]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/intel_mid_dma.c
Merge tag 'pci-v4.0-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / intel_mid_dma.c
1 /*
2 * intel_mid_dma.c - Intel Langwell DMA Drivers
3 *
4 * Copyright (C) 2008-10 Intel Corp
5 * Author: Vinod Koul <vinod.koul@intel.com>
6 * The driver design is based on dw_dmac driver
7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, write to the Free Software Foundation, Inc.,
20 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 *
25 */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31
32 #include "dmaengine.h"
33
34 #define MAX_CHAN 4 /*max ch across controllers*/
35 #include "intel_mid_dma_regs.h"
36
37 #define INTEL_MID_DMAC1_ID 0x0814
38 #define INTEL_MID_DMAC2_ID 0x0813
39 #define INTEL_MID_GP_DMAC2_ID 0x0827
40 #define INTEL_MFLD_DMAC1_ID 0x0830
41 #define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
42 #define LNW_PERIPHRAL_MASK_SIZE 0x10
43 #define LNW_PERIPHRAL_STATUS 0x0
44 #define LNW_PERIPHRAL_MASK 0x8
45
46 struct intel_mid_dma_probe_info {
47 u8 max_chan;
48 u8 ch_base;
49 u16 block_size;
50 u32 pimr_mask;
51 };
52
53 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54 ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
55 .max_chan = (_max_chan), \
56 .ch_base = (_ch_base), \
57 .block_size = (_block_size), \
58 .pimr_mask = (_pimr_mask), \
59 })
60
61 /*****************************************************************************
62 Utility Functions*/
63 /**
64 * get_ch_index - convert status to channel
65 * @status: status mask
66 * @base: dma ch base value
67 *
68 * Modify the status mask and return the channel index needing
69 * attention (or -1 if neither)
70 */
71 static int get_ch_index(int *status, unsigned int base)
72 {
73 int i;
74 for (i = 0; i < MAX_CHAN; i++) {
75 if (*status & (1 << (i + base))) {
76 *status = *status & ~(1 << (i + base));
77 pr_debug("MDMA: index %d New status %x\n", i, *status);
78 return i;
79 }
80 }
81 return -1;
82 }
83
84 /**
85 * get_block_ts - calculates dma transaction length
86 * @len: dma transfer length
87 * @tx_width: dma transfer src width
88 * @block_size: dma controller max block size
89 *
90 * Based on src width calculate the DMA trsaction length in data items
91 * return data items or FFFF if exceeds max length for block
92 */
93 static int get_block_ts(int len, int tx_width, int block_size)
94 {
95 int byte_width = 0, block_ts = 0;
96
97 switch (tx_width) {
98 case DMA_SLAVE_BUSWIDTH_1_BYTE:
99 byte_width = 1;
100 break;
101 case DMA_SLAVE_BUSWIDTH_2_BYTES:
102 byte_width = 2;
103 break;
104 case DMA_SLAVE_BUSWIDTH_4_BYTES:
105 default:
106 byte_width = 4;
107 break;
108 }
109
110 block_ts = len/byte_width;
111 if (block_ts > block_size)
112 block_ts = 0xFFFF;
113 return block_ts;
114 }
115
116 /*****************************************************************************
117 DMAC1 interrupt Functions*/
118
119 /**
120 * dmac1_mask_periphral_intr - mask the periphral interrupt
121 * @mid: dma device for which masking is required
122 *
123 * Masks the DMA periphral interrupt
124 * this is valid for DMAC1 family controllers only
125 * This controller should have periphral mask registers already mapped
126 */
127 static void dmac1_mask_periphral_intr(struct middma_device *mid)
128 {
129 u32 pimr;
130
131 if (mid->pimr_mask) {
132 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133 pimr |= mid->pimr_mask;
134 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135 }
136 return;
137 }
138
139 /**
140 * dmac1_unmask_periphral_intr - unmask the periphral interrupt
141 * @midc: dma channel for which masking is required
142 *
143 * UnMasks the DMA periphral interrupt,
144 * this is valid for DMAC1 family controllers only
145 * This controller should have periphral mask registers already mapped
146 */
147 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148 {
149 u32 pimr;
150 struct middma_device *mid = to_middma_device(midc->chan.device);
151
152 if (mid->pimr_mask) {
153 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154 pimr &= ~mid->pimr_mask;
155 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156 }
157 return;
158 }
159
160 /**
161 * enable_dma_interrupt - enable the periphral interrupt
162 * @midc: dma channel for which enable interrupt is required
163 *
164 * Enable the DMA periphral interrupt,
165 * this is valid for DMAC1 family controllers only
166 * This controller should have periphral mask registers already mapped
167 */
168 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169 {
170 dmac1_unmask_periphral_intr(midc);
171
172 /*en ch interrupts*/
173 iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174 iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175 return;
176 }
177
178 /**
179 * disable_dma_interrupt - disable the periphral interrupt
180 * @midc: dma channel for which disable interrupt is required
181 *
182 * Disable the DMA periphral interrupt,
183 * this is valid for DMAC1 family controllers only
184 * This controller should have periphral mask registers already mapped
185 */
186 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187 {
188 /*Check LPE PISR, make sure fwd is disabled*/
189 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191 iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192 return;
193 }
194
195 /*****************************************************************************
196 DMA channel helper Functions*/
197 /**
198 * mid_desc_get - get a descriptor
199 * @midc: dma channel for which descriptor is required
200 *
201 * Obtain a descriptor for the channel. Returns NULL if none are free.
