]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/imx-sdma.c
Merge branch 'fixes' into next
[mirror_ubuntu-artful-kernel.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77
78 /*
79 * Buffer descriptor status values.
80 */
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
88
89 /*
90 * Data Node descriptor status values.
91 */
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
96
97 /*
98 * IPCV2 descriptor status values.
99 */
100 #define BD_IPCV2_END_OF_FRAME 0x40
101
102 #define IPCV2_MAX_NODES 50
103 /*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107 #define DATA_ERROR 0x10000000
108
109 /*
110 * Buffer descriptor commands.
111 */
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
121 /*
122 * Change endianness indicator in the BD command field
123 */
124 #define CHANGE_ENDIANNESS 0x80
125
126 /*
127 * Mode/Count of data node descriptors - IPCv2
128 */
129 struct sdma_mode_count {
130 u32 count : 16; /* size of the buffer pointed by this BD */
131 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
132 u32 command : 8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136 * Buffer descriptor
137 */
138 struct sdma_buffer_descriptor {
139 struct sdma_mode_count mode;
140 u32 buffer_addr; /* address of the buffer described */
141 u32 ext_buffer_addr; /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145 * struct sdma_channel_control - Channel control Block
146 *
147 * @current_bd_ptr current buffer descriptor processed
148 * @base_bd_ptr first element of buffer descriptor array
149 * @unused padding. The SDMA engine expects an array of 128 byte
150 * control blocks
151 */
152 struct sdma_channel_control {
153 u32 current_bd_ptr;
154 u32 base_bd_ptr;
155 u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159 * struct sdma_state_registers - SDMA context for a channel
160 *
161 * @pc: program counter
162 * @t: test bit: status of arithmetic & test instruction
163 * @rpc: return program counter
164 * @sf: source fault while loading data
165 * @spc: loop start program counter
166 * @df: destination fault while storing data
167 * @epc: loop end program counter
168 * @lm: loop mode
169 */
170 struct sdma_state_registers {
171 u32 pc :14;
172 u32 unused1: 1;
173 u32 t : 1;
174 u32 rpc :14;
175 u32 unused0: 1;
176 u32 sf : 1;
177 u32 spc :14;
178 u32 unused2: 1;
179 u32 df : 1;
180 u32 epc :14;
181 u32 lm : 2;
182 } __attribute__ ((packed));
183
184 /**
185 * struct sdma_context_data - sdma context specific to a channel
186 *
187 * @channel_state: channel state bits
188 * @gReg: general registers
189 * @mda: burst dma destination address register
190 * @msa: burst dma source address register
191 * @ms: burst dma status register
192 * @md: burst dma data register
193 * @pda: peripheral dma destination address register
194 * @psa: peripheral dma source address register
195 * @ps: peripheral dma status register
196 * @pd: peripheral dma data register
197 * @ca: CRC polynomial register
198 * @cs: CRC accumulator register
199 * @dda: dedicated core destination address register
200 * @dsa: dedicated core source address register
201 * @ds: dedicated core status register
202 * @dd: dedicated core data register
203 */
204 struct sdma_context_data {
205 struct sdma_state_registers channel_state;
206 u32 gReg[8];
207 u32 mda;
208 u32 msa;
209 u32 ms;
210 u32 md;
211 u32 pda;
212 u32 psa;
213 u32 ps;
214 u32 pd;
215 u32 ca;
216 u32 cs;
217 u32 dda;
218 u32 dsa;
219 u32 ds;
220 u32 dd;
221 u32 scratch0;
222 u32 scratch1;
223 u32 scratch2;
224 u32 scratch3;
225 u32 scratch4;
226 u32 scratch5;
227 u32 scratch6;
228 u32 scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236 * struct sdma_channel - housekeeping for a SDMA channel
237 *
238 * @sdma pointer to the SDMA engine for this channel
239 * @channel the channel number, matches dmaengine chan_id + 1
240 * @direction transfer type. Needed for setting SDMA script
241 * @peripheral_type Peripheral type. Needed for setting SDMA script
242 * @event_id0 aka dma request line
243 * @event_id1 for channels that use 2 events
244 * @word_size peripheral access size
245 * @buf_tail ID of the buffer that was processed
246 * @done channel completion
247 * @num_bd max NUM_BD. number of descriptors currently handling
248 */
249 struct sdma_channel {
250 struct sdma_engine *sdma;
251 unsigned int channel;
252 enum dma_transfer_direction direction;
253 enum sdma_peripheral_type peripheral_type;
254 unsigned int event_id0;
255 unsigned int event_id1;
256 enum dma_slave_buswidth word_size;
257 unsigned int buf_tail;
258 struct completion done;
259 unsigned int num_bd;
260 struct sdma_buffer_descriptor *bd;
261 dma_addr_t bd_phys;
262 unsigned int pc_from_device, pc_to_device;
263 unsigned long flags;
264 dma_addr_t per_address;
265 unsigned long event_mask[2];
266 unsigned long watermark_level;
267 u32 shp_addr, per_addr;
268 struct dma_chan chan;
269 spinlock_t lock;
270 struct dma_async_tx_descriptor desc;
271 enum dma_status status;
272 unsigned int chn_count;
273 unsigned int chn_real_count;
274 struct tasklet_struct tasklet;
275 };
276
277 #define IMX_DMA_SG_LOOP BIT(0)
278
279 #define MAX_DMA_CHANNELS 32
280 #define MXC_SDMA_DEFAULT_PRIORITY 1
281 #define MXC_SDMA_MIN_PRIORITY 1
282 #define MXC_SDMA_MAX_PRIORITY 7
283
284 #define SDMA_FIRMWARE_MAGIC 0x414d4453
285
286 /**
287 * struct sdma_firmware_header - Layout of the firmware image
288 *
289 * @magic "SDMA"
290 * @version_major increased whenever layout of struct sdma_script_start_addrs
291 * changes.
