]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/imx-sdma.c
Merge branches 'spear/clock' and 'imx/clock' into next/clock
[mirror_ubuntu-artful-kernel.git] / drivers / dma / imx-sdma.c
1 /*
2 * drivers/dma/imx-sdma.c
3 *
4 * This file contains a driver for the Freescale Smart DMA engine
5 *
6 * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7 *
8 * Based on code from Freescale:
9 *
10 * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11 *
12 * The code contained herein is licensed under the GNU General Public
13 * License. You may obtain a copy of the GNU General Public License
14 * Version 2 or later at the following locations:
15 *
16 * http://www.opensource.org/licenses/gpl-license.html
17 * http://www.gnu.org/copyleft/gpl.html
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/bitops.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/clk.h>
27 #include <linux/wait.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 #include <linux/spinlock.h>
31 #include <linux/device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/slab.h>
35 #include <linux/platform_device.h>
36 #include <linux/dmaengine.h>
37 #include <linux/of.h>
38 #include <linux/of_device.h>
39
40 #include <asm/irq.h>
41 #include <mach/sdma.h>
42 #include <mach/dma.h>
43 #include <mach/hardware.h>
44
45 #include "dmaengine.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
77
78 /*
79 * Buffer descriptor status values.
80 */
81 #define BD_DONE 0x01
82 #define BD_WRAP 0x02
83 #define BD_CONT 0x04
84 #define BD_INTR 0x08
85 #define BD_RROR 0x10
86 #define BD_LAST 0x20
87 #define BD_EXTD 0x80
88
89 /*
90 * Data Node descriptor status values.
91 */
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
94 #define DND_DONE 0x20
95 #define DND_UNUSED 0x01
96
97 /*
98 * IPCV2 descriptor status values.
99 */
100 #define BD_IPCV2_END_OF_FRAME 0x40
101
102 #define IPCV2_MAX_NODES 50
103 /*
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
106 */
107 #define DATA_ERROR 0x10000000
108
109 /*
110 * Buffer descriptor commands.
111 */
112 #define C0_ADDR 0x01
113 #define C0_LOAD 0x02
114 #define C0_DUMP 0x03
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
121 /*
122 * Change endianness indicator in the BD command field
123 */
124 #define CHANGE_ENDIANNESS 0x80
125
126 /*
127 * Mode/Count of data node descriptors - IPCv2
128 */
129 struct sdma_mode_count {
130 u32 count : 16; /* size of the buffer pointed by this BD */
131 u32 status : 8; /* E,R,I,C,W,D status bits stored here */
132 u32 command : 8; /* command mostlky used for channel 0 */
133 };
134
135 /*
136 * Buffer descriptor
137 */
138 struct sdma_buffer_descriptor {
139 struct sdma_mode_count mode;
140 u32 buffer_addr; /* address of the buffer described */
141 u32 ext_buffer_addr; /* extended buffer address */
142 } __attribute__ ((packed));
143
144 /**
145 * struct sdma_channel_control - Channel control Block
146 *
147 * @current_bd_ptr current buffer descriptor processed
148 * @base_bd_ptr first element of buffer descriptor array
149 * @unused padding. The SDMA engine expects an array of 128 byte
150 * control blocks
151 */
152 struct sdma_channel_control {
153 u32 current_bd_ptr;
154 u32 base_bd_ptr;
155 u32 unused[2];
156 } __attribute__ ((packed));
157
158 /**
159 * struct sdma_state_registers - SDMA context for a channel
160 *
161 * @pc: program counter
162 * @t: test bit: status of arithmetic & test instruction
163 * @rpc: return program counter
164 * @sf: source fault while loading data
165 * @spc: loop start program counter
166 * @df: destination fault while storing data
167 * @epc: loop end program counter
168 * @lm: loop mode
169 */
170 struct sdma_state_registers {
171 u32 pc :14;
172 u32 unused1: 1;
173 u32 t : 1;
174 u32 rpc :14;
175 u32 unused0: 1;
176 u32 sf : 1;
177 u32 spc :14;
178 u32 unused2: 1;
179 u32 df : 1;
180 u32 epc :14;
181 u32 lm : 2;
182 } __attribute__ ((packed));
183
184 /**
185 * struct sdma_context_data - sdma context specific to a channel
186 *
187 * @channel_state: channel state bits
188 * @gReg: general registers
189 * @mda: burst dma destination address register
190 * @msa: burst dma source address register
191 * @ms: burst dma status register
192 * @md: burst dma data register
193 * @pda: peripheral dma destination address register
194 * @psa: peripheral dma source address register
195 * @ps: peripheral dma status register
196 * @pd: peripheral dma data register
197 * @ca: CRC polynomial register
198 * @cs: CRC accumulator register
199 * @dda: dedicated core destination address register
200 * @dsa: dedicated core source address register
201 * @ds: dedicated core status register
202 * @dd: dedicated core data register
203 */
204 struct sdma_context_data {
205 struct sdma_state_registers channel_state;
206 u32 gReg[8];
207 u32 mda;
208 u32 msa;
209 u32 ms;
210 u32 md;
211 u32 pda;
212 u32 psa;
213 u32 ps;
214 u32 pd;
215 u32 ca;
216 u32 cs;
217 u32 dda;
218 u32 dsa;
219 u32 ds;
220 u32 dd;
221 u32 scratch0;
222 u32 scratch1;
223 u32 scratch2;
