]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/mic_x100_dma.c
Merge branch 'pci/misc' into next
[mirror_ubuntu-artful-kernel.git] / drivers / dma / mic_x100_dma.c
1 /*
2 * Intel MIC Platform Software Stack (MPSS)
3 *
4 * Copyright(c) 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Intel MIC X100 DMA Driver.
19 *
20 * Adapted from IOAT dma driver.
21 */
22 #include <linux/module.h>
23 #include <linux/io.h>
24 #include <linux/seq_file.h>
25
26 #include "mic_x100_dma.h"
27
28 #define MIC_DMA_MAX_XFER_SIZE_CARD (1 * 1024 * 1024 -\
29 MIC_DMA_ALIGN_BYTES)
30 #define MIC_DMA_MAX_XFER_SIZE_HOST (1 * 1024 * 1024 >> 1)
31 #define MIC_DMA_DESC_TYPE_SHIFT 60
32 #define MIC_DMA_MEMCPY_LEN_SHIFT 46
33 #define MIC_DMA_STAT_INTR_SHIFT 59
34
35 /* high-water mark for pushing dma descriptors */
36 static int mic_dma_pending_level = 4;
37
38 /* Status descriptor is used to write a 64 bit value to a memory location */
39 enum mic_dma_desc_format_type {
40 MIC_DMA_MEMCPY = 1,
41 MIC_DMA_STATUS,
42 };
43
44 static inline u32 mic_dma_hw_ring_inc(u32 val)
45 {
46 return (val + 1) % MIC_DMA_DESC_RX_SIZE;
47 }
48
49 static inline u32 mic_dma_hw_ring_dec(u32 val)
50 {
51 return val ? val - 1 : MIC_DMA_DESC_RX_SIZE - 1;
52 }
53
54 static inline void mic_dma_hw_ring_inc_head(struct mic_dma_chan *ch)
55 {
56 ch->head = mic_dma_hw_ring_inc(ch->head);
57 }
58
59 /* Prepare a memcpy desc */
60 static inline void mic_dma_memcpy_desc(struct mic_dma_desc *desc,
61 dma_addr_t src_phys, dma_addr_t dst_phys, u64 size)
62 {
63 u64 qw0, qw1;
64
65 qw0 = src_phys;
66 qw0 |= (size >> MIC_DMA_ALIGN_SHIFT) << MIC_DMA_MEMCPY_LEN_SHIFT;
67 qw1 = MIC_DMA_MEMCPY;
68 qw1 <<= MIC_DMA_DESC_TYPE_SHIFT;
69 qw1 |= dst_phys;
70 desc->qw0 = qw0;
71 desc->qw1 = qw1;
72 }
73
74 /* Prepare a status desc. with @data to be written at @dst_phys */
75 static inline void mic_dma_prep_status_desc(struct mic_dma_desc *desc, u64 data,
76 dma_addr_t dst_phys, bool generate_intr)
77 {
78 u64 qw0, qw1;
79
80 qw0 = data;
81 qw1 = (u64) MIC_DMA_STATUS << MIC_DMA_DESC_TYPE_SHIFT | dst_phys;
82 if (generate_intr)
83 qw1 |= (1ULL << MIC_DMA_STAT_INTR_SHIFT);
84 desc->qw0 = qw0;
85 desc->qw1 = qw1;
86 }
87
88 static void mic_dma_cleanup(struct mic_dma_chan *ch)
89 {
90 struct dma_async_tx_descriptor *tx;
91 u32 tail;
92 u32 last_tail;
93
94 spin_lock(&ch->cleanup_lock);
95 tail = mic_dma_read_cmp_cnt(ch);
96 /*
97 * This is the barrier pair for smp_wmb() in fn.
98 * mic_dma_tx_submit_unlock. It's required so that we read the
99 * updated cookie value from tx->cookie.