292 * @version_minor firmware minor version (for binary compatible changes)
293 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
294 * @num_script_addrs Number of script addresses in this image
295 * @ram_code_start offset of SDMA ram image in this firmware image
296 * @ram_code_size size of SDMA ram image
297 * @script_addrs Stores the start address of the SDMA scripts
298 * (in SDMA memory space)
299 */
300 struct sdma_firmware_header {
301 u32 magic;
302 u32 version_major;
303 u32 version_minor;
304 u32 script_addrs_start;
305 u32 num_script_addrs;
306 u32 ram_code_start;
307 u32 ram_code_size;
308 };
309
310 enum sdma_devtype {
311 IMX31_SDMA, /* runs on i.mx31 */
312 IMX35_SDMA, /* runs on i.mx35 and later */
313 };
314
315 struct sdma_engine {
316 struct device *dev;
317 struct device_dma_parameters dma_parms;
318 struct sdma_channel channel[MAX_DMA_CHANNELS];
319 struct sdma_channel_control *channel_control;
320 void __iomem *regs;
321 enum sdma_devtype devtype;
322 unsigned int num_events;
323 struct sdma_context_data *context;
324 dma_addr_t context_phys;
325 struct dma_device dma_device;
326 struct clk *clk;
327 spinlock_t channel_0_lock;
328 struct sdma_script_start_addrs *script_addrs;
329 };
330
331 static struct platform_device_id sdma_devtypes[] = {
332 {
333 .name = "imx31-sdma",
334 .driver_data = IMX31_SDMA,
335 }, {
336 .name = "imx35-sdma",
337 .driver_data = IMX35_SDMA,
338 }, {
339 /* sentinel */
340 }
341 };
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
343
344 static const struct of_device_id sdma_dt_ids[] = {
345 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347 { /* sentinel */ }
348 };
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
350
351 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
355
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
357 {
358 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359 SDMA_CHNENBL0_IMX35);
360 return chnenbl0 + event * 4;
361 }
362
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364 bool event_override, bool mcu_override, bool dsp_override)
365 {
366 struct sdma_engine *sdma = sdmac->sdma;
367 int channel = sdmac->channel;
368 unsigned long evt, mcu, dsp;
369
370 if (event_override && mcu_override && dsp_override)
371 return -EINVAL;
372
373 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376
377 if (dsp_override)
378 __clear_bit(channel, &dsp);
379 else
380 __set_bit(channel, &dsp);
381
382 if (event_override)
383 __clear_bit(channel, &evt);
384 else
385 __set_bit(channel, &evt);
386
387 if (mcu_override)
388 __clear_bit(channel, &mcu);
389 else
390 __set_bit(channel, &mcu);
391
392 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395
396 return 0;
397 }
398
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
400 {
401 writel(BIT(channel), sdma->regs + SDMA_H_START);
402 }
403
404 /*
405 * sdma_run_channel0 - run a channel and wait till it's done
406 */
407 static int sdma_run_channel0(struct sdma_engine *sdma)
408 {
409 int ret;
410 unsigned long timeout = 500;
411
412 sdma_enable_channel(sdma, 0);
413
414 while (!(ret = readl_relaxed(sdma->regs + SDMA_H_INTR) & 1)) {
415 if (timeout-- <= 0)
416 break;
417 udelay(1);
418 }
419
420 if (ret) {
421 /* Clear the interrupt status */
422 writel_relaxed(ret, sdma->regs + SDMA_H_INTR);
423 } else {
424 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
425 }
426
427 return ret ? 0 : -ETIMEDOUT;
428 }
429
430 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
431 u32 address)
432 {
433 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
434 void *buf_virt;
435 dma_addr_t buf_phys;
436 int ret;
437 unsigned long flags;
438
439 buf_virt = dma_alloc_coherent(NULL,
440 size,
441 &buf_phys, GFP_KERNEL);
442 if (!buf_virt) {
443 return -ENOMEM;
444 }
445
446 spin_lock_irqsave(&sdma->channel_0_lock, flags);
447
448 bd0->mode.command = C0_SETPM;
449 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
450 bd0->mode.count = size / 2;
451 bd0->buffer_addr = buf_phys;
452 bd0->ext_buffer_addr = address;
453
454 memcpy(buf_virt, buf, size);
455
456 ret = sdma_run_channel0(sdma);
457
458 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
459
460 dma_free_coherent(NULL, size, buf_virt, buf_phys);
461
462 return ret;
463 }
464
465 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
466 {
467 struct sdma_engine *sdma = sdmac->sdma;
468 int channel = sdmac->channel;
469 unsigned long val;
470 u32 chnenbl = chnenbl_ofs(sdma, event);
471
472 val = readl_relaxed(sdma->regs + chnenbl);
473 __set_bit(channel, &val);
