]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/fsldma.c
Merge tag 'vfio-v3.14-rc1' of git://github.com/awilliam/linux-vfio
[mirror_ubuntu-artful-kernel.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_address.h>
37 #include <linux/of_irq.h>
38 #include <linux/of_platform.h>
39
40 #include "dmaengine.h"
41 #include "fsldma.h"
42
43 #define chan_dbg(chan, fmt, arg...) \
44 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
45 #define chan_err(chan, fmt, arg...) \
46 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
47
48 static const char msg_ld_oom[] = "No free memory for link descriptor";
49
50 /*
51 * Register Helpers
52 */
53
54 static void set_sr(struct fsldma_chan *chan, u32 val)
55 {
56 DMA_OUT(chan, &chan->regs->sr, val, 32);
57 }
58
59 static u32 get_sr(struct fsldma_chan *chan)
60 {
61 return DMA_IN(chan, &chan->regs->sr, 32);
62 }
63
64 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
65 {
66 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
67 }
68
69 static dma_addr_t get_cdar(struct fsldma_chan *chan)
70 {
71 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
72 }
73
74 static u32 get_bcr(struct fsldma_chan *chan)
75 {
76 return DMA_IN(chan, &chan->regs->bcr, 32);
77 }
78
79 /*
80 * Descriptor Helpers
81 */
82
83 static void set_desc_cnt(struct fsldma_chan *chan,
84 struct fsl_dma_ld_hw *hw, u32 count)
85 {
86 hw->count = CPU_TO_DMA(chan, count, 32);
87 }
88
89 static void set_desc_src(struct fsldma_chan *chan,
90 struct fsl_dma_ld_hw *hw, dma_addr_t src)
91 {
92 u64 snoop_bits;
93
94 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
95 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
96 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
97 }
98
99 static void set_desc_dst(struct fsldma_chan *chan,
100 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
101 {
102 u64 snoop_bits;
103
104 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
105 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
106 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
107 }
108
109 static void set_desc_next(struct fsldma_chan *chan,
110 struct fsl_dma_ld_hw *hw, dma_addr_t next)
111 {
112 u64 snoop_bits;
113
114 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
115 ? FSL_DMA_SNEN : 0;
116 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
117 }
118
119 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
120 {
121 u64 snoop_bits;
122
123 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
124 ? FSL_DMA_SNEN : 0;
125
126 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
127 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
128 | snoop_bits, 64);
129 }
130
131 /*
132 * DMA Engine Hardware Control Helpers
133 */
134
135 static void dma_init(struct fsldma_chan *chan)
136 {
137 /* Reset the channel */
138 DMA_OUT(chan, &chan->regs->mr, 0, 32);
139
140 switch (chan->feature & FSL_DMA_IP_MASK) {
141 case FSL_DMA_IP_85XX:
142 /* Set the channel to below modes:
143 * EIE - Error interrupt enable
144 * EOLNIE - End of links interrupt enable
145 * BWC - Bandwidth sharing among channels
146 */
147 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
148 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
149 break;
150 case FSL_DMA_IP_83XX:
151 /* Set the channel to below modes:
152 * EOTIE - End-of-transfer interrupt enable
153 * PRC_RM - PCI read multiple
154 */
155 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
156 | FSL_DMA_MR_PRC_RM, 32);
157 break;
158 }
159 }
160
161 static int dma_is_idle(struct fsldma_chan *chan)
162 {
163 u32 sr = get_sr(chan);
164 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
165 }
166
167 /*
168 * Start the DMA controller
169 *
170 * Preconditions:
171 * - the CDAR register must point to the start descriptor
172 * - the MRn[CS] bit must be cleared
173 */
174 static void dma_start(struct fsldma_chan *chan)
175 {
176 u32 mode;
177
178 mode = DMA_IN(chan, &chan->regs->mr, 32);
179
180 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
181 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
182 mode |= FSL_DMA_MR_EMP_EN;
183 } else {
184 mode &= ~FSL_DMA_MR_EMP_EN;
185 }
186
187 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
188 mode |= FSL_DMA_MR_EMS_EN;
189 } else {
190 mode &= ~FSL_DMA_MR_EMS_EN;
191 mode |= FSL_DMA_MR_CS;
192 }
193
194 DMA_OUT(chan, &chan->regs->mr, mode, 32);
195 }
196
197 static void dma_halt(struct fsldma_chan *chan)
198 {
199 u32 mode;
200 int i;
201
202 /* read the mode register */
203 mode = DMA_IN(chan, &chan->regs->mr, 32);
204
205 /*
206 * The 85xx controller supports channel abort, which will stop
207 * the current transfer. On 83xx, this bit is the transfer error
208 * mask bit, which should not be changed.