224 u32 scratch3;
225 u32 scratch4;
226 u32 scratch5;
227 u32 scratch6;
228 u32 scratch7;
229 } __attribute__ ((packed));
230
231 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
232
233 struct sdma_engine;
234
235 /**
236 * struct sdma_channel - housekeeping for a SDMA channel
237 *
238 * @sdma pointer to the SDMA engine for this channel
239 * @channel the channel number, matches dmaengine chan_id + 1
240 * @direction transfer type. Needed for setting SDMA script
241 * @peripheral_type Peripheral type. Needed for setting SDMA script
242 * @event_id0 aka dma request line
243 * @event_id1 for channels that use 2 events
244 * @word_size peripheral access size
245 * @buf_tail ID of the buffer that was processed
246 * @done channel completion
247 * @num_bd max NUM_BD. number of descriptors currently handling
248 */
249 struct sdma_channel {
250 struct sdma_engine *sdma;
251 unsigned int channel;
252 enum dma_transfer_direction direction;
253 enum sdma_peripheral_type peripheral_type;
254 unsigned int event_id0;
255 unsigned int event_id1;
256 enum dma_slave_buswidth word_size;
257 unsigned int buf_tail;
258 struct completion done;
259 unsigned int num_bd;
260 struct sdma_buffer_descriptor *bd;
261 dma_addr_t bd_phys;
262 unsigned int pc_from_device, pc_to_device;
263 unsigned long flags;
264 dma_addr_t per_address;
265 unsigned long event_mask[2];
266 unsigned long watermark_level;
267 u32 shp_addr, per_addr;
268 struct dma_chan chan;
269 spinlock_t lock;
270 struct dma_async_tx_descriptor desc;
271 enum dma_status status;
272 unsigned int chn_count;
273 unsigned int chn_real_count;
274 };
275
276 #define IMX_DMA_SG_LOOP BIT(0)
277
278 #define MAX_DMA_CHANNELS 32
279 #define MXC_SDMA_DEFAULT_PRIORITY 1
280 #define MXC_SDMA_MIN_PRIORITY 1
281 #define MXC_SDMA_MAX_PRIORITY 7
282
283 #define SDMA_FIRMWARE_MAGIC 0x414d4453
284
285 /**
286 * struct sdma_firmware_header - Layout of the firmware image
287 *
288 * @magic "SDMA"
289 * @version_major increased whenever layout of struct sdma_script_start_addrs
290 * changes.
291 * @version_minor firmware minor version (for binary compatible changes)
292 * @script_addrs_start offset of struct sdma_script_start_addrs in this image
293 * @num_script_addrs Number of script addresses in this image
294 * @ram_code_start offset of SDMA ram image in this firmware image
295 * @ram_code_size size of SDMA ram image
296 * @script_addrs Stores the start address of the SDMA scripts
297 * (in SDMA memory space)
298 */
299 struct sdma_firmware_header {
300 u32 magic;
301 u32 version_major;
302 u32 version_minor;
303 u32 script_addrs_start;
304 u32 num_script_addrs;
305 u32 ram_code_start;
306 u32 ram_code_size;
307 };
308
309 enum sdma_devtype {
310 IMX31_SDMA, /* runs on i.mx31 */
311 IMX35_SDMA, /* runs on i.mx35 and later */
312 };
313
314 struct sdma_engine {
315 struct device *dev;
316 struct device_dma_parameters dma_parms;
317 struct sdma_channel channel[MAX_DMA_CHANNELS];
318 struct sdma_channel_control *channel_control;
319 void __iomem *regs;
320 enum sdma_devtype devtype;
321 unsigned int num_events;
322 struct sdma_context_data *context;
323 dma_addr_t context_phys;
324 struct dma_device dma_device;
325 struct clk *clk_ipg;
326 struct clk *clk_ahb;
327 struct mutex channel_0_lock;
328 struct sdma_script_start_addrs *script_addrs;
329 };
330
331 static struct platform_device_id sdma_devtypes[] = {
332 {
333 .name = "imx31-sdma",
334 .driver_data = IMX31_SDMA,
335 }, {
336 .name = "imx35-sdma",
337 .driver_data = IMX35_SDMA,
338 }, {
339 /* sentinel */
340 }
341 };
342 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
343
344 static const struct of_device_id sdma_dt_ids[] = {
345 { .compatible = "fsl,imx31-sdma", .data = &sdma_devtypes[IMX31_SDMA], },
346 { .compatible = "fsl,imx35-sdma", .data = &sdma_devtypes[IMX35_SDMA], },
347 { /* sentinel */ }
348 };
349 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
350
351 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
352 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
353 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
354 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
355
356 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
357 {
358 u32 chnenbl0 = (sdma->devtype == IMX31_SDMA ? SDMA_CHNENBL0_IMX31 :
359 SDMA_CHNENBL0_IMX35);
360 return chnenbl0 + event * 4;
361 }
362
363 static int sdma_config_ownership(struct sdma_channel *sdmac,
364 bool event_override, bool mcu_override, bool dsp_override)
365 {
366 struct sdma_engine *sdma = sdmac->sdma;
367 int channel = sdmac->channel;
368 unsigned long evt, mcu, dsp;
369
370 if (event_override && mcu_override && dsp_override)
371 return -EINVAL;
372
373 evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
374 mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
375 dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
376
377 if (dsp_override)
378 __clear_bit(channel, &dsp);
379 else
380 __set_bit(channel, &dsp);
381
382 if (event_override)