474 writel_relaxed(val, sdma->regs + chnenbl);
475 }
476
477 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
478 {
479 struct sdma_engine *sdma = sdmac->sdma;
480 int channel = sdmac->channel;
481 u32 chnenbl = chnenbl_ofs(sdma, event);
482 unsigned long val;
483
484 val = readl_relaxed(sdma->regs + chnenbl);
485 __clear_bit(channel, &val);
486 writel_relaxed(val, sdma->regs + chnenbl);
487 }
488
489 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
490 {
491 struct sdma_buffer_descriptor *bd;
492
493 /*
494 * loop mode. Iterate over descriptors, re-setup them and
495 * call callback function.
496 */
497 while (1) {
498 bd = &sdmac->bd[sdmac->buf_tail];
499
500 if (bd->mode.status & BD_DONE)
501 break;
502
503 if (bd->mode.status & BD_RROR)
504 sdmac->status = DMA_ERROR;
505 else
506 sdmac->status = DMA_IN_PROGRESS;
507
508 bd->mode.status |= BD_DONE;
509 sdmac->buf_tail++;
510 sdmac->buf_tail %= sdmac->num_bd;
511
512 if (sdmac->desc.callback)
513 sdmac->desc.callback(sdmac->desc.callback_param);
514 }
515 }
516
517 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
518 {
519 struct sdma_buffer_descriptor *bd;
520 int i, error = 0;
521
522 sdmac->chn_real_count = 0;
523 /*
524 * non loop mode. Iterate over all descriptors, collect
525 * errors and call callback function
526 */
527 for (i = 0; i < sdmac->num_bd; i++) {
528 bd = &sdmac->bd[i];
529
530 if (bd->mode.status & (BD_DONE | BD_RROR))
531 error = -EIO;
532 sdmac->chn_real_count += bd->mode.count;
533 }
534
535 if (error)
536 sdmac->status = DMA_ERROR;
537 else
538 sdmac->status = DMA_SUCCESS;
539
540 dma_cookie_complete(&sdmac->desc);
541 if (sdmac->desc.callback)
542 sdmac->desc.callback(sdmac->desc.callback_param);
543 }
544
545 static void sdma_tasklet(unsigned long data)
546 {
547 struct sdma_channel *sdmac = (struct sdma_channel *) data;
548
549 complete(&sdmac->done);
550
551 if (sdmac->flags & IMX_DMA_SG_LOOP)
552 sdma_handle_channel_loop(sdmac);
553 else
554 mxc_sdma_handle_channel_normal(sdmac);
555 }
556
557 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
558 {
559 struct sdma_engine *sdma = dev_id;
560 unsigned long stat;
561
562 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
563 /* not interested in channel 0 interrupts */
564 stat &= ~1;
565 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
566
567 while (stat) {
568 int channel = fls(stat) - 1;
569 struct sdma_channel *sdmac = &sdma->channel[channel];
570
571 tasklet_schedule(&sdmac->tasklet);
572
573 __clear_bit(channel, &stat);
574 }
575
576 return IRQ_HANDLED;
577 }
578
579 /*
580 * sets the pc of SDMA script according to the peripheral type
581 */
582 static void sdma_get_pc(struct sdma_channel *sdmac,
583 enum sdma_peripheral_type peripheral_type)
584 {
585 struct sdma_engine *sdma = sdmac->sdma;
586 int per_2_emi = 0, emi_2_per = 0;
587 /*
588 * These are needed once we start to support transfers between
589 * two peripherals or memory-to-memory transfers
590 */
591 int per_2_per = 0, emi_2_emi = 0;
592
593 sdmac->pc_from_device = 0;
594 sdmac->pc_to_device = 0;
595
596 switch (peripheral_type) {
597 case IMX_DMATYPE_MEMORY:
598 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
599 break;
600 case IMX_DMATYPE_DSP:
601 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
602 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
603 break;
604 case IMX_DMATYPE_FIRI:
605 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
606 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
607 break;
608 case IMX_DMATYPE_UART:
609 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
610 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
611 break;
612 case IMX_DMATYPE_UART_SP:
613 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
614 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
615 break;
616 case IMX_DMATYPE_ATA:
617 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
618 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
619 break;
620 case IMX_DMATYPE_CSPI:
621 case IMX_DMATYPE_EXT:
622 case IMX_DMATYPE_SSI:
623 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
624 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
625 break;
626 case IMX_DMATYPE_SSI_SP:
627 case IMX_DMATYPE_MMC:
628 case IMX_DMATYPE_SDHC:
629 case IMX_DMATYPE_CSPI_SP:
630 case IMX_DMATYPE_ESAI:
631 case IMX_DMATYPE_MSHC_SP:
632 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
633 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
634 break;
635 case IMX_DMATYPE_ASRC:
636 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
