion of DREQ# resumes channel
319 * operation.
320 *
321 * A size of 0 disables external pause control. The maximum size is 1024.
322 */
323 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
324 {
325 u32 mode;
326
327 BUG_ON(size > 1024);
328
329 mode = get_mr(chan);
330 mode |= (__ilog2(size) << 24) & 0x0f000000;
331
332 set_mr(chan, mode);
333 }
334
335 /**
336 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
337 * @chan : Freescale DMA channel
338 * @enable : 0 is disabled, 1 is enabled.
339 *
340 * The Freescale DMA channel can be controlled by the external signal DREQ#.
341 * The DMA Request Count feature should be used in addition to this feature
342 * to set the number of bytes to transfer before pausing the channel.
343 */
344 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
345 {
346 if (enable)
347 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
348 else
349 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
350 }
351
352 /**
353 * fsl_chan_toggle_ext_start - Toggle channel external start status
354 * @chan : Freescale DMA channel
355 * @enable : 0 is disabled, 1 is enabled.
356 *
357 * If enable the external start, the channel can be started by an
358 * external DMA start pin. So the dma_start() does not start the
359 * transfer immediately. The DMA channel will wait for the
360 * control pin asserted.
361 */
362 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
363 {
364 if (enable)
365 chan->feature |= FSL_DMA_CHAN_START_EXT;
366 else
367 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
368 }
369
370 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
371 {
372 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
373
374 if (list_empty(&chan->ld_pending))
375 goto out_splice;
376
377 /*
378 * Add the hardware descriptor to the chain of hardware descriptors
379 * that already exists in memory.
380 *
381 * This will un-set the EOL bit of the existing transaction, and the
382 * last link in this transaction will become the EOL descriptor.
383 */
384 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
385
386 /*
387 * Add the software descriptor and all children to the list
388 * of pending transactions
389 */
390 out_splice:
391 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
392 }
393
394 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
395 {
396 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
397 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
398 struct fsl_desc_sw *child;
399 dma_cookie_t cookie = -EINVAL;
400
401 spin_lock_bh(&chan->desc_lock);
402
403 #ifdef CONFIG_PM
404 if (unlikely(chan->pm_state != RUNNING)) {
405 chan_dbg(chan, "cannot submit due to suspend\n");
406 spin_unlock_bh(&chan->desc_lock);
407 return -1;
408 }
409 #endif
410
411 /*
412 * assign cookies to all of the software descriptors
413 * that make up this transaction
414 */
415 list_for_each_entry(child, &desc->tx_list, node) {
416 cookie = dma_cookie_assign(&child->async_tx);
417 }
418
419 /* put this transaction onto the tail of the pending queue */
420 append_ld_queue(chan, desc);
421
422 spin_unlock_bh(&chan->desc_lock);
423
424 return cookie;
425 }
426
427 /**
428 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
429 * @chan : Freescale DMA channel
430 * @desc: descriptor to be freed
431 */
432 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
433 struct fsl_desc_sw *desc)
434 {
435 list_del(&desc->node);
436 chan_dbg(chan, "LD %p free\n", desc);
437 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
438 }
439
440 /**
441 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
442 * @chan : Freescale DMA channel
443 *
444 * Return - The descriptor allocated. NULL for failed.
445 */
446 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
447 {
448 struct fsl_desc_sw *desc;
449 dma_addr_t pdesc;
450
451 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
452 if (!desc) {
453 chan_dbg(chan, "out of memory for link descriptor\n");
454 return NULL;
455 }
456
457 memset(desc, 0, sizeof(*desc));
458 INIT_LIST_HEAD(&desc->tx_list);
459 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
460 desc->async_tx.tx_submit = fsl_dma_tx_submit;
461 desc->async_tx.phys = pdesc;
462
463 chan_dbg(chan, "LD %p allocated\n", desc);
464
465 return desc;
466 }
467
468 /**
469 * fsldma_clean_completed_descriptor - free all descriptors which
470 * has been completed and acked
471 * @chan: Freescale DMA channel
472 *
473 * This function is used on all completed and acked descriptors.
474 * All descriptors should only be freed in this function.
475 */
476 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
477 {
478 struct fsl_desc_sw *desc, *_desc;
479
480 /* Run the callback for each descriptor, in order */
481 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
482 if (async_tx_test_ack(&desc->async_tx))
483 fsl_dma_free_descriptor(chan, desc);
484 }
485
486 /**
487 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
488 * @chan: Freescale DMA channel
489 * @desc: descriptor to cleanup and free
490 * @cookie: Freescale DMA transaction identifier
491 *
492 * This function is used on a descriptor which has been executed by the DMA
493 * controller. It will run any callbacks, submit any dependencies.