100 */
101 smp_rmb();
102 for (last_tail = ch->last_tail; tail != last_tail;) {
103 tx = &ch->tx_array[last_tail];
104 if (tx->cookie) {
105 dma_cookie_complete(tx);
106 if (tx->callback) {
107 tx->callback(tx->callback_param);
108 tx->callback = NULL;
109 }
110 }
111 last_tail = mic_dma_hw_ring_inc(last_tail);
112 }
113 /* finish all completion callbacks before incrementing tail */
114 smp_mb();
115 ch->last_tail = last_tail;
116 spin_unlock(&ch->cleanup_lock);
117 }
118
119 static u32 mic_dma_ring_count(u32 head, u32 tail)
120 {
121 u32 count;
122
123 if (head >= tail)
124 count = (tail - 0) + (MIC_DMA_DESC_RX_SIZE - head);
125 else
126 count = tail - head;
127 return count - 1;
128 }
129
130 /* Returns the num. of free descriptors on success, -ENOMEM on failure */
131 static int mic_dma_avail_desc_ring_space(struct mic_dma_chan *ch, int required)
132 {
133 struct device *dev = mic_dma_ch_to_device(ch);
134 u32 count;
135
136 count = mic_dma_ring_count(ch->head, ch->last_tail);
137 if (count < required) {
138 mic_dma_cleanup(ch);
139 count = mic_dma_ring_count(ch->head, ch->last_tail);
140 }
141
142 if (count < required) {
143 dev_dbg(dev, "Not enough desc space");
144 dev_dbg(dev, "%s %d required=%u, avail=%u\n",
145 __func__, __LINE__, required, count);
146 return -ENOMEM;
147 } else {
148 return count;
149 }
150 }
151
152 /* Program memcpy descriptors into the descriptor ring and update s/w head ptr*/
153 static int mic_dma_prog_memcpy_desc(struct mic_dma_chan *ch, dma_addr_t src,
154 dma_addr_t dst, size_t len)
155 {
156 size_t current_transfer_len;
157 size_t max_xfer_size = to_mic_dma_dev(ch)->max_xfer_size;
158 /* 3 is added to make sure we have enough space for status desc */
159 int num_desc = len / max_xfer_size + 3;
160 int ret;
161
162 if (len % max_xfer_size)
163 num_desc++;
164
165 ret = mic_dma_avail_desc_ring_space(ch, num_desc);
166 if (ret < 0)
167 return ret;
168 do {
169 current_transfer_len = min(len, max_xfer_size);
170 mic_dma_memcpy_desc(&ch->desc_ring[ch->head],
171 src, dst, current_transfer_len);
172 mic_dma_hw_ring_inc_head(ch);
173 len -= current_transfer_len;
174 dst = dst + current_transfer_len;
175 src = src + current_transfer_len;
176 } while (len > 0);
177 return 0;
178 }
179
180 /* It's a h/w quirk and h/w needs 2 status descriptors for every status desc */
181 static void mic_dma_prog_intr(struct mic_dma_chan *ch)
182 {
183 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
184 ch->status_dest_micpa, false);
185 mic_dma_hw_ring_inc_head(ch);
186 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
187 ch->status_dest_micpa, true);
188 mic_dma_hw_ring_inc_head(ch);
189 }
190
191 /* Wrapper function to program memcpy descriptors/status descriptors */
192 static int mic_dma_do_dma(struct mic_dma_chan *ch, int flags, dma_addr_t src,
193 dma_addr_t dst, size_t len)
194 {
195 if (-ENOMEM == mic_dma_prog_memcpy_desc(ch, src, dst, len))
196 return -ENOMEM;
197 /* Above mic_dma_prog_memcpy_desc() makes sure we have enough space */
198 if (flags & DMA_PREP_FENCE) {
199 mic_dma_prep_status_desc(&ch->desc_ring[ch->head], 0,
200 ch->status_dest_micpa, false);
201 mic_dma_hw_ring_inc_head(ch);
202 }
203
204 if (flags & DMA_PREP_INTERRUPT)
205 mic_dma_prog_intr(ch);
206
207 return 0;
208 }
209
210 static inline void mic_dma_issue_pending(struct dma_chan *ch)
211 {
212 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
213
214 spin_lock(&mic_ch->issue_lock);
215 /*
216 * Write to head triggers h/w to act on the descriptors.
