]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/dma/fsldma.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi...
[mirror_ubuntu-jammy-kernel.git] / drivers / dma / fsldma.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale MPC85xx, MPC83xx DMA Engine support
4 *
5 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
6 *
7 * Author:
8 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
9 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
10 *
11 * Description:
12 * DMA engine driver for Freescale MPC8540 DMA controller, which is
13 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
14 * The support for MPC8349 DMA controller is also added.
15 *
16 * This driver instructs the DMA controller to issue the PCI Read Multiple
17 * command for PCI read operations, instead of using the default PCI Read Line
18 * command. Please be aware that this setting may result in read pre-fetching
19 * on some platforms.
20 */
21
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/dmaengine.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/fsldma.h>
35 #include "dmaengine.h"
36 #include "fsldma.h"
37
38 #define chan_dbg(chan, fmt, arg...) \
39 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
40 #define chan_err(chan, fmt, arg...) \
41 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
42
43 static const char msg_ld_oom[] = "No free memory for link descriptor";
44
45 /*
46 * Register Helpers
47 */
48
49 static void set_sr(struct fsldma_chan *chan, u32 val)
50 {
51 FSL_DMA_OUT(chan, &chan->regs->sr, val, 32);
52 }
53
54 static u32 get_sr(struct fsldma_chan *chan)
55 {
56 return FSL_DMA_IN(chan, &chan->regs->sr, 32);
57 }
58
59 static void set_mr(struct fsldma_chan *chan, u32 val)
60 {
61 FSL_DMA_OUT(chan, &chan->regs->mr, val, 32);
62 }
63
64 static u32 get_mr(struct fsldma_chan *chan)
65 {
66 return FSL_DMA_IN(chan, &chan->regs->mr, 32);
67 }
68
69 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
70 {
71 FSL_DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
72 }
73
74 static dma_addr_t get_cdar(struct fsldma_chan *chan)
75 {
76 return FSL_DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
77 }
78
79 static void set_bcr(struct fsldma_chan *chan, u32 val)
80 {
81 FSL_DMA_OUT(chan, &chan->regs->bcr, val, 32);
82 }
83
84 static u32 get_bcr(struct fsldma_chan *chan)
85 {
86 return FSL_DMA_IN(chan, &chan->regs->bcr, 32);
87 }
88
89 /*
90 * Descriptor Helpers
91 */
92
93 static void set_desc_cnt(struct fsldma_chan *chan,
94 struct fsl_dma_ld_hw *hw, u32 count)
95 {
96 hw->count = CPU_TO_DMA(chan, count, 32);
97 }
98
99 static void set_desc_src(struct fsldma_chan *chan,
100 struct fsl_dma_ld_hw *hw, dma_addr_t src)
101 {
102 u64 snoop_bits;
103
104 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
105 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
106 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
107 }
108
109 static void set_desc_dst(struct fsldma_chan *chan,
110 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
111 {
112 u64 snoop_bits;
113
114 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
115 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
116 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
117 }
118
119 static void set_desc_next(struct fsldma_chan *chan,
120 struct fsl_dma_ld_hw *hw, dma_addr_t next)
121 {
122 u64 snoop_bits;
123
124 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
125 ? FSL_DMA_SNEN : 0;
126 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
127 }
128
129 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
130 {
131 u64 snoop_bits;
132
133 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
134 ? FSL_DMA_SNEN : 0;
135
136 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
137 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
138 | snoop_bits, 64);
139 }
140
141 /*
142 * DMA Engine Hardware Control Helpers
143 */
144
145 static void dma_init(struct fsldma_chan *chan)
146 {
147 /* Reset the channel */
148 set_mr(chan, 0);
149
150 switch (chan->feature & FSL_DMA_IP_MASK) {
151 case FSL_DMA_IP_85XX:
152 /* Set the channel to below modes:
153 * EIE - Error interrupt enable
154 * EOLNIE - End of links interrupt enable
155 * BWC - Bandwidth sharing among channels
156 */
157 set_mr(chan, FSL_DMA_MR_BWC | FSL_DMA_MR_EIE
158 | FSL_DMA_MR_EOLNIE);
159 break;
160 case FSL_DMA_IP_83XX:
161 /* Set the channel to below modes:
162 * EOTIE - End-of-transfer interrupt enable
163 * PRC_RM - PCI read multiple
164 */
165 set_mr(chan, FSL_DMA_MR_EOTIE | FSL_DMA_MR_PRC_RM);
166 break;
167 }
168 }
169
170 static int dma_is_idle(struct fsldma_chan *chan)
171 {
172 u32 sr = get_sr(chan);
173 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
174 }
175
176 /*
177 * Start the DMA controller
178 *
179 * Preconditions:
180 * - the CDAR register must point to the start descriptor
181 * - the MRn[CS] bit must be cleared
182 */
183 static void dma_start(struct fsldma_chan *chan)
184 {
185 u32 mode;
186
187 mode = get_mr(chan);
188
189 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
190 set_bcr(chan, 0);
191 mode |= FSL_DMA_MR_EMP_EN;
192 } else {
193 mode &= ~FSL_DMA_MR_EMP_EN;
194 }
195
196 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
197 mode |= FSL_DMA_MR_EMS_EN;
198 } else {
199 mode &= ~FSL_DMA_MR_EMS_EN;
200 mode |= FSL_DMA_MR_CS;
201 }
202
203 set_mr(chan, mode);
204 }
205
206 static void dma_halt(struct fsldma_chan *chan)
207 {
208 u32 mode;
209 int i;
210
211 /* read the mode register */
212 mode = get_mr(chan);
213
214 /*
215 * The 85xx controller supports channel abort, which will stop
216 * the current transfer. On 83xx, this bit is the transfer error
217 * mask bit, which should not be changed.
