]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/omap-dma.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / omap-dma.c
1 /*
2 * OMAP DMAengine support
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/omap-dma.h>
17 #include <linux/platform_device.h>
18 #include <linux/slab.h>
19 #include <linux/spinlock.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_device.h>
22
23 #include "virt-dma.h"
24
25 #define OMAP_SDMA_REQUESTS 127
26 #define OMAP_SDMA_CHANNELS 32
27
28 struct omap_dmadev {
29 struct dma_device ddev;
30 spinlock_t lock;
31 void __iomem *base;
32 const struct omap_dma_reg *reg_map;
33 struct omap_system_dma_plat_info *plat;
34 bool legacy;
35 unsigned dma_requests;
36 spinlock_t irq_lock;
37 uint32_t irq_enable_mask;
38 struct omap_chan *lch_map[OMAP_SDMA_CHANNELS];
39 };
40
41 struct omap_chan {
42 struct virt_dma_chan vc;
43 void __iomem *channel_base;
44 const struct omap_dma_reg *reg_map;
45 uint32_t ccr;
46
47 struct dma_slave_config cfg;
48 unsigned dma_sig;
49 bool cyclic;
50 bool paused;
51
52 int dma_ch;
53 struct omap_desc *desc;
54 unsigned sgidx;
55 };
56
57 struct omap_sg {
58 dma_addr_t addr;
59 uint32_t en; /* number of elements (24-bit) */
60 uint32_t fn; /* number of frames (16-bit) */
61 };
62
63 struct omap_desc {
64 struct virt_dma_desc vd;
65 enum dma_transfer_direction dir;
66 dma_addr_t dev_addr;
67
68 int16_t fi; /* for OMAP_DMA_SYNC_PACKET */
69 uint8_t es; /* CSDP_DATA_TYPE_xxx */
70 uint32_t ccr; /* CCR value */
71 uint16_t clnk_ctrl; /* CLNK_CTRL value */
72 uint16_t cicr; /* CICR value */
73 uint32_t csdp; /* CSDP value */
74
75 unsigned sglen;
76 struct omap_sg sg[0];
77 };
78
79 enum {
80 CCR_FS = BIT(5),
81 CCR_READ_PRIORITY = BIT(6),
82 CCR_ENABLE = BIT(7),
83 CCR_AUTO_INIT = BIT(8), /* OMAP1 only */
84 CCR_REPEAT = BIT(9), /* OMAP1 only */
85 CCR_OMAP31_DISABLE = BIT(10), /* OMAP1 only */
86 CCR_SUSPEND_SENSITIVE = BIT(8), /* OMAP2+ only */
87 CCR_RD_ACTIVE = BIT(9), /* OMAP2+ only */
88 CCR_WR_ACTIVE = BIT(10), /* OMAP2+ only */
89 CCR_SRC_AMODE_CONSTANT = 0 << 12,
90 CCR_SRC_AMODE_POSTINC = 1 << 12,
91 CCR_SRC_AMODE_SGLIDX = 2 << 12,
92 CCR_SRC_AMODE_DBLIDX = 3 << 12,
93 CCR_DST_AMODE_CONSTANT = 0 << 14,
94 CCR_DST_AMODE_POSTINC = 1 << 14,
95 CCR_DST_AMODE_SGLIDX = 2 << 14,
96 CCR_DST_AMODE_DBLIDX = 3 << 14,
97 CCR_CONSTANT_FILL = BIT(16),
98 CCR_TRANSPARENT_COPY = BIT(17),
99 CCR_BS = BIT(18),
100 CCR_SUPERVISOR = BIT(22),
101 CCR_PREFETCH = BIT(23),
102 CCR_TRIGGER_SRC = BIT(24),
103 CCR_BUFFERING_DISABLE = BIT(25),
104 CCR_WRITE_PRIORITY = BIT(26),
105 CCR_SYNC_ELEMENT = 0,
106 CCR_SYNC_FRAME = CCR_FS,
107 CCR_SYNC_BLOCK = CCR_BS,
108 CCR_SYNC_PACKET = CCR_BS | CCR_FS,
109
110 CSDP_DATA_TYPE_8 = 0,
111 CSDP_DATA_TYPE_16 = 1,
112 CSDP_DATA_TYPE_32 = 2,
113 CSDP_SRC_PORT_EMIFF = 0 << 2, /* OMAP1 only */
114 CSDP_SRC_PORT_EMIFS = 1 << 2, /* OMAP1 only */
115 CSDP_SRC_PORT_OCP_T1 = 2 << 2, /* OMAP1 only */
116 CSDP_SRC_PORT_TIPB = 3 << 2, /* OMAP1 only */
117 CSDP_SRC_PORT_OCP_T2 = 4 << 2, /* OMAP1 only */
118 CSDP_SRC_PORT_MPUI = 5 << 2, /* OMAP1 only */
119 CSDP_SRC_PACKED = BIT(6),
120 CSDP_SRC_BURST_1 = 0 << 7,
121 CSDP_SRC_BURST_16 = 1 << 7,
122 CSDP_SRC_BURST_32 = 2 << 7,
123 CSDP_SRC_BURST_64 = 3 << 7,
124 CSDP_DST_PORT_EMIFF = 0 << 9, /* OMAP1 only */
125 CSDP_DST_PORT_EMIFS = 1 << 9, /* OMAP1 only */
126 CSDP_DST_PORT_OCP_T1 = 2 << 9, /* OMAP1 only */
127 CSDP_DST_PORT_TIPB = 3 << 9, /* OMAP1 only */
128 CSDP_DST_PORT_OCP_T2 = 4 << 9, /* OMAP1 only */
129 CSDP_DST_PORT_MPUI = 5 << 9, /* OMAP1 only */
130 CSDP_DST_PACKED = BIT(13),
131 CSDP_DST_BURST_1 = 0 << 14,
132 CSDP_DST_BURST_16 = 1 << 14,
133 CSDP_DST_BURST_32 = 2 << 14,
134 CSDP_DST_BURST_64 = 3 << 14,
135
136 CICR_TOUT_IE = BIT(0), /* OMAP1 only */
137 CICR_DROP_IE = BIT(1),
138 CICR_HALF_IE = BIT(2),
139 CICR_FRAME_IE = BIT(3),
140 CICR_LAST_IE = BIT(4),
141 CICR_BLOCK_IE = BIT(5),
142 CICR_PKT_IE = BIT(7), /* OMAP2+ only */
143 CICR_TRANS_ERR_IE = BIT(8), /* OMAP2+ only */
144 CICR_SUPERVISOR_ERR_IE = BIT(10), /* OMAP2+ only */
145 CICR_MISALIGNED_ERR_IE = BIT(11), /* OMAP2+ only */