494 */
495 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
496 struct fsl_desc_sw *desc, dma_cookie_t cookie)
497 {
498 struct dma_async_tx_descriptor *txd = &desc->async_tx;
499 dma_cookie_t ret = cookie;
500
501 BUG_ON(txd->cookie < 0);
502
503 if (txd->cookie > 0) {
504 ret = txd->cookie;
505
506 /* Run the link descriptor callback function */
507 if (txd->callback) {
508 chan_dbg(chan, "LD %p callback\n", desc);
509 txd->callback(txd->callback_param);
510 }
511 }
512
513 /* Run any dependencies */
514 dma_run_dependencies(txd);
515
516 return ret;
517 }
518
519 /**
520 * fsldma_clean_running_descriptor - move the completed descriptor from
521 * ld_running to ld_completed
522 * @chan: Freescale DMA channel
523 * @desc: the descriptor which is completed
524 *
525 * Free the descriptor directly if acked by async_tx api, or move it to
526 * queue ld_completed.
527 */
528 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
529 struct fsl_desc_sw *desc)
530 {
531 /* Remove from the list of transactions */
532 list_del(&desc->node);
533
534 /*
535 * the client is allowed to attach dependent operations
536 * until 'ack' is set
537 */
538 if (!async_tx_test_ack(&desc->async_tx)) {
539 /*
540 * Move this descriptor to the list of descriptors which is
541 * completed, but still awaiting the 'ack' bit to be set.
542 */
543 list_add_tail(&desc->node, &chan->ld_completed);
544 return;
545 }
546
547 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
548 }
549
550 /**
551 * fsl_chan_xfer_ld_queue - transfer any pending transactions
552 * @chan : Freescale DMA channel
553 *
554 * HARDWARE STATE: idle
555 * LOCKING: must hold chan->desc_lock
556 */
557 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
558 {
559 struct fsl_desc_sw *desc;
560
561 /*
562 * If the list of pending descriptors is empty, then we
563 * don't need to do any work at all
564 */
565 if (list_empty(&chan->ld_pending)) {
566 chan_dbg(chan, "no pending LDs\n");
567 return;
568 }
569
570 /*
571 * The DMA controller is not idle, which means that the interrupt
572 * handler will start any queued transactions when it runs after
573 * this transaction finishes
574 */
575 if (!chan->idle) {
576 chan_dbg(chan, "DMA controller still busy\n");
577 return;
578 }
579
580 /*
581 * If there are some link descriptors which have not been
582 * transferred, we need to start the controller
583 */
584
585 /*
586 * Move all elements from the queue of pending transactions
587 * onto the list of running transactions
588 */
589 chan_dbg(chan, "idle, starting controller\n");
590 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
591 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
592
593 /*
594 * The 85xx DMA controller doesn't clear the channel start bit
595 * automatically at the end of a transfer. Therefore we must clear
596 * it in software before starting the transfer.
597 */
598 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
599 u32 mode;
600
601 mode = get_mr(chan);
602 mode &= ~FSL_DMA_MR_CS;
603 set_mr(chan, mode);
604 }
605
606 /*
607 * Program the descriptor's address into the DMA controller,
608 * then start the DMA transaction
609 */
610 set_cdar(chan, desc->async_tx.phys);
611 get_cdar(chan);
612
613 dma_start(chan);
614 chan->idle = false;
615 }
616
617 /**
618 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
619 * and move them to ld_completed to free until flag 'ack' is set
620 * @chan: Freescale DMA channel
621 *
622 * This function is used on descriptors which have been executed by the DMA
623 * controller. It will run any callbacks, submit any dependencies, then
624 * free these descriptors if flag 'ack' is set.
625 */
626 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
627 {
628 struct fsl_desc_sw *desc, *_desc;
629 dma_cookie_t cookie = 0;
630 dma_addr_t curr_phys = get_cdar(chan);
631 int seen_current = 0;
632
633 fsldma_clean_completed_descriptor(chan);
634
635 /* Run the callback for each descriptor, in order */
636 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
637 /*
638 * do not advance past the current descriptor loaded into the
639 * hardware channel, subsequent descriptors are either in
640 * process or have not been submitted
641 */
642 if (seen_current)
643 break;
644
645 /*
646 * stop the search if we reach the current descriptor and the
647 * channel is busy
648 */
649 if (desc->async_tx.phys == curr_phys) {
650 seen_current = 1;
651 if (!dma_is_idle(chan))
652 break;
653 }
654
655 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
656
657 fsldma_clean_running_descriptor(chan, desc);
658 }
659
660 /*
661 * Start any pending transactions automatically
662 *
663 * In the ideal case, we keep the DMA controller busy while we go
664 * ahead and free the descriptors below.