383 __clear_bit(channel, &evt);
384 else
385 __set_bit(channel, &evt);
386
387 if (mcu_override)
388 __clear_bit(channel, &mcu);
389 else
390 __set_bit(channel, &mcu);
391
392 writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
393 writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
394 writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
395
396 return 0;
397 }
398
399 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
400 {
401 writel(BIT(channel), sdma->regs + SDMA_H_START);
402 }
403
404 /*
405 * sdma_run_channel - run a channel and wait till it's done
406 */
407 static int sdma_run_channel(struct sdma_channel *sdmac)
408 {
409 struct sdma_engine *sdma = sdmac->sdma;
410 int channel = sdmac->channel;
411 int ret;
412
413 init_completion(&sdmac->done);
414
415 sdma_enable_channel(sdma, channel);
416
417 ret = wait_for_completion_timeout(&sdmac->done, HZ);
418
419 return ret ? 0 : -ETIMEDOUT;
420 }
421
422 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
423 u32 address)
424 {
425 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
426 void *buf_virt;
427 dma_addr_t buf_phys;
428 int ret;
429
430 mutex_lock(&sdma->channel_0_lock);
431
432 buf_virt = dma_alloc_coherent(NULL,
433 size,
434 &buf_phys, GFP_KERNEL);
435 if (!buf_virt) {
436 ret = -ENOMEM;
437 goto err_out;
438 }
439
440 bd0->mode.command = C0_SETPM;
441 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
442 bd0->mode.count = size / 2;
443 bd0->buffer_addr = buf_phys;
444 bd0->ext_buffer_addr = address;
445
446 memcpy(buf_virt, buf, size);
447
448 ret = sdma_run_channel(&sdma->channel[0]);
449
450 dma_free_coherent(NULL, size, buf_virt, buf_phys);
451
452 err_out:
453 mutex_unlock(&sdma->channel_0_lock);
454
455 return ret;
456 }
457
458 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
459 {
460 struct sdma_engine *sdma = sdmac->sdma;
461 int channel = sdmac->channel;
462 unsigned long val;
463 u32 chnenbl = chnenbl_ofs(sdma, event);
464
465 val = readl_relaxed(sdma->regs + chnenbl);
466 __set_bit(channel, &val);
467 writel_relaxed(val, sdma->regs + chnenbl);
468 }
469
470 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
471 {
472 struct sdma_engine *sdma = sdmac->sdma;
473 int channel = sdmac->channel;
474 u32 chnenbl = chnenbl_ofs(sdma, event);
475 unsigned long val;
476
477 val = readl_relaxed(sdma->regs + chnenbl);
478 __clear_bit(channel, &val);
479 writel_relaxed(val, sdma->regs + chnenbl);
480 }
481
482 static void sdma_handle_channel_loop(struct sdma_channel *sdmac)
483 {
484 struct sdma_buffer_descriptor *bd;
485
486 /*
487 * loop mode. Iterate over descriptors, re-setup them and
488 * call callback function.
489 */
490 while (1) {
491 bd = &sdmac->bd[sdmac->buf_tail];
492
493 if (bd->mode.status & BD_DONE)
494 break;
495
496 if (bd->mode.status & BD_RROR)
497 sdmac->status = DMA_ERROR;
498 else
499 sdmac->status = DMA_IN_PROGRESS;
500
501 bd->mode.status |= BD_DONE;
502 sdmac->buf_tail++;
503 sdmac->buf_tail %= sdmac->num_bd;
504
505 if (sdmac->desc.callback)
506 sdmac->desc.callback(sdmac->desc.callback_param);
507 }
508 }
509
510 static void mxc_sdma_handle_channel_normal(struct sdma_channel *sdmac)
511 {
512 struct sdma_buffer_descriptor *bd;
513 int i, error = 0;
514
515 sdmac->chn_real_count = 0;
516 /*
517 * non loop mode. Iterate over all descriptors, collect
518 * errors and call callback function
519 */
520 for (i = 0; i < sdmac->num_bd; i++) {
521 bd = &sdmac->bd[i];
522
523 if (bd->mode.status & (BD_DONE | BD_RROR))
524 error = -EIO;
525 sdmac->chn_real_count += bd->mode.count;
526 }
527
528 if (error)
529 sdmac->status = DMA_ERROR;
530 else
531 sdmac->status = DMA_SUCCESS;
532
533 dma_cookie_complete(&sdmac->desc);
534 if (sdmac->desc.callback)
535 sdmac->desc.callback(sdmac->desc.callback_param);
536 }
537
538 static void mxc_sdma_handle_channel(struct sdma_channel *sdmac)
539 {
540 complete(&sdmac->done);
541
542 /* not interested in channel 0 interrupts */
543 if (sdmac->channel == 0)
544 return;
545
546 if (sdmac->flags & IMX_DMA_SG_LOOP)
547 sdma_handle_channel_loop(sdmac);
548 else
549 mxc_sdma_handle_channel_normal(sdmac);
550 }
551
552 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
553 {
554 struct sdma_engine *sdma = dev_id;
555 unsigned long stat;
556
557 stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
558 writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
559
560 while (stat) {
561 int channel = fls(stat) - 1;
562 struct sdma_channel *sdmac = &sdma->channel[channel];
563
564 mxc_sdma_handle_channel(sdmac);
565
566 __clear_bit(channel, &stat);
567 }
568
569 return IRQ_HANDLED;
570 }
571
572 /*
573 * sets the pc of SDMA script according to the peripheral type
574 */
575 static void sdma_get_pc(struct sdma_channel *sdmac,
576 enum sdma_peripheral_type peripheral_type)
577 {
578 struct sdma_engine *sdma = sdmac->sdma;
579 int per_2_emi = 0, emi_2_per = 0;
580 /*
581 * These are needed once we start to support transfers between
582 * two peripherals or memory-to-memory transfers