209 */
210 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
211 mode |= FSL_DMA_MR_CA;
212 DMA_OUT(chan, &chan->regs->mr, mode, 32);
213
214 mode &= ~FSL_DMA_MR_CA;
215 }
216
217 /* stop the DMA controller */
218 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
219 DMA_OUT(chan, &chan->regs->mr, mode, 32);
220
221 /* wait for the DMA controller to become idle */
222 for (i = 0; i < 100; i++) {
223 if (dma_is_idle(chan))
224 return;
225
226 udelay(10);
227 }
228
229 if (!dma_is_idle(chan))
230 chan_err(chan, "DMA halt timeout!\n");
231 }
232
233 /**
234 * fsl_chan_set_src_loop_size - Set source address hold transfer size
235 * @chan : Freescale DMA channel
236 * @size : Address loop size, 0 for disable loop
237 *
238 * The set source address hold transfer size. The source
239 * address hold or loop transfer size is when the DMA transfer
240 * data from source address (SA), if the loop size is 4, the DMA will
241 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
242 * SA + 1 ... and so on.
243 */
244 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
245 {
246 u32 mode;
247
248 mode = DMA_IN(chan, &chan->regs->mr, 32);
249
250 switch (size) {
251 case 0:
252 mode &= ~FSL_DMA_MR_SAHE;
253 break;
254 case 1:
255 case 2:
256 case 4:
257 case 8:
258 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
259 break;
260 }
261
262 DMA_OUT(chan, &chan->regs->mr, mode, 32);
263 }
264
265 /**
266 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
267 * @chan : Freescale DMA channel
268 * @size : Address loop size, 0 for disable loop
269 *
270 * The set destination address hold transfer size. The destination
271 * address hold or loop transfer size is when the DMA transfer
272 * data to destination address (TA), if the loop size is 4, the DMA will
273 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
274 * TA + 1 ... and so on.
275 */
276 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
277 {
278 u32 mode;
279
280 mode = DMA_IN(chan, &chan->regs->mr, 32);
281
282 switch (size) {
283 case 0:
284 mode &= ~FSL_DMA_MR_DAHE;
285 break;
286 case 1:
287 case 2:
288 case 4:
289 case 8:
290 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
291 break;
292 }
293
294 DMA_OUT(chan, &chan->regs->mr, mode, 32);
295 }
296
297 /**
298 * fsl_chan_set_request_count - Set DMA Request Count for external control
299 * @chan : Freescale DMA channel
300 * @size : Number of bytes to transfer in a single request
301 *
302 * The Freescale DMA channel can be controlled by the external signal DREQ#.
303 * The DMA request count is how many bytes are allowed to transfer before
304 * pausing the channel, after which a new assertion of DREQ# resumes channel
305 * operation.
306 *
307 * A size of 0 disables external pause control. The maximum size is 1024.
308 */
309 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
310 {
311 u32 mode;
312
313 BUG_ON(size > 1024);
314
315 mode = DMA_IN(chan, &chan->regs->mr, 32);
316 mode |= (__ilog2(size) << 24) & 0x0f000000;
317
318 DMA_OUT(chan, &chan->regs->mr, mode, 32);
319 }
320
321 /**
322 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
323 * @chan : Freescale DMA channel
324 * @enable : 0 is disabled, 1 is enabled.
325 *
326 * The Freescale DMA channel can be controlled by the external signal DREQ#.
327 * The DMA Request Count feature should be used in addition to this feature
328 * to set the number of bytes to transfer before pausing the channel.
329 */
330 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
331 {
332 if (enable)
333 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
334 else
335 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
336 }
337
338 /**
339 * fsl_chan_toggle_ext_start - Toggle channel external start status
340 * @chan : Freescale DMA channel
341 * @enable : 0 is disabled, 1 is enabled.
342 *
343 * If enable the external start, the channel can be started by an
344 * external DMA start pin. So the dma_start() does not start the
345 * transfer immediately. The DMA channel will wait for the
346 * control pin asserted.
347 */
348 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
349 {
350 if (enable)
351 chan->feature |= FSL_DMA_CHAN_START_EXT;
352 else
353 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
354 }
355
356 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
357 {
358 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
359
360 if (list_empty(&chan->ld_pending))
361 goto out_splice;
362
363 /*
364 * Add the hardware descriptor to the chain of hardware descriptors
365 * that already exists in memory.
366 *
367 * This will un-set the EOL bit of the existing transaction, and the
368 * last link in this transaction will become the EOL descriptor.
369 */
370 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
371
372 /*
373 * Add the software descriptor and all children to the list
374 * of pending transactions
375 */
376 out_splice:
377 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
378 }
379
380 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
381 {
382 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
383 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
384 struct fsl_desc_sw *child;
385 unsigned long flags;
386 dma_cookie_t cookie = -EINVAL;
387
388 spin_lock_irqsave(&chan->desc_lock, flags);
389
390 /*
391 * assign cookies to all of the software descriptors
392 * that make up this transaction
393 */
394 list_for_each_entry(child, &desc->tx_list, node) {
395 cookie = dma_cookie_assign(&child->async_tx);
396 }
397
398 /* put this transaction onto the tail of the pending queue */
399 append_ld_queue(chan, desc);
400
401 spin_unlock_irqrestore(&chan->desc_lock, flags);
402
403 return cookie;
404 }
405
406 /**
407 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
408 * @chan : Freescale DMA channel
409 *
410 * Return - The descriptor allocated. NULL for failed.