202 * Once the descriptor is returned it is private until put on another
203 * list or freed
204 */
205 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 {
207 struct intel_mid_dma_desc *desc, *_desc;
208 struct intel_mid_dma_desc *ret = NULL;
209
210 spin_lock_bh(&midc->lock);
211 list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212 if (async_tx_test_ack(&desc->txd)) {
213 list_del(&desc->desc_node);
214 ret = desc;
215 break;
216 }
217 }
218 spin_unlock_bh(&midc->lock);
219 return ret;
220 }
221
222 /**
223 * mid_desc_put - put a descriptor
224 * @midc: dma channel for which descriptor is required
225 * @desc: descriptor to put
226 *
227 * Return a descriptor from lwn_desc_get back to the free pool
228 */
229 static void midc_desc_put(struct intel_mid_dma_chan *midc,
230 struct intel_mid_dma_desc *desc)
231 {
232 if (desc) {
233 spin_lock_bh(&midc->lock);
234 list_add_tail(&desc->desc_node, &midc->free_list);
235 spin_unlock_bh(&midc->lock);
236 }
237 }
238 /**
239 * midc_dostart - begin a DMA transaction
240 * @midc: channel for which txn is to be started
241 * @first: first descriptor of series
242 *
243 * Load a transaction into the engine. This must be called with midc->lock
244 * held and bh disabled.
245 */
246 static void midc_dostart(struct intel_mid_dma_chan *midc,
247 struct intel_mid_dma_desc *first)
248 {
249 struct middma_device *mid = to_middma_device(midc->chan.device);
250
251 /* channel is idle */
252 if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253 /*error*/
254 pr_err("ERR_MDMA: channel is busy in start\n");
255 /* The tasklet will hopefully advance the queue... */
256 return;
257 }
258 midc->busy = true;
259 /*write registers and en*/
260 iowrite32(first->sar, midc->ch_regs + SAR);
261 iowrite32(first->dar, midc->ch_regs + DAR);
262 iowrite32(first->lli_phys, midc->ch_regs + LLP);
263 iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264 iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265 iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266 iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267 pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268 (int)first->sar, (int)first->dar, first->cfg_hi,
269 first->cfg_lo, first->ctl_hi, first->ctl_lo);
270 first->status = DMA_IN_PROGRESS;
271
272 iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273 }
274
275 /**
276 * midc_descriptor_complete - process completed descriptor
277 * @midc: channel owning the descriptor
278 * @desc: the descriptor itself
279 *
280 * Process a completed descriptor and perform any callbacks upon
281 * the completion. The completion handling drops the lock during the
282 * callbacks but must be called with the lock held.
283 */
284 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285 struct intel_mid_dma_desc *desc)
286 __releases(&midc->lock) __acquires(&midc->lock)
287 {
288 struct dma_async_tx_descriptor *txd = &desc->txd;
289 dma_async_tx_callback callback_txd = NULL;
290 struct intel_mid_dma_lli *llitem;
291 void *param_txd = NULL;
292
293 dma_cookie_complete(txd);
294 callback_txd = txd->callback;
295 param_txd = txd->callback_param;
296
297 if (desc->lli != NULL) {
298 /*clear the DONE bit of completed LLI in memory*/
299 llitem = desc->lli + desc->current_lli;
300 llitem->ctl_hi &= CLEAR_DONE;
301 if (desc->current_lli < desc->lli_length-1)
302 (desc->current_lli)++;
303 else
304 desc->current_lli = 0;
305 }
306 spin_unlock_bh(&midc->lock);
307 if (callback_txd) {
308 pr_debug("MDMA: TXD callback set ... calling\n");
309 callback_txd(param_txd);
310 }
311 if (midc->raw_tfr) {
312 desc->status = DMA_COMPLETE;
313 if (desc->lli != NULL) {
314 pci_pool_free(desc->lli_pool, desc->lli,
315 desc->lli_phys);
316 pci_pool_destroy(desc->lli_pool);
317 desc->lli = NULL;
318 }
319 list_move(&desc->desc_node, &midc->free_list);
320 midc->busy = false;
321 }
322 spin_lock_bh(&midc->lock);
323
324 }
325 /**
326 * midc_scan_descriptors - check the descriptors in channel
327 * mark completed when tx is completete
328 * @mid: device
329 * @midc: channel to scan
330 *
331 * Walk the descriptor chain for the device and process any entries
332 * that are complete.
333 */
334 static void midc_scan_descriptors(struct middma_device *mid,
335 struct intel_mid_dma_chan *midc)
336 {
337 struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339 /*tx is complete*/
340 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341 if (desc->status == DMA_IN_PROGRESS)
342 midc_descriptor_complete(midc, desc);
343 }
344 return;
345 }
346 /**
347 * midc_lli_fill_sg - Helper function to convert
348 * SG list to Linked List Items.
349 *@midc: Channel
350 *@desc: DMA descriptor
351 *@sglist: Pointer to SG list
352 *@sglen: SG list length
353 *@flags: DMA transaction flags
354 *
355 * Walk through the SG list and convert the SG list into Linked
356 * List Items (LLI).