637 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
638 per_2_per = sdma->script_addrs->per_2_per_addr;
639 break;
640 case IMX_DMATYPE_MSHC:
641 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
642 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
643 break;
644 case IMX_DMATYPE_CCM:
645 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
646 break;
647 case IMX_DMATYPE_SPDIF:
648 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
649 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
650 break;
651 case IMX_DMATYPE_IPU_MEMORY:
652 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
653 break;
654 default:
655 break;
656 }
657
658 sdmac->pc_from_device = per_2_emi;
659 sdmac->pc_to_device = emi_2_per;
660 }
661
662 static int sdma_load_context(struct sdma_channel *sdmac)
663 {
664 struct sdma_engine *sdma = sdmac->sdma;
665 int channel = sdmac->channel;
666 int load_address;
667 struct sdma_context_data *context = sdma->context;
668 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
669 int ret;
670 unsigned long flags;
671
672 if (sdmac->direction == DMA_DEV_TO_MEM) {
673 load_address = sdmac->pc_from_device;
674 } else {
675 load_address = sdmac->pc_to_device;
676 }
677
678 if (load_address < 0)
679 return load_address;
680
681 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
682 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
683 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
684 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
685 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
686 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
687
688 spin_lock_irqsave(&sdma->channel_0_lock, flags);
689
690 memset(context, 0, sizeof(*context));
691 context->channel_state.pc = load_address;
692
693 /* Send by context the event mask,base address for peripheral
694 * and watermark level
695 */
696 context->gReg[0] = sdmac->event_mask[1];
697 context->gReg[1] = sdmac->event_mask[0];
698 context->gReg[2] = sdmac->per_addr;
699 context->gReg[6] = sdmac->shp_addr;
700 context->gReg[7] = sdmac->watermark_level;
701
702 bd0->mode.command = C0_SETDM;
703 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
704 bd0->mode.count = sizeof(*context) / 4;
705 bd0->buffer_addr = sdma->context_phys;
706 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
707 ret = sdma_run_channel0(sdma);
708
709 spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
710
711 return ret;
712 }
713
714 static void sdma_disable_channel(struct sdma_channel *sdmac)
715 {
716 struct sdma_engine *sdma = sdmac->sdma;
717 int channel = sdmac->channel;
718
719 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
720 sdmac->status = DMA_ERROR;
721 }
722
723 static int sdma_config_channel(struct sdma_channel *sdmac)
724 {
725 int ret;
726
727 sdma_disable_channel(sdmac);
728
729 sdmac->event_mask[0] = 0;
730 sdmac->event_mask[1] = 0;
731 sdmac->shp_addr = 0;
732 sdmac->per_addr = 0;
733
734 if (sdmac->event_id0) {
735 if (sdmac->event_id0 >= sdmac->sdma->num_events)
736 return -EINVAL;
737 sdma_event_enable(sdmac, sdmac->event_id0);
738 }
739
740 switch (sdmac->peripheral_type) {
741 case IMX_DMATYPE_DSP:
742 sdma_config_ownership(sdmac, false, true, true);
743 break;
744 case IMX_DMATYPE_MEMORY:
745 sdma_config_ownership(sdmac, false, true, false);
746 break;
747 default:
748 sdma_config_ownership(sdmac, true, true, false);
749 break;
750 }
751
752 sdma_get_pc(sdmac, sdmac->peripheral_type);
753
754 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
755 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
756 /* Handle multiple event channels differently */
757 if (sdmac->event_id1) {
758 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
759 if (sdmac->event_id1 > 31)
760 __set_bit(31, &sdmac->watermark_level);
761 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
762 if (sdmac->event_id0 > 31)
763 __set_bit(30, &sdmac->watermark_level);
764 } else {
765 __set_bit(sdmac->event_id0, sdmac->event_mask);
766 }
767 /* Watermark Level */
768 sdmac->watermark_level |= sdmac->watermark_level;
769 /* Address */
770 sdmac->shp_addr = sdmac->per_address;
771 } else {
772 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
773 }
774
775 ret = sdma_load_context(sdmac);
776
777 return ret;
778 }
779
780 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
781 unsigned int priority)
782 {
783 struct sdma_engine *sdma = sdmac->sdma;
784 int channel = sdmac->channel;
785
786 if (priority < MXC_SDMA_MIN_PRIORITY
787 || priority > MXC_SDMA_MAX_PRIORITY) {
788 return -EINVAL;
789 }
790