218 */
219 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
220 mode |= FSL_DMA_MR_CA;
221 set_mr(chan, mode);
222
223 mode &= ~FSL_DMA_MR_CA;
224 }
225
226 /* stop the DMA controller */
227 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
228 set_mr(chan, mode);
229
230 /* wait for the DMA controller to become idle */
231 for (i = 0; i < 100; i++) {
232 if (dma_is_idle(chan))
233 return;
234
235 udelay(10);
236 }
237
238 if (!dma_is_idle(chan))
239 chan_err(chan, "DMA halt timeout!\n");
240 }
241
242 /**
243 * fsl_chan_set_src_loop_size - Set source address hold transfer size
244 * @chan : Freescale DMA channel
245 * @size : Address loop size, 0 for disable loop
246 *
247 * The set source address hold transfer size. The source
248 * address hold or loop transfer size is when the DMA transfer
249 * data from source address (SA), if the loop size is 4, the DMA will
250 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
251 * SA + 1 ... and so on.
252 */
253 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
254 {
255 u32 mode;
256
257 mode = get_mr(chan);
258
259 switch (size) {
260 case 0:
261 mode &= ~FSL_DMA_MR_SAHE;
262 break;
263 case 1:
264 case 2:
265 case 4:
266 case 8:
267 mode &= ~FSL_DMA_MR_SAHTS_MASK;
268 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
269 break;
270 }
271
272 set_mr(chan, mode);
273 }
274
275 /**
276 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
277 * @chan : Freescale DMA channel
278 * @size : Address loop size, 0 for disable loop
279 *
280 * The set destination address hold transfer size. The destination
281 * address hold or loop transfer size is when the DMA transfer
282 * data to destination address (TA), if the loop size is 4, the DMA will
283 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
284 * TA + 1 ... and so on.
285 */
286 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
287 {
288 u32 mode;
289
290 mode = get_mr(chan);
291
292 switch (size) {
293 case 0:
294 mode &= ~FSL_DMA_MR_DAHE;
295 break;
296 case 1:
297 case 2:
298 case 4:
299 case 8:
300 mode &= ~FSL_DMA_MR_DAHTS_MASK;
301 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
302 break;
303 }
304
305 set_mr(chan, mode);
306 }
307
308 /**
309 * fsl_chan_set_request_count - Set DMA Request Count for external control
310 * @chan : Freescale DMA channel
311 * @size : Number of bytes to transfer in a single request
312 *
313 * The Freescale DMA channel can be controlled by the external signal DREQ#.
314 * The DMA request count is how many bytes are allowed to transfer before
315 * pausing the channel, after which a new assertion of DREQ# resumes channel
316 * operation.
317 *
318 * A size of 0 disables external pause control. The maximum size is 1024.
319 */
320 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
321 {
322 u32 mode;
323
324 BUG_ON(size > 1024);
325
326 mode = get_mr(chan);
327 mode &= ~FSL_DMA_MR_BWC_MASK;
328 mode |= (__ilog2(size) << 24) & FSL_DMA_MR_BWC_MASK;
329
330 set_mr(chan, mode);
331 }
332
333 /**
334 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
335 * @chan : Freescale DMA channel
336 * @enable : 0 is disabled, 1 is enabled.
337 *
338 * The Freescale DMA channel can be controlled by the external signal DREQ#.
339 * The DMA Request Count feature should be used in addition to this feature
340 * to set the number of bytes to transfer before pausing the channel.
341 */
342 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
343 {
344 if (enable)
345 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
346 else
347 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
348 }
349
350 /**
351 * fsl_chan_toggle_ext_start - Toggle channel external start status
352 * @chan : Freescale DMA channel
353 * @enable : 0 is disabled, 1 is enabled.
354 *
355 * If enable the external start, the channel can be started by an
356 * external DMA start pin. So the dma_start() does not start the
357 * transfer immediately. The DMA channel will wait for the
358 * control pin asserted.
359 */
360 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
361 {
362 if (enable)
363 chan->feature |= FSL_DMA_CHAN_START_EXT;
364 else
365 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
366 }
367
368 int fsl_dma_external_start(struct dma_chan *dchan, int enable)
369 {
370 struct fsldma_chan *chan;
371
372 if (!dchan)
373 return -EINVAL;
374
375 chan = to_fsl_chan(dchan);
376
377 fsl_chan_toggle_ext_start(chan, enable);
378 return 0;
379 }
380 EXPORT_SYMBOL_GPL(fsl_dma_external_start);
381
382 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
383 {
384 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
385
386 if (list_empty(&chan->ld_pending))
387 goto out_splice;
388
389 /*
390 * Add the hardware descriptor to the chain of hardware descriptors
391 * that already exists in memory.