357 */
358 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359 struct intel_mid_dma_desc *desc,
360 struct scatterlist *sglist,
361 unsigned int sglen,
362 unsigned int flags)
363 {
364 struct intel_mid_dma_slave *mids;
365 struct scatterlist *sg;
366 dma_addr_t lli_next, sg_phy_addr;
367 struct intel_mid_dma_lli *lli_bloc_desc;
368 union intel_mid_dma_ctl_lo ctl_lo;
369 union intel_mid_dma_ctl_hi ctl_hi;
370 int i;
371
372 pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373 mids = midc->mid_slave;
374
375 lli_bloc_desc = desc->lli;
376 lli_next = desc->lli_phys;
377
378 ctl_lo.ctl_lo = desc->ctl_lo;
379 ctl_hi.ctl_hi = desc->ctl_hi;
380 for_each_sg(sglist, sg, sglen, i) {
381 /*Populate CTL_LOW and LLI values*/
382 if (i != sglen - 1) {
383 lli_next = lli_next +
384 sizeof(struct intel_mid_dma_lli);
385 } else {
386 /*Check for circular list, otherwise terminate LLI to ZERO*/
387 if (flags & DMA_PREP_CIRCULAR_LIST) {
388 pr_debug("MDMA: LLI is configured in circular mode\n");
389 lli_next = desc->lli_phys;
390 } else {
391 lli_next = 0;
392 ctl_lo.ctlx.llp_dst_en = 0;
393 ctl_lo.ctlx.llp_src_en = 0;
394 }
395 }
396 /*Populate CTL_HI values*/
397 ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398 desc->width,
399 midc->dma->block_size);
400 /*Populate SAR and DAR values*/
401 sg_phy_addr = sg_dma_address(sg);
402 if (desc->dirn == DMA_MEM_TO_DEV) {
403 lli_bloc_desc->sar = sg_phy_addr;
404 lli_bloc_desc->dar = mids->dma_slave.dst_addr;
405 } else if (desc->dirn == DMA_DEV_TO_MEM) {
406 lli_bloc_desc->sar = mids->dma_slave.src_addr;
407 lli_bloc_desc->dar = sg_phy_addr;
408 }
409 /*Copy values into block descriptor in system memroy*/
410 lli_bloc_desc->llp = lli_next;
411 lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412 lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414 lli_bloc_desc++;
415 }
416 /*Copy very first LLI values to descriptor*/
417 desc->ctl_lo = desc->lli->ctl_lo;
418 desc->ctl_hi = desc->lli->ctl_hi;
419 desc->sar = desc->lli->sar;
420 desc->dar = desc->lli->dar;
421
422 return 0;
423 }
424 /*****************************************************************************
425 DMA engine callback Functions*/
426 /**
427 * intel_mid_dma_tx_submit - callback to submit DMA transaction
428 * @tx: dma engine descriptor
429 *
430 * Submit the DMA transaction for this descriptor, start if ch idle
431 */
432 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433 {
434 struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
435 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
436 dma_cookie_t cookie;
437
438 spin_lock_bh(&midc->lock);
439 cookie = dma_cookie_assign(tx);
440
441 if (list_empty(&midc->active_list))
442 list_add_tail(&desc->desc_node, &midc->active_list);
443 else
444 list_add_tail(&desc->desc_node, &midc->queue);
445
446 midc_dostart(midc, desc);
447 spin_unlock_bh(&midc->lock);
448
449 return cookie;
450 }
451
452 /**
453 * intel_mid_dma_issue_pending - callback to issue pending txn
454 * @chan: chan where pending trascation needs to be checked and submitted
455 *
456 * Call for scan to issue pending descriptors
457 */
458 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459 {
460 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
461
462 spin_lock_bh(&midc->lock);
463 if (!list_empty(&midc->queue))
464 midc_scan_descriptors(to_middma_device(chan->device), midc);
465 spin_unlock_bh(&midc->lock);
466 }
467
468 /**
469 * intel_mid_dma_tx_status - Return status of txn
470 * @chan: chan for where status needs to be checked
471 * @cookie: cookie for txn
472 * @txstate: DMA txn state
473 *
474 * Return status of DMA txn
475 */
476 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477 dma_cookie_t cookie,
478 struct dma_tx_state *txstate)
479 {
480 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481 enum dma_status ret;
482
483 ret = dma_cookie_status(chan, cookie, txstate);
484 if (ret != DMA_COMPLETE) {
485 spin_lock_bh(&midc->lock);
486 midc_scan_descriptors(to_middma_device(chan->device), midc);
487 spin_unlock_bh(&midc->lock);
488
489 ret = dma_cookie_status(chan, cookie, txstate);
490 }
491
492 return ret;
493 }
494
495 static int intel_mid_dma_config(struct dma_chan *chan,
496 struct dma_slave_config *slave)
497 {
498 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
499 struct intel_mid_dma_slave *mid_slave;
500
501 BUG_ON(!midc);
502 BUG_ON(!slave);
503 pr_debug("MDMA: slave control called\n");
504
505 mid_slave = to_intel_mid_dma_slave(slave);
506
507 BUG_ON(!mid_slave);
508
509 midc->mid_slave = mid_slave;
510 return 0;
511 }
512
513 static int intel_mid_dma_terminate_all(struct dma_chan *chan)
514 {
515 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
516 struct middma_device *mid = to_middma_device(chan->device);
517 struct intel_mid_dma_desc *desc, *_desc;
518 union intel_mid_dma_cfg_lo cfg_lo;
519
520 spin_lock_bh(&midc->lock);
521 if (midc->busy == false) {
522 spin_unlock_bh(&midc->lock);
523 return 0;
524 }
525 /*Suspend and disable the channel*/
526 cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
527 cfg_lo.cfgx.ch_susp = 1;
528 iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