411 */
412 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
413 {
414 struct fsl_desc_sw *desc;
415 dma_addr_t pdesc;
416
417 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
418 if (!desc) {
419 chan_dbg(chan, "out of memory for link descriptor\n");
420 return NULL;
421 }
422
423 memset(desc, 0, sizeof(*desc));
424 INIT_LIST_HEAD(&desc->tx_list);
425 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
426 desc->async_tx.tx_submit = fsl_dma_tx_submit;
427 desc->async_tx.phys = pdesc;
428
429 #ifdef FSL_DMA_LD_DEBUG
430 chan_dbg(chan, "LD %p allocated\n", desc);
431 #endif
432
433 return desc;
434 }
435
436 /**
437 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
438 * @chan : Freescale DMA channel
439 *
440 * This function will create a dma pool for descriptor allocation.
441 *
442 * Return - The number of descriptors allocated.
443 */
444 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
445 {
446 struct fsldma_chan *chan = to_fsl_chan(dchan);
447
448 /* Has this channel already been allocated? */
449 if (chan->desc_pool)
450 return 1;
451
452 /*
453 * We need the descriptor to be aligned to 32bytes
454 * for meeting FSL DMA specification requirement.
455 */
456 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
457 sizeof(struct fsl_desc_sw),
458 __alignof__(struct fsl_desc_sw), 0);
459 if (!chan->desc_pool) {
460 chan_err(chan, "unable to allocate descriptor pool\n");
461 return -ENOMEM;
462 }
463
464 /* there is at least one descriptor free to be allocated */
465 return 1;
466 }
467
468 /**
469 * fsldma_free_desc_list - Free all descriptors in a queue
470 * @chan: Freescae DMA channel
471 * @list: the list to free
472 *
473 * LOCKING: must hold chan->desc_lock
474 */
475 static void fsldma_free_desc_list(struct fsldma_chan *chan,
476 struct list_head *list)
477 {
478 struct fsl_desc_sw *desc, *_desc;
479
480 list_for_each_entry_safe(desc, _desc, list, node) {
481 list_del(&desc->node);
482 #ifdef FSL_DMA_LD_DEBUG
483 chan_dbg(chan, "LD %p free\n", desc);
484 #endif
485 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
486 }
487 }
488
489 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
490 struct list_head *list)
491 {
492 struct fsl_desc_sw *desc, *_desc;
493
494 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
495 list_del(&desc->node);
496 #ifdef FSL_DMA_LD_DEBUG
497 chan_dbg(chan, "LD %p free\n", desc);
498 #endif
499 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
500 }
501 }
502
503 /**
504 * fsl_dma_free_chan_resources - Free all resources of the channel.
505 * @chan : Freescale DMA channel
506 */
507 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
508 {
509 struct fsldma_chan *chan = to_fsl_chan(dchan);
510 unsigned long flags;
511
512 chan_dbg(chan, "free all channel resources\n");
513 spin_lock_irqsave(&chan->desc_lock, flags);
514 fsldma_free_desc_list(chan, &chan->ld_pending);
515 fsldma_free_desc_list(chan, &chan->ld_running);
516 spin_unlock_irqrestore(&chan->desc_lock, flags);
517
518 dma_pool_destroy(chan->desc_pool);
519 chan->desc_pool = NULL;
520 }
521
522 static struct dma_async_tx_descriptor *
523 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
524 {
525 struct fsldma_chan *chan;
526 struct fsl_desc_sw *new;
527
528 if (!dchan)
529 return NULL;
530
531 chan = to_fsl_chan(dchan);
532
533 new = fsl_dma_alloc_descriptor(chan);
534 if (!new) {
535 chan_err(chan, "%s\n", msg_ld_oom);
536 return NULL;
537 }
538
539 new->async_tx.cookie = -EBUSY;
540 new->async_tx.flags = flags;
541
542 /* Insert the link descriptor to the LD ring */
543 list_add_tail(&new->node, &new->tx_list);
544
545 /* Set End-of-link to the last link descriptor of new list */
546 set_ld_eol(chan, new);
547
548 return &new->async_tx;
549 }
550
551 static struct dma_async_tx_descriptor *
552 fsl_dma_prep_memcpy(struct dma_chan *dchan,
553 dma_addr_t dma_dst, dma_addr_t dma_src,
554 size_t len, unsigned long flags)
555 {
556 struct fsldma_chan *chan;
557 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
558 size_t copy;
559
560 if (!dchan)
561 return NULL;
562
563 if (!len)
564 return NULL;
565
566 chan = to_fsl_chan(dchan);
567
568 do {
569
570 /* Allocate the link descriptor from DMA pool */
571 new = fsl_dma_alloc_descriptor(chan);
572 if (!new) {
573 chan_err(chan, "%s\n", msg_ld_oom);
574 goto fail;