392 *
393 * This will un-set the EOL bit of the existing transaction, and the
394 * last link in this transaction will become the EOL descriptor.
395 */
396 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
397
398 /*
399 * Add the software descriptor and all children to the list
400 * of pending transactions
401 */
402 out_splice:
403 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
404 }
405
406 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
407 {
408 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
409 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
410 struct fsl_desc_sw *child;
411 dma_cookie_t cookie = -EINVAL;
412
413 spin_lock_bh(&chan->desc_lock);
414
415 #ifdef CONFIG_PM
416 if (unlikely(chan->pm_state != RUNNING)) {
417 chan_dbg(chan, "cannot submit due to suspend\n");
418 spin_unlock_bh(&chan->desc_lock);
419 return -1;
420 }
421 #endif
422
423 /*
424 * assign cookies to all of the software descriptors
425 * that make up this transaction
426 */
427 list_for_each_entry(child, &desc->tx_list, node) {
428 cookie = dma_cookie_assign(&child->async_tx);
429 }
430
431 /* put this transaction onto the tail of the pending queue */
432 append_ld_queue(chan, desc);
433
434 spin_unlock_bh(&chan->desc_lock);
435
436 return cookie;
437 }
438
439 /**
440 * fsl_dma_free_descriptor - Free descriptor from channel's DMA pool.
441 * @chan : Freescale DMA channel
442 * @desc: descriptor to be freed
443 */
444 static void fsl_dma_free_descriptor(struct fsldma_chan *chan,
445 struct fsl_desc_sw *desc)
446 {
447 list_del(&desc->node);
448 chan_dbg(chan, "LD %p free\n", desc);
449 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
450 }
451
452 /**
453 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
454 * @chan : Freescale DMA channel
455 *
456 * Return - The descriptor allocated. NULL for failed.
457 */
458 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
459 {
460 struct fsl_desc_sw *desc;
461 dma_addr_t pdesc;
462
463 desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
464 if (!desc) {
465 chan_dbg(chan, "out of memory for link descriptor\n");
466 return NULL;
467 }
468
469 INIT_LIST_HEAD(&desc->tx_list);
470 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
471 desc->async_tx.tx_submit = fsl_dma_tx_submit;
472 desc->async_tx.phys = pdesc;
473
474 chan_dbg(chan, "LD %p allocated\n", desc);
475
476 return desc;
477 }
478
479 /**
480 * fsldma_clean_completed_descriptor - free all descriptors which
481 * has been completed and acked
482 * @chan: Freescale DMA channel
483 *
484 * This function is used on all completed and acked descriptors.
485 * All descriptors should only be freed in this function.
486 */
487 static void fsldma_clean_completed_descriptor(struct fsldma_chan *chan)
488 {
489 struct fsl_desc_sw *desc, *_desc;
490
491 /* Run the callback for each descriptor, in order */
492 list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node)
493 if (async_tx_test_ack(&desc->async_tx))
494 fsl_dma_free_descriptor(chan, desc);
495 }
496
497 /**
498 * fsldma_run_tx_complete_actions - cleanup a single link descriptor
499 * @chan: Freescale DMA channel
500 * @desc: descriptor to cleanup and free
501 * @cookie: Freescale DMA transaction identifier
502 *
503 * This function is used on a descriptor which has been executed by the DMA
504 * controller. It will run any callbacks, submit any dependencies.
505 */
506 static dma_cookie_t fsldma_run_tx_complete_actions(struct fsldma_chan *chan,
507 struct fsl_desc_sw *desc, dma_cookie_t cookie)
508 {
509 struct dma_async_tx_descriptor *txd = &desc->async_tx;
510 dma_cookie_t ret = cookie;
511
512 BUG_ON(txd->cookie < 0);
513
514 if (txd->cookie > 0) {
515 ret = txd->cookie;
516
517 dma_descriptor_unmap(txd);
518 /* Run the link descriptor callback function */
519 dmaengine_desc_get_callback_invoke(txd, NULL);
520 }
521
522 /* Run any dependencies */
523 dma_run_dependencies(txd);
524
525 return ret;
526 }
527
528 /**
529 * fsldma_clean_running_descriptor - move the completed descriptor from
530 * ld_running to ld_completed
531 * @chan: Freescale DMA channel
532 * @desc: the descriptor which is completed
533 *
534 * Free the descriptor directly if acked by async_tx api, or move it to
535 * queue ld_completed.
536 */
537 static void fsldma_clean_running_descriptor(struct fsldma_chan *chan,
538 struct fsl_desc_sw *desc)
539 {
540 /* Remove from the list of transactions */
541 list_del(&desc->node);
542
543 /*
544 * the client is allowed to attach dependent operations
545 * until 'ack' is set
546 */
547 if (!async_tx_test_ack(&desc->async_tx)) {
548 /*
549 * Move this descriptor to the list of descriptors which is
550 * completed, but still awaiting the 'ack' bit to be set.