791 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
792
793 return 0;
794 }
795
796 static int sdma_request_channel(struct sdma_channel *sdmac)
797 {
798 struct sdma_engine *sdma = sdmac->sdma;
799 int channel = sdmac->channel;
800 int ret = -EBUSY;
801
802 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
803 if (!sdmac->bd) {
804 ret = -ENOMEM;
805 goto out;
806 }
807
808 memset(sdmac->bd, 0, PAGE_SIZE);
809
810 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
811 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
812
813 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
814
815 init_completion(&sdmac->done);
816
817 sdmac->buf_tail = 0;
818
819 return 0;
820 out:
821
822 return ret;
823 }
824
825 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
826 {
827 return container_of(chan, struct sdma_channel, chan);
828 }
829
830 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
831 {
832 unsigned long flags;
833 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
834 dma_cookie_t cookie;
835
836 spin_lock_irqsave(&sdmac->lock, flags);
837
838 cookie = dma_cookie_assign(tx);
839
840 spin_unlock_irqrestore(&sdmac->lock, flags);
841
842 return cookie;
843 }
844
845 static int sdma_alloc_chan_resources(struct dma_chan *chan)
846 {
847 struct sdma_channel *sdmac = to_sdma_chan(chan);
848 struct imx_dma_data *data = chan->private;
849 int prio, ret;
850
851 if (!data)
852 return -EINVAL;
853
854 switch (data->priority) {
855 case DMA_PRIO_HIGH:
856 prio = 3;
857 break;
858 case DMA_PRIO_MEDIUM:
859 prio = 2;
860 break;
861 case DMA_PRIO_LOW:
862 default:
863 prio = 1;
864 break;
865 }
866
867 sdmac->peripheral_type = data->peripheral_type;
868 sdmac->event_id0 = data->dma_request;
869
870 clk_enable(sdmac->sdma->clk);
871
872 ret = sdma_request_channel(sdmac);
873 if (ret)
874 return ret;
875
876 ret = sdma_set_channel_priority(sdmac, prio);
877 if (ret)
878 return ret;
879
880 dma_async_tx_descriptor_init(&sdmac->desc, chan);
881 sdmac->desc.tx_submit = sdma_tx_submit;
882 /* txd.flags will be overwritten in prep funcs */
883 sdmac->desc.flags = DMA_CTRL_ACK;
884
885 return 0;
886 }
887
888 static void sdma_free_chan_resources(struct dma_chan *chan)
889 {
890 struct sdma_channel *sdmac = to_sdma_chan(chan);
891 struct sdma_engine *sdma = sdmac->sdma;
892
893 sdma_disable_channel(sdmac);
894
895 if (sdmac->event_id0)
896 sdma_event_disable(sdmac, sdmac->event_id0);
897 if (sdmac->event_id1)
898 sdma_event_disable(sdmac, sdmac->event_id1);
899
900 sdmac->event_id0 = 0;
901 sdmac->event_id1 = 0;
902
903 sdma_set_channel_priority(sdmac, 0);
904
905 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
906
907 clk_disable(sdma->clk);
908 }
909
910 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
911 struct dma_chan *chan, struct scatterlist *sgl,
912 unsigned int sg_len, enum dma_transfer_direction direction,
913 unsigned long flags, void *context)
914 {
915 struct sdma_channel *sdmac = to_sdma_chan(chan);
916 struct sdma_engine *sdma = sdmac->sdma;
917 int ret, i, count;
918 int channel = sdmac->channel;
919 struct scatterlist *sg;
920
921 if (sdmac->status == DMA_IN_PROGRESS)
922 return NULL;
923 sdmac->status = DMA_IN_PROGRESS;
924
925 sdmac->flags = 0;
926
927 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
928 sg_len, channel);
929
930 sdmac->direction = direction;
931 ret = sdma_load_context(sdmac);
932 if (ret)
933 goto err_out;
934
935 if (sg_len > NUM_BD) {
936 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
937 channel, sg_len, NUM_BD);
938 ret = -EINVAL;
939 goto err_out;
940 }
941
942 sdmac->chn_count = 0;
943 for_each_sg(sgl, sg, sg_len, i) {
944 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
945 int param;
946
947 bd->buffer_addr = sg->dma_address;
948
949 count = sg_dma_len(sg);
950
951 if (count > 0xffff) {
952 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
953 channel, count, 0xffff);
954 ret = -EINVAL;
955 goto err_out;
956 }
957
958 bd->mode.count = count;
959 sdmac->chn_count += count;
960
961 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
962 ret = -EINVAL;
963 goto err_out;
964 }
965
966 switch (sdmac->word_size) {
967 case DMA_SLAVE_BUSWIDTH_4_BYTES:
968 bd->mode.command = 0;
969 if (count & 3 || sg->dma_address & 3)
970 return NULL;
971 break;
972 case DMA_SLAVE_BUSWIDTH_2_BYTES:
973 bd->mode.command = 2;
974 if (count & 1 || sg->dma_address & 1)
975 return NULL;
976 break;
977 case DMA_SLAVE_BUSWIDTH_1_BYTE:
978 bd->mode.command = 1;
979 break;
980 default:
981 return NULL;
982 }
983
984 param = BD_DONE | BD_EXTD | BD_CONT;