665 */
666 fsl_chan_xfer_ld_queue(chan);
667
668 if (cookie > 0)
669 chan->common.completed_cookie = cookie;
670 }
671
672 /**
673 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
674 * @chan : Freescale DMA channel
675 *
676 * This function will create a dma pool for descriptor allocation.
677 *
678 * Return - The number of descriptors allocated.
679 */
680 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
681 {
682 struct fsldma_chan *chan = to_fsl_chan(dchan);
683
684 /* Has this channel already been allocated? */
685 if (chan->desc_pool)
686 return 1;
687
688 /*
689 * We need the descriptor to be aligned to 32bytes
690 * for meeting FSL DMA specification requirement.
691 */
692 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
693 sizeof(struct fsl_desc_sw),
694 __alignof__(struct fsl_desc_sw), 0);
695 if (!chan->desc_pool) {
696 chan_err(chan, "unable to allocate descriptor pool\n");
697 return -ENOMEM;
698 }
699
700 /* there is at least one descriptor free to be allocated */
701 return 1;
702 }
703
704 /**
705 * fsldma_free_desc_list - Free all descriptors in a queue
706 * @chan: Freescae DMA channel
707 * @list: the list to free
708 *
709 * LOCKING: must hold chan->desc_lock
710 */
711 static void fsldma_free_desc_list(struct fsldma_chan *chan,
712 struct list_head *list)
713 {
714 struct fsl_desc_sw *desc, *_desc;
715
716 list_for_each_entry_safe(desc, _desc, list, node)
717 fsl_dma_free_descriptor(chan, desc);
718 }
719
720 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
721 struct list_head *list)
722 {
723 struct fsl_desc_sw *desc, *_desc;
724
725 list_for_each_entry_safe_reverse(desc, _desc, list, node)
726 fsl_dma_free_descriptor(chan, desc);
727 }
728
729 /**
730 * fsl_dma_free_chan_resources - Free all resources of the channel.
731 * @chan : Freescale DMA channel
732 */
733 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
734 {
735 struct fsldma_chan *chan = to_fsl_chan(dchan);
736
737 chan_dbg(chan, "free all channel resources\n");
738 spin_lock_bh(&chan->desc_lock);
739 fsldma_cleanup_descriptors(chan);
740 fsldma_free_desc_list(chan, &chan->ld_pending);
741 fsldma_free_desc_list(chan, &chan->ld_running);
742 fsldma_free_desc_list(chan, &chan->ld_completed);
743 spin_unlock_bh(&chan->desc_lock);
744
745 dma_pool_destroy(chan->desc_pool);
746 chan->desc_pool = NULL;
747 }
748
749 static struct dma_async_tx_descriptor *
750 fsl_dma_prep_memcpy(struct dma_chan *dchan,
751 dma_addr_t dma_dst, dma_addr_t dma_src,
752 size_t len, unsigned long flags)
753 {
754 struct fsldma_chan *chan;
755 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
756 size_t copy;
757
758 if (!dchan)
759 return NULL;
760
761 if (!len)
762 return NULL;
763
764 chan = to_fsl_chan(dchan);
765
766 do {
767
768 /* Allocate the link descriptor from DMA pool */
769 new = fsl_dma_alloc_descriptor(chan);
770 if (!new) {
771 chan_err(chan, "%s\n", msg_ld_oom);
772 goto fail;
773 }
774
775 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
776
777 set_desc_cnt(chan, &new->hw, copy);
778 set_desc_src(chan, &new->hw, dma_src);
779 set_desc_dst(chan, &new->hw, dma_dst);
780
781 if (!first)
782 first = new;
783 else
784 set_desc_next(chan, &prev->hw, new->async_tx.phys);
785
786 new->async_tx.cookie = 0;
787 async_tx_ack(&new->async_tx);
788
789 prev = new;
790 len -= copy;
791 dma_src += copy;
792 dma_dst += copy;
793
794 /* Insert the link descriptor to the LD ring */
795 list_add_tail(&new->node, &first->tx_list);
796 } while (len);
797
798 new->async_tx.flags = flags; /* client is in control of this ack */
799 new->async_tx.cookie = -EBUSY;
800
801 /* Set End-of-link to the last link descriptor of new list */
802 set_ld_eol(chan, new);
803
804 return &first->async_tx;
805
806 fail:
807 if (!first)
808 return NULL;
809
810 fsldma_free_desc_list_reverse(chan, &first->tx_list);
811 return NULL;
812 }
813
814 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
815 struct scatterlist *dst_sg, unsigned int dst_nents,
816 struct scatterlist *src_sg, unsigned int src_nents,
817 unsigned long flags)
818 {
819 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
820 struct fsldma_chan *chan = to_fsl_chan(dchan);
821 size_t dst_avail, src_avail;
822 dma_addr_t dst, src;
823 size_t len;
824
825 /* basic sanity checks */
826 if (dst_nents == 0 || src_nents == 0)
827 return NULL;
828
829 if (dst_sg == NULL || src_sg == NULL)
830 return NULL;
831
832 /*
833 * TODO: should we check that both scatterlists have the same
834 * TODO: number of bytes in total? Is that really an error?