146 CICR_DRAIN_IE = BIT(12), /* OMAP2+ only */
147 CICR_SUPER_BLOCK_IE = BIT(14), /* OMAP2+ only */
148
149 CLNK_CTRL_ENABLE_LNK = BIT(15),
150 };
151
152 static const unsigned es_bytes[] = {
153 [CSDP_DATA_TYPE_8] = 1,
154 [CSDP_DATA_TYPE_16] = 2,
155 [CSDP_DATA_TYPE_32] = 4,
156 };
157
158 static struct of_dma_filter_info omap_dma_info = {
159 .filter_fn = omap_dma_filter_fn,
160 };
161
162 static inline struct omap_dmadev *to_omap_dma_dev(struct dma_device *d)
163 {
164 return container_of(d, struct omap_dmadev, ddev);
165 }
166
167 static inline struct omap_chan *to_omap_dma_chan(struct dma_chan *c)
168 {
169 return container_of(c, struct omap_chan, vc.chan);
170 }
171
172 static inline struct omap_desc *to_omap_dma_desc(struct dma_async_tx_descriptor *t)
173 {
174 return container_of(t, struct omap_desc, vd.tx);
175 }
176
177 static void omap_dma_desc_free(struct virt_dma_desc *vd)
178 {
179 kfree(container_of(vd, struct omap_desc, vd));
180 }
181
182 static void omap_dma_write(uint32_t val, unsigned type, void __iomem *addr)
183 {
184 switch (type) {
185 case OMAP_DMA_REG_16BIT:
186 writew_relaxed(val, addr);
187 break;
188 case OMAP_DMA_REG_2X16BIT:
189 writew_relaxed(val, addr);
190 writew_relaxed(val >> 16, addr + 2);
191 break;
192 case OMAP_DMA_REG_32BIT:
193 writel_relaxed(val, addr);
194 break;
195 default:
196 WARN_ON(1);
197 }
198 }
199
200 static unsigned omap_dma_read(unsigned type, void __iomem *addr)
201 {
202 unsigned val;
203
204 switch (type) {
205 case OMAP_DMA_REG_16BIT:
206 val = readw_relaxed(addr);
207 break;
208 case OMAP_DMA_REG_2X16BIT:
209 val = readw_relaxed(addr);
210 val |= readw_relaxed(addr + 2) << 16;
211 break;
212 case OMAP_DMA_REG_32BIT:
213 val = readl_relaxed(addr);
214 break;
215 default:
216 WARN_ON(1);
217 val = 0;
218 }
219
220 return val;
221 }
222
223 static void omap_dma_glbl_write(struct omap_dmadev *od, unsigned reg, unsigned val)
224 {
225 const struct omap_dma_reg *r = od->reg_map + reg;
226
227 WARN_ON(r->stride);
228
229 omap_dma_write(val, r->type, od->base + r->offset);
230 }
231
232 static unsigned omap_dma_glbl_read(struct omap_dmadev *od, unsigned reg)
233 {
234 const struct omap_dma_reg *r = od->reg_map + reg;
235
236 WARN_ON(r->stride);
237
238 return omap_dma_read(r->type, od->base + r->offset);
239 }
240
241 static void omap_dma_chan_write(struct omap_chan *c, unsigned reg, unsigned val)
242 {
243 const struct omap_dma_reg *r = c->reg_map + reg;
244
245 omap_dma_write(val, r->type, c->channel_base + r->offset);
246 }
247
248 static unsigned omap_dma_chan_read(struct omap_chan *c, unsigned reg)
249 {
250 const struct omap_dma_reg *r = c->reg_map + reg;
251
252 return omap_dma_read(r->type, c->channel_base + r->offset);
253 }
254
255 static void omap_dma_clear_csr(struct omap_chan *c)
256 {
257 if (dma_omap1())
258 omap_dma_chan_read(c, CSR);
259 else
260 omap_dma_chan_write(c, CSR, ~0);
261 }
262
263 static unsigned omap_dma_get_csr(struct omap_chan *c)
264 {
265 unsigned val = omap_dma_chan_read(c, CSR);
266
267 if (!dma_omap1())
268 omap_dma_chan_write(c, CSR, val);
269
270 return val;
271 }
272
273 static void omap_dma_assign(struct omap_dmadev *od, struct omap_chan *c,
274 unsigned lch)
275 {
276 c->channel_base = od->base + od->plat->channel_stride * lch;
277
278 od->lch_map[lch] = c;
279 }
280
281 static void omap_dma_start(struct omap_chan *c, struct omap_desc *d)
282 {
283 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
284
285 if (__dma_omap15xx(od->plat->dma_attr))
286 omap_dma_chan_write(c, CPC, 0);
287 else
288 omap_dma_chan_write(c, CDAC, 0);
289
290 omap_dma_clear_csr(c);
291
292 /* Enable interrupts */
293 omap_dma_chan_write(c, CICR, d->cicr);
294
295 /* Enable channel */
296 omap_dma_chan_write(c, CCR, d->ccr | CCR_ENABLE);
297 }
298
299 static void omap_dma_stop(struct omap_chan *c)
300 {
301 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
302 uint32_t val;
303
304 /* disable irq */
305 omap_dma_chan_write(c, CICR, 0);
306
307 omap_dma_clear_csr(c);
308
309 val = omap_dma_chan_read(c, CCR);