985
986 if (i + 1 == sg_len) {
987 param |= BD_INTR;
988 param |= BD_LAST;
989 param &= ~BD_CONT;
990 }
991
992 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
993 i, count, sg->dma_address,
994 param & BD_WRAP ? "wrap" : "",
995 param & BD_INTR ? " intr" : "");
996
997 bd->mode.status = param;
998 }
999
1000 sdmac->num_bd = sg_len;
1001 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1002
1003 return &sdmac->desc;
1004 err_out:
1005 sdmac->status = DMA_ERROR;
1006 return NULL;
1007 }
1008
1009 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1010 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1011 size_t period_len, enum dma_transfer_direction direction,
1012 void *context)
1013 {
1014 struct sdma_channel *sdmac = to_sdma_chan(chan);
1015 struct sdma_engine *sdma = sdmac->sdma;
1016 int num_periods = buf_len / period_len;
1017 int channel = sdmac->channel;
1018 int ret, i = 0, buf = 0;
1019
1020 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1021
1022 if (sdmac->status == DMA_IN_PROGRESS)
1023 return NULL;
1024
1025 sdmac->status = DMA_IN_PROGRESS;
1026
1027 sdmac->flags |= IMX_DMA_SG_LOOP;
1028 sdmac->direction = direction;
1029 ret = sdma_load_context(sdmac);
1030 if (ret)
1031 goto err_out;
1032
1033 if (num_periods > NUM_BD) {
1034 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1035 channel, num_periods, NUM_BD);
1036 goto err_out;
1037 }
1038
1039 if (period_len > 0xffff) {
1040 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1041 channel, period_len, 0xffff);
1042 goto err_out;
1043 }
1044
1045 while (buf < buf_len) {
1046 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1047 int param;
1048
1049 bd->buffer_addr = dma_addr;
1050
1051 bd->mode.count = period_len;
1052
1053 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1054 goto err_out;
1055 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1056 bd->mode.command = 0;
1057 else
1058 bd->mode.command = sdmac->word_size;
1059
1060 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1061 if (i + 1 == num_periods)
1062 param |= BD_WRAP;
1063
1064 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1065 i, period_len, dma_addr,
1066 param & BD_WRAP ? "wrap" : "",
1067 param & BD_INTR ? " intr" : "");
1068
1069 bd->mode.status = param;
1070
1071 dma_addr += period_len;
1072 buf += period_len;
1073
1074 i++;
1075 }
1076
1077 sdmac->num_bd = num_periods;
1078 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1079
1080 return &sdmac->desc;
1081 err_out:
1082 sdmac->status = DMA_ERROR;
1083 return NULL;
1084 }
1085
1086 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1087 unsigned long arg)
1088 {
1089 struct sdma_channel *sdmac = to_sdma_chan(chan);
1090 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1091
1092 switch (cmd) {
1093 case DMA_TERMINATE_ALL:
1094 sdma_disable_channel(sdmac);
1095 return 0;
1096 case DMA_SLAVE_CONFIG:
1097 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1098 sdmac->per_address = dmaengine_cfg->src_addr;
1099 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1100 dmaengine_cfg->src_addr_width;
1101 sdmac->word_size = dmaengine_cfg->src_addr_width;
1102 } else {
1103 sdmac->per_address = dmaengine_cfg->dst_addr;
1104 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1105 dmaengine_cfg->dst_addr_width;
1106 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1107 }
1108 sdmac->direction = dmaengine_cfg->direction;
1109 return sdma_config_channel(sdmac);
1110 default:
1111 return -ENOSYS;
1112 }
1113
1114 return -EINVAL;
1115 }
1116
1117 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1118 dma_cookie_t cookie,
1119 struct dma_tx_state *txstate)
1120 {
1121 struct sdma_channel *sdmac = to_sdma_chan(chan);
1122 dma_cookie_t last_used;
1123
1124 last_used = chan->cookie;
1125
1126 dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1127 sdmac->chn_count - sdmac->chn_real_count);
1128
1129 return sdmac->status;
1130 }
1131
1132 static void sdma_issue_pending(struct dma_chan *chan)
1133 {
1134 struct sdma_channel *sdmac = to_sdma_chan(chan);
1135 struct sdma_engine *sdma = sdmac->sdma;
1136
1137 if (sdmac->status == DMA_IN_PROGRESS)
1138 sdma_enable_channel(sdma, sdmac->channel);
1139 }
1140
1141 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1142
1143 static void sdma_add_scripts(struct sdma_engine *sdma,
1144 const struct sdma_script_start_addrs *addr)
1145 {
1146 s32 *addr_arr = (u32 *)addr;
1147 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1148 int i;
1149
1150 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1151 if (addr_arr[i] > 0)