835 */
836
837 /* get prepared for the loop */
838 dst_avail = sg_dma_len(dst_sg);
839 src_avail = sg_dma_len(src_sg);
840
841 /* run until we are out of scatterlist entries */
842 while (true) {
843
844 /* create the largest transaction possible */
845 len = min_t(size_t, src_avail, dst_avail);
846 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
847 if (len == 0)
848 goto fetch;
849
850 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
851 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
852
853 /* allocate and populate the descriptor */
854 new = fsl_dma_alloc_descriptor(chan);
855 if (!new) {
856 chan_err(chan, "%s\n", msg_ld_oom);
857 goto fail;
858 }
859
860 set_desc_cnt(chan, &new->hw, len);
861 set_desc_src(chan, &new->hw, src);
862 set_desc_dst(chan, &new->hw, dst);
863
864 if (!first)
865 first = new;
866 else
867 set_desc_next(chan, &prev->hw, new->async_tx.phys);
868
869 new->async_tx.cookie = 0;
870 async_tx_ack(&new->async_tx);
871 prev = new;
872
873 /* Insert the link descriptor to the LD ring */
874 list_add_tail(&new->node, &first->tx_list);
875
876 /* update metadata */
877 dst_avail -= len;
878 src_avail -= len;
879
880 fetch:
881 /* fetch the next dst scatterlist entry */
882 if (dst_avail == 0) {
883
884 /* no more entries: we're done */
885 if (dst_nents == 0)
886 break;
887
888 /* fetch the next entry: if there are no more: done */
889 dst_sg = sg_next(dst_sg);
890 if (dst_sg == NULL)
891 break;
892
893 dst_nents--;
894 dst_avail = sg_dma_len(dst_sg);
895 }
896
897 /* fetch the next src scatterlist entry */
898 if (src_avail == 0) {
899
900 /* no more entries: we're done */
901 if (src_nents == 0)
902 break;
903
904 /* fetch the next entry: if there are no more: done */
905 src_sg = sg_next(src_sg);
906 if (src_sg == NULL)
907 break;
908
909 src_nents--;
910 src_avail = sg_dma_len(src_sg);
911 }
912 }
913
914 new->async_tx.flags = flags; /* client is in control of this ack */
915 new->async_tx.cookie = -EBUSY;
916
917 /* Set End-of-link to the last link descriptor of new list */
918 set_ld_eol(chan, new);
919
920 return &first->async_tx;
921
922 fail:
923 if (!first)
924 return NULL;
925
926 fsldma_free_desc_list_reverse(chan, &first->tx_list);
927 return NULL;
928 }
929
930 /**
931 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
932 * @chan: DMA channel
933 * @sgl: scatterlist to transfer to/from
934 * @sg_len: number of entries in @scatterlist
935 * @direction: DMA direction
936 * @flags: DMAEngine flags
937 * @context: transaction context (ignored)
938 *
939 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
940 * DMA_SLAVE API, this gets the device-specific information from the
941 * chan->private variable.
942 */
943 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
944 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
945 enum dma_transfer_direction direction, unsigned long flags,
946 void *context)
947 {
948 /*
949 * This operation is not supported on the Freescale DMA controller
950 *
951 * However, we need to provide the function pointer to allow the
952 * device_control() method to work.