529 iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
530 midc->busy = false;
531 /* Disable interrupts */
532 disable_dma_interrupt(midc);
533 midc->descs_allocated = 0;
534
535 spin_unlock_bh(&midc->lock);
536 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
537 if (desc->lli != NULL) {
538 pci_pool_free(desc->lli_pool, desc->lli,
539 desc->lli_phys);
540 pci_pool_destroy(desc->lli_pool);
541 desc->lli = NULL;
542 }
543 list_move(&desc->desc_node, &midc->free_list);
544 }
545 return 0;
546 }
547
548
549 /**
550 * intel_mid_dma_prep_memcpy - Prep memcpy txn
551 * @chan: chan for DMA transfer
552 * @dest: destn address
553 * @src: src address
554 * @len: DMA transfer len
555 * @flags: DMA flags
556 *
557 * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
558 * The periphral txn details should be filled in slave structure properly
559 * Returns the descriptor for this txn
560 */
561 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
562 struct dma_chan *chan, dma_addr_t dest,
563 dma_addr_t src, size_t len, unsigned long flags)
564 {
565 struct intel_mid_dma_chan *midc;
566 struct intel_mid_dma_desc *desc = NULL;
567 struct intel_mid_dma_slave *mids;
568 union intel_mid_dma_ctl_lo ctl_lo;
569 union intel_mid_dma_ctl_hi ctl_hi;
570 union intel_mid_dma_cfg_lo cfg_lo;
571 union intel_mid_dma_cfg_hi cfg_hi;
572 enum dma_slave_buswidth width;
573
574 pr_debug("MDMA: Prep for memcpy\n");
575 BUG_ON(!chan);
576 if (!len)
577 return NULL;
578
579 midc = to_intel_mid_dma_chan(chan);
580 BUG_ON(!midc);
581
582 mids = midc->mid_slave;
583 BUG_ON(!mids);
584
585 pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
586 midc->dma->pci_id, midc->ch_id, len);
587 pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
588 mids->cfg_mode, mids->dma_slave.direction,
589 mids->hs_mode, mids->dma_slave.src_addr_width);
590
591 /*calculate CFG_LO*/
592 if (mids->hs_mode == LNW_DMA_SW_HS) {
593 cfg_lo.cfg_lo = 0;
594 cfg_lo.cfgx.hs_sel_dst = 1;
595 cfg_lo.cfgx.hs_sel_src = 1;
596 } else if (mids->hs_mode == LNW_DMA_HW_HS)
597 cfg_lo.cfg_lo = 0x00000;
598
599 /*calculate CFG_HI*/
600 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
601 /*SW HS only*/
602 cfg_hi.cfg_hi = 0;
603 } else {
604 cfg_hi.cfg_hi = 0;
605 if (midc->dma->pimr_mask) {
606 cfg_hi.cfgx.protctl = 0x0; /*default value*/
607 cfg_hi.cfgx.fifo_mode = 1;
608 if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
609 cfg_hi.cfgx.src_per = 0;
610 if (mids->device_instance == 0)
611 cfg_hi.cfgx.dst_per = 3;
612 if (mids->device_instance == 1)
613 cfg_hi.cfgx.dst_per = 1;
614 } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
615 if (mids->device_instance == 0)
616 cfg_hi.cfgx.src_per = 2;
617 if (mids->device_instance == 1)
618 cfg_hi.cfgx.src_per = 0;
619 cfg_hi.cfgx.dst_per = 0;
620 }
621 } else {
622 cfg_hi.cfgx.protctl = 0x1; /*default value*/
623 cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
624 midc->ch_id - midc->dma->chan_base;
625 }
626 }
627
628 /*calculate CTL_HI*/
629 ctl_hi.ctlx.reser = 0;
630 ctl_hi.ctlx.done = 0;
631 width = mids->dma_slave.src_addr_width;
632
633 ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
634 pr_debug("MDMA:calc len %d for block size %d\n",
635 ctl_hi.ctlx.block_ts, midc->dma->block_size);
636 /*calculate CTL_LO*/
637 ctl_lo.ctl_lo = 0;
638 ctl_lo.ctlx.int_en = 1;
639 ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
640 ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
641
642 /*
643 * Here we need some translation from "enum dma_slave_buswidth"
644 * to the format for our dma controller
645 * standard intel_mid_dmac's format
646 * 1 Byte 0b000
647 * 2 Bytes 0b001
648 * 4 Bytes 0b010
649 */
650 ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
651 ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
652
653 if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
654 ctl_lo.ctlx.tt_fc = 0;
655 ctl_lo.ctlx.sinc = 0;
656 ctl_lo.ctlx.dinc = 0;
657 } else {
658 if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
659 ctl_lo.ctlx.sinc = 0;
660 ctl_lo.ctlx.dinc = 2;
661 ctl_lo.ctlx.tt_fc = 1;
662 } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
663 ctl_lo.ctlx.sinc = 2;
664 ctl_lo.ctlx.dinc = 0;
665 ctl_lo.ctlx.tt_fc = 2;
666 }
667 }
668
669 pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
670 ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
671
672 enable_dma_interrupt(midc);
673
674 desc = midc_desc_get(midc);
675 if (desc == NULL)
676 goto err_desc_get;
677 desc->sar = src;
678 desc->dar = dest ;
679 desc->len = len;
680 desc->cfg_hi = cfg_hi.cfg_hi;
681 desc->cfg_lo = cfg_lo.cfg_lo;
682 desc->ctl_lo = ctl_lo.ctl_lo;
683 desc->ctl_hi = ctl_hi.ctl_hi;
684 desc->width = width;
685 desc->dirn = mids->dma_slave.direction;
686 desc->lli_phys = 0;
687 desc->lli = NULL;
688 desc->lli_pool = NULL;
689 return &desc->txd;
690
691 err_desc_get:
692 pr_err("ERR_MDMA: Failed to get desc\n");
693 midc_desc_put(midc, desc);
694 return NULL;
695 }
696 /**
697 * intel_mid_dma_prep_slave_sg - Prep slave sg txn
698 * @chan: chan for DMA transfer
699 * @sgl: scatter gather list
700 * @sg_len: length of sg txn
701 * @direction: DMA transfer dirtn