1152 saddr_arr[i] = addr_arr[i];
1153 }
1154
1155 static void sdma_load_firmware(const struct firmware *fw, void *context)
1156 {
1157 struct sdma_engine *sdma = context;
1158 const struct sdma_firmware_header *header;
1159 const struct sdma_script_start_addrs *addr;
1160 unsigned short *ram_code;
1161
1162 if (!fw) {
1163 dev_err(sdma->dev, "firmware not found\n");
1164 return;
1165 }
1166
1167 if (fw->size < sizeof(*header))
1168 goto err_firmware;
1169
1170 header = (struct sdma_firmware_header *)fw->data;
1171
1172 if (header->magic != SDMA_FIRMWARE_MAGIC)
1173 goto err_firmware;
1174 if (header->ram_code_start + header->ram_code_size > fw->size)
1175 goto err_firmware;
1176
1177 addr = (void *)header + header->script_addrs_start;
1178 ram_code = (void *)header + header->ram_code_start;
1179
1180 clk_enable(sdma->clk);
1181 /* download the RAM image for SDMA */
1182 sdma_load_script(sdma, ram_code,
1183 header->ram_code_size,
1184 addr->ram_code_start_addr);
1185 clk_disable(sdma->clk);
1186
1187 sdma_add_scripts(sdma, addr);
1188
1189 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1190 header->version_major,
1191 header->version_minor);
1192
1193 err_firmware:
1194 release_firmware(fw);
1195 }
1196
1197 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1198 const char *fw_name)
1199 {
1200 int ret;
1201
1202 ret = request_firmware_nowait(THIS_MODULE,
1203 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1204 GFP_KERNEL, sdma, sdma_load_firmware);
1205
1206 return ret;
1207 }
1208
1209 static int __init sdma_init(struct sdma_engine *sdma)
1210 {
1211 int i, ret;
1212 dma_addr_t ccb_phys;
1213
1214 switch (sdma->devtype) {
1215 case IMX31_SDMA:
1216 sdma->num_events = 32;
1217 break;
1218 case IMX35_SDMA:
1219 sdma->num_events = 48;
1220 break;
1221 default:
1222 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1223 sdma->devtype);
1224 return -ENODEV;
1225 }
1226
1227 clk_enable(sdma->clk);
1228
1229 /* Be sure SDMA has not started yet */
1230 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1231
1232 sdma->channel_control = dma_alloc_coherent(NULL,
1233 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1234 sizeof(struct sdma_context_data),
1235 &ccb_phys, GFP_KERNEL);
1236
1237 if (!sdma->channel_control) {
1238 ret = -ENOMEM;
1239 goto err_dma_alloc;
1240 }
1241
1242 sdma->context = (void *)sdma->channel_control +
1243 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1244 sdma->context_phys = ccb_phys +
1245 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1246
1247 /* Zero-out the CCB structures array just allocated */
1248 memset(sdma->channel_control, 0,
1249 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1250
1251 /* disable all channels */
1252 for (i = 0; i < sdma->num_events; i++)
1253 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1254
1255 /* All channels have priority 0 */
1256 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1257 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1258
1259 ret = sdma_request_channel(&sdma->channel[0]);
1260 if (ret)
1261 goto err_dma_alloc;
1262
1263 sdma_config_ownership(&sdma->channel[0], false, true, false);
1264
1265 /* Set Command Channel (Channel Zero) */
1266 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1267
1268 /* Set bits of CONFIG register but with static context switching */
1269 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1270 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1271
1272 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1273
1274 /* Set bits of CONFIG register with given context switching mode */
1275 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1276
1277 /* Initializes channel's priorities */
1278 sdma_set_channel_priority(&sdma->channel[0], 7);
1279
1280 clk_disable(sdma->clk);
1281
1282 return 0;
1283
1284 err_dma_alloc:
1285 clk_disable(sdma->clk);
1286 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1287 return ret;
1288 }
1289
1290 static int __init sdma_probe(struct platform_device *pdev)
1291 {
1292 const struct of_device_id *of_id =
1293 of_match_device(sdma_dt_ids, &pdev->dev);
1294 struct device_node *np = pdev->dev.of_node;
1295 const char *fw_name;
1296 int ret;
1297 int irq;
1298 struct resource *iores;
1299 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1300 int i;
1301 struct sdma_engine *sdma;
1302 s32 *saddr_arr;
1303
1304 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1305 if (!sdma)
1306 return -ENOMEM;
1307
1308 spin_lock_init(&sdma->channel_0_lock);
1309
1310 sdma->dev = &pdev->dev;