310 if (od->plat->errata & DMA_ERRATA_i541 && val & CCR_TRIGGER_SRC) {
311 uint32_t sysconfig;
312 unsigned i;
313
314 sysconfig = omap_dma_glbl_read(od, OCP_SYSCONFIG);
315 val = sysconfig & ~DMA_SYSCONFIG_MIDLEMODE_MASK;
316 val |= DMA_SYSCONFIG_MIDLEMODE(DMA_IDLEMODE_NO_IDLE);
317 omap_dma_glbl_write(od, OCP_SYSCONFIG, val);
318
319 val = omap_dma_chan_read(c, CCR);
320 val &= ~CCR_ENABLE;
321 omap_dma_chan_write(c, CCR, val);
322
323 /* Wait for sDMA FIFO to drain */
324 for (i = 0; ; i++) {
325 val = omap_dma_chan_read(c, CCR);
326 if (!(val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE)))
327 break;
328
329 if (i > 100)
330 break;
331
332 udelay(5);
333 }
334
335 if (val & (CCR_RD_ACTIVE | CCR_WR_ACTIVE))
336 dev_err(c->vc.chan.device->dev,
337 "DMA drain did not complete on lch %d\n",
338 c->dma_ch);
339
340 omap_dma_glbl_write(od, OCP_SYSCONFIG, sysconfig);
341 } else {
342 val &= ~CCR_ENABLE;
343 omap_dma_chan_write(c, CCR, val);
344 }
345
346 mb();
347
348 if (!__dma_omap15xx(od->plat->dma_attr) && c->cyclic) {
349 val = omap_dma_chan_read(c, CLNK_CTRL);
350
351 if (dma_omap1())
352 val |= 1 << 14; /* set the STOP_LNK bit */
353 else
354 val &= ~CLNK_CTRL_ENABLE_LNK;
355
356 omap_dma_chan_write(c, CLNK_CTRL, val);
357 }
358 }
359
360 static void omap_dma_start_sg(struct omap_chan *c, struct omap_desc *d,
361 unsigned idx)
362 {
363 struct omap_sg *sg = d->sg + idx;
364 unsigned cxsa, cxei, cxfi;
365
366 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
367 cxsa = CDSA;
368 cxei = CDEI;
369 cxfi = CDFI;
370 } else {
371 cxsa = CSSA;
372 cxei = CSEI;
373 cxfi = CSFI;
374 }
375
376 omap_dma_chan_write(c, cxsa, sg->addr);
377 omap_dma_chan_write(c, cxei, 0);
378 omap_dma_chan_write(c, cxfi, 0);
379 omap_dma_chan_write(c, CEN, sg->en);
380 omap_dma_chan_write(c, CFN, sg->fn);
381
382 omap_dma_start(c, d);
383 }
384
385 static void omap_dma_start_desc(struct omap_chan *c)
386 {
387 struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
388 struct omap_desc *d;
389 unsigned cxsa, cxei, cxfi;
390
391 if (!vd) {
392 c->desc = NULL;
393 return;
394 }
395
396 list_del(&vd->node);
397
398 c->desc = d = to_omap_dma_desc(&vd->tx);
399 c->sgidx = 0;
400
401 /*
402 * This provides the necessary barrier to ensure data held in
403 * DMA coherent memory is visible to the DMA engine prior to
404 * the transfer starting.
405 */
406 mb();
407
408 omap_dma_chan_write(c, CCR, d->ccr);
409 if (dma_omap1())
410 omap_dma_chan_write(c, CCR2, d->ccr >> 16);
411
412 if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM) {
413 cxsa = CSSA;
414 cxei = CSEI;
415 cxfi = CSFI;
416 } else {
417 cxsa = CDSA;
418 cxei = CDEI;
419 cxfi = CDFI;
420 }
421
422 omap_dma_chan_write(c, cxsa, d->dev_addr);
423 omap_dma_chan_write(c, cxei, 0);
424 omap_dma_chan_write(c, cxfi, d->fi);
425 omap_dma_chan_write(c, CSDP, d->csdp);
426 omap_dma_chan_write(c, CLNK_CTRL, d->clnk_ctrl);
427
428 omap_dma_start_sg(c, d, 0);
429 }
430
431 static void omap_dma_callback(int ch, u16 status, void *data)
432 {
433 struct omap_chan *c = data;
434 struct omap_desc *d;
435 unsigned long flags;
436
437 spin_lock_irqsave(&c->vc.lock, flags);
438 d = c->desc;
439 if (d) {
440 if (!c->cyclic) {
441 if (++c->sgidx < d->sglen) {
442 omap_dma_start_sg(c, d, c->sgidx);
443 } else {
444 omap_dma_start_desc(c);
445 vchan_cookie_complete(&d->vd);
446 }
447 } else {
448 vchan_cyclic_callback(&d->vd);
449 }
450 }
451 spin_unlock_irqrestore(&c->vc.lock, flags);
452 }
453
454 static irqreturn_t omap_dma_irq(int irq, void *devid)
455 {
456 struct omap_dmadev *od = devid;
457 unsigned status, channel;
458
459 spin_lock(&od->irq_lock);
460
461 status = omap_dma_glbl_read(od, IRQSTATUS_L1);
462 status &= od->irq_enable_mask;
463 if (status == 0) {
464 spin_unlock(&od->irq_lock);
465 return IRQ_NONE;
466 }
467
468 while ((channel = ffs(status)) != 0) {
469 unsigned mask, csr;
470 struct omap_chan *c;
471
472 channel -= 1;
473 mask = BIT(channel);
474 status &= ~mask;
475
476 c = od->lch_map[channel];
477 if (c == NULL) {
478 /* This should never happen */