217 * On MIC, writing the same head value twice causes
218 * a h/w error. On second write, h/w assumes we filled
219 * the entire ring & overwrote some of the descriptors.
220 */
221 if (mic_ch->issued == mic_ch->submitted)
222 goto out;
223 mic_ch->issued = mic_ch->submitted;
224 /*
225 * make descriptor updates visible before advancing head,
226 * this is purposefully not smp_wmb() since we are also
227 * publishing the descriptor updates to a dma device
228 */
229 wmb();
230 mic_dma_write_reg(mic_ch, MIC_DMA_REG_DHPR, mic_ch->issued);
231 out:
232 spin_unlock(&mic_ch->issue_lock);
233 }
234
235 static inline void mic_dma_update_pending(struct mic_dma_chan *ch)
236 {
237 if (mic_dma_ring_count(ch->issued, ch->submitted)
238 > mic_dma_pending_level)
239 mic_dma_issue_pending(&ch->api_ch);
240 }
241
242 static dma_cookie_t mic_dma_tx_submit_unlock(struct dma_async_tx_descriptor *tx)
243 {
244 struct mic_dma_chan *mic_ch = to_mic_dma_chan(tx->chan);
245 dma_cookie_t cookie;
246
247 dma_cookie_assign(tx);
248 cookie = tx->cookie;
249 /*
250 * We need an smp write barrier here because another CPU might see
251 * an update to submitted and update h/w head even before we
252 * assigned a cookie to this tx.
253 */
254 smp_wmb();
255 mic_ch->submitted = mic_ch->head;
256 spin_unlock(&mic_ch->prep_lock);
257 mic_dma_update_pending(mic_ch);
258 return cookie;
259 }
260
261 static inline struct dma_async_tx_descriptor *
262 allocate_tx(struct mic_dma_chan *ch)
263 {
264 u32 idx = mic_dma_hw_ring_dec(ch->head);
265 struct dma_async_tx_descriptor *tx = &ch->tx_array[idx];
266
267 dma_async_tx_descriptor_init(tx, &ch->api_ch);
268 tx->tx_submit = mic_dma_tx_submit_unlock;
269 return tx;
270 }
271
272 /*
273 * Prepare a memcpy descriptor to be added to the ring.
274 * Note that the temporary descriptor adds an extra overhead of copying the
275 * descriptor to ring. So, we copy directly to the descriptor ring
276 */
277 static struct dma_async_tx_descriptor *
278 mic_dma_prep_memcpy_lock(struct dma_chan *ch, dma_addr_t dma_dest,
279 dma_addr_t dma_src, size_t len, unsigned long flags)
280 {
281 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
282 struct device *dev = mic_dma_ch_to_device(mic_ch);
283 int result;
284
285 if (!len && !flags)
286 return NULL;
287
288 spin_lock(&mic_ch->prep_lock);
289 result = mic_dma_do_dma(mic_ch, flags, dma_src, dma_dest, len);
290 if (result >= 0)
291 return allocate_tx(mic_ch);
292 dev_err(dev, "Error enqueueing dma, error=%d\n", result);
293 spin_unlock(&mic_ch->prep_lock);
294 return NULL;
295 }
296
297 static struct dma_async_tx_descriptor *
298 mic_dma_prep_interrupt_lock(struct dma_chan *ch, unsigned long flags)
299 {
300 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
301 int ret;
302
303 spin_lock(&mic_ch->prep_lock);
304 ret = mic_dma_do_dma(mic_ch, flags, 0, 0, 0);
305 if (!ret)
306 return allocate_tx(mic_ch);