575 }
576
577 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
578
579 set_desc_cnt(chan, &new->hw, copy);
580 set_desc_src(chan, &new->hw, dma_src);
581 set_desc_dst(chan, &new->hw, dma_dst);
582
583 if (!first)
584 first = new;
585 else
586 set_desc_next(chan, &prev->hw, new->async_tx.phys);
587
588 new->async_tx.cookie = 0;
589 async_tx_ack(&new->async_tx);
590
591 prev = new;
592 len -= copy;
593 dma_src += copy;
594 dma_dst += copy;
595
596 /* Insert the link descriptor to the LD ring */
597 list_add_tail(&new->node, &first->tx_list);
598 } while (len);
599
600 new->async_tx.flags = flags; /* client is in control of this ack */
601 new->async_tx.cookie = -EBUSY;
602
603 /* Set End-of-link to the last link descriptor of new list */
604 set_ld_eol(chan, new);
605
606 return &first->async_tx;
607
608 fail:
609 if (!first)
610 return NULL;
611
612 fsldma_free_desc_list_reverse(chan, &first->tx_list);
613 return NULL;
614 }
615
616 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
617 struct scatterlist *dst_sg, unsigned int dst_nents,
618 struct scatterlist *src_sg, unsigned int src_nents,
619 unsigned long flags)
620 {
621 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
622 struct fsldma_chan *chan = to_fsl_chan(dchan);
623 size_t dst_avail, src_avail;
624 dma_addr_t dst, src;
625 size_t len;
626
627 /* basic sanity checks */
628 if (dst_nents == 0 || src_nents == 0)
629 return NULL;
630
631 if (dst_sg == NULL || src_sg == NULL)
632 return NULL;
633
634 /*
635 * TODO: should we check that both scatterlists have the same
636 * TODO: number of bytes in total? Is that really an error?
637 */
638
639 /* get prepared for the loop */
640 dst_avail = sg_dma_len(dst_sg);
641 src_avail = sg_dma_len(src_sg);
642
643 /* run until we are out of scatterlist entries */
644 while (true) {
645
646 /* create the largest transaction possible */
647 len = min_t(size_t, src_avail, dst_avail);
648 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
649 if (len == 0)
650 goto fetch;
651
652 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
653 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
654
655 /* allocate and populate the descriptor */
656 new = fsl_dma_alloc_descriptor(chan);
657 if (!new) {
658 chan_err(chan, "%s\n", msg_ld_oom);
659 goto fail;
660 }
661
662 set_desc_cnt(chan, &new->hw, len);
663 set_desc_src(chan, &new->hw, src);
664 set_desc_dst(chan, &new->hw, dst);
665
666 if (!first)
667 first = new;
668 else
669 set_desc_next(chan, &prev->hw, new->async_tx.phys);
670
671 new->async_tx.cookie = 0;
672 async_tx_ack(&new->async_tx);
673 prev = new;
674
675 /* Insert the link descriptor to the LD ring */
676 list_add_tail(&new->node, &first->tx_list);
677
678 /* update metadata */
679 dst_avail -= len;
680 src_avail -= len;
681
682 fetch:
683 /* fetch the next dst scatterlist entry */
684 if (dst_avail == 0) {
685
686 /* no more entries: we're done */
687 if (dst_nents == 0)
688 break;
689
690 /* fetch the next entry: if there are no more: done */
691 dst_sg = sg_next(dst_sg);
692 if (dst_sg == NULL)
693 break;
694
695 dst_nents--;
696 dst_avail = sg_dma_len(dst_sg);
697 }
698
699 /* fetch the next src scatterlist entry */
700 if (src_avail == 0) {
701
702 /* no more entries: we're done */
703 if (src_nents == 0)
704 break;
705
706 /* fetch the next entry: if there are no more: done */
707 src_sg = sg_next(src_sg);
708 if (src_sg == NULL)
709 break;
710
711 src_nents--;
712 src_avail = sg_dma_len(src_sg);
713 }
714 }
715
716 new->async_tx.flags = flags; /* client is in control of this ack */
717 new->async_tx.cookie = -EBUSY;
718
719 /* Set End-of-link to the last link descriptor of new list */
720 set_ld_eol(chan, new);
721
722 return &first->async_tx;
723
724 fail:
725 if (!first)
726 return NULL;
727
728 fsldma_free_desc_list_reverse(chan, &first->tx_list);
729 return NULL;
730 }
731
732 /**
733 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
734 * @chan: DMA channel
735 * @sgl: scatterlist to transfer to/from
736 * @sg_len: number of entries in @scatterlist
737 * @direction: DMA direction
738 * @flags: DMAEngine flags
739 * @context: transaction context (ignored)
740 *
741 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
742 * DMA_SLAVE API, this gets the device-specific information from the
743 * chan->private variable.