551 */
552 list_add_tail(&desc->node, &chan->ld_completed);
553 return;
554 }
555
556 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
557 }
558
559 /**
560 * fsl_chan_xfer_ld_queue - transfer any pending transactions
561 * @chan : Freescale DMA channel
562 *
563 * HARDWARE STATE: idle
564 * LOCKING: must hold chan->desc_lock
565 */
566 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
567 {
568 struct fsl_desc_sw *desc;
569
570 /*
571 * If the list of pending descriptors is empty, then we
572 * don't need to do any work at all
573 */
574 if (list_empty(&chan->ld_pending)) {
575 chan_dbg(chan, "no pending LDs\n");
576 return;
577 }
578
579 /*
580 * The DMA controller is not idle, which means that the interrupt
581 * handler will start any queued transactions when it runs after
582 * this transaction finishes
583 */
584 if (!chan->idle) {
585 chan_dbg(chan, "DMA controller still busy\n");
586 return;
587 }
588
589 /*
590 * If there are some link descriptors which have not been
591 * transferred, we need to start the controller
592 */
593
594 /*
595 * Move all elements from the queue of pending transactions
596 * onto the list of running transactions
597 */
598 chan_dbg(chan, "idle, starting controller\n");
599 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
600 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
601
602 /*
603 * The 85xx DMA controller doesn't clear the channel start bit
604 * automatically at the end of a transfer. Therefore we must clear
605 * it in software before starting the transfer.
606 */
607 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
608 u32 mode;
609
610 mode = get_mr(chan);
611 mode &= ~FSL_DMA_MR_CS;
612 set_mr(chan, mode);
613 }
614
615 /*
616 * Program the descriptor's address into the DMA controller,
617 * then start the DMA transaction
618 */
619 set_cdar(chan, desc->async_tx.phys);
620 get_cdar(chan);
621
622 dma_start(chan);
623 chan->idle = false;
624 }
625
626 /**
627 * fsldma_cleanup_descriptors - cleanup link descriptors which are completed
628 * and move them to ld_completed to free until flag 'ack' is set
629 * @chan: Freescale DMA channel
630 *
631 * This function is used on descriptors which have been executed by the DMA
632 * controller. It will run any callbacks, submit any dependencies, then
633 * free these descriptors if flag 'ack' is set.
634 */
635 static void fsldma_cleanup_descriptors(struct fsldma_chan *chan)
636 {
637 struct fsl_desc_sw *desc, *_desc;
638 dma_cookie_t cookie = 0;
639 dma_addr_t curr_phys = get_cdar(chan);
640 int seen_current = 0;
641
642 fsldma_clean_completed_descriptor(chan);
643
644 /* Run the callback for each descriptor, in order */
645 list_for_each_entry_safe(desc, _desc, &chan->ld_running, node) {
646 /*
647 * do not advance past the current descriptor loaded into the
648 * hardware channel, subsequent descriptors are either in
649 * process or have not been submitted
650 */
651 if (seen_current)
652 break;
653
654 /*
655 * stop the search if we reach the current descriptor and the
656 * channel is busy
657 */
658 if (desc->async_tx.phys == curr_phys) {
659 seen_current = 1;
660 if (!dma_is_idle(chan))
661 break;
662 }
663
664 cookie = fsldma_run_tx_complete_actions(chan, desc, cookie);
665
666 fsldma_clean_running_descriptor(chan, desc);
667 }
668
669 /*
670 * Start any pending transactions automatically
671 *
672 * In the ideal case, we keep the DMA controller busy while we go
673 * ahead and free the descriptors below.
674 */
675 fsl_chan_xfer_ld_queue(chan);
676
677 if (cookie > 0)
678 chan->common.completed_cookie = cookie;
679 }
680
681 /**
682 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
683 * @chan : Freescale DMA channel
684 *
685 * This function will create a dma pool for descriptor allocation.
686 *
687 * Return - The number of descriptors allocated.
688 */
689 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
690 {
691 struct fsldma_chan *chan = to_fsl_chan(dchan);
692
693 /* Has this channel already been allocated? */
694 if (chan->desc_pool)
695 return 1;
696
697 /*
698 * We need the descriptor to be aligned to 32bytes
699 * for meeting FSL DMA specification requirement.
700 */
701 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
702 sizeof(struct fsl_desc_sw),
703 __alignof__(struct fsl_desc_sw), 0);
704 if (!chan->desc_pool) {
705 chan_err(chan, "unable to allocate descriptor pool\n");
706 return -ENOMEM;
707 }
708
709 /* there is at least one descriptor free to be allocated */
710 return 1;
711 }
712
713 /**
714 * fsldma_free_desc_list - Free all descriptors in a queue
715 * @chan: Freescae DMA channel
716 * @list: the list to free
717 *
718 * LOCKING: must hold chan->desc_lock
719 */
720 static void fsldma_free_desc_list(struct fsldma_chan *chan,
721 struct list_head *list)
722 {
723 struct fsl_desc_sw *desc, *_desc;
724
725 list_for_each_entry_safe(desc, _desc, list, node)
726 fsl_dma_free_descriptor(chan, desc);
727 }
728
729 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
730 struct list_head *list)
731 {
732 struct fsl_desc_sw *desc, *_desc;
733
734 list_for_each_entry_safe_reverse(desc, _desc, list, node)
735 fsl_dma_free_descriptor(chan, desc);
736 }
737
738 /**
739 * fsl_dma_free_chan_resources - Free all resources of the channel.