307 spin_unlock(&mic_ch->prep_lock);
308 return NULL;
309 }
310
311 /* Return the status of the transaction */
312 static enum dma_status
313 mic_dma_tx_status(struct dma_chan *ch, dma_cookie_t cookie,
314 struct dma_tx_state *txstate)
315 {
316 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
317
318 if (DMA_COMPLETE != dma_cookie_status(ch, cookie, txstate))
319 mic_dma_cleanup(mic_ch);
320
321 return dma_cookie_status(ch, cookie, txstate);
322 }
323
324 static irqreturn_t mic_dma_thread_fn(int irq, void *data)
325 {
326 mic_dma_cleanup((struct mic_dma_chan *)data);
327 return IRQ_HANDLED;
328 }
329
330 static irqreturn_t mic_dma_intr_handler(int irq, void *data)
331 {
332 struct mic_dma_chan *ch = ((struct mic_dma_chan *)data);
333
334 mic_dma_ack_interrupt(ch);
335 return IRQ_WAKE_THREAD;
336 }
337
338 static int mic_dma_alloc_desc_ring(struct mic_dma_chan *ch)
339 {
340 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
341 struct device *dev = &to_mbus_device(ch)->dev;
342
343 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
344 ch->desc_ring = kzalloc(desc_ring_size, GFP_KERNEL);
345
346 if (!ch->desc_ring)
347 return -ENOMEM;
348
349 ch->desc_ring_micpa = dma_map_single(dev, ch->desc_ring,
350 desc_ring_size, DMA_BIDIRECTIONAL);
351 if (dma_mapping_error(dev, ch->desc_ring_micpa))
352 goto map_error;
353
354 ch->tx_array = vzalloc(MIC_DMA_DESC_RX_SIZE * sizeof(*ch->tx_array));
355 if (!ch->tx_array)
356 goto tx_error;
357 return 0;
358 tx_error:
359 dma_unmap_single(dev, ch->desc_ring_micpa, desc_ring_size,
360 DMA_BIDIRECTIONAL);
361 map_error:
362 kfree(ch->desc_ring);
363 return -ENOMEM;
364 }
365
366 static void mic_dma_free_desc_ring(struct mic_dma_chan *ch)
367 {
368 u64 desc_ring_size = MIC_DMA_DESC_RX_SIZE * sizeof(*ch->desc_ring);
369
370 vfree(ch->tx_array);
371 desc_ring_size = ALIGN(desc_ring_size, MIC_DMA_ALIGN_BYTES);
372 dma_unmap_single(&to_mbus_device(ch)->dev, ch->desc_ring_micpa,
373 desc_ring_size, DMA_BIDIRECTIONAL);
374 kfree(ch->desc_ring);
375 ch->desc_ring = NULL;
376 }
377
378 static void mic_dma_free_status_dest(struct mic_dma_chan *ch)
379 {
380 dma_unmap_single(&to_mbus_device(ch)->dev, ch->status_dest_micpa,
381 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
382 kfree(ch->status_dest);
383 }
384
385 static int mic_dma_alloc_status_dest(struct mic_dma_chan *ch)
386 {
387 struct device *dev = &to_mbus_device(ch)->dev;
388
389 ch->status_dest = kzalloc(L1_CACHE_BYTES, GFP_KERNEL);
390 if (!ch->status_dest)
391 return -ENOMEM;
392 ch->status_dest_micpa = dma_map_single(dev, ch->status_dest,
393 L1_CACHE_BYTES, DMA_BIDIRECTIONAL);
394 if (dma_mapping_error(dev, ch->status_dest_micpa)) {
395 kfree(ch->status_dest);
396 ch->status_dest = NULL;
397 return -ENOMEM;
398 }
399 return 0;
400 }
401
402 static int mic_dma_check_chan(struct mic_dma_chan *ch)
403 {
404 if (mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR) ||