744 */
745 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
746 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
747 enum dma_transfer_direction direction, unsigned long flags,
748 void *context)
749 {
750 /*
751 * This operation is not supported on the Freescale DMA controller
752 *
753 * However, we need to provide the function pointer to allow the
754 * device_control() method to work.
755 */
756 return NULL;
757 }
758
759 static int fsl_dma_device_control(struct dma_chan *dchan,
760 enum dma_ctrl_cmd cmd, unsigned long arg)
761 {
762 struct dma_slave_config *config;
763 struct fsldma_chan *chan;
764 unsigned long flags;
765 int size;
766
767 if (!dchan)
768 return -EINVAL;
769
770 chan = to_fsl_chan(dchan);
771
772 switch (cmd) {
773 case DMA_TERMINATE_ALL:
774 spin_lock_irqsave(&chan->desc_lock, flags);
775
776 /* Halt the DMA engine */
777 dma_halt(chan);
778
779 /* Remove and free all of the descriptors in the LD queue */
780 fsldma_free_desc_list(chan, &chan->ld_pending);
781 fsldma_free_desc_list(chan, &chan->ld_running);
782 chan->idle = true;
783
784 spin_unlock_irqrestore(&chan->desc_lock, flags);
785 return 0;
786
787 case DMA_SLAVE_CONFIG:
788 config = (struct dma_slave_config *)arg;
789
790 /* make sure the channel supports setting burst size */
791 if (!chan->set_request_count)
792 return -ENXIO;
793
794 /* we set the controller burst size depending on direction */
795 if (config->direction == DMA_MEM_TO_DEV)
796 size = config->dst_addr_width * config->dst_maxburst;
797 else
798 size = config->src_addr_width * config->src_maxburst;
799
800 chan->set_request_count(chan, size);
801 return 0;
802
803 case FSLDMA_EXTERNAL_START:
804
805 /* make sure the channel supports external start */
806 if (!chan->toggle_ext_start)
807 return -ENXIO;
808
809 chan->toggle_ext_start(chan, arg);
810 return 0;
811
812 default:
813 return -ENXIO;
814 }
815
816 return 0;
817 }
818
819 /**
820 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
821 * @chan: Freescale DMA channel
822 * @desc: descriptor to cleanup and free
823 *
824 * This function is used on a descriptor which has been executed by the DMA
825 * controller. It will run any callbacks, submit any dependencies, and then
826 * free the descriptor.
827 */
828 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
829 struct fsl_desc_sw *desc)
830 {
831 struct dma_async_tx_descriptor *txd = &desc->async_tx;
832
833 /* Run the link descriptor callback function */
834 if (txd->callback) {
835 #ifdef FSL_DMA_LD_DEBUG
836 chan_dbg(chan, "LD %p callback\n", desc);
837 #endif
838 txd->callback(txd->callback_param);
839 }
840
841 /* Run any dependencies */
842 dma_run_dependencies(txd);
843
844 dma_descriptor_unmap(txd);
845 #ifdef FSL_DMA_LD_DEBUG
846 chan_dbg(chan, "LD %p free\n", desc);
847 #endif
848 dma_pool_free(chan->desc_pool, desc, txd->phys);
849 }
850
851 /**
852 * fsl_chan_xfer_ld_queue - transfer any pending transactions
853 * @chan : Freescale DMA channel
854 *
855 * HARDWARE STATE: idle
856 * LOCKING: must hold chan->desc_lock
857 */
858 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
859 {
860 struct fsl_desc_sw *desc;
861
862 /*
863 * If the list of pending descriptors is empty, then we
864 * don't need to do any work at all
865 */
866 if (list_empty(&chan->ld_pending)) {
867 chan_dbg(chan, "no pending LDs\n");
868 return;
869 }
870
871 /*
872 * The DMA controller is not idle, which means that the interrupt
873 * handler will start any queued transactions when it runs after
874 * this transaction finishes
875 */
876 if (!chan->idle) {
877 chan_dbg(chan, "DMA controller still busy\n");
878 return;
879 }
880
881 /*
882 * If there are some link descriptors which have not been
883 * transferred, we need to start the controller
884 */
885
886 /*
887 * Move all elements from the queue of pending transactions
888 * onto the list of running transactions
889 */
890 chan_dbg(chan, "idle, starting controller\n");
891 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
892 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
893
894 /*
895 * The 85xx DMA controller doesn't clear the channel start bit
896 * automatically at the end of a transfer. Therefore we must clear
897 * it in software before starting the transfer.