583 */
584 int per_2_per = 0, emi_2_emi = 0;
585
586 sdmac->pc_from_device = 0;
587 sdmac->pc_to_device = 0;
588
589 switch (peripheral_type) {
590 case IMX_DMATYPE_MEMORY:
591 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
592 break;
593 case IMX_DMATYPE_DSP:
594 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
595 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
596 break;
597 case IMX_DMATYPE_FIRI:
598 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
599 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
600 break;
601 case IMX_DMATYPE_UART:
602 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
603 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
604 break;
605 case IMX_DMATYPE_UART_SP:
606 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
607 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
608 break;
609 case IMX_DMATYPE_ATA:
610 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
611 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
612 break;
613 case IMX_DMATYPE_CSPI:
614 case IMX_DMATYPE_EXT:
615 case IMX_DMATYPE_SSI:
616 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
617 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
618 break;
619 case IMX_DMATYPE_SSI_SP:
620 case IMX_DMATYPE_MMC:
621 case IMX_DMATYPE_SDHC:
622 case IMX_DMATYPE_CSPI_SP:
623 case IMX_DMATYPE_ESAI:
624 case IMX_DMATYPE_MSHC_SP:
625 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
626 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
627 break;
628 case IMX_DMATYPE_ASRC:
629 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
630 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
631 per_2_per = sdma->script_addrs->per_2_per_addr;
632 break;
633 case IMX_DMATYPE_MSHC:
634 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
635 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
636 break;
637 case IMX_DMATYPE_CCM:
638 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
639 break;
640 case IMX_DMATYPE_SPDIF:
641 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
642 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
643 break;
644 case IMX_DMATYPE_IPU_MEMORY:
645 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
646 break;
647 default:
648 break;
649 }
650
651 sdmac->pc_from_device = per_2_emi;
652 sdmac->pc_to_device = emi_2_per;
653 }
654
655 static int sdma_load_context(struct sdma_channel *sdmac)
656 {
657 struct sdma_engine *sdma = sdmac->sdma;
658 int channel = sdmac->channel;
659 int load_address;
660 struct sdma_context_data *context = sdma->context;
661 struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
662 int ret;
663
664 if (sdmac->direction == DMA_DEV_TO_MEM) {
665 load_address = sdmac->pc_from_device;
666 } else {
667 load_address = sdmac->pc_to_device;
668 }
669
670 if (load_address < 0)
671 return load_address;
672
673 dev_dbg(sdma->dev, "load_address = %d\n", load_address);
674 dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
675 dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
676 dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
677 dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
678 dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
679
680 mutex_lock(&sdma->channel_0_lock);
681
682 memset(context, 0, sizeof(*context));
683 context->channel_state.pc = load_address;
684
685 /* Send by context the event mask,base address for peripheral
686 * and watermark level
687 */
688 context->gReg[0] = sdmac->event_mask[1];
689 context->gReg[1] = sdmac->event_mask[0];
690 context->gReg[2] = sdmac->per_addr;
691 context->gReg[6] = sdmac->shp_addr;
692 context->gReg[7] = sdmac->watermark_level;
693
694 bd0->mode.command = C0_SETDM;
695 bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
696 bd0->mode.count = sizeof(*context) / 4;
697 bd0->buffer_addr = sdma->context_phys;
698 bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
699
700 ret = sdma_run_channel(&sdma->channel[0]);
701
702 mutex_unlock(&sdma->channel_0_lock);
703
704 return ret;
705 }
706
707 static void sdma_disable_channel(struct sdma_channel *sdmac)
708 {
709 struct sdma_engine *sdma = sdmac->sdma;
710 int channel = sdmac->channel;
711
712 writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
713 sdmac->status = DMA_ERROR;
714 }
715
716 static int sdma_config_channel(struct sdma_channel *sdmac)
717 {
718 int ret;
719
720 sdma_disable_channel(sdmac);
721
722 sdmac->event_mask[0] = 0;
723 sdmac->event_mask[1] = 0;
724 sdmac->shp_addr = 0;
725 sdmac->per_addr = 0;
726
727 if (sdmac->event_id0) {
728 if (sdmac->event_id0 >= sdmac->sdma->num_events)
729 return -EINVAL;
730 sdma_event_enable(sdmac, sdmac->event_id0);
731 }
732
733 switch (sdmac->peripheral_type) {
734 case IMX_DMATYPE_DSP:
735 sdma_config_ownership(sdmac, false, true, true);
736 break;
737 case IMX_DMATYPE_MEMORY:
738 sdma_config_ownership(sdmac, false, true, false);
739 break;
740 default:
741 sdma_config_ownership(sdmac, true, true, false);