405 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT) & MIC_DMA_CHAN_QUIESCE) {
406 mic_dma_disable_chan(ch);
407 mic_dma_chan_mask_intr(ch);
408 dev_err(mic_dma_ch_to_device(ch),
409 "%s %d error setting up mic dma chan %d\n",
410 __func__, __LINE__, ch->ch_num);
411 return -EBUSY;
412 }
413 return 0;
414 }
415
416 static int mic_dma_chan_setup(struct mic_dma_chan *ch)
417 {
418 if (MIC_DMA_CHAN_MIC == ch->owner)
419 mic_dma_chan_set_owner(ch);
420 mic_dma_disable_chan(ch);
421 mic_dma_chan_mask_intr(ch);
422 mic_dma_write_reg(ch, MIC_DMA_REG_DCHERRMSK, 0);
423 mic_dma_chan_set_desc_ring(ch);
424 ch->last_tail = mic_dma_read_reg(ch, MIC_DMA_REG_DTPR);
425 ch->head = ch->last_tail;
426 ch->issued = 0;
427 mic_dma_chan_unmask_intr(ch);
428 mic_dma_enable_chan(ch);
429 return mic_dma_check_chan(ch);
430 }
431
432 static void mic_dma_chan_destroy(struct mic_dma_chan *ch)
433 {
434 mic_dma_disable_chan(ch);
435 mic_dma_chan_mask_intr(ch);
436 }
437
438 static void mic_dma_unregister_dma_device(struct mic_dma_device *mic_dma_dev)
439 {
440 dma_async_device_unregister(&mic_dma_dev->dma_dev);
441 }
442
443 static int mic_dma_setup_irq(struct mic_dma_chan *ch)
444 {
445 ch->cookie =
446 to_mbus_hw_ops(ch)->request_threaded_irq(to_mbus_device(ch),
447 mic_dma_intr_handler, mic_dma_thread_fn,
448 "mic dma_channel", ch, ch->ch_num);
449 if (IS_ERR(ch->cookie))
450 return IS_ERR(ch->cookie);
451 return 0;
452 }
453
454 static inline void mic_dma_free_irq(struct mic_dma_chan *ch)
455 {
456 to_mbus_hw_ops(ch)->free_irq(to_mbus_device(ch), ch->cookie, ch);
457 }
458
459 static int mic_dma_chan_init(struct mic_dma_chan *ch)
460 {
461 int ret = mic_dma_alloc_desc_ring(ch);
462
463 if (ret)
464 goto ring_error;
465 ret = mic_dma_alloc_status_dest(ch);
466 if (ret)
467 goto status_error;
468 ret = mic_dma_chan_setup(ch);
469 if (ret)
470 goto chan_error;
471 return ret;
472 chan_error:
473 mic_dma_free_status_dest(ch);
474 status_error:
475 mic_dma_free_desc_ring(ch);
476 ring_error:
477 return ret;
478 }
479
480 static int mic_dma_drain_chan(struct mic_dma_chan *ch)
481 {
482 struct dma_async_tx_descriptor *tx;
483 int err = 0;
484 dma_cookie_t cookie;
485
486 tx = mic_dma_prep_memcpy_lock(&ch->api_ch, 0, 0, 0, DMA_PREP_FENCE);
487 if (!tx) {
488 err = -ENOMEM;
489 goto error;
490 }
491
492 cookie = tx->tx_submit(tx);
493 if (dma_submit_error(cookie))
494 err = -ENOMEM;
495 else
496 err = dma_sync_wait(&ch->api_ch, cookie);
497 if (err) {
498 dev_err(mic_dma_ch_to_device(ch), "%s %d TO chan 0x%x\n",
499 __func__, __LINE__, ch->ch_num);
500 err = -EIO;
501 }
502 error:
503 mic_dma_cleanup(ch);
504 return err;
505 }
506
507 static inline void mic_dma_chan_uninit(struct mic_dma_chan *ch)
508 {
509 mic_dma_chan_destroy(ch);
510 mic_dma_cleanup(ch);
511 mic_dma_free_status_dest(ch);
512 mic_dma_free_desc_ring(ch);
513 }
514
515 static int mic_dma_init(struct mic_dma_device *mic_dma_dev,