898 */
899 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
900 u32 mode;
901
902 mode = DMA_IN(chan, &chan->regs->mr, 32);
903 mode &= ~FSL_DMA_MR_CS;
904 DMA_OUT(chan, &chan->regs->mr, mode, 32);
905 }
906
907 /*
908 * Program the descriptor's address into the DMA controller,
909 * then start the DMA transaction
910 */
911 set_cdar(chan, desc->async_tx.phys);
912 get_cdar(chan);
913
914 dma_start(chan);
915 chan->idle = false;
916 }
917
918 /**
919 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
920 * @chan : Freescale DMA channel
921 */
922 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
923 {
924 struct fsldma_chan *chan = to_fsl_chan(dchan);
925 unsigned long flags;
926
927 spin_lock_irqsave(&chan->desc_lock, flags);
928 fsl_chan_xfer_ld_queue(chan);
929 spin_unlock_irqrestore(&chan->desc_lock, flags);
930 }
931
932 /**
933 * fsl_tx_status - Determine the DMA status
934 * @chan : Freescale DMA channel
935 */
936 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
937 dma_cookie_t cookie,
938 struct dma_tx_state *txstate)
939 {
940 return dma_cookie_status(dchan, cookie, txstate);
941 }
942
943 /*----------------------------------------------------------------------------*/
944 /* Interrupt Handling */
945 /*----------------------------------------------------------------------------*/
946
947 static irqreturn_t fsldma_chan_irq(int irq, void *data)
948 {
949 struct fsldma_chan *chan = data;
950 u32 stat;
951
952 /* save and clear the status register */
953 stat = get_sr(chan);
954 set_sr(chan, stat);
955 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
956
957 /* check that this was really our device */
958 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
959 if (!stat)
960 return IRQ_NONE;
961
962 if (stat & FSL_DMA_SR_TE)
963 chan_err(chan, "Transfer Error!\n");
964
965 /*
966 * Programming Error
967 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
968 * trigger a PE interrupt.
969 */
970 if (stat & FSL_DMA_SR_PE) {
971 chan_dbg(chan, "irq: Programming Error INT\n");
972 stat &= ~FSL_DMA_SR_PE;
973 if (get_bcr(chan) != 0)
974 chan_err(chan, "Programming Error!\n");
975 }
976
977 /*
978 * For MPC8349, EOCDI event need to update cookie
979 * and start the next transfer if it exist.
980 */
981 if (stat & FSL_DMA_SR_EOCDI) {
982 chan_dbg(chan, "irq: End-of-Chain link INT\n");
983 stat &= ~FSL_DMA_SR_EOCDI;
984 }
985
986 /*
987 * If it current transfer is the end-of-transfer,
988 * we should clear the Channel Start bit for
989 * prepare next transfer.
990 */
991 if (stat & FSL_DMA_SR_EOLNI) {
992 chan_dbg(chan, "irq: End-of-link INT\n");
993 stat &= ~FSL_DMA_SR_EOLNI;
994 }
995
996 /* check that the DMA controller is really idle */
997 if (!dma_is_idle(chan))
998 chan_err(chan, "irq: controller not idle!\n");
999
1000 /* check that we handled all of the bits */
1001 if (stat)
1002 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1003
1004 /*
1005 * Schedule the tasklet to handle all cleanup of the current
1006 * transaction. It will start a new transaction if there is
1007 * one pending.
1008 */
1009 tasklet_schedule(&chan->tasklet);
1010 chan_dbg(chan, "irq: Exit\n");
1011 return IRQ_HANDLED;
1012 }
1013
1014 static void dma_do_tasklet(unsigned long data)
1015 {
1016 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1017 struct fsl_desc_sw *desc, *_desc;
1018 LIST_HEAD(ld_cleanup);
1019 unsigned long flags;
1020
1021 chan_dbg(chan, "tasklet entry\n");
1022
1023 spin_lock_irqsave(&chan->desc_lock, flags);
1024
1025 /* update the cookie if we have some descriptors to cleanup */
1026 if (!list_empty(&chan->ld_running)) {
1027 dma_cookie_t cookie;
1028
1029 desc = to_fsl_desc(chan->ld_running.prev);
1030 cookie = desc->async_tx.cookie;
1031 dma_cookie_complete(&desc->async_tx);
1032
1033 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1034 }
1035
1036 /*
1037 * move the descriptors to a temporary list so we can drop the lock
1038 * during the entire cleanup operation
1039 */
1040 list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1041
1042 /* the hardware is now idle and ready for more */
1043 chan->idle = true;
1044
1045 /*
1046 * Start any pending transactions automatically
1047 *
1048 * In the ideal case, we keep the DMA controller busy while we go
1049 * ahead and free the descriptors below.