742 break;
743 }
744
745 sdma_get_pc(sdmac, sdmac->peripheral_type);
746
747 if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
748 (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
749 /* Handle multiple event channels differently */
750 if (sdmac->event_id1) {
751 sdmac->event_mask[1] = BIT(sdmac->event_id1 % 32);
752 if (sdmac->event_id1 > 31)
753 __set_bit(31, &sdmac->watermark_level);
754 sdmac->event_mask[0] = BIT(sdmac->event_id0 % 32);
755 if (sdmac->event_id0 > 31)
756 __set_bit(30, &sdmac->watermark_level);
757 } else {
758 __set_bit(sdmac->event_id0, sdmac->event_mask);
759 }
760 /* Watermark Level */
761 sdmac->watermark_level |= sdmac->watermark_level;
762 /* Address */
763 sdmac->shp_addr = sdmac->per_address;
764 } else {
765 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
766 }
767
768 ret = sdma_load_context(sdmac);
769
770 return ret;
771 }
772
773 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
774 unsigned int priority)
775 {
776 struct sdma_engine *sdma = sdmac->sdma;
777 int channel = sdmac->channel;
778
779 if (priority < MXC_SDMA_MIN_PRIORITY
780 || priority > MXC_SDMA_MAX_PRIORITY) {
781 return -EINVAL;
782 }
783
784 writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
785
786 return 0;
787 }
788
789 static int sdma_request_channel(struct sdma_channel *sdmac)
790 {
791 struct sdma_engine *sdma = sdmac->sdma;
792 int channel = sdmac->channel;
793 int ret = -EBUSY;
794
795 sdmac->bd = dma_alloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys, GFP_KERNEL);
796 if (!sdmac->bd) {
797 ret = -ENOMEM;
798 goto out;
799 }
800
801 memset(sdmac->bd, 0, PAGE_SIZE);
802
803 sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
804 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
805
806 sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
807
808 init_completion(&sdmac->done);
809
810 sdmac->buf_tail = 0;
811
812 return 0;
813 out:
814
815 return ret;
816 }
817
818 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
819 {
820 return container_of(chan, struct sdma_channel, chan);
821 }
822
823 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
824 {
825 unsigned long flags;
826 struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
827 dma_cookie_t cookie;
828
829 spin_lock_irqsave(&sdmac->lock, flags);
830
831 cookie = dma_cookie_assign(tx);
832
833 spin_unlock_irqrestore(&sdmac->lock, flags);
834
835 return cookie;
836 }
837
838 static int sdma_alloc_chan_resources(struct dma_chan *chan)
839 {
840 struct sdma_channel *sdmac = to_sdma_chan(chan);
841 struct imx_dma_data *data = chan->private;
842 int prio, ret;
843
844 if (!data)
845 return -EINVAL;
846
847 switch (data->priority) {
848 case DMA_PRIO_HIGH:
849 prio = 3;
850 break;
851 case DMA_PRIO_MEDIUM:
852 prio = 2;
853 break;
854 case DMA_PRIO_LOW:
855 default:
856 prio = 1;
857 break;
858 }
859
860 sdmac->peripheral_type = data->peripheral_type;
861 sdmac->event_id0 = data->dma_request;
862
863 clk_enable(sdmac->sdma->clk_ipg);
864 clk_enable(sdmac->sdma->clk_ahb);
865
866 ret = sdma_request_channel(sdmac);
867 if (ret)
868 return ret;
869
870 ret = sdma_set_channel_priority(sdmac, prio);
871 if (ret)
872 return ret;
873
874 dma_async_tx_descriptor_init(&sdmac->desc, chan);
875 sdmac->desc.tx_submit = sdma_tx_submit;
876 /* txd.flags will be overwritten in prep funcs */
877 sdmac->desc.flags = DMA_CTRL_ACK;
878
879 return 0;
880 }
881
882 static void sdma_free_chan_resources(struct dma_chan *chan)
883 {
884 struct sdma_channel *sdmac = to_sdma_chan(chan);
885 struct sdma_engine *sdma = sdmac->sdma;
886
887 sdma_disable_channel(sdmac);
888
889 if (sdmac->event_id0)
890 sdma_event_disable(sdmac, sdmac->event_id0);
891 if (sdmac->event_id1)
892 sdma_event_disable(sdmac, sdmac->event_id1);
893
894 sdmac->event_id0 = 0;
895 sdmac->event_id1 = 0;
896
897 sdma_set_channel_priority(sdmac, 0);
898
899 dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
900
901 clk_disable(sdma->clk_ipg);
902 clk_disable(sdma->clk_ahb);
903 }
904
905 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
906 struct dma_chan *chan, struct scatterlist *sgl,
907 unsigned int sg_len, enum dma_transfer_direction direction,
908 unsigned long flags, void *context)
909 {
910 struct sdma_channel *sdmac = to_sdma_chan(chan);
911 struct sdma_engine *sdma = sdmac->sdma;
912 int ret, i, count;
913 int channel = sdmac->channel;
914 struct scatterlist *sg;
915
916 if (sdmac->status == DMA_IN_PROGRESS)
917 return NULL;
918 sdmac->status = DMA_IN_PROGRESS;
919
920 sdmac->flags = 0;
921
922 dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
923 sg_len, channel);
924
925 sdmac->direction = direction;
926 ret = sdma_load_context(sdmac);
927 if (ret)
928 goto err_out;
929
930 if (sg_len > NUM_BD) {
931 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
932 channel, sg_len, NUM_BD);
933 ret = -EINVAL;
934 goto err_out;
935 }
936
937 sdmac->chn_count = 0;
938 for_each_sg(sgl, sg, sg_len, i) {
939 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