516 enum mic_dma_chan_owner owner)
517 {
518 int i, first_chan = mic_dma_dev->start_ch;
519 struct mic_dma_chan *ch;
520 int ret;
521
522 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
523 unsigned long data;
524 ch = &mic_dma_dev->mic_ch[i];
525 data = (unsigned long)ch;
526 ch->ch_num = i;
527 ch->owner = owner;
528 spin_lock_init(&ch->cleanup_lock);
529 spin_lock_init(&ch->prep_lock);
530 spin_lock_init(&ch->issue_lock);
531 ret = mic_dma_setup_irq(ch);
532 if (ret)
533 goto error;
534 }
535 return 0;
536 error:
537 for (i = i - 1; i >= first_chan; i--)
538 mic_dma_free_irq(ch);
539 return ret;
540 }
541
542 static void mic_dma_uninit(struct mic_dma_device *mic_dma_dev)
543 {
544 int i, first_chan = mic_dma_dev->start_ch;
545 struct mic_dma_chan *ch;
546
547 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
548 ch = &mic_dma_dev->mic_ch[i];
549 mic_dma_free_irq(ch);
550 }
551 }
552
553 static int mic_dma_alloc_chan_resources(struct dma_chan *ch)
554 {
555 int ret = mic_dma_chan_init(to_mic_dma_chan(ch));
556 if (ret)
557 return ret;
558 return MIC_DMA_DESC_RX_SIZE;
559 }
560
561 static void mic_dma_free_chan_resources(struct dma_chan *ch)
562 {
563 struct mic_dma_chan *mic_ch = to_mic_dma_chan(ch);
564 mic_dma_drain_chan(mic_ch);
565 mic_dma_chan_uninit(mic_ch);
566 }
567
568 /* Set the fn. handlers and register the dma device with dma api */
569 static int mic_dma_register_dma_device(struct mic_dma_device *mic_dma_dev,
570 enum mic_dma_chan_owner owner)
571 {
572 int i, first_chan = mic_dma_dev->start_ch;
573
574 dma_cap_zero(mic_dma_dev->dma_dev.cap_mask);
575 /*
576 * This dma engine is not capable of host memory to host memory
577 * transfers
578 */
579 dma_cap_set(DMA_MEMCPY, mic_dma_dev->dma_dev.cap_mask);
580
581 if (MIC_DMA_CHAN_HOST == owner)
582 dma_cap_set(DMA_PRIVATE, mic_dma_dev->dma_dev.cap_mask);
583 mic_dma_dev->dma_dev.device_alloc_chan_resources =
584 mic_dma_alloc_chan_resources;
585 mic_dma_dev->dma_dev.device_free_chan_resources =
586 mic_dma_free_chan_resources;
587 mic_dma_dev->dma_dev.device_tx_status = mic_dma_tx_status;
588 mic_dma_dev->dma_dev.device_prep_dma_memcpy = mic_dma_prep_memcpy_lock;
589 mic_dma_dev->dma_dev.device_prep_dma_interrupt =
590 mic_dma_prep_interrupt_lock;
591 mic_dma_dev->dma_dev.device_issue_pending = mic_dma_issue_pending;
592 mic_dma_dev->dma_dev.copy_align = MIC_DMA_ALIGN_SHIFT;
593 INIT_LIST_HEAD(&mic_dma_dev->dma_dev.channels);
594 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
595 mic_dma_dev->mic_ch[i].api_ch.device = &mic_dma_dev->dma_dev;
596 dma_cookie_init(&mic_dma_dev->mic_ch[i].api_ch);
597 list_add_tail(&mic_dma_dev->mic_ch[i].api_ch.device_node,
598 &mic_dma_dev->dma_dev.channels);
599 }
600 return dma_async_device_register(&mic_dma_dev->dma_dev);
601 }
602
603 /*
604 * Initializes dma channels and registers the dma device with the
605 * dma engine api.