1311
1312 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1313 irq = platform_get_irq(pdev, 0);
1314 if (!iores || irq < 0) {
1315 ret = -EINVAL;
1316 goto err_irq;
1317 }
1318
1319 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1320 ret = -EBUSY;
1321 goto err_request_region;
1322 }
1323
1324 sdma->clk = clk_get(&pdev->dev, NULL);
1325 if (IS_ERR(sdma->clk)) {
1326 ret = PTR_ERR(sdma->clk);
1327 goto err_clk;
1328 }
1329
1330 sdma->regs = ioremap(iores->start, resource_size(iores));
1331 if (!sdma->regs) {
1332 ret = -ENOMEM;
1333 goto err_ioremap;
1334 }
1335
1336 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1337 if (ret)
1338 goto err_request_irq;
1339
1340 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1341 if (!sdma->script_addrs) {
1342 ret = -ENOMEM;
1343 goto err_alloc;
1344 }
1345
1346 /* initially no scripts available */
1347 saddr_arr = (s32 *)sdma->script_addrs;
1348 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1349 saddr_arr[i] = -EINVAL;
1350
1351 if (of_id)
1352 pdev->id_entry = of_id->data;
1353 sdma->devtype = pdev->id_entry->driver_data;
1354
1355 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1356 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1357
1358 INIT_LIST_HEAD(&sdma->dma_device.channels);
1359 /* Initialize channel parameters */
1360 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1361 struct sdma_channel *sdmac = &sdma->channel[i];
1362
1363 sdmac->sdma = sdma;
1364 spin_lock_init(&sdmac->lock);
1365
1366 sdmac->chan.device = &sdma->dma_device;
1367 dma_cookie_init(&sdmac->chan);
1368 sdmac->channel = i;
1369
1370 tasklet_init(&sdmac->tasklet, sdma_tasklet,
1371 (unsigned long) sdmac);
1372 /*
1373 * Add the channel to the DMAC list. Do not add channel 0 though
1374 * because we need it internally in the SDMA driver. This also means
1375 * that channel 0 in dmaengine counting matches sdma channel 1.
1376 */
1377 if (i)
1378 list_add_tail(&sdmac->chan.device_node,
1379 &sdma->dma_device.channels);
1380 }
1381
1382 ret = sdma_init(sdma);
1383 if (ret)
1384 goto err_init;
1385
1386 if (pdata && pdata->script_addrs)
1387 sdma_add_scripts(sdma, pdata->script_addrs);
1388
1389 if (pdata) {
1390 ret = sdma_get_firmware(sdma, pdata->fw_name);
1391 if (ret)
1392 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1393 } else {
1394 /*
1395 * Because that device tree does not encode ROM script address,
1396 * the RAM script in firmware is mandatory for device tree
1397 * probe, otherwise it fails.
1398 */
1399 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1400 &fw_name);
1401 if (ret)
1402 dev_warn(&pdev->dev, "failed to get firmware name\n");
1403 else {
1404 ret = sdma_get_firmware(sdma, fw_name);
1405 if (ret)
1406 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1407 }
1408 }
1409
1410 sdma->dma_device.dev = &pdev->dev;
1411
1412 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1413 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1414 sdma->dma_device.device_tx_status = sdma_tx_status;
1415 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1416 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1417 sdma->dma_device.device_control = sdma_control;
1418 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1419 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1420 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1421
1422 ret = dma_async_device_register(&sdma->dma_device);
1423 if (ret) {
1424 dev_err(&pdev->dev, "unable to register\n");
1425 goto err_init;
1426 }
1427
1428 dev_info(sdma->dev, "initialized\n");
1429
1430 return 0;
1431
1432 err_init:
1433 kfree(sdma->script_addrs);
1434 err_alloc:
1435 free_irq(irq, sdma);
1436 err_request_irq:
1437 iounmap(sdma->regs);
1438 err_ioremap:
1439 clk_put(sdma->clk);
1440 err_clk:
1441 release_mem_region(iores->start, resource_size(iores));
1442 err_request_region:
1443 err_irq:
1444 kfree(sdma);
1445 return ret;
1446 }
1447
1448 static int __exit sdma_remove(struct platform_device *pdev)
1449 {
1450 return -EBUSY;
1451 }
1452
1453 static struct platform_driver sdma_driver = {
1454 .driver = {
1455 .name = "imx-sdma",
1456 .of_match_table = sdma_dt_ids,
1457 },
1458 .id_table = sdma_devtypes,
1459 .remove = __exit_p(sdma_remove),
1460 };
1461
1462 static int __init sdma_module_init(void)
1463 {
1464 return platform_driver_probe(&sdma_driver, sdma_probe);
1465 }
1466 module_init(sdma_module_init);
1467
1468 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1469 MODULE_DESCRIPTION("i.MX SDMA driver");
1470 MODULE_LICENSE("GPL");