702 * @flags: DMA flags
703 * @context: transfer context (ignored)
704 *
705 * Prepares LLI based periphral transfer
706 */
707 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
708 struct dma_chan *chan, struct scatterlist *sgl,
709 unsigned int sg_len, enum dma_transfer_direction direction,
710 unsigned long flags, void *context)
711 {
712 struct intel_mid_dma_chan *midc = NULL;
713 struct intel_mid_dma_slave *mids = NULL;
714 struct intel_mid_dma_desc *desc = NULL;
715 struct dma_async_tx_descriptor *txd = NULL;
716 union intel_mid_dma_ctl_lo ctl_lo;
717
718 pr_debug("MDMA: Prep for slave SG\n");
719
720 if (!sg_len) {
721 pr_err("MDMA: Invalid SG length\n");
722 return NULL;
723 }
724 midc = to_intel_mid_dma_chan(chan);
725 BUG_ON(!midc);
726
727 mids = midc->mid_slave;
728 BUG_ON(!mids);
729
730 if (!midc->dma->pimr_mask) {
731 /* We can still handle sg list with only one item */
732 if (sg_len == 1) {
733 txd = intel_mid_dma_prep_memcpy(chan,
734 mids->dma_slave.dst_addr,
735 mids->dma_slave.src_addr,
736 sg_dma_len(sgl),
737 flags);
738 return txd;
739 } else {
740 pr_warn("MDMA: SG list is not supported by this controller\n");
741 return NULL;
742 }
743 }
744
745 pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
746 sg_len, direction, flags);
747
748 txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
749 if (NULL == txd) {
750 pr_err("MDMA: Prep memcpy failed\n");
751 return NULL;
752 }
753
754 desc = to_intel_mid_dma_desc(txd);
755 desc->dirn = direction;
756 ctl_lo.ctl_lo = desc->ctl_lo;
757 ctl_lo.ctlx.llp_dst_en = 1;
758 ctl_lo.ctlx.llp_src_en = 1;
759 desc->ctl_lo = ctl_lo.ctl_lo;
760 desc->lli_length = sg_len;
761 desc->current_lli = 0;
762 /* DMA coherent memory pool for LLI descriptors*/
763 desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
764 midc->dma->pdev,
765 (sizeof(struct intel_mid_dma_lli)*sg_len),
766 32, 0);
767 if (NULL == desc->lli_pool) {
768 pr_err("MID_DMA:LLI pool create failed\n");
769 return NULL;
770 }
771
772 desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
773 if (!desc->lli) {
774 pr_err("MID_DMA: LLI alloc failed\n");
775 pci_pool_destroy(desc->lli_pool);
776 return NULL;
777 }
778
779 midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
780 if (flags & DMA_PREP_INTERRUPT) {
781 iowrite32(UNMASK_INTR_REG(midc->ch_id),
782 midc->dma_base + MASK_BLOCK);
783 pr_debug("MDMA:Enabled Block interrupt\n");
784 }
785 return &desc->txd;
786 }
787
788 /**
789 * intel_mid_dma_free_chan_resources - Frees dma resources
790 * @chan: chan requiring attention
791 *
792 * Frees the allocated resources on this DMA chan
793 */
794 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
795 {
796 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
797 struct middma_device *mid = to_middma_device(chan->device);
798 struct intel_mid_dma_desc *desc, *_desc;
799
800 if (true == midc->busy) {
801 /*trying to free ch in use!!!!!*/
802 pr_err("ERR_MDMA: trying to free ch in use\n");
803 }
804 spin_lock_bh(&midc->lock);
805 midc->descs_allocated = 0;
806 list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
807 list_del(&desc->desc_node);
808 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
809 }
810 list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
811 list_del(&desc->desc_node);
812 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
813 }
814 list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
815 list_del(&desc->desc_node);
816 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
817 }
818 spin_unlock_bh(&midc->lock);
819 midc->in_use = false;
820 midc->busy = false;
821 /* Disable CH interrupts */
822 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
823 iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
824 pm_runtime_put(&mid->pdev->dev);
825 }
826
827 /**
828 * intel_mid_dma_alloc_chan_resources - Allocate dma resources
829 * @chan: chan requiring attention
830 *
831 * Allocates DMA resources on this chan
832 * Return the descriptors allocated
833 */
834 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
835 {
836 struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
837 struct middma_device *mid = to_middma_device(chan->device);
838 struct intel_mid_dma_desc *desc;
839 dma_addr_t phys;
840 int i = 0;
841
842 pm_runtime_get_sync(&mid->pdev->dev);
843
844 if (mid->state == SUSPENDED) {
845 if (dma_resume(&mid->pdev->dev)) {
846 pr_err("ERR_MDMA: resume failed");
847 return -EFAULT;
848 }
849 }
850
851 /* ASSERT: channel is idle */
852 if (test_ch_en(mid->dma_base, midc->ch_id)) {
853 /*ch is not idle*/
854 pr_err("ERR_MDMA: ch not idle\n");
855 pm_runtime_put(&mid->pdev->dev);
856 return -EIO;
857 }
858 dma_cookie_init(chan);
859
860 spin_lock_bh(&midc->lock);
861 while (midc->descs_allocated < DESCS_PER_CHANNEL) {
862 spin_unlock_bh(&midc->lock);
863 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
864 if (!desc) {
865 pr_err("ERR_MDMA: desc failed\n");
866 pm_runtime_put(&mid->pdev->dev);
867 return -ENOMEM;
868 /*check*/
869 }
870 dma_async_tx_descriptor_init(&desc->txd, chan);
871 desc->txd.tx_submit = intel_mid_dma_tx_submit;
872 desc->txd.flags = DMA_CTRL_ACK;
873 desc->txd.phys = phys;