953 */
954 return NULL;
955 }
956
957 static int fsl_dma_device_control(struct dma_chan *dchan,
958 enum dma_ctrl_cmd cmd, unsigned long arg)
959 {
960 struct dma_slave_config *config;
961 struct fsldma_chan *chan;
962 int size;
963
964 if (!dchan)
965 return -EINVAL;
966
967 chan = to_fsl_chan(dchan);
968
969 switch (cmd) {
970 case DMA_TERMINATE_ALL:
971 spin_lock_bh(&chan->desc_lock);
972
973 /* Halt the DMA engine */
974 dma_halt(chan);
975
976 /* Remove and free all of the descriptors in the LD queue */
977 fsldma_free_desc_list(chan, &chan->ld_pending);
978 fsldma_free_desc_list(chan, &chan->ld_running);
979 fsldma_free_desc_list(chan, &chan->ld_completed);
980 chan->idle = true;
981
982 spin_unlock_bh(&chan->desc_lock);
983 return 0;
984
985 case DMA_SLAVE_CONFIG:
986 config = (struct dma_slave_config *)arg;
987
988 /* make sure the channel supports setting burst size */
989 if (!chan->set_request_count)
990 return -ENXIO;
991
992 /* we set the controller burst size depending on direction */
993 if (config->direction == DMA_MEM_TO_DEV)
994 size = config->dst_addr_width * config->dst_maxburst;
995 else
996 size = config->src_addr_width * config->src_maxburst;
997
998 chan->set_request_count(chan, size);
999 return 0;
1000
1001 case FSLDMA_EXTERNAL_START:
1002
1003 /* make sure the channel supports external start */
1004 if (!chan->toggle_ext_start)
1005 return -ENXIO;
1006
1007 chan->toggle_ext_start(chan, arg);
1008 return 0;
1009
1010 default:
1011 return -ENXIO;
1012 }
1013
1014 return 0;
1015 }
1016
1017 /**
1018 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
1019 * @chan : Freescale DMA channel
1020 */
1021 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
1022 {
1023 struct fsldma_chan *chan = to_fsl_chan(dchan);
1024
1025 spin_lock_bh(&chan->desc_lock);
1026 fsl_chan_xfer_ld_queue(chan);
1027 spin_unlock_bh(&chan->desc_lock);
1028 }
1029
1030 /**
1031 * fsl_tx_status - Determine the DMA status
1032 * @chan : Freescale DMA channel
1033 */
1034 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
1035 dma_cookie_t cookie,
1036 struct dma_tx_state *txstate)
1037 {
1038 struct fsldma_chan *chan = to_fsl_chan(dchan);
1039 enum dma_status ret;
1040
1041 ret = dma_cookie_status(dchan, cookie, txstate);
1042 if (ret == DMA_COMPLETE)
1043 return ret;
1044
1045 spin_lock_bh(&chan->desc_lock);
1046 fsldma_cleanup_descriptors(chan);
1047 spin_unlock_bh(&chan->desc_lock);
1048
1049 return dma_cookie_status(dchan, cookie, txstate);
1050 }
1051
1052 /*----------------------------------------------------------------------------*/
1053 /* Interrupt Handling */
1054 /*----------------------------------------------------------------------------*/
1055
1056 static irqreturn_t fsldma_chan_irq(int irq, void *data)
1057 {
1058 struct fsldma_chan *chan = data;
1059 u32 stat;
1060
1061 /* save and clear the status register */
1062 stat = get_sr(chan);
1063 set_sr(chan, stat);
1064 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1065
1066 /* check that this was really our device */
1067 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1068 if (!stat)
1069 return IRQ_NONE;
1070
1071 if (stat & FSL_DMA_SR_TE)
1072 chan_err(chan, "Transfer Error!\n");
1073
1074 /*
1075 * Programming Error
1076 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1077 * trigger a PE interrupt.
1078 */
1079 if (stat & FSL_DMA_SR_PE) {
1080 chan_dbg(chan, "irq: Programming Error INT\n");
1081 stat &= ~FSL_DMA_SR_PE;
1082 if (get_bcr(chan) != 0)
1083 chan_err(chan, "Programming Error!\n");
1084 }
1085
1086 /*
1087 * For MPC8349, EOCDI event need to update cookie
1088 * and start the next transfer if it exist.
1089 */
1090 if (stat & FSL_DMA_SR_EOCDI) {
1091 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1092 stat &= ~FSL_DMA_SR_EOCDI;
1093 }
1094
1095 /*
1096 * If it current transfer is the end-of-transfer,
1097 * we should clear the Channel Start bit for
1098 * prepare next transfer.