740 * @chan : Freescale DMA channel
741 */
742 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
743 {
744 struct fsldma_chan *chan = to_fsl_chan(dchan);
745
746 chan_dbg(chan, "free all channel resources\n");
747 spin_lock_bh(&chan->desc_lock);
748 fsldma_cleanup_descriptors(chan);
749 fsldma_free_desc_list(chan, &chan->ld_pending);
750 fsldma_free_desc_list(chan, &chan->ld_running);
751 fsldma_free_desc_list(chan, &chan->ld_completed);
752 spin_unlock_bh(&chan->desc_lock);
753
754 dma_pool_destroy(chan->desc_pool);
755 chan->desc_pool = NULL;
756 }
757
758 static struct dma_async_tx_descriptor *
759 fsl_dma_prep_memcpy(struct dma_chan *dchan,
760 dma_addr_t dma_dst, dma_addr_t dma_src,
761 size_t len, unsigned long flags)
762 {
763 struct fsldma_chan *chan;
764 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
765 size_t copy;
766
767 if (!dchan)
768 return NULL;
769
770 if (!len)
771 return NULL;
772
773 chan = to_fsl_chan(dchan);
774
775 do {
776
777 /* Allocate the link descriptor from DMA pool */
778 new = fsl_dma_alloc_descriptor(chan);
779 if (!new) {
780 chan_err(chan, "%s\n", msg_ld_oom);
781 goto fail;
782 }
783
784 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
785
786 set_desc_cnt(chan, &new->hw, copy);
787 set_desc_src(chan, &new->hw, dma_src);
788 set_desc_dst(chan, &new->hw, dma_dst);
789
790 if (!first)
791 first = new;
792 else
793 set_desc_next(chan, &prev->hw, new->async_tx.phys);
794
795 new->async_tx.cookie = 0;
796 async_tx_ack(&new->async_tx);
797
798 prev = new;
799 len -= copy;
800 dma_src += copy;
801 dma_dst += copy;
802
803 /* Insert the link descriptor to the LD ring */
804 list_add_tail(&new->node, &first->tx_list);
805 } while (len);
806
807 new->async_tx.flags = flags; /* client is in control of this ack */
808 new->async_tx.cookie = -EBUSY;
809
810 /* Set End-of-link to the last link descriptor of new list */
811 set_ld_eol(chan, new);
812
813 return &first->async_tx;
814
815 fail:
816 if (!first)
817 return NULL;
818
819 fsldma_free_desc_list_reverse(chan, &first->tx_list);
820 return NULL;
821 }
822
823 static int fsl_dma_device_terminate_all(struct dma_chan *dchan)
824 {
825 struct fsldma_chan *chan;
826
827 if (!dchan)
828 return -EINVAL;
829
830 chan = to_fsl_chan(dchan);
831
832 spin_lock_bh(&chan->desc_lock);
833
834 /* Halt the DMA engine */
835 dma_halt(chan);
836
837 /* Remove and free all of the descriptors in the LD queue */
838 fsldma_free_desc_list(chan, &chan->ld_pending);
839 fsldma_free_desc_list(chan, &chan->ld_running);
840 fsldma_free_desc_list(chan, &chan->ld_completed);
841 chan->idle = true;
842
843 spin_unlock_bh(&chan->desc_lock);
844 return 0;
845 }
846
847 static int fsl_dma_device_config(struct dma_chan *dchan,
848 struct dma_slave_config *config)
849 {
850 struct fsldma_chan *chan;
851 int size;
852
853 if (!dchan)
854 return -EINVAL;
855
856 chan = to_fsl_chan(dchan);
857
858 /* make sure the channel supports setting burst size */
859 if (!chan->set_request_count)
860 return -ENXIO;
861
862 /* we set the controller burst size depending on direction */
863 if (config->direction == DMA_MEM_TO_DEV)
864 size = config->dst_addr_width * config->dst_maxburst;
865 else
866 size = config->src_addr_width * config->src_maxburst;
867
868 chan->set_request_count(chan, size);
869 return 0;
870 }
871
872
873 /**
874 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
875 * @chan : Freescale DMA channel
876 */
877 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
878 {
879 struct fsldma_chan *chan = to_fsl_chan(dchan);
880
881 spin_lock_bh(&chan->desc_lock);
882 fsl_chan_xfer_ld_queue(chan);
883 spin_unlock_bh(&chan->desc_lock);
884 }
885
886 /**
887 * fsl_tx_status - Determine the DMA status
888 * @chan : Freescale DMA channel
889 */
890 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
891 dma_cookie_t cookie,
892 struct dma_tx_state *txstate)
893 {
894 struct fsldma_chan *chan = to_fsl_chan(dchan);
895 enum dma_status ret;
896
897 ret = dma_cookie_status(dchan, cookie, txstate);
898 if (ret == DMA_COMPLETE)
899 return ret;
900
901 spin_lock_bh(&chan->desc_lock);
902 fsldma_cleanup_descriptors(chan);
903 spin_unlock_bh(&chan->desc_lock);
904
905 return dma_cookie_status(dchan, cookie, txstate);
906 }
907
908 /*----------------------------------------------------------------------------*/
909 /* Interrupt Handling */
910 /*----------------------------------------------------------------------------*/
911
912 static irqreturn_t fsldma_chan_irq(int irq, void *data)
913 {
914 struct fsldma_chan *chan = data;
915 u32 stat;
916
917 /* save and clear the status register */
918 stat = get_sr(chan);
919 set_sr(chan, stat);
920 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
921
922 /* check that this was really our device */
923 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
924 if (!stat)
925 return IRQ_NONE;
926
927 if (stat & FSL_DMA_SR_TE)
928 chan_err(chan, "Transfer Error!\n");
929
930 /*
931 * Programming Error
932 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
933 * trigger a PE interrupt.