606 */
607 static struct mic_dma_device *mic_dma_dev_reg(struct mbus_device *mbdev,
608 enum mic_dma_chan_owner owner)
609 {
610 struct mic_dma_device *mic_dma_dev;
611 int ret;
612 struct device *dev = &mbdev->dev;
613
614 mic_dma_dev = kzalloc(sizeof(*mic_dma_dev), GFP_KERNEL);
615 if (!mic_dma_dev) {
616 ret = -ENOMEM;
617 goto alloc_error;
618 }
619 mic_dma_dev->mbdev = mbdev;
620 mic_dma_dev->dma_dev.dev = dev;
621 mic_dma_dev->mmio = mbdev->mmio_va;
622 if (MIC_DMA_CHAN_HOST == owner) {
623 mic_dma_dev->start_ch = 0;
624 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_HOST;
625 } else {
626 mic_dma_dev->start_ch = 4;
627 mic_dma_dev->max_xfer_size = MIC_DMA_MAX_XFER_SIZE_CARD;
628 }
629 ret = mic_dma_init(mic_dma_dev, owner);
630 if (ret)
631 goto init_error;
632 ret = mic_dma_register_dma_device(mic_dma_dev, owner);
633 if (ret)
634 goto reg_error;
635 return mic_dma_dev;
636 reg_error:
637 mic_dma_uninit(mic_dma_dev);
638 init_error:
639 kfree(mic_dma_dev);
640 mic_dma_dev = NULL;
641 alloc_error:
642 dev_err(dev, "Error at %s %d ret=%d\n", __func__, __LINE__, ret);
643 return mic_dma_dev;
644 }
645
646 static void mic_dma_dev_unreg(struct mic_dma_device *mic_dma_dev)
647 {
648 mic_dma_unregister_dma_device(mic_dma_dev);
649 mic_dma_uninit(mic_dma_dev);
650 kfree(mic_dma_dev);
651 }
652
653 /* DEBUGFS CODE */
654 static int mic_dma_reg_seq_show(struct seq_file *s, void *pos)
655 {
656 struct mic_dma_device *mic_dma_dev = s->private;
657 int i, chan_num, first_chan = mic_dma_dev->start_ch;
658 struct mic_dma_chan *ch;
659
660 seq_printf(s, "SBOX_DCR: %#x\n",
661 mic_dma_mmio_read(&mic_dma_dev->mic_ch[first_chan],
662 MIC_DMA_SBOX_BASE + MIC_DMA_SBOX_DCR));
663 seq_puts(s, "DMA Channel Registers\n");
664 seq_printf(s, "%-10s| %-10s %-10s %-10s %-10s %-10s",
665 "Channel", "DCAR", "DTPR", "DHPR", "DRAR_HI", "DRAR_LO");
666 seq_printf(s, " %-11s %-14s %-10s\n", "DCHERR", "DCHERRMSK", "DSTAT");
667 for (i = first_chan; i < first_chan + MIC_DMA_NUM_CHAN; i++) {
668 ch = &mic_dma_dev->mic_ch[i];
669 chan_num = ch->ch_num;
670 seq_printf(s, "%-10i| %-#10x %-#10x %-#10x %-#10x",
671 chan_num,
672 mic_dma_read_reg(ch, MIC_DMA_REG_DCAR),
673 mic_dma_read_reg(ch, MIC_DMA_REG_DTPR),
674 mic_dma_read_reg(ch, MIC_DMA_REG_DHPR),
675 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_HI));
676 seq_printf(s, " %-#10x %-#10x %-#14x %-#10x\n",
677 mic_dma_read_reg(ch, MIC_DMA_REG_DRAR_LO),
678 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERR),
679 mic_dma_read_reg(ch, MIC_DMA_REG_DCHERRMSK),