940 int param;
941
942 bd->buffer_addr = sg->dma_address;
943
944 count = sg->length;
945
946 if (count > 0xffff) {
947 dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
948 channel, count, 0xffff);
949 ret = -EINVAL;
950 goto err_out;
951 }
952
953 bd->mode.count = count;
954 sdmac->chn_count += count;
955
956 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
957 ret = -EINVAL;
958 goto err_out;
959 }
960
961 switch (sdmac->word_size) {
962 case DMA_SLAVE_BUSWIDTH_4_BYTES:
963 bd->mode.command = 0;
964 if (count & 3 || sg->dma_address & 3)
965 return NULL;
966 break;
967 case DMA_SLAVE_BUSWIDTH_2_BYTES:
968 bd->mode.command = 2;
969 if (count & 1 || sg->dma_address & 1)
970 return NULL;
971 break;
972 case DMA_SLAVE_BUSWIDTH_1_BYTE:
973 bd->mode.command = 1;
974 break;
975 default:
976 return NULL;
977 }
978
979 param = BD_DONE | BD_EXTD | BD_CONT;
980
981 if (i + 1 == sg_len) {
982 param |= BD_INTR;
983 param |= BD_LAST;
984 param &= ~BD_CONT;
985 }
986
987 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
988 i, count, sg->dma_address,
989 param & BD_WRAP ? "wrap" : "",
990 param & BD_INTR ? " intr" : "");
991
992 bd->mode.status = param;
993 }
994
995 sdmac->num_bd = sg_len;
996 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
997
998 return &sdmac->desc;
999 err_out:
1000 sdmac->status = DMA_ERROR;
1001 return NULL;
1002 }
1003
1004 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1005 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1006 size_t period_len, enum dma_transfer_direction direction,
1007 void *context)
1008 {
1009 struct sdma_channel *sdmac = to_sdma_chan(chan);
1010 struct sdma_engine *sdma = sdmac->sdma;
1011 int num_periods = buf_len / period_len;
1012 int channel = sdmac->channel;
1013 int ret, i = 0, buf = 0;
1014
1015 dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1016
1017 if (sdmac->status == DMA_IN_PROGRESS)
1018 return NULL;
1019
1020 sdmac->status = DMA_IN_PROGRESS;
1021
1022 sdmac->flags |= IMX_DMA_SG_LOOP;
1023 sdmac->direction = direction;
1024 ret = sdma_load_context(sdmac);
1025 if (ret)
1026 goto err_out;
1027
1028 if (num_periods > NUM_BD) {
1029 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1030 channel, num_periods, NUM_BD);
1031 goto err_out;
1032 }
1033
1034 if (period_len > 0xffff) {
1035 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1036 channel, period_len, 0xffff);
1037 goto err_out;
1038 }
1039
1040 while (buf < buf_len) {
1041 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1042 int param;
1043
1044 bd->buffer_addr = dma_addr;
1045
1046 bd->mode.count = period_len;
1047
1048 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1049 goto err_out;
1050 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1051 bd->mode.command = 0;
1052 else
1053 bd->mode.command = sdmac->word_size;
1054
1055 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1056 if (i + 1 == num_periods)
1057 param |= BD_WRAP;
1058
1059 dev_dbg(sdma->dev, "entry %d: count: %d dma: 0x%08x %s%s\n",
1060 i, period_len, dma_addr,
1061 param & BD_WRAP ? "wrap" : "",
1062 param & BD_INTR ? " intr" : "");
1063
1064 bd->mode.status = param;
1065
1066 dma_addr += period_len;
1067 buf += period_len;
1068
1069 i++;
1070 }
1071
1072 sdmac->num_bd = num_periods;
1073 sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1074
1075 return &sdmac->desc;
1076 err_out:
1077 sdmac->status = DMA_ERROR;
1078 return NULL;
1079 }
1080
1081 static int sdma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1082 unsigned long arg)
1083 {
1084 struct sdma_channel *sdmac = to_sdma_chan(chan);
1085 struct dma_slave_config *dmaengine_cfg = (void *)arg;
1086
1087 switch (cmd) {
1088 case DMA_TERMINATE_ALL:
1089 sdma_disable_channel(sdmac);
1090 return 0;
1091 case DMA_SLAVE_CONFIG:
1092 if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1093 sdmac->per_address = dmaengine_cfg->src_addr;
1094 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1095 dmaengine_cfg->src_addr_width;
1096 sdmac->word_size = dmaengine_cfg->src_addr_width;
1097 } else {
1098 sdmac->per_address = dmaengine_cfg->dst_addr;
1099 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1100 dmaengine_cfg->dst_addr_width;
1101 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1102 }
1103 sdmac->direction = dmaengine_cfg->direction;
1104 return sdma_config_channel(sdmac);
1105 default:
1106 return -ENOSYS;
1107 }
1108
1109 return -EINVAL;
1110 }
1111
1112 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1113 dma_cookie_t cookie,
1114 struct dma_tx_state *txstate)
1115 {
1116 struct sdma_channel *sdmac = to_sdma_chan(chan);
1117 dma_cookie_t last_used;
1118
1119 last_used = chan->cookie;
1120
1121 dma_set_tx_state(txstate, chan->completed_cookie, last_used,
1122 sdmac->chn_count - sdmac->chn_real_count);
1123
1124 return sdmac->status;
1125 }
1126
1127 static void sdma_issue_pending(struct dma_chan *chan)
1128 {
1129 struct sdma_channel *sdmac = to_sdma_chan(chan);
1130 struct sdma_engine *sdma = sdmac->sdma;