934 */
935 if (stat & FSL_DMA_SR_PE) {
936 chan_dbg(chan, "irq: Programming Error INT\n");
937 stat &= ~FSL_DMA_SR_PE;
938 if (get_bcr(chan) != 0)
939 chan_err(chan, "Programming Error!\n");
940 }
941
942 /*
943 * For MPC8349, EOCDI event need to update cookie
944 * and start the next transfer if it exist.
945 */
946 if (stat & FSL_DMA_SR_EOCDI) {
947 chan_dbg(chan, "irq: End-of-Chain link INT\n");
948 stat &= ~FSL_DMA_SR_EOCDI;
949 }
950
951 /*
952 * If it current transfer is the end-of-transfer,
953 * we should clear the Channel Start bit for
954 * prepare next transfer.
955 */
956 if (stat & FSL_DMA_SR_EOLNI) {
957 chan_dbg(chan, "irq: End-of-link INT\n");
958 stat &= ~FSL_DMA_SR_EOLNI;
959 }
960
961 /* check that the DMA controller is really idle */
962 if (!dma_is_idle(chan))
963 chan_err(chan, "irq: controller not idle!\n");
964
965 /* check that we handled all of the bits */
966 if (stat)
967 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
968
969 /*
970 * Schedule the tasklet to handle all cleanup of the current
971 * transaction. It will start a new transaction if there is
972 * one pending.
973 */
974 tasklet_schedule(&chan->tasklet);
975 chan_dbg(chan, "irq: Exit\n");
976 return IRQ_HANDLED;
977 }
978
979 static void dma_do_tasklet(unsigned long data)
980 {
981 struct fsldma_chan *chan = (struct fsldma_chan *)data;
982
983 chan_dbg(chan, "tasklet entry\n");
984
985 spin_lock(&chan->desc_lock);
986
987 /* the hardware is now idle and ready for more */
988 chan->idle = true;
989
990 /* Run all cleanup for descriptors which have been completed */
991 fsldma_cleanup_descriptors(chan);
992
993 spin_unlock(&chan->desc_lock);
994
995 chan_dbg(chan, "tasklet exit\n");
996 }
997
998 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
999 {
1000 struct fsldma_device *fdev = data;
1001 struct fsldma_chan *chan;
1002 unsigned int handled = 0;
1003 u32 gsr, mask;
1004 int i;
1005
1006 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1007 : in_le32(fdev->regs);
1008 mask = 0xff000000;
1009 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1010
1011 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1012 chan = fdev->chan[i];
1013 if (!chan)
1014 continue;
1015
1016 if (gsr & mask) {
1017 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1018 fsldma_chan_irq(irq, chan);
1019 handled++;
1020 }
1021
1022 gsr &= ~mask;
1023 mask >>= 8;
1024 }
1025
1026 return IRQ_RETVAL(handled);
1027 }
1028
1029 static void fsldma_free_irqs(struct fsldma_device *fdev)
1030 {
1031 struct fsldma_chan *chan;
1032 int i;
1033
1034 if (fdev->irq) {
1035 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1036 free_irq(fdev->irq, fdev);
1037 return;
1038 }
1039
1040 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1041 chan = fdev->chan[i];
1042 if (chan && chan->irq) {
1043 chan_dbg(chan, "free per-channel IRQ\n");
1044 free_irq(chan->irq, chan);
1045 }
1046 }
1047 }
1048
1049 static int fsldma_request_irqs(struct fsldma_device *fdev)
1050 {
1051 struct fsldma_chan *chan;
1052 int ret;
1053 int i;
1054
1055 /* if we have a per-controller IRQ, use that */
1056 if (fdev->irq) {
1057 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1058 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1059 "fsldma-controller", fdev);
1060 return ret;
1061 }
1062
1063 /* no per-controller IRQ, use the per-channel IRQs */
1064 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1065 chan = fdev->chan[i];
1066 if (!chan)
1067 continue;
1068
1069 if (!chan->irq) {
1070 chan_err(chan, "interrupts property missing in device tree\n");
1071 ret = -ENODEV;
1072 goto out_unwind;
1073 }
1074
1075 chan_dbg(chan, "request per-channel IRQ\n");
1076 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1077 "fsldma-chan", chan);
1078 if (ret) {
1079 chan_err(chan, "unable to request per-channel IRQ\n");
1080 goto out_unwind;
1081 }
1082 }
1083
1084 return 0;
1085
1086 out_unwind:
1087 for (/* none */; i >= 0; i--) {
1088 chan = fdev->chan[i];
1089 if (!chan)
1090 continue;
1091
1092 if (!chan->irq)
1093 continue;
1094
1095 free_irq(chan->irq, chan);
1096 }
1097
1098 return ret;
1099 }
1100
1101 /*----------------------------------------------------------------------------*/
1102 /* OpenFirmware Subsystem */
1103 /*----------------------------------------------------------------------------*/
1104
1105 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1106 struct device_node *node, u32 feature, const char *compatible)
1107 {
1108 struct fsldma_chan *chan;
1109 struct resource res;
1110 int err;
1111
1112 /* alloc channel */