874 spin_lock_bh(&midc->lock);
875 i = ++midc->descs_allocated;
876 list_add_tail(&desc->desc_node, &midc->free_list);
877 }
878 spin_unlock_bh(&midc->lock);
879 midc->in_use = true;
880 midc->busy = false;
881 pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
882 return i;
883 }
884
885 /**
886 * midc_handle_error - Handle DMA txn error
887 * @mid: controller where error occurred
888 * @midc: chan where error occurred
889 *
890 * Scan the descriptor for error
891 */
892 static void midc_handle_error(struct middma_device *mid,
893 struct intel_mid_dma_chan *midc)
894 {
895 midc_scan_descriptors(mid, midc);
896 }
897
898 /**
899 * dma_tasklet - DMA interrupt tasklet
900 * @data: tasklet arg (the controller structure)
901 *
902 * Scan the controller for interrupts for completion/error
903 * Clear the interrupt and call for handling completion/error
904 */
905 static void dma_tasklet(unsigned long data)
906 {
907 struct middma_device *mid = NULL;
908 struct intel_mid_dma_chan *midc = NULL;
909 u32 status, raw_tfr, raw_block;
910 int i;
911
912 mid = (struct middma_device *)data;
913 if (mid == NULL) {
914 pr_err("ERR_MDMA: tasklet Null param\n");
915 return;
916 }
917 pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
918 raw_tfr = ioread32(mid->dma_base + RAW_TFR);
919 raw_block = ioread32(mid->dma_base + RAW_BLOCK);
920 status = raw_tfr | raw_block;
921 status &= mid->intr_mask;
922 while (status) {
923 /*txn interrupt*/
924 i = get_ch_index(&status, mid->chan_base);
925 if (i < 0) {
926 pr_err("ERR_MDMA:Invalid ch index %x\n", i);
927 return;
928 }
929 midc = &mid->ch[i];
930 if (midc == NULL) {
931 pr_err("ERR_MDMA:Null param midc\n");
932 return;
933 }
934 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
935 status, midc->ch_id, i);
936 midc->raw_tfr = raw_tfr;
937 midc->raw_block = raw_block;
938 spin_lock_bh(&midc->lock);
939 /*clearing this interrupts first*/
940 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
941 if (raw_block) {
942 iowrite32((1 << midc->ch_id),
943 mid->dma_base + CLEAR_BLOCK);
944 }
945 midc_scan_descriptors(mid, midc);
946 pr_debug("MDMA:Scan of desc... complete, unmasking\n");
947 iowrite32(UNMASK_INTR_REG(midc->ch_id),
948 mid->dma_base + MASK_TFR);
949 if (raw_block) {
950 iowrite32(UNMASK_INTR_REG(midc->ch_id),
951 mid->dma_base + MASK_BLOCK);
952 }
953 spin_unlock_bh(&midc->lock);
954 }
955
956 status = ioread32(mid->dma_base + RAW_ERR);
957 status &= mid->intr_mask;
958 while (status) {
959 /*err interrupt*/
960 i = get_ch_index(&status, mid->chan_base);
961 if (i < 0) {
962 pr_err("ERR_MDMA:Invalid ch index %x\n", i);
963 return;
964 }
965 midc = &mid->ch[i];
966 if (midc == NULL) {
967 pr_err("ERR_MDMA:Null param midc\n");
968 return;
969 }
970 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
971 status, midc->ch_id, i);
972
973 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
974 spin_lock_bh(&midc->lock);
975 midc_handle_error(mid, midc);
976 iowrite32(UNMASK_INTR_REG(midc->ch_id),
977 mid->dma_base + MASK_ERR);
978 spin_unlock_bh(&midc->lock);
979 }
980 pr_debug("MDMA:Exiting takslet...\n");
981 return;
982 }
983
984 static void dma_tasklet1(unsigned long data)
985 {
986 pr_debug("MDMA:in takslet1...\n");
987 return dma_tasklet(data);
988 }
989
990 static void dma_tasklet2(unsigned long data)
991 {
992 pr_debug("MDMA:in takslet2...\n");
993 return dma_tasklet(data);
994 }
995
996 /**
997 * intel_mid_dma_interrupt - DMA ISR
998 * @irq: IRQ where interrupt occurred
999 * @data: ISR cllback data (the controller structure)
1000 *
1001 * See if this is our interrupt if so then schedule the tasklet
1002 * otherwise ignore
1003 */
1004 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1005 {
1006 struct middma_device *mid = data;
1007 u32 tfr_status, err_status;
1008 int call_tasklet = 0;
1009
1010 tfr_status = ioread32(mid->dma_base + RAW_TFR);
1011 err_status = ioread32(mid->dma_base + RAW_ERR);
1012 if (!tfr_status && !err_status)
1013 return IRQ_NONE;
1014
1015 /*DMA Interrupt*/
1016 pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1017 pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1018 tfr_status &= mid->intr_mask;
1019 if (tfr_status) {
1020 /*need to disable intr*/
1021 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1022 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1023 pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1024 call_tasklet = 1;
1025 }
1026 err_status &= mid->intr_mask;
1027 if (err_status) {
1028 iowrite32((err_status << INT_MASK_WE),
1029 mid->dma_base + MASK_ERR);
1030 call_tasklet = 1;
1031 }
1032 if (call_tasklet)
1033 tasklet_schedule(&mid->tasklet);
1034
1035 return IRQ_HANDLED;
1036 }
1037
1038 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1039 {
1040 return intel_mid_dma_interrupt(irq, data);
1041 }
1042
1043 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1044 {
1045 return intel_mid_dma_interrupt(irq, data);
1046 }
1047
1048 /**
1049 * mid_setup_dma - Setup the DMA controller
1050 * @pdev: Controller PCI device structure
1051 *
1052 * Initialize the DMA controller, channels, registers with DMA engine,
1053 * ISR. Initialize DMA controller channels.