479 dev_err(od->ddev.dev, "invalid channel %u\n", channel);
480 continue;
481 }
482
483 csr = omap_dma_get_csr(c);
484 omap_dma_glbl_write(od, IRQSTATUS_L1, mask);
485
486 omap_dma_callback(channel, csr, c);
487 }
488
489 spin_unlock(&od->irq_lock);
490
491 return IRQ_HANDLED;
492 }
493
494 static int omap_dma_alloc_chan_resources(struct dma_chan *chan)
495 {
496 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
497 struct omap_chan *c = to_omap_dma_chan(chan);
498 int ret;
499
500 if (od->legacy) {
501 ret = omap_request_dma(c->dma_sig, "DMA engine",
502 omap_dma_callback, c, &c->dma_ch);
503 } else {
504 ret = omap_request_dma(c->dma_sig, "DMA engine", NULL, NULL,
505 &c->dma_ch);
506 }
507
508 dev_dbg(od->ddev.dev, "allocating channel %u for %u\n",
509 c->dma_ch, c->dma_sig);
510
511 if (ret >= 0) {
512 omap_dma_assign(od, c, c->dma_ch);
513
514 if (!od->legacy) {
515 unsigned val;
516
517 spin_lock_irq(&od->irq_lock);
518 val = BIT(c->dma_ch);
519 omap_dma_glbl_write(od, IRQSTATUS_L1, val);
520 od->irq_enable_mask |= val;
521 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
522
523 val = omap_dma_glbl_read(od, IRQENABLE_L0);
524 val &= ~BIT(c->dma_ch);
525 omap_dma_glbl_write(od, IRQENABLE_L0, val);
526 spin_unlock_irq(&od->irq_lock);
527 }
528 }
529
530 if (dma_omap1()) {
531 if (__dma_omap16xx(od->plat->dma_attr)) {
532 c->ccr = CCR_OMAP31_DISABLE;
533 /* Duplicate what plat-omap/dma.c does */
534 c->ccr |= c->dma_ch + 1;
535 } else {
536 c->ccr = c->dma_sig & 0x1f;
537 }
538 } else {
539 c->ccr = c->dma_sig & 0x1f;
540 c->ccr |= (c->dma_sig & ~0x1f) << 14;
541 }
542 if (od->plat->errata & DMA_ERRATA_IFRAME_BUFFERING)
543 c->ccr |= CCR_BUFFERING_DISABLE;
544
545 return ret;
546 }
547
548 static void omap_dma_free_chan_resources(struct dma_chan *chan)
549 {
550 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
551 struct omap_chan *c = to_omap_dma_chan(chan);
552
553 if (!od->legacy) {
554 spin_lock_irq(&od->irq_lock);
555 od->irq_enable_mask &= ~BIT(c->dma_ch);
556 omap_dma_glbl_write(od, IRQENABLE_L1, od->irq_enable_mask);
557 spin_unlock_irq(&od->irq_lock);
558 }
559
560 c->channel_base = NULL;
561 od->lch_map[c->dma_ch] = NULL;
562 vchan_free_chan_resources(&c->vc);
563 omap_free_dma(c->dma_ch);
564
565 dev_dbg(od->ddev.dev, "freeing channel for %u\n", c->dma_sig);
566 c->dma_sig = 0;
567 }
568
569 static size_t omap_dma_sg_size(struct omap_sg *sg)
570 {
571 return sg->en * sg->fn;
572 }
573
574 static size_t omap_dma_desc_size(struct omap_desc *d)
575 {
576 unsigned i;
577 size_t size;
578
579 for (size = i = 0; i < d->sglen; i++)
580 size += omap_dma_sg_size(&d->sg[i]);
581
582 return size * es_bytes[d->es];
583 }
584
585 static size_t omap_dma_desc_size_pos(struct omap_desc *d, dma_addr_t addr)
586 {
587 unsigned i;
588 size_t size, es_size = es_bytes[d->es];
589
590 for (size = i = 0; i < d->sglen; i++) {
591 size_t this_size = omap_dma_sg_size(&d->sg[i]) * es_size;
592
593 if (size)
594 size += this_size;
595 else if (addr >= d->sg[i].addr &&
596 addr < d->sg[i].addr + this_size)
597 size += d->sg[i].addr + this_size - addr;
598 }
599 return size;
600 }
601
602 /*
603 * OMAP 3.2/3.3 erratum: sometimes 0 is returned if CSAC/CDAC is
604 * read before the DMA controller finished disabling the channel.
605 */
606 static uint32_t omap_dma_chan_read_3_3(struct omap_chan *c, unsigned reg)
607 {
608 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
609 uint32_t val;
610
611 val = omap_dma_chan_read(c, reg);
612 if (val == 0 && od->plat->errata & DMA_ERRATA_3_3)
613 val = omap_dma_chan_read(c, reg);
614
615 return val;
616 }
617
618 static dma_addr_t omap_dma_get_src_pos(struct omap_chan *c)
619 {
620 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
621 dma_addr_t addr, cdac;
622
623 if (__dma_omap15xx(od->plat->dma_attr)) {
624 addr = omap_dma_chan_read(c, CPC);
625 } else {
626 addr = omap_dma_chan_read_3_3(c, CSAC);
627 cdac = omap_dma_chan_read_3_3(c, CDAC);
628
629 /*
630 * CDAC == 0 indicates that the DMA transfer on the channel has
631 * not been started (no data has been transferred so far).