1113 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1114 if (!chan) {
1115 err = -ENOMEM;
1116 goto out_return;
1117 }
1118
1119 /* ioremap registers for use */
1120 chan->regs = of_iomap(node, 0);
1121 if (!chan->regs) {
1122 dev_err(fdev->dev, "unable to ioremap registers\n");
1123 err = -ENOMEM;
1124 goto out_free_chan;
1125 }
1126
1127 err = of_address_to_resource(node, 0, &res);
1128 if (err) {
1129 dev_err(fdev->dev, "unable to find 'reg' property\n");
1130 goto out_iounmap_regs;
1131 }
1132
1133 chan->feature = feature;
1134 if (!fdev->feature)
1135 fdev->feature = chan->feature;
1136
1137 /*
1138 * If the DMA device's feature is different than the feature
1139 * of its channels, report the bug
1140 */
1141 WARN_ON(fdev->feature != chan->feature);
1142
1143 chan->dev = fdev->dev;
1144 chan->id = (res.start & 0xfff) < 0x300 ?
1145 ((res.start - 0x100) & 0xfff) >> 7 :
1146 ((res.start - 0x200) & 0xfff) >> 7;
1147 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1148 dev_err(fdev->dev, "too many channels for device\n");
1149 err = -EINVAL;
1150 goto out_iounmap_regs;
1151 }
1152
1153 fdev->chan[chan->id] = chan;
1154 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1155 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1156
1157 /* Initialize the channel */
1158 dma_init(chan);
1159
1160 /* Clear cdar registers */
1161 set_cdar(chan, 0);
1162
1163 switch (chan->feature & FSL_DMA_IP_MASK) {
1164 case FSL_DMA_IP_85XX:
1165 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1166 /* Fall through */
1167 case FSL_DMA_IP_83XX:
1168 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1169 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1170 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1171 chan->set_request_count = fsl_chan_set_request_count;
1172 }
1173
1174 spin_lock_init(&chan->desc_lock);
1175 INIT_LIST_HEAD(&chan->ld_pending);
1176 INIT_LIST_HEAD(&chan->ld_running);
1177 INIT_LIST_HEAD(&chan->ld_completed);
1178 chan->idle = true;
1179 #ifdef CONFIG_PM
1180 chan->pm_state = RUNNING;
1181 #endif
1182
1183 chan->common.device = &fdev->common;
1184 dma_cookie_init(&chan->common);
1185
1186 /* find the IRQ line, if it exists in the device tree */
1187 chan->irq = irq_of_parse_and_map(node, 0);
1188
1189 /* Add the channel to DMA device channel list */
1190 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1191
1192 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1193 chan->irq ? chan->irq : fdev->irq);
1194
1195 return 0;
1196
1197 out_iounmap_regs:
1198 iounmap(chan->regs);
1199 out_free_chan:
1200 kfree(chan);
1201 out_return:
1202 return err;
1203 }
1204
1205 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1206 {
1207 irq_dispose_mapping(chan->irq);
1208 list_del(&chan->common.device_node);
1209 iounmap(chan->regs);
1210 kfree(chan);
1211 }
1212
1213 static int fsldma_of_probe(struct platform_device *op)
1214 {
1215 struct fsldma_device *fdev;
1216 struct device_node *child;
1217 int err;
1218
1219 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1220 if (!fdev) {
1221 err = -ENOMEM;
1222 goto out_return;
1223 }
1224
1225 fdev->dev = &op->dev;
1226 INIT_LIST_HEAD(&fdev->common.channels);
1227
1228 /* ioremap the registers for use */
1229 fdev->regs = of_iomap(op->dev.of_node, 0);
1230 if (!fdev->regs) {
1231 dev_err(&op->dev, "unable to ioremap registers\n");
1232 err = -ENOMEM;
1233 goto out_free;
1234 }
1235
1236 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1237 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1238
1239 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1240 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1241 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1242 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1243 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1244 fdev->common.device_tx_status = fsl_tx_status;
1245 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1246 fdev->common.device_config = fsl_dma_device_config;
1247 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1248 fdev->common.dev = &op->dev;
1249
1250 fdev->common.src_addr_widths = FSL_DMA_BUSWIDTHS;
1251 fdev->common.dst_addr_widths = FSL_DMA_BUSWIDTHS;
1252 fdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1253 fdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1254
1255 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1256
1257 platform_set_drvdata(op, fdev);
1258
1259 /*
1260 * We cannot use of_platform_bus_probe() because there is no
1261 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1262 * channel object.