1050 */
1051 fsl_chan_xfer_ld_queue(chan);
1052 spin_unlock_irqrestore(&chan->desc_lock, flags);
1053
1054 /* Run the callback for each descriptor, in order */
1055 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1056
1057 /* Remove from the list of transactions */
1058 list_del(&desc->node);
1059
1060 /* Run all cleanup for this descriptor */
1061 fsldma_cleanup_descriptor(chan, desc);
1062 }
1063
1064 chan_dbg(chan, "tasklet exit\n");
1065 }
1066
1067 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1068 {
1069 struct fsldma_device *fdev = data;
1070 struct fsldma_chan *chan;
1071 unsigned int handled = 0;
1072 u32 gsr, mask;
1073 int i;
1074
1075 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1076 : in_le32(fdev->regs);
1077 mask = 0xff000000;
1078 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1079
1080 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1081 chan = fdev->chan[i];
1082 if (!chan)
1083 continue;
1084
1085 if (gsr & mask) {
1086 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1087 fsldma_chan_irq(irq, chan);
1088 handled++;
1089 }
1090
1091 gsr &= ~mask;
1092 mask >>= 8;
1093 }
1094
1095 return IRQ_RETVAL(handled);
1096 }
1097
1098 static void fsldma_free_irqs(struct fsldma_device *fdev)
1099 {
1100 struct fsldma_chan *chan;
1101 int i;
1102
1103 if (fdev->irq != NO_IRQ) {
1104 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1105 free_irq(fdev->irq, fdev);
1106 return;
1107 }
1108
1109 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1110 chan = fdev->chan[i];
1111 if (chan && chan->irq != NO_IRQ) {
1112 chan_dbg(chan, "free per-channel IRQ\n");
1113 free_irq(chan->irq, chan);
1114 }
1115 }
1116 }
1117
1118 static int fsldma_request_irqs(struct fsldma_device *fdev)
1119 {
1120 struct fsldma_chan *chan;
1121 int ret;
1122 int i;
1123
1124 /* if we have a per-controller IRQ, use that */
1125 if (fdev->irq != NO_IRQ) {
1126 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1127 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1128 "fsldma-controller", fdev);
1129 return ret;
1130 }
1131
1132 /* no per-controller IRQ, use the per-channel IRQs */
1133 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1134 chan = fdev->chan[i];
1135 if (!chan)
1136 continue;
1137
1138 if (chan->irq == NO_IRQ) {
1139 chan_err(chan, "interrupts property missing in device tree\n");
1140 ret = -ENODEV;
1141 goto out_unwind;
1142 }
1143
1144 chan_dbg(chan, "request per-channel IRQ\n");
1145 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1146 "fsldma-chan", chan);
1147 if (ret) {
1148 chan_err(chan, "unable to request per-channel IRQ\n");
1149 goto out_unwind;
1150 }
1151 }
1152
1153 return 0;
1154
1155 out_unwind:
1156 for (/* none */; i >= 0; i--) {
1157 chan = fdev->chan[i];
1158 if (!chan)
1159 continue;
1160
1161 if (chan->irq == NO_IRQ)
1162 continue;
1163
1164 free_irq(chan->irq, chan);
1165 }
1166
1167 return ret;
1168 }
1169
1170 /*----------------------------------------------------------------------------*/
1171 /* OpenFirmware Subsystem */
1172 /*----------------------------------------------------------------------------*/
1173
1174 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1175 struct device_node *node, u32 feature, const char *compatible)
1176 {
1177 struct fsldma_chan *chan;
1178 struct resource res;
1179 int err;
1180
1181 /* alloc channel */
1182 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1183 if (!chan) {
1184 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1185 err = -ENOMEM;
1186 goto out_return;
1187 }
1188
1189 /* ioremap registers for use */
1190 chan->regs = of_iomap(node, 0);
1191 if (!chan->regs) {
1192 dev_err(fdev->dev, "unable to ioremap registers\n");
1193 err = -ENOMEM;
1194 goto out_free_chan;
1195 }
1196
1197 err = of_address_to_resource(node, 0, &res);
1198 if (err) {
1199 dev_err(fdev->dev, "unable to find 'reg' property\n");
1200 goto out_iounmap_regs;
1201 }
1202
1203 chan->feature = feature;
1204 if (!fdev->feature)
1205 fdev->feature = chan->feature;
1206
1207 /*
1208 * If the DMA device's feature is different than the feature
1209 * of its channels, report the bug
1210 */
1211 WARN_ON(fdev->feature != chan->feature);
1212
1213 chan->dev = fdev->dev;
1214 chan->id = (res.start & 0xfff) < 0x300 ?