632 * Return the programmed source start address in this case.
633 */
634 if (cdac == 0)
635 addr = omap_dma_chan_read(c, CSSA);
636 }
637
638 if (dma_omap1())
639 addr |= omap_dma_chan_read(c, CSSA) & 0xffff0000;
640
641 return addr;
642 }
643
644 static dma_addr_t omap_dma_get_dst_pos(struct omap_chan *c)
645 {
646 struct omap_dmadev *od = to_omap_dma_dev(c->vc.chan.device);
647 dma_addr_t addr;
648
649 if (__dma_omap15xx(od->plat->dma_attr)) {
650 addr = omap_dma_chan_read(c, CPC);
651 } else {
652 addr = omap_dma_chan_read_3_3(c, CDAC);
653
654 /*
655 * CDAC == 0 indicates that the DMA transfer on the channel
656 * has not been started (no data has been transferred so
657 * far). Return the programmed destination start address in
658 * this case.
659 */
660 if (addr == 0)
661 addr = omap_dma_chan_read(c, CDSA);
662 }
663
664 if (dma_omap1())
665 addr |= omap_dma_chan_read(c, CDSA) & 0xffff0000;
666
667 return addr;
668 }
669
670 static enum dma_status omap_dma_tx_status(struct dma_chan *chan,
671 dma_cookie_t cookie, struct dma_tx_state *txstate)
672 {
673 struct omap_chan *c = to_omap_dma_chan(chan);
674 struct virt_dma_desc *vd;
675 enum dma_status ret;
676 uint32_t ccr;
677 unsigned long flags;
678
679 ccr = omap_dma_chan_read(c, CCR);
680 /* The channel is no longer active, handle the completion right away */
681 if (!(ccr & CCR_ENABLE))
682 omap_dma_callback(c->dma_ch, 0, c);
683
684 ret = dma_cookie_status(chan, cookie, txstate);
685 if (ret == DMA_COMPLETE || !txstate)
686 return ret;
687
688 spin_lock_irqsave(&c->vc.lock, flags);
689 vd = vchan_find_desc(&c->vc, cookie);
690 if (vd) {
691 txstate->residue = omap_dma_desc_size(to_omap_dma_desc(&vd->tx));
692 } else if (c->desc && c->desc->vd.tx.cookie == cookie) {
693 struct omap_desc *d = c->desc;
694 dma_addr_t pos;
695
696 if (d->dir == DMA_MEM_TO_DEV)
697 pos = omap_dma_get_src_pos(c);
698 else if (d->dir == DMA_DEV_TO_MEM || d->dir == DMA_MEM_TO_MEM)
699 pos = omap_dma_get_dst_pos(c);
700 else
701 pos = 0;
702
703 txstate->residue = omap_dma_desc_size_pos(d, pos);
704 } else {
705 txstate->residue = 0;
706 }
707 spin_unlock_irqrestore(&c->vc.lock, flags);
708
709 return ret;
710 }
711
712 static void omap_dma_issue_pending(struct dma_chan *chan)
713 {
714 struct omap_chan *c = to_omap_dma_chan(chan);
715 unsigned long flags;
716
717 spin_lock_irqsave(&c->vc.lock, flags);
718 if (vchan_issue_pending(&c->vc) && !c->desc)
719 omap_dma_start_desc(c);
720 spin_unlock_irqrestore(&c->vc.lock, flags);
721 }
722
723 static struct dma_async_tx_descriptor *omap_dma_prep_slave_sg(
724 struct dma_chan *chan, struct scatterlist *sgl, unsigned sglen,
725 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
726 {
727 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
728 struct omap_chan *c = to_omap_dma_chan(chan);
729 enum dma_slave_buswidth dev_width;
730 struct scatterlist *sgent;
731 struct omap_desc *d;
732 dma_addr_t dev_addr;
733 unsigned i, es, en, frame_bytes;
734 u32 burst;
735
736 if (dir == DMA_DEV_TO_MEM) {
737 dev_addr = c->cfg.src_addr;
738 dev_width = c->cfg.src_addr_width;
739 burst = c->cfg.src_maxburst;
740 } else if (dir == DMA_MEM_TO_DEV) {
741 dev_addr = c->cfg.dst_addr;
742 dev_width = c->cfg.dst_addr_width;
743 burst = c->cfg.dst_maxburst;
744 } else {
745 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
746 return NULL;
747 }
748
749 /* Bus width translates to the element size (ES) */
750 switch (dev_width) {
751 case DMA_SLAVE_BUSWIDTH_1_BYTE:
752 es = CSDP_DATA_TYPE_8;
753 break;
754 case DMA_SLAVE_BUSWIDTH_2_BYTES:
755 es = CSDP_DATA_TYPE_16;
756 break;
757 case DMA_SLAVE_BUSWIDTH_4_BYTES:
758 es = CSDP_DATA_TYPE_32;
759 break;
760 default: /* not reached */
761 return NULL;
762 }
763
764 /* Now allocate and setup the descriptor. */
765 d = kzalloc(sizeof(*d) + sglen * sizeof(d->sg[0]), GFP_ATOMIC);
766 if (!d)
767 return NULL;
768
769 d->dir = dir;
770 d->dev_addr = dev_addr;
771 d->es = es;
772
773 d->ccr = c->ccr | CCR_SYNC_FRAME;
774 if (dir == DMA_DEV_TO_MEM)
775 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
776 else
777 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
778
779 d->cicr = CICR_DROP_IE | CICR_BLOCK_IE;
780 d->csdp = es;
781
782 if (dma_omap1()) {
783 d->cicr |= CICR_TOUT_IE;
784
785 if (dir == DMA_DEV_TO_MEM)
786 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_TIPB;
787 else
788 d->csdp |= CSDP_DST_PORT_TIPB | CSDP_SRC_PORT_EMIFF;
789 } else {
790 if (dir == DMA_DEV_TO_MEM)
791 d->ccr |= CCR_TRIGGER_SRC;
792
793 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
794 }
795 if (od->plat->errata & DMA_ERRATA_PARALLEL_CHANNELS)
796 d->clnk_ctrl = c->dma_ch;
797
798 /*
799 * Build our scatterlist entries: each contains the address,
800 * the number of elements (EN) in each frame, and the number of
801 * frames (FN). Number of bytes for this entry = ES * EN * FN.