1054 */
1055 static int mid_setup_dma(struct pci_dev *pdev)
1056 {
1057 struct middma_device *dma = pci_get_drvdata(pdev);
1058 int err, i;
1059
1060 /* DMA coherent memory pool for DMA descriptor allocations */
1061 dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1062 sizeof(struct intel_mid_dma_desc),
1063 32, 0);
1064 if (NULL == dma->dma_pool) {
1065 pr_err("ERR_MDMA:pci_pool_create failed\n");
1066 err = -ENOMEM;
1067 goto err_dma_pool;
1068 }
1069
1070 INIT_LIST_HEAD(&dma->common.channels);
1071 dma->pci_id = pdev->device;
1072 if (dma->pimr_mask) {
1073 dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1074 LNW_PERIPHRAL_MASK_SIZE);
1075 if (dma->mask_reg == NULL) {
1076 pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1077 err = -ENOMEM;
1078 goto err_ioremap;
1079 }
1080 } else
1081 dma->mask_reg = NULL;
1082
1083 pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1084 /*init CH structures*/
1085 dma->intr_mask = 0;
1086 dma->state = RUNNING;
1087 for (i = 0; i < dma->max_chan; i++) {
1088 struct intel_mid_dma_chan *midch = &dma->ch[i];
1089
1090 midch->chan.device = &dma->common;
1091 dma_cookie_init(&midch->chan);
1092 midch->ch_id = dma->chan_base + i;
1093 pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1094
1095 midch->dma_base = dma->dma_base;
1096 midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1097 midch->dma = dma;
1098 dma->intr_mask |= 1 << (dma->chan_base + i);
1099 spin_lock_init(&midch->lock);
1100
1101 INIT_LIST_HEAD(&midch->active_list);
1102 INIT_LIST_HEAD(&midch->queue);
1103 INIT_LIST_HEAD(&midch->free_list);
1104 /*mask interrupts*/
1105 iowrite32(MASK_INTR_REG(midch->ch_id),
1106 dma->dma_base + MASK_BLOCK);
1107 iowrite32(MASK_INTR_REG(midch->ch_id),
1108 dma->dma_base + MASK_SRC_TRAN);
1109 iowrite32(MASK_INTR_REG(midch->ch_id),
1110 dma->dma_base + MASK_DST_TRAN);
1111 iowrite32(MASK_INTR_REG(midch->ch_id),
1112 dma->dma_base + MASK_ERR);
1113 iowrite32(MASK_INTR_REG(midch->ch_id),
1114 dma->dma_base + MASK_TFR);
1115
1116 disable_dma_interrupt(midch);
1117 list_add_tail(&midch->chan.device_node, &dma->common.channels);
1118 }
1119 pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1120
1121 /*init dma structure*/
1122 dma_cap_zero(dma->common.cap_mask);
1123 dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1124 dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1125 dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1126 dma->common.dev = &pdev->dev;
1127
1128 dma->common.device_alloc_chan_resources =
1129 intel_mid_dma_alloc_chan_resources;
1130 dma->common.device_free_chan_resources =
1131 intel_mid_dma_free_chan_resources;
1132
1133 dma->common.device_tx_status = intel_mid_dma_tx_status;
1134 dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1135 dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1136 dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1137 dma->common.device_config = intel_mid_dma_config;
1138 dma->common.device_terminate_all = intel_mid_dma_terminate_all;
1139
1140 /*enable dma cntrl*/
1141 iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1142
1143 /*register irq */
1144 if (dma->pimr_mask) {
1145 pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1146 err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1147 IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1148 if (0 != err)
1149 goto err_irq;
1150 } else {
1151 dma->intr_mask = 0x03;
1152 pr_debug("MDMA:Requesting irq for DMAC2\n");
1153 err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1154 IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1155 if (0 != err)
1156 goto err_irq;
1157 }
1158 /*register device w/ engine*/
1159 err = dma_async_device_register(&dma->common);
1160 if (0 != err) {
1161 pr_err("ERR_MDMA:device_register failed: %d\n", err);
1162 goto err_engine;
1163 }
1164 if (dma->pimr_mask) {
1165 pr_debug("setting up tasklet1 for DMAC1\n");
1166 tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1167 } else {
1168 pr_debug("setting up tasklet2 for DMAC2\n");
1169 tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1170 }
1171 return 0;
1172
1173 err_engine:
1174 free_irq(pdev->irq, dma);
1175 err_irq:
1176 if (dma->mask_reg)
1177 iounmap(dma->mask_reg);
1178 err_ioremap:
1179 pci_pool_destroy(dma->dma_pool);
1180 err_dma_pool:
1181 pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1182 return err;
1183
1184 }
1185
1186 /**
1187 * middma_shutdown - Shutdown the DMA controller
1188 * @pdev: Controller PCI device structure
1189 *
1190 * Called by remove
1191 * Unregister DMa controller, clear all structures and free interrupt
1192 */
1193 static void middma_shutdown(struct pci_dev *pdev)
1194 {
1195 struct middma_device *device = pci_get_drvdata(pdev);
1196
1197 dma_async_device_unregister(&device->common);
1198 pci_pool_destroy(device->dma_pool);
1199 if (device->mask_reg)
1200 iounmap(device->mask_reg);
1201 if (device->dma_base)
1202 iounmap(device->dma_base);
1203 free_irq(pdev->irq, device);
1204 return;
1205 }
1206
1207 /**
1208 * intel_mid_dma_probe - PCI Probe
1209 * @pdev: Controller PCI device structure
1210 * @id: pci device id structure
1211 *
1212 * Initialize the PCI device, map BARs, query driver data.