1131
1132 if (sdmac->status == DMA_IN_PROGRESS)
1133 sdma_enable_channel(sdma, sdmac->channel);
1134 }
1135
1136 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1137
1138 static void sdma_add_scripts(struct sdma_engine *sdma,
1139 const struct sdma_script_start_addrs *addr)
1140 {
1141 s32 *addr_arr = (u32 *)addr;
1142 s32 *saddr_arr = (u32 *)sdma->script_addrs;
1143 int i;
1144
1145 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1146 if (addr_arr[i] > 0)
1147 saddr_arr[i] = addr_arr[i];
1148 }
1149
1150 static void sdma_load_firmware(const struct firmware *fw, void *context)
1151 {
1152 struct sdma_engine *sdma = context;
1153 const struct sdma_firmware_header *header;
1154 const struct sdma_script_start_addrs *addr;
1155 unsigned short *ram_code;
1156
1157 if (!fw) {
1158 dev_err(sdma->dev, "firmware not found\n");
1159 return;
1160 }
1161
1162 if (fw->size < sizeof(*header))
1163 goto err_firmware;
1164
1165 header = (struct sdma_firmware_header *)fw->data;
1166
1167 if (header->magic != SDMA_FIRMWARE_MAGIC)
1168 goto err_firmware;
1169 if (header->ram_code_start + header->ram_code_size > fw->size)
1170 goto err_firmware;
1171
1172 addr = (void *)header + header->script_addrs_start;
1173 ram_code = (void *)header + header->ram_code_start;
1174
1175 clk_enable(sdma->clk_ipg);
1176 clk_enable(sdma->clk_ahb);
1177 /* download the RAM image for SDMA */
1178 sdma_load_script(sdma, ram_code,
1179 header->ram_code_size,
1180 addr->ram_code_start_addr);
1181 clk_disable(sdma->clk_ipg);
1182 clk_disable(sdma->clk_ahb);
1183
1184 sdma_add_scripts(sdma, addr);
1185
1186 dev_info(sdma->dev, "loaded firmware %d.%d\n",
1187 header->version_major,
1188 header->version_minor);
1189
1190 err_firmware:
1191 release_firmware(fw);
1192 }
1193
1194 static int __init sdma_get_firmware(struct sdma_engine *sdma,
1195 const char *fw_name)
1196 {
1197 int ret;
1198
1199 ret = request_firmware_nowait(THIS_MODULE,
1200 FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1201 GFP_KERNEL, sdma, sdma_load_firmware);
1202
1203 return ret;
1204 }
1205
1206 static int __init sdma_init(struct sdma_engine *sdma)
1207 {
1208 int i, ret;
1209 dma_addr_t ccb_phys;
1210
1211 switch (sdma->devtype) {
1212 case IMX31_SDMA:
1213 sdma->num_events = 32;
1214 break;
1215 case IMX35_SDMA:
1216 sdma->num_events = 48;
1217 break;
1218 default:
1219 dev_err(sdma->dev, "Unknown sdma type %d. aborting\n",
1220 sdma->devtype);
1221 return -ENODEV;
1222 }
1223
1224 clk_enable(sdma->clk_ipg);
1225 clk_enable(sdma->clk_ahb);
1226
1227 /* Be sure SDMA has not started yet */
1228 writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1229
1230 sdma->channel_control = dma_alloc_coherent(NULL,
1231 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1232 sizeof(struct sdma_context_data),
1233 &ccb_phys, GFP_KERNEL);
1234
1235 if (!sdma->channel_control) {
1236 ret = -ENOMEM;
1237 goto err_dma_alloc;
1238 }
1239
1240 sdma->context = (void *)sdma->channel_control +
1241 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1242 sdma->context_phys = ccb_phys +
1243 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1244
1245 /* Zero-out the CCB structures array just allocated */
1246 memset(sdma->channel_control, 0,
1247 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1248
1249 /* disable all channels */
1250 for (i = 0; i < sdma->num_events; i++)
1251 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1252
1253 /* All channels have priority 0 */
1254 for (i = 0; i < MAX_DMA_CHANNELS; i++)
1255 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1256
1257 ret = sdma_request_channel(&sdma->channel[0]);
1258 if (ret)
1259 goto err_dma_alloc;
1260
1261 sdma_config_ownership(&sdma->channel[0], false, true, false);
1262
1263 /* Set Command Channel (Channel Zero) */
1264 writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1265
1266 /* Set bits of CONFIG register but with static context switching */
1267 /* FIXME: Check whether to set ACR bit depending on clock ratios */
1268 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1269
1270 writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1271
1272 /* Set bits of CONFIG register with given context switching mode */
1273 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
1274
1275 /* Initializes channel's priorities */
1276 sdma_set_channel_priority(&sdma->channel[0], 7);
1277
1278 clk_disable(sdma->clk_ipg);
1279 clk_disable(sdma->clk_ahb);
1280
1281 return 0;
1282
1283 err_dma_alloc:
1284 clk_disable(sdma->clk_ipg);
1285 clk_disable(sdma->clk_ahb);
1286 dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1287 return ret;
1288 }
1289
1290 static int __init sdma_probe(struct platform_device *pdev)
1291 {
1292 const struct of_device_id *of_id =
1293 of_match_device(sdma_dt_ids, &pdev->dev);
1294 struct device_node *np = pdev->dev.of_node;
1295 const char *fw_name;
1296 int ret;
1297 int irq;
1298 struct resource *iores;
1299 struct sdma_platform_data *pdata = pdev->dev.platform_data;