1263 */
1264 for_each_child_of_node(op->dev.of_node, child) {
1265 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1266 fsl_dma_chan_probe(fdev, child,
1267 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1268 "fsl,eloplus-dma-channel");
1269 }
1270
1271 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1272 fsl_dma_chan_probe(fdev, child,
1273 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1274 "fsl,elo-dma-channel");
1275 }
1276 }
1277
1278 /*
1279 * Hookup the IRQ handler(s)
1280 *
1281 * If we have a per-controller interrupt, we prefer that to the
1282 * per-channel interrupts to reduce the number of shared interrupt
1283 * handlers on the same IRQ line
1284 */
1285 err = fsldma_request_irqs(fdev);
1286 if (err) {
1287 dev_err(fdev->dev, "unable to request IRQs\n");
1288 goto out_free_fdev;
1289 }
1290
1291 dma_async_device_register(&fdev->common);
1292 return 0;
1293
1294 out_free_fdev:
1295 irq_dispose_mapping(fdev->irq);
1296 iounmap(fdev->regs);
1297 out_free:
1298 kfree(fdev);
1299 out_return:
1300 return err;
1301 }
1302
1303 static int fsldma_of_remove(struct platform_device *op)
1304 {
1305 struct fsldma_device *fdev;
1306 unsigned int i;
1307
1308 fdev = platform_get_drvdata(op);
1309 dma_async_device_unregister(&fdev->common);
1310
1311 fsldma_free_irqs(fdev);
1312
1313 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1314 if (fdev->chan[i])
1315 fsl_dma_chan_remove(fdev->chan[i]);
1316 }
1317
1318 iounmap(fdev->regs);
1319 kfree(fdev);
1320
1321 return 0;
1322 }
1323
1324 #ifdef CONFIG_PM
1325 static int fsldma_suspend_late(struct device *dev)
1326 {
1327 struct fsldma_device *fdev = dev_get_drvdata(dev);
1328 struct fsldma_chan *chan;
1329 int i;
1330
1331 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1332 chan = fdev->chan[i];
1333 if (!chan)
1334 continue;
1335
1336 spin_lock_bh(&chan->desc_lock);
1337 if (unlikely(!chan->idle))
1338 goto out;
1339 chan->regs_save.mr = get_mr(chan);
1340 chan->pm_state = SUSPENDED;
1341 spin_unlock_bh(&chan->desc_lock);
1342 }
1343 return 0;
1344
1345 out:
1346 for (; i >= 0; i--) {
1347 chan = fdev->chan[i];
1348 if (!chan)
1349 continue;
1350 chan->pm_state = RUNNING;
1351 spin_unlock_bh(&chan->desc_lock);
1352 }
1353 return -EBUSY;
1354 }
1355
1356 static int fsldma_resume_early(struct device *dev)
1357 {
1358 struct fsldma_device *fdev = dev_get_drvdata(dev);
1359 struct fsldma_chan *chan;
1360 u32 mode;
1361 int i;
1362
1363 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1364 chan = fdev->chan[i];
1365 if (!chan)
1366 continue;
1367
1368 spin_lock_bh(&chan->desc_lock);
1369 mode = chan->regs_save.mr
1370 & ~FSL_DMA_MR_CS & ~FSL_DMA_MR_CC & ~FSL_DMA_MR_CA;
1371 set_mr(chan, mode);
1372 chan->pm_state = RUNNING;
1373 spin_unlock_bh(&chan->desc_lock);
1374 }
1375
1376 return 0;
1377 }
1378
1379 static const struct dev_pm_ops fsldma_pm_ops = {
1380 .suspend_late = fsldma_suspend_late,
1381 .resume_early = fsldma_resume_early,
1382 };
1383 #endif
1384
1385 static const struct of_device_id fsldma_of_ids[] = {
1386 { .compatible = "fsl,elo3-dma", },
1387 { .compatible = "fsl,eloplus-dma", },
1388 { .compatible = "fsl,elo-dma", },
1389 {}
1390 };
1391 MODULE_DEVICE_TABLE(of, fsldma_of_ids);
1392
1393 static struct platform_driver fsldma_of_driver = {
1394 .driver = {
1395 .name = "fsl-elo-dma",
1396 .of_match_table = fsldma_of_ids,
1397 #ifdef CONFIG_PM
1398 .pm = &fsldma_pm_ops,
1399 #endif
1400 },
1401 .probe = fsldma_of_probe,
1402 .remove = fsldma_of_remove,
1403 };
1404
1405 /*----------------------------------------------------------------------------*/
1406 /* Module Init / Exit */
1407 /*----------------------------------------------------------------------------*/
1408
1409 static __init int fsldma_init(void)
1410 {
1411 pr_info("Freescale Elo series DMA driver\n");
1412 return platform_driver_register(&fsldma_of_driver);
1413 }
1414
1415 static void __exit fsldma_exit(void)
1416 {
1417 platform_driver_unregister(&fsldma_of_driver);
1418 }
1419
1420 subsys_initcall(fsldma_init);
1421 module_exit(fsldma_exit);
1422
1423 MODULE_DESCRIPTION("Freescale Elo series DMA driver");
1424 MODULE_LICENSE("GPL");