802 *
803 * Burst size translates to number of elements with frame sync.
804 * Note: DMA engine defines burst to be the number of dev-width
805 * transfers.
806 */
807 en = burst;
808 frame_bytes = es_bytes[es] * en;
809 for_each_sg(sgl, sgent, sglen, i) {
810 d->sg[i].addr = sg_dma_address(sgent);
811 d->sg[i].en = en;
812 d->sg[i].fn = sg_dma_len(sgent) / frame_bytes;
813 }
814
815 d->sglen = sglen;
816
817 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
818 }
819
820 static struct dma_async_tx_descriptor *omap_dma_prep_dma_cyclic(
821 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
822 size_t period_len, enum dma_transfer_direction dir, unsigned long flags)
823 {
824 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
825 struct omap_chan *c = to_omap_dma_chan(chan);
826 enum dma_slave_buswidth dev_width;
827 struct omap_desc *d;
828 dma_addr_t dev_addr;
829 unsigned es;
830 u32 burst;
831
832 if (dir == DMA_DEV_TO_MEM) {
833 dev_addr = c->cfg.src_addr;
834 dev_width = c->cfg.src_addr_width;
835 burst = c->cfg.src_maxburst;
836 } else if (dir == DMA_MEM_TO_DEV) {
837 dev_addr = c->cfg.dst_addr;
838 dev_width = c->cfg.dst_addr_width;
839 burst = c->cfg.dst_maxburst;
840 } else {
841 dev_err(chan->device->dev, "%s: bad direction?\n", __func__);
842 return NULL;
843 }
844
845 /* Bus width translates to the element size (ES) */
846 switch (dev_width) {
847 case DMA_SLAVE_BUSWIDTH_1_BYTE:
848 es = CSDP_DATA_TYPE_8;
849 break;
850 case DMA_SLAVE_BUSWIDTH_2_BYTES:
851 es = CSDP_DATA_TYPE_16;
852 break;
853 case DMA_SLAVE_BUSWIDTH_4_BYTES:
854 es = CSDP_DATA_TYPE_32;
855 break;
856 default: /* not reached */
857 return NULL;
858 }
859
860 /* Now allocate and setup the descriptor. */
861 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
862 if (!d)
863 return NULL;
864
865 d->dir = dir;
866 d->dev_addr = dev_addr;
867 d->fi = burst;
868 d->es = es;
869 d->sg[0].addr = buf_addr;
870 d->sg[0].en = period_len / es_bytes[es];
871 d->sg[0].fn = buf_len / period_len;
872 d->sglen = 1;
873
874 d->ccr = c->ccr;
875 if (dir == DMA_DEV_TO_MEM)
876 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_CONSTANT;
877 else
878 d->ccr |= CCR_DST_AMODE_CONSTANT | CCR_SRC_AMODE_POSTINC;
879
880 d->cicr = CICR_DROP_IE;
881 if (flags & DMA_PREP_INTERRUPT)
882 d->cicr |= CICR_FRAME_IE;
883
884 d->csdp = es;
885
886 if (dma_omap1()) {
887 d->cicr |= CICR_TOUT_IE;
888
889 if (dir == DMA_DEV_TO_MEM)
890 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_MPUI;
891 else
892 d->csdp |= CSDP_DST_PORT_MPUI | CSDP_SRC_PORT_EMIFF;
893 } else {
894 if (burst)
895 d->ccr |= CCR_SYNC_PACKET;
896 else
897 d->ccr |= CCR_SYNC_ELEMENT;
898
899 if (dir == DMA_DEV_TO_MEM) {
900 d->ccr |= CCR_TRIGGER_SRC;
901 d->csdp |= CSDP_DST_PACKED;
902 } else {
903 d->csdp |= CSDP_SRC_PACKED;
904 }
905
906 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
907
908 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
909 }
910
911 if (__dma_omap15xx(od->plat->dma_attr))
912 d->ccr |= CCR_AUTO_INIT | CCR_REPEAT;
913 else
914 d->clnk_ctrl = c->dma_ch | CLNK_CTRL_ENABLE_LNK;
915
916 c->cyclic = true;
917
918 return vchan_tx_prep(&c->vc, &d->vd, flags);
919 }
920
921 static struct dma_async_tx_descriptor *omap_dma_prep_dma_memcpy(
922 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
923 size_t len, unsigned long tx_flags)
924 {
925 struct omap_chan *c = to_omap_dma_chan(chan);
926 struct omap_desc *d;
927 uint8_t data_type;
928
929 d = kzalloc(sizeof(*d) + sizeof(d->sg[0]), GFP_ATOMIC);
930 if (!d)
931 return NULL;
932
933 data_type = __ffs((src | dest | len));
934 if (data_type > CSDP_DATA_TYPE_32)
935 data_type = CSDP_DATA_TYPE_32;
936
937 d->dir = DMA_MEM_TO_MEM;
938 d->dev_addr = src;
939 d->fi = 0;
940 d->es = data_type;
941 d->sg[0].en = len / BIT(data_type);
942 d->sg[0].fn = 1;
943 d->sg[0].addr = dest;
944 d->sglen = 1;
945 d->ccr = c->ccr;
946 d->ccr |= CCR_DST_AMODE_POSTINC | CCR_SRC_AMODE_POSTINC;
947
948 d->cicr = CICR_DROP_IE;
949 if (tx_flags & DMA_PREP_INTERRUPT)
950 d->cicr |= CICR_FRAME_IE;
951
952 d->csdp = data_type;
953
954 if (dma_omap1()) {
955 d->cicr |= CICR_TOUT_IE;
956 d->csdp |= CSDP_DST_PORT_EMIFF | CSDP_SRC_PORT_EMIFF;
957 } else {
958 d->csdp |= CSDP_DST_PACKED | CSDP_SRC_PACKED;
959 d->cicr |= CICR_MISALIGNED_ERR_IE | CICR_TRANS_ERR_IE;
960 d->csdp |= CSDP_DST_BURST_64 | CSDP_SRC_BURST_64;
961 }
962
963 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
964 }
965
966 static int omap_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg)
967 {
968 struct omap_chan *c = to_omap_dma_chan(chan);
969
970 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
971 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
972 return -EINVAL;
973
974 memcpy(&c->cfg, cfg, sizeof(c->cfg));
975
976 return 0;
977 }
978
979 static int omap_dma_terminate_all(struct dma_chan *chan)
980 {
981 struct omap_chan *c = to_omap_dma_chan(chan);
982 unsigned long flags;
983 LIST_HEAD(head);
984
985 spin_lock_irqsave(&c->vc.lock, flags);
986
987 /*
988 * Stop DMA activity: we assume the callback will not be called
989 * after omap_dma_stop() returns (even if it does, it will see
990 * c->desc is NULL and exit.)