1300 int i;
1301 struct sdma_engine *sdma;
1302 s32 *saddr_arr;
1303
1304 sdma = kzalloc(sizeof(*sdma), GFP_KERNEL);
1305 if (!sdma)
1306 return -ENOMEM;
1307
1308 mutex_init(&sdma->channel_0_lock);
1309
1310 sdma->dev = &pdev->dev;
1311
1312 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1313 irq = platform_get_irq(pdev, 0);
1314 if (!iores || irq < 0) {
1315 ret = -EINVAL;
1316 goto err_irq;
1317 }
1318
1319 if (!request_mem_region(iores->start, resource_size(iores), pdev->name)) {
1320 ret = -EBUSY;
1321 goto err_request_region;
1322 }
1323
1324 sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1325 if (IS_ERR(sdma->clk_ipg)) {
1326 ret = PTR_ERR(sdma->clk_ipg);
1327 goto err_clk;
1328 }
1329
1330 sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1331 if (IS_ERR(sdma->clk_ahb)) {
1332 ret = PTR_ERR(sdma->clk_ahb);
1333 goto err_clk;
1334 }
1335
1336 clk_prepare(sdma->clk_ipg);
1337 clk_prepare(sdma->clk_ahb);
1338
1339 sdma->regs = ioremap(iores->start, resource_size(iores));
1340 if (!sdma->regs) {
1341 ret = -ENOMEM;
1342 goto err_ioremap;
1343 }
1344
1345 ret = request_irq(irq, sdma_int_handler, 0, "sdma", sdma);
1346 if (ret)
1347 goto err_request_irq;
1348
1349 sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1350 if (!sdma->script_addrs) {
1351 ret = -ENOMEM;
1352 goto err_alloc;
1353 }
1354
1355 /* initially no scripts available */
1356 saddr_arr = (s32 *)sdma->script_addrs;
1357 for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1358 saddr_arr[i] = -EINVAL;
1359
1360 if (of_id)
1361 pdev->id_entry = of_id->data;
1362 sdma->devtype = pdev->id_entry->driver_data;
1363
1364 dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1365 dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1366
1367 INIT_LIST_HEAD(&sdma->dma_device.channels);
1368 /* Initialize channel parameters */
1369 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1370 struct sdma_channel *sdmac = &sdma->channel[i];
1371
1372 sdmac->sdma = sdma;
1373 spin_lock_init(&sdmac->lock);
1374
1375 sdmac->chan.device = &sdma->dma_device;
1376 dma_cookie_init(&sdmac->chan);
1377 sdmac->channel = i;
1378
1379 /*
1380 * Add the channel to the DMAC list. Do not add channel 0 though
1381 * because we need it internally in the SDMA driver. This also means
1382 * that channel 0 in dmaengine counting matches sdma channel 1.
1383 */
1384 if (i)
1385 list_add_tail(&sdmac->chan.device_node,
1386 &sdma->dma_device.channels);
1387 }
1388
1389 ret = sdma_init(sdma);
1390 if (ret)
1391 goto err_init;
1392
1393 if (pdata && pdata->script_addrs)
1394 sdma_add_scripts(sdma, pdata->script_addrs);
1395
1396 if (pdata) {
1397 ret = sdma_get_firmware(sdma, pdata->fw_name);
1398 if (ret)
1399 dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1400 } else {
1401 /*
1402 * Because that device tree does not encode ROM script address,
1403 * the RAM script in firmware is mandatory for device tree
1404 * probe, otherwise it fails.
1405 */
1406 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1407 &fw_name);
1408 if (ret)
1409 dev_warn(&pdev->dev, "failed to get firmware name\n");
1410 else {
1411 ret = sdma_get_firmware(sdma, fw_name);
1412 if (ret)
1413 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1414 }
1415 }
1416
1417 sdma->dma_device.dev = &pdev->dev;
1418
1419 sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1420 sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1421 sdma->dma_device.device_tx_status = sdma_tx_status;
1422 sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1423 sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1424 sdma->dma_device.device_control = sdma_control;
1425 sdma->dma_device.device_issue_pending = sdma_issue_pending;
1426 sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1427 dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1428
1429 ret = dma_async_device_register(&sdma->dma_device);
1430 if (ret) {
1431 dev_err(&pdev->dev, "unable to register\n");
1432 goto err_init;
1433 }
1434
1435 dev_info(sdma->dev, "initialized\n");
1436
1437 return 0;
1438
1439 err_init:
1440 kfree(sdma->script_addrs);
1441 err_alloc:
1442 free_irq(irq, sdma);
1443 err_request_irq:
1444 iounmap(sdma->regs);
1445 err_ioremap:
1446 err_clk:
1447 release_mem_region(iores->start, resource_size(iores));
1448 err_request_region:
1449 err_irq:
1450 kfree(sdma);
1451 return ret;
1452 }
1453
1454 static int __exit sdma_remove(struct platform_device *pdev)
1455 {
1456 return -EBUSY;
1457 }
1458
1459 static struct platform_driver sdma_driver = {
1460 .driver = {
1461 .name = "imx-sdma",
1462 .of_match_table = sdma_dt_ids,
1463 },
1464 .id_table = sdma_devtypes,
1465 .remove = __exit_p(sdma_remove),
1466 };
1467
1468 static int __init sdma_module_init(void)
1469 {
1470 return platform_driver_probe(&sdma_driver, sdma_probe);
1471 }
1472 module_init(sdma_module_init);
1473
1474 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1475 MODULE_DESCRIPTION("i.MX SDMA driver");
1476 MODULE_LICENSE("GPL");