1099 */
1100 if (stat & FSL_DMA_SR_EOLNI) {
1101 chan_dbg(chan, "irq: End-of-link INT\n");
1102 stat &= ~FSL_DMA_SR_EOLNI;
1103 }
1104
1105 /* check that the DMA controller is really idle */
1106 if (!dma_is_idle(chan))
1107 chan_err(chan, "irq: controller not idle!\n");
1108
1109 /* check that we handled all of the bits */
1110 if (stat)
1111 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1112
1113 /*
1114 * Schedule the tasklet to handle all cleanup of the current
1115 * transaction. It will start a new transaction if there is
1116 * one pending.
1117 */
1118 tasklet_schedule(&chan->tasklet);
1119 chan_dbg(chan, "irq: Exit\n");
1120 return IRQ_HANDLED;
1121 }
1122
1123 static void dma_do_tasklet(unsigned long data)
1124 {
1125 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1126
1127 chan_dbg(chan, "tasklet entry\n");
1128
1129 spin_lock_bh(&chan->desc_lock);
1130
1131 /* the hardware is now idle and ready for more */
1132 chan->idle = true;
1133
1134 /* Run all cleanup for descriptors which have been completed */
1135 fsldma_cleanup_descriptors(chan);
1136
1137 spin_unlock_bh(&chan->desc_lock);
1138
1139 chan_dbg(chan, "tasklet exit\n");
1140 }
1141
1142 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1143 {
1144 struct fsldma_device *fdev = data;
1145 struct fsldma_chan *chan;
1146 unsigned int handled = 0;
1147 u32 gsr, mask;
1148 int i;
1149
1150 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1151 : in_le32(fdev->regs);
1152 mask = 0xff000000;
1153 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1154
1155 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1156 chan = fdev->chan[i];
1157 if (!chan)
1158 continue;
1159
1160 if (gsr & mask) {
1161 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1162 fsldma_chan_irq(irq, chan);
1163 handled++;
1164 }
1165
1166 gsr &= ~mask;
1167 mask >>= 8;
1168 }
1169
1170 return IRQ_RETVAL(handled);
1171 }
1172
1173 static void fsldma_free_irqs(struct fsldma_device *fdev)
1174 {
1175 struct fsldma_chan *chan;
1176 int i;
1177
1178 if (fdev->irq != NO_IRQ) {
1179 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1180 free_irq(fdev->irq, fdev);
1181 return;
1182 }
1183
1184 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1185 chan = fdev->chan[i];
1186 if (chan && chan->irq != NO_IRQ) {
1187 chan_dbg(chan, "free per-channel IRQ\n");
1188 free_irq(chan->irq, chan);
1189 }
1190 }
1191 }
1192
1193 static int fsldma_request_irqs(struct fsldma_device *fdev)
1194 {
1195 struct fsldma_chan *chan;
1196 int ret;
1197 int i;
1198
1199 /* if we have a per-controller IRQ, use that */
1200 if (fdev->irq != NO_IRQ) {
1201 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1202 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1203 "fsldma-controller", fdev);
1204 return ret;
1205 }
1206
1207 /* no per-controller IRQ, use the per-channel IRQs */
1208 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1209 chan = fdev->chan[i];
1210 if (!chan)
1211 continue;
1212
1213 if (chan->irq == NO_IRQ) {
1214 chan_err(chan, "interrupts property missing in device tree\n");
1215 ret = -ENODEV;
1216 goto out_unwind;
1217 }
1218
1219 chan_dbg(chan, "request per-channel IRQ\n");
1220 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1221 "fsldma-chan", chan);
1222 if (ret) {
1223 chan_err(chan, "unable to request per-channel IRQ\n");
1224 goto out_unwind;
1225 }
1226 }
1227
1228 return 0;
1229
1230 out_unwind:
1231 for (/* none */; i >= 0; i--) {
1232 chan = fdev->chan[i];
1233 if (!chan)
1234 continue;
1235
1236 if (chan->irq == NO_IRQ)
1237 continue;
1238
1239 free_irq(chan->irq, chan);
1240 }
1241
1242 return ret;
1243 }
1244
1245 /*----------------------------------------------------------------------------*/
1246 /* OpenFirmware Subsystem */
1247 /*----------------------------------------------------------------------------*/
1248
1249 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1250 struct device_node *node, u32 feature, const char *compatible)
1251 {
1252 struct fsldma_chan *chan;
1253 struct resource res;
1254 int err;
1255
1256 /* alloc channel */
1257 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1258 if (!chan) {
1259 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1260 err = -ENOMEM;
1261 goto out_return;
1262 }
1263
1264 /* ioremap registers for use */
1265 chan->regs = of_iomap(node, 0);
1266 if (!chan->regs) {
1267 dev_err(fdev->dev, "unable to ioremap registers\n");
1268 err = -ENOMEM;
1269 goto out_free_chan;
1270 }
1271
1272 err = of_address_to_resource(node, 0, &res);
1273 if (err) {
1274 dev_err(fdev->dev, "unable to find 'reg' property\n");
1275 goto out_iounmap_regs;
1276 }
1277
1278 chan->feature = feature;
1279 if (!fdev->feature)
1280 fdev->feature = chan->feature;
1281
1282 /*
1283 * If the DMA device's feature is different than the feature
1284 * of its channels, report the bug
1285 */
1286 WARN_ON(fdev->feature != chan->feature);
1287
1288 chan->dev = fdev->dev;
1289 chan->id = (res.start & 0xfff) < 0x300 ?