680 mic_dma_read_reg(ch, MIC_DMA_REG_DSTAT));
681 }
682 return 0;
683 }
684
685 static int mic_dma_reg_debug_open(struct inode *inode, struct file *file)
686 {
687 return single_open(file, mic_dma_reg_seq_show, inode->i_private);
688 }
689
690 static int mic_dma_reg_debug_release(struct inode *inode, struct file *file)
691 {
692 return single_release(inode, file);
693 }
694
695 static const struct file_operations mic_dma_reg_ops = {
696 .owner = THIS_MODULE,
697 .open = mic_dma_reg_debug_open,
698 .read = seq_read,
699 .llseek = seq_lseek,
700 .release = mic_dma_reg_debug_release
701 };
702
703 /* Debugfs parent dir */
704 static struct dentry *mic_dma_dbg;
705
706 static int mic_dma_driver_probe(struct mbus_device *mbdev)
707 {
708 struct mic_dma_device *mic_dma_dev;
709 enum mic_dma_chan_owner owner;
710
711 if (MBUS_DEV_DMA_MIC == mbdev->id.device)
712 owner = MIC_DMA_CHAN_MIC;
713 else
714 owner = MIC_DMA_CHAN_HOST;
715
716 mic_dma_dev = mic_dma_dev_reg(mbdev, owner);
717 dev_set_drvdata(&mbdev->dev, mic_dma_dev);
718
719 if (mic_dma_dbg) {
720 mic_dma_dev->dbg_dir = debugfs_create_dir(dev_name(&mbdev->dev),
721 mic_dma_dbg);
722 if (mic_dma_dev->dbg_dir)
723 debugfs_create_file("mic_dma_reg", 0444,
724 mic_dma_dev->dbg_dir, mic_dma_dev,
725 &mic_dma_reg_ops);
726 }
727 return 0;
728 }
729
730 static void mic_dma_driver_remove(struct mbus_device *mbdev)
731 {
732 struct mic_dma_device *mic_dma_dev;
733
734 mic_dma_dev = dev_get_drvdata(&mbdev->dev);
735 debugfs_remove_recursive(mic_dma_dev->dbg_dir);
736 mic_dma_dev_unreg(mic_dma_dev);
737 }
738
739 static struct mbus_device_id id_table[] = {
740 {MBUS_DEV_DMA_MIC, MBUS_DEV_ANY_ID},
741 {MBUS_DEV_DMA_HOST, MBUS_DEV_ANY_ID},
742 {0},
743 };
744
745 static struct mbus_driver mic_dma_driver = {
746 .driver.name = KBUILD_MODNAME,
747 .driver.owner = THIS_MODULE,
748 .id_table = id_table,
749 .probe = mic_dma_driver_probe,
750 .remove = mic_dma_driver_remove,
751 };
752
753 static int __init mic_x100_dma_init(void)
754 {
755 int rc = mbus_register_driver(&mic_dma_driver);
756 if (rc)
757 return rc;
758 mic_dma_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
759 return 0;
760 }
761
762 static void __exit mic_x100_dma_exit(void)
763 {
764 debugfs_remove_recursive(mic_dma_dbg);
765 mbus_unregister_driver(&mic_dma_driver);
766 }
767
768 module_init(mic_x100_dma_init);
769 module_exit(mic_x100_dma_exit);
770
771 MODULE_DEVICE_TABLE(mbus, id_table);
772 MODULE_AUTHOR("Intel Corporation");
773 MODULE_DESCRIPTION("Intel(R) MIC X100 DMA Driver");
774 MODULE_LICENSE("GPL v2");