991 */
992 if (c->desc) {
993 omap_dma_desc_free(&c->desc->vd);
994 c->desc = NULL;
995 /* Avoid stopping the dma twice */
996 if (!c->paused)
997 omap_dma_stop(c);
998 }
999
1000 if (c->cyclic) {
1001 c->cyclic = false;
1002 c->paused = false;
1003 }
1004
1005 vchan_get_all_descriptors(&c->vc, &head);
1006 spin_unlock_irqrestore(&c->vc.lock, flags);
1007 vchan_dma_desc_free_list(&c->vc, &head);
1008
1009 return 0;
1010 }
1011
1012 static int omap_dma_pause(struct dma_chan *chan)
1013 {
1014 struct omap_chan *c = to_omap_dma_chan(chan);
1015
1016 /* Pause/Resume only allowed with cyclic mode */
1017 if (!c->cyclic)
1018 return -EINVAL;
1019
1020 if (!c->paused) {
1021 omap_dma_stop(c);
1022 c->paused = true;
1023 }
1024
1025 return 0;
1026 }
1027
1028 static int omap_dma_resume(struct dma_chan *chan)
1029 {
1030 struct omap_chan *c = to_omap_dma_chan(chan);
1031
1032 /* Pause/Resume only allowed with cyclic mode */
1033 if (!c->cyclic)
1034 return -EINVAL;
1035
1036 if (c->paused) {
1037 mb();
1038
1039 /* Restore channel link register */
1040 omap_dma_chan_write(c, CLNK_CTRL, c->desc->clnk_ctrl);
1041
1042 omap_dma_start(c, c->desc);
1043 c->paused = false;
1044 }
1045
1046 return 0;
1047 }
1048
1049 static int omap_dma_chan_init(struct omap_dmadev *od)
1050 {
1051 struct omap_chan *c;
1052
1053 c = kzalloc(sizeof(*c), GFP_KERNEL);
1054 if (!c)
1055 return -ENOMEM;
1056
1057 c->reg_map = od->reg_map;
1058 c->vc.desc_free = omap_dma_desc_free;
1059 vchan_init(&c->vc, &od->ddev);
1060
1061 return 0;
1062 }
1063
1064 static void omap_dma_free(struct omap_dmadev *od)
1065 {
1066 while (!list_empty(&od->ddev.channels)) {
1067 struct omap_chan *c = list_first_entry(&od->ddev.channels,
1068 struct omap_chan, vc.chan.device_node);
1069
1070 list_del(&c->vc.chan.device_node);
1071 tasklet_kill(&c->vc.task);
1072 kfree(c);
1073 }
1074 }
1075
1076 #define OMAP_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1077 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1078 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1079
1080 static int omap_dma_probe(struct platform_device *pdev)
1081 {
1082 struct omap_dmadev *od;
1083 struct resource *res;
1084 int rc, i, irq;
1085
1086 od = devm_kzalloc(&pdev->dev, sizeof(*od), GFP_KERNEL);
1087 if (!od)
1088 return -ENOMEM;
1089
1090 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1091 od->base = devm_ioremap_resource(&pdev->dev, res);
1092 if (IS_ERR(od->base))
1093 return PTR_ERR(od->base);
1094
1095 od->plat = omap_get_plat_info();
1096 if (!od->plat)
1097 return -EPROBE_DEFER;
1098
1099 od->reg_map = od->plat->reg_map;
1100
1101 dma_cap_set(DMA_SLAVE, od->ddev.cap_mask);
1102 dma_cap_set(DMA_CYCLIC, od->ddev.cap_mask);
1103 dma_cap_set(DMA_MEMCPY, od->ddev.cap_mask);
1104 od->ddev.device_alloc_chan_resources = omap_dma_alloc_chan_resources;
1105 od->ddev.device_free_chan_resources = omap_dma_free_chan_resources;
1106 od->ddev.device_tx_status = omap_dma_tx_status;
1107 od->ddev.device_issue_pending = omap_dma_issue_pending;
1108 od->ddev.device_prep_slave_sg = omap_dma_prep_slave_sg;
1109 od->ddev.device_prep_dma_cyclic = omap_dma_prep_dma_cyclic;
1110 od->ddev.device_prep_dma_memcpy = omap_dma_prep_dma_memcpy;
1111 od->ddev.device_config = omap_dma_slave_config;
1112 od->ddev.device_pause = omap_dma_pause;
1113 od->ddev.device_resume = omap_dma_resume;
1114 od->ddev.device_terminate_all = omap_dma_terminate_all;
1115 od->ddev.src_addr_widths = OMAP_DMA_BUSWIDTHS;
1116 od->ddev.dst_addr_widths = OMAP_DMA_BUSWIDTHS;
1117 od->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1118 od->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1119 od->ddev.dev = &pdev->dev;