1290 ((res.start - 0x100) & 0xfff) >> 7 :
1291 ((res.start - 0x200) & 0xfff) >> 7;
1292 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1293 dev_err(fdev->dev, "too many channels for device\n");
1294 err = -EINVAL;
1295 goto out_iounmap_regs;
1296 }
1297
1298 fdev->chan[chan->id] = chan;
1299 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1300 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1301
1302 /* Initialize the channel */
1303 dma_init(chan);
1304
1305 /* Clear cdar registers */
1306 set_cdar(chan, 0);
1307
1308 switch (chan->feature & FSL_DMA_IP_MASK) {
1309 case FSL_DMA_IP_85XX:
1310 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1311 case FSL_DMA_IP_83XX:
1312 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1313 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1314 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1315 chan->set_request_count = fsl_chan_set_request_count;
1316 }
1317
1318 spin_lock_init(&chan->desc_lock);
1319 INIT_LIST_HEAD(&chan->ld_pending);
1320 INIT_LIST_HEAD(&chan->ld_running);
1321 INIT_LIST_HEAD(&chan->ld_completed);
1322 chan->idle = true;
1323 #ifdef CONFIG_PM
1324 chan->pm_state = RUNNING;
1325 #endif
1326
1327 chan->common.device = &fdev->common;
1328 dma_cookie_init(&chan->common);
1329
1330 /* find the IRQ line, if it exists in the device tree */
1331 chan->irq = irq_of_parse_and_map(node, 0);
1332
1333 /* Add the channel to DMA device channel list */
1334 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1335 fdev->common.chancnt++;
1336
1337 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1338 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1339
1340 return 0;
1341
1342 out_iounmap_regs:
1343 iounmap(chan->regs);
1344 out_free_chan:
1345 kfree(chan);
1346 out_return:
1347 return err;
1348 }
1349
1350 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1351 {
1352 irq_dispose_mapping(chan->irq);
1353 list_del(&chan->common.device_node);
1354 iounmap(chan->regs);
1355 kfree(chan);
1356 }
1357
1358 static int fsldma_of_probe(struct platform_device *op)
1359 {
1360 struct fsldma_device *fdev;
1361 struct device_node *child;
1362 int err;
1363
1364 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1365 if (!fdev) {
1366 dev_err(&op->dev, "No enough memory for 'priv'\n");
1367 err = -ENOMEM;
1368 goto out_return;
1369 }
1370
1371 fdev->dev = &op->dev;
1372 INIT_LIST_HEAD(&fdev->common.channels);
1373
1374 /* ioremap the registers for use */
1375 fdev->regs = of_iomap(op->dev.of_node, 0);
1376 if (!fdev->regs) {
1377 dev_err(&op->dev, "unable to ioremap registers\n");
1378 err = -ENOMEM;
1379 goto out_free_fdev;
1380 }
1381
1382 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1383 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1384
1385 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1386 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1387 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1388 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1389 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1390 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1391 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1392 fdev->common.device_tx_status = fsl_tx_status;
1393 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1394 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1395 fdev->common.device_control = fsl_dma_device_control;
1396 fdev->common.dev = &op->dev;
1397
1398 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1399
1400 platform_set_drvdata(op, fdev);
1401
1402 /*
1403 * We cannot use of_platform_bus_probe() because there is no
1404 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1405 * channel object.