1213 * Call setup_dma to complete contoller and chan initilzation
1214 */
1215 static int intel_mid_dma_probe(struct pci_dev *pdev,
1216 const struct pci_device_id *id)
1217 {
1218 struct middma_device *device;
1219 u32 base_addr, bar_size;
1220 struct intel_mid_dma_probe_info *info;
1221 int err;
1222
1223 pr_debug("MDMA: probe for %x\n", pdev->device);
1224 info = (void *)id->driver_data;
1225 pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1226 info->max_chan, info->ch_base,
1227 info->block_size, info->pimr_mask);
1228
1229 err = pci_enable_device(pdev);
1230 if (err)
1231 goto err_enable_device;
1232
1233 err = pci_request_regions(pdev, "intel_mid_dmac");
1234 if (err)
1235 goto err_request_regions;
1236
1237 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1238 if (err)
1239 goto err_set_dma_mask;
1240
1241 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1242 if (err)
1243 goto err_set_dma_mask;
1244
1245 device = kzalloc(sizeof(*device), GFP_KERNEL);
1246 if (!device) {
1247 pr_err("ERR_MDMA:kzalloc failed probe\n");
1248 err = -ENOMEM;
1249 goto err_kzalloc;
1250 }
1251 device->pdev = pci_dev_get(pdev);
1252
1253 base_addr = pci_resource_start(pdev, 0);
1254 bar_size = pci_resource_len(pdev, 0);
1255 device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1256 if (!device->dma_base) {
1257 pr_err("ERR_MDMA:ioremap failed\n");
1258 err = -ENOMEM;
1259 goto err_ioremap;
1260 }
1261 pci_set_drvdata(pdev, device);
1262 pci_set_master(pdev);
1263 device->max_chan = info->max_chan;
1264 device->chan_base = info->ch_base;
1265 device->block_size = info->block_size;
1266 device->pimr_mask = info->pimr_mask;
1267
1268 err = mid_setup_dma(pdev);
1269 if (err)
1270 goto err_dma;
1271
1272 pm_runtime_put_noidle(&pdev->dev);
1273 pm_runtime_allow(&pdev->dev);
1274 return 0;
1275
1276 err_dma:
1277 iounmap(device->dma_base);
1278 err_ioremap:
1279 pci_dev_put(pdev);
1280 kfree(device);
1281 err_kzalloc:
1282 err_set_dma_mask:
1283 pci_release_regions(pdev);
1284 pci_disable_device(pdev);
1285 err_request_regions:
1286 err_enable_device:
1287 pr_err("ERR_MDMA:Probe failed %d\n", err);
1288 return err;
1289 }
1290
1291 /**
1292 * intel_mid_dma_remove - PCI remove
1293 * @pdev: Controller PCI device structure
1294 *
1295 * Free up all resources and data
1296 * Call shutdown_dma to complete contoller and chan cleanup
1297 */
1298 static void intel_mid_dma_remove(struct pci_dev *pdev)
1299 {
1300 struct middma_device *device = pci_get_drvdata(pdev);
1301
1302 pm_runtime_get_noresume(&pdev->dev);
1303 pm_runtime_forbid(&pdev->dev);
1304 middma_shutdown(pdev);
1305 pci_dev_put(pdev);
1306 kfree(device);
1307 pci_release_regions(pdev);
1308 pci_disable_device(pdev);
1309 }
1310
1311 /* Power Management */
1312 /*
1313 * dma_suspend - PCI suspend function
1314 *
1315 * @pci: PCI device structure
1316 * @state: PM message
1317 *
1318 * This function is called by OS when a power event occurs
1319 */
1320 static int dma_suspend(struct device *dev)
1321 {
1322 struct pci_dev *pci = to_pci_dev(dev);
1323 int i;
1324 struct middma_device *device = pci_get_drvdata(pci);
1325 pr_debug("MDMA: dma_suspend called\n");
1326
1327 for (i = 0; i < device->max_chan; i++) {
1328 if (device->ch[i].in_use)
1329 return -EAGAIN;
1330 }
1331 dmac1_mask_periphral_intr(device);
1332 device->state = SUSPENDED;
1333 pci_save_state(pci);
1334 pci_disable_device(pci);
1335 pci_set_power_state(pci, PCI_D3hot);
1336 return 0;
1337 }
1338
1339 /**
1340 * dma_resume - PCI resume function
1341 *
1342 * @pci: PCI device structure
1343 *
1344 * This function is called by OS when a power event occurs
1345 */
1346 int dma_resume(struct device *dev)
1347 {
1348 struct pci_dev *pci = to_pci_dev(dev);
1349 int ret;
1350 struct middma_device *device = pci_get_drvdata(pci);
1351
1352 pr_debug("MDMA: dma_resume called\n");
1353 pci_set_power_state(pci, PCI_D0);
1354 pci_restore_state(pci);
1355 ret = pci_enable_device(pci);
1356 if (ret) {
1357 pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1358 return ret;
1359 }
1360 device->state = RUNNING;
1361 iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1362 return 0;
1363 }
1364
1365 static int dma_runtime_suspend(struct device *dev)
1366 {
1367 struct pci_dev *pci_dev = to_pci_dev(dev);
1368 struct middma_device *device = pci_get_drvdata(pci_dev);
1369
1370 device->state = SUSPENDED;
1371 return 0;
1372 }
1373
1374 static int dma_runtime_resume(struct device *dev)
1375 {
1376 struct pci_dev *pci_dev = to_pci_dev(dev);
1377 struct middma_device *device = pci_get_drvdata(pci_dev);
1378
1379 device->state = RUNNING;
1380 iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1381 return 0;
1382 }
1383
1384 static int dma_runtime_idle(struct device *dev)
1385 {
1386 struct pci_dev *pdev = to_pci_dev(dev);
1387 struct middma_device *device = pci_get_drvdata(pdev);
1388 int i;
1389
1390 for (i = 0; i < device->max_chan; i++) {
1391 if (device->ch[i].in_use)
1392 return -EAGAIN;
1393 }
1394
1395 return 0;
1396 }
1397
1398 /******************************************************************************
1399 * PCI stuff
1400 */
1401 static struct pci_device_id intel_mid_dma_ids[] = {
1402 { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
1403 { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
1404 { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
1405 { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
1406 { 0, }
1407 };
1408 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1409
1410 static const struct dev_pm_ops intel_mid_dma_pm = {
1411 .runtime_suspend = dma_runtime_suspend,
1412 .runtime_resume = dma_runtime_resume,
1413 .runtime_idle = dma_runtime_idle,
1414 .suspend = dma_suspend,
1415 .resume = dma_resume,
1416 };
1417
1418 static struct pci_driver intel_mid_dma_pci_driver = {
1419 .name = "Intel MID DMA",
1420 .id_table = intel_mid_dma_ids,
1421 .probe = intel_mid_dma_probe,
1422 .remove = intel_mid_dma_remove,
1423 #ifdef CONFIG_PM
1424 .driver = {
1425 .pm = &intel_mid_dma_pm,
1426 },
1427 #endif
1428 };
1429
1430 static int __init intel_mid_dma_init(void)
1431 {
1432 pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1433 INTEL_MID_DMA_DRIVER_VERSION);
1434 return pci_register_driver(&intel_mid_dma_pci_driver);
1435 }
1436 fs_initcall(intel_mid_dma_init);
1437
1438 static void __exit intel_mid_dma_exit(void)
1439 {
1440 pci_unregister_driver(&intel_mid_dma_pci_driver);
1441 }
1442 module_exit(intel_mid_dma_exit);
1443
1444 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1445 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1446 MODULE_LICENSE("GPL v2");
1447 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);