1120 INIT_LIST_HEAD(&od->ddev.channels);
1121 spin_lock_init(&od->lock);
1122 spin_lock_init(&od->irq_lock);
1123
1124 od->dma_requests = OMAP_SDMA_REQUESTS;
1125 if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
1126 "dma-requests",
1127 &od->dma_requests)) {
1128 dev_info(&pdev->dev,
1129 "Missing dma-requests property, using %u.\n",
1130 OMAP_SDMA_REQUESTS);
1131 }
1132
1133 for (i = 0; i < OMAP_SDMA_CHANNELS; i++) {
1134 rc = omap_dma_chan_init(od);
1135 if (rc) {
1136 omap_dma_free(od);
1137 return rc;
1138 }
1139 }
1140
1141 irq = platform_get_irq(pdev, 1);
1142 if (irq <= 0) {
1143 dev_info(&pdev->dev, "failed to get L1 IRQ: %d\n", irq);
1144 od->legacy = true;
1145 } else {
1146 /* Disable all interrupts */
1147 od->irq_enable_mask = 0;
1148 omap_dma_glbl_write(od, IRQENABLE_L1, 0);
1149
1150 rc = devm_request_irq(&pdev->dev, irq, omap_dma_irq,
1151 IRQF_SHARED, "omap-dma-engine", od);
1152 if (rc)
1153 return rc;
1154 }
1155
1156 od->ddev.filter.map = od->plat->slave_map;
1157 od->ddev.filter.mapcnt = od->plat->slavecnt;
1158 od->ddev.filter.fn = omap_dma_filter_fn;
1159
1160 rc = dma_async_device_register(&od->ddev);
1161 if (rc) {
1162 pr_warn("OMAP-DMA: failed to register slave DMA engine device: %d\n",
1163 rc);
1164 omap_dma_free(od);
1165 return rc;
1166 }
1167
1168 platform_set_drvdata(pdev, od);
1169
1170 if (pdev->dev.of_node) {
1171 omap_dma_info.dma_cap = od->ddev.cap_mask;
1172
1173 /* Device-tree DMA controller registration */
1174 rc = of_dma_controller_register(pdev->dev.of_node,
1175 of_dma_simple_xlate, &omap_dma_info);
1176 if (rc) {
1177 pr_warn("OMAP-DMA: failed to register DMA controller\n");
1178 dma_async_device_unregister(&od->ddev);
1179 omap_dma_free(od);
1180 }
1181 }
1182
1183 dev_info(&pdev->dev, "OMAP DMA engine driver\n");
1184
1185 return rc;
1186 }
1187
1188 static int omap_dma_remove(struct platform_device *pdev)
1189 {
1190 struct omap_dmadev *od = platform_get_drvdata(pdev);
1191
1192 if (pdev->dev.of_node)
1193 of_dma_controller_free(pdev->dev.of_node);
1194
1195 dma_async_device_unregister(&od->ddev);
1196
1197 if (!od->legacy) {
1198 /* Disable all interrupts */
1199 omap_dma_glbl_write(od, IRQENABLE_L0, 0);
1200 }
1201
1202 omap_dma_free(od);
1203
1204 return 0;
1205 }
1206
1207 static const struct of_device_id omap_dma_match[] = {
1208 { .compatible = "ti,omap2420-sdma", },
1209 { .compatible = "ti,omap2430-sdma", },
1210 { .compatible = "ti,omap3430-sdma", },
1211 { .compatible = "ti,omap3630-sdma", },
1212 { .compatible = "ti,omap4430-sdma", },
1213 {},
1214 };
1215 MODULE_DEVICE_TABLE(of, omap_dma_match);
1216
1217 static struct platform_driver omap_dma_driver = {
1218 .probe = omap_dma_probe,
1219 .remove = omap_dma_remove,
1220 .driver = {
1221 .name = "omap-dma-engine",
1222 .of_match_table = of_match_ptr(omap_dma_match),
1223 },
1224 };
1225
1226 bool omap_dma_filter_fn(struct dma_chan *chan, void *param)
1227 {
1228 if (chan->device->dev->driver == &omap_dma_driver.driver) {
1229 struct omap_dmadev *od = to_omap_dma_dev(chan->device);
1230 struct omap_chan *c = to_omap_dma_chan(chan);
1231 unsigned req = *(unsigned *)param;
1232
1233 if (req <= od->dma_requests) {
1234 c->dma_sig = req;
1235 return true;
1236 }
1237 }
1238 return false;
1239 }
1240 EXPORT_SYMBOL_GPL(omap_dma_filter_fn);
1241
1242 static int omap_dma_init(void)
1243 {
1244 return platform_driver_register(&omap_dma_driver);
1245 }
1246 subsys_initcall(omap_dma_init);
1247
1248 static void __exit omap_dma_exit(void)
1249 {
1250 platform_driver_unregister(&omap_dma_driver);
1251 }
1252 module_exit(omap_dma_exit);
1253
1254 MODULE_AUTHOR("Russell King");
1255 MODULE_LICENSE("GPL");