1406 */
1407 for_each_child_of_node(op->dev.of_node, child) {
1408 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1409 fsl_dma_chan_probe(fdev, child,
1410 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1411 "fsl,eloplus-dma-channel");
1412 }
1413
1414 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1415 fsl_dma_chan_probe(fdev, child,
1416 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1417 "fsl,elo-dma-channel");
1418 }
1419 }
1420
1421 /*
1422 * Hookup the IRQ handler(s)
1423 *
1424 * If we have a per-controller interrupt, we prefer that to the
1425 * per-channel interrupts to reduce the number of shared interrupt
1426 * handlers on the same IRQ line
1427 */
1428 err = fsldma_request_irqs(fdev);
1429 if (err) {
1430 dev_err(fdev->dev, "unable to request IRQs\n");
1431 goto out_free_fdev;
1432 }
1433
1434 dma_async_device_register(&fdev->common);
1435 return 0;
1436
1437 out_free_fdev:
1438 irq_dispose_mapping(fdev->irq);
1439 kfree(fdev);
1440 out_return:
1441 return err;
1442 }
1443
1444 static int fsldma_of_remove(struct platform_device *op)
1445 {
1446 struct fsldma_device *fdev;
1447 unsigned int i;
1448
1449 fdev = platform_get_drvdata(op);
1450 dma_async_device_unregister(&fdev->common);
1451
1452 fsldma_free_irqs(fdev);
1453
1454 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1455 if (fdev->chan[i])
1456 fsl_dma_chan_remove(fdev->chan[i]);
1457 }
1458
1459 iounmap(fdev->regs);
1460 kfree(fdev);
1461
1462 return 0;
1463 }
1464
1465 #ifdef CONFIG_PM
1466 static int fsldma_suspend_late(struct device *dev)
1467 {
1468 struct platform_device *pdev = to_platform_device(dev);
1469 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1470 struct fsldma_chan *chan;
1471 int i;
1472
1473 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1474 chan = fdev->chan[i];
1475 if (!chan)
1476 continue;
1477
1478 spin_lock_bh(&chan->desc_lock);
1479 if (unlikely(!chan->idle))
1480 goto out;
1481 chan->regs_save.mr = get_mr(chan);
1482 chan->pm_state = SUSPENDED;
1483 spin_unlock_bh(&chan->desc_lock);
1484 }
1485 return 0;
1486
1487 out:
1488 for (; i >= 0; i--) {
1489 chan = fdev->chan[i];
1490 if (!chan)
1491 continue;
1492 chan->pm_state = RUNNING;
1493 spin_unlock_bh(&chan->desc_lock);
1494 }
1495 return -EBUSY;
1496 }
1497
1498 static int fsldma_resume_early(struct device *dev)
1499 {
1500 struct platform_device *pdev = to_platform_device(dev);
1501 struct fsldma_device *fdev = platform_get_drvdata(pdev);
1502 struct fsldma_chan *chan;
1503 u32 mode;
1504 int i;
1505
1506 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1507 chan = fdev->chan[i];
1508 if (!chan)
1509 continue;
1510
1511 spin_lock_bh(&chan->desc_lock);
1512 mode = chan->regs_save.mr
1513 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1514 set_mr(chan, mode);
1515 chan->pm_state = RUNNING;
1516 spin_unlock_bh(&chan->desc_lock);
1517 }
1518
1519 return 0;
1520 }
1521
1522 static const struct dev_pm_ops fsldma_pm_ops = {
1523 .suspend_late = fsldma_suspend_late,
1524 .resume_early = fsldma_resume_early,
1525 };
1526 #endif
1527
1528 static const struct of_device_id fsldma_of_ids[] = {
1529 { .compatible = "fsl,elo3-dma", },
1530 { .compatible = "fsl,eloplus-dma", },
1531 { .compatible = "fsl,elo-dma", },
1532 {}
1533 };
1534
1535 static struct platform_driver fsldma_of_driver = {
1536 .driver = {
1537 .name = "fsl-elo-dma",
1538 .owner = THIS_MODULE,
1539 .of_match_table = fsldma_of_ids,
1540 #ifdef CONFIG_PM
1541 .pm = &fsldma_pm_ops,
1542 #endif
1543 },
1544 .probe = fsldma_of_probe,
1545 .remove = fsldma_of_remove,
1546 };
1547
1548 /*----------------------------------------------------------------------------*/
1549 /* Module Init / Exit */
1550 /*----------------------------------------------------------------------------*/
1551
1552 static __init int fsldma_init(void)
1553 {
1554 pr_info("Freescale Elo series DMA driver\n");
1555 return platform_driver_register(&fsldma_of_driver);
1556 }
1557
1558 static void __exit fsldma_exit(void)
1559 {
1560 platform_driver_unregister(&fsldma_of_driver);
1561 }
1562
1563 subsys_initcall(fsldma_init);
1564 module_exit(fsldma_exit);
1565
1566 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1567 MODULE_LICENSE("GPL");