1215 ((res.start - 0x100) & 0xfff) >> 7 :
1216 ((res.start - 0x200) & 0xfff) >> 7;
1217 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1218 dev_err(fdev->dev, "too many channels for device\n");
1219 err = -EINVAL;
1220 goto out_iounmap_regs;
1221 }
1222
1223 fdev->chan[chan->id] = chan;
1224 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1225 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1226
1227 /* Initialize the channel */
1228 dma_init(chan);
1229
1230 /* Clear cdar registers */
1231 set_cdar(chan, 0);
1232
1233 switch (chan->feature & FSL_DMA_IP_MASK) {
1234 case FSL_DMA_IP_85XX:
1235 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1236 case FSL_DMA_IP_83XX:
1237 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1238 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1239 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1240 chan->set_request_count = fsl_chan_set_request_count;
1241 }
1242
1243 spin_lock_init(&chan->desc_lock);
1244 INIT_LIST_HEAD(&chan->ld_pending);
1245 INIT_LIST_HEAD(&chan->ld_running);
1246 chan->idle = true;
1247
1248 chan->common.device = &fdev->common;
1249 dma_cookie_init(&chan->common);
1250
1251 /* find the IRQ line, if it exists in the device tree */
1252 chan->irq = irq_of_parse_and_map(node, 0);
1253
1254 /* Add the channel to DMA device channel list */
1255 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1256 fdev->common.chancnt++;
1257
1258 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1259 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1260
1261 return 0;
1262
1263 out_iounmap_regs:
1264 iounmap(chan->regs);
1265 out_free_chan:
1266 kfree(chan);
1267 out_return:
1268 return err;
1269 }
1270
1271 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1272 {
1273 irq_dispose_mapping(chan->irq);
1274 list_del(&chan->common.device_node);
1275 iounmap(chan->regs);
1276 kfree(chan);
1277 }
1278
1279 static int fsldma_of_probe(struct platform_device *op)
1280 {
1281 struct fsldma_device *fdev;
1282 struct device_node *child;
1283 int err;
1284
1285 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1286 if (!fdev) {
1287 dev_err(&op->dev, "No enough memory for 'priv'\n");
1288 err = -ENOMEM;
1289 goto out_return;
1290 }
1291
1292 fdev->dev = &op->dev;
1293 INIT_LIST_HEAD(&fdev->common.channels);
1294
1295 /* ioremap the registers for use */
1296 fdev->regs = of_iomap(op->dev.of_node, 0);
1297 if (!fdev->regs) {
1298 dev_err(&op->dev, "unable to ioremap registers\n");
1299 err = -ENOMEM;
1300 goto out_free_fdev;
1301 }
1302
1303 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1304 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1305
1306 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1307 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1308 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1309 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1310 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1311 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1312 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1313 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1314 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1315 fdev->common.device_tx_status = fsl_tx_status;
1316 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1317 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1318 fdev->common.device_control = fsl_dma_device_control;
1319 fdev->common.dev = &op->dev;
1320
1321 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1322
1323 platform_set_drvdata(op, fdev);
1324
1325 /*
1326 * We cannot use of_platform_bus_probe() because there is no
1327 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1328 * channel object.
1329 */
1330 for_each_child_of_node(op->dev.of_node, child) {
1331 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1332 fsl_dma_chan_probe(fdev, child,
1333 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1334 "fsl,eloplus-dma-channel");
1335 }
1336
1337 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1338 fsl_dma_chan_probe(fdev, child,
1339 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1340 "fsl,elo-dma-channel");
1341 }
1342 }
1343
1344 /*
1345 * Hookup the IRQ handler(s)
1346 *
1347 * If we have a per-controller interrupt, we prefer that to the
1348 * per-channel interrupts to reduce the number of shared interrupt
1349 * handlers on the same IRQ line
1350 */
1351 err = fsldma_request_irqs(fdev);
1352 if (err) {
1353 dev_err(fdev->dev, "unable to request IRQs\n");
1354 goto out_free_fdev;
1355 }
1356
1357 dma_async_device_register(&fdev->common);
1358 return 0;
1359
1360 out_free_fdev:
1361 irq_dispose_mapping(fdev->irq);
1362 kfree(fdev);
1363 out_return:
1364 return err;
1365 }
1366
1367 static int fsldma_of_remove(struct platform_device *op)
1368 {
1369 struct fsldma_device *fdev;
1370 unsigned int i;
1371
1372 fdev = platform_get_drvdata(op);
1373 dma_async_device_unregister(&fdev->common);
1374
1375 fsldma_free_irqs(fdev);
1376
1377 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1378 if (fdev->chan[i])
1379 fsl_dma_chan_remove(fdev->chan[i]);
1380 }
1381
1382 iounmap(fdev->regs);
1383 kfree(fdev);
1384
1385 return 0;
1386 }
1387
1388 static const struct of_device_id fsldma_of_ids[] = {
1389 { .compatible = "fsl,elo3-dma", },
1390 { .compatible = "fsl,eloplus-dma", },
1391 { .compatible = "fsl,elo-dma", },
1392 {}
1393 };
1394
1395 static struct platform_driver fsldma_of_driver = {
1396 .driver = {
1397 .name = "fsl-elo-dma",
1398 .owner = THIS_MODULE,
1399 .of_match_table = fsldma_of_ids,
1400 },
1401 .probe = fsldma_of_probe,
1402 .remove = fsldma_of_remove,
1403 };
1404
1405 /*----------------------------------------------------------------------------*/
1406 /* Module Init / Exit */
1407 /*----------------------------------------------------------------------------*/
1408
1409 static __init int fsldma_init(void)
1410 {
1411 pr_info("Freescale Elo series DMA driver\n");
1412 return platform_driver_register(&fsldma_of_driver);
1413 }
1414
1415 static void __exit fsldma_exit(void)
1416 {
1417 platform_driver_unregister(&fsldma_of_driver);
1418 }
1419
1420 subsys_initcall(fsldma_init);
1421 module_exit(fsldma_exit);
1422
1423 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424 MODULE_LICENSE("GPL");