]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/pl330.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN 8
33 #define PL330_MAX_IRQS 32
34 #define PL330_MAX_PERI 32
35 #define PL330_MAX_BURST 16
36
37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
38
39 enum pl330_cachectrl {
40 CCTRL0, /* Noncacheable and nonbufferable */
41 CCTRL1, /* Bufferable only */
42 CCTRL2, /* Cacheable, but do not allocate */
43 CCTRL3, /* Cacheable and bufferable, but do not allocate */
44 INVALID1, /* AWCACHE = 0x1000 */
45 INVALID2,
46 CCTRL6, /* Cacheable write-through, allocate on writes only */
47 CCTRL7, /* Cacheable write-back, allocate on writes only */
48 };
49
50 enum pl330_byteswap {
51 SWAP_NO,
52 SWAP_2,
53 SWAP_4,
54 SWAP_8,
55 SWAP_16,
56 };
57
58 /* Register and Bit field Definitions */
59 #define DS 0x0
60 #define DS_ST_STOP 0x0
61 #define DS_ST_EXEC 0x1
62 #define DS_ST_CMISS 0x2
63 #define DS_ST_UPDTPC 0x3
64 #define DS_ST_WFE 0x4
65 #define DS_ST_ATBRR 0x5
66 #define DS_ST_QBUSY 0x6
67 #define DS_ST_WFP 0x7
68 #define DS_ST_KILL 0x8
69 #define DS_ST_CMPLT 0x9
70 #define DS_ST_FLTCMP 0xe
71 #define DS_ST_FAULT 0xf
72
73 #define DPC 0x4
74 #define INTEN 0x20
75 #define ES 0x24
76 #define INTSTATUS 0x28
77 #define INTCLR 0x2c
78 #define FSM 0x30
79 #define FSC 0x34
80 #define FTM 0x38
81
82 #define _FTC 0x40
83 #define FTC(n) (_FTC + (n)*0x4)
84
85 #define _CS 0x100
86 #define CS(n) (_CS + (n)*0x8)
87 #define CS_CNS (1 << 21)
88
89 #define _CPC 0x104
90 #define CPC(n) (_CPC + (n)*0x8)
91
92 #define _SA 0x400
93 #define SA(n) (_SA + (n)*0x20)
94
95 #define _DA 0x404
96 #define DA(n) (_DA + (n)*0x20)
97
98 #define _CC 0x408
99 #define CC(n) (_CC + (n)*0x20)
100
101 #define CC_SRCINC (1 << 0)
102 #define CC_DSTINC (1 << 14)
103 #define CC_SRCPRI (1 << 8)
104 #define CC_DSTPRI (1 << 22)
105 #define CC_SRCNS (1 << 9)
106 #define CC_DSTNS (1 << 23)
107 #define CC_SRCIA (1 << 10)
108 #define CC_DSTIA (1 << 24)
109 #define CC_SRCBRSTLEN_SHFT 4
110 #define CC_DSTBRSTLEN_SHFT 18
111 #define CC_SRCBRSTSIZE_SHFT 1
112 #define CC_DSTBRSTSIZE_SHFT 15
113 #define CC_SRCCCTRL_SHFT 11
114 #define CC_SRCCCTRL_MASK 0x7
115 #define CC_DSTCCTRL_SHFT 25
116 #define CC_DRCCCTRL_MASK 0x7
117 #define CC_SWAP_SHFT 28
118
119 #define _LC0 0x40c
120 #define LC0(n) (_LC0 + (n)*0x20)
121
122 #define _LC1 0x410
123 #define LC1(n) (_LC1 + (n)*0x20)
124
125 #define DBGSTATUS 0xd00
126 #define DBG_BUSY (1 << 0)
127
128 #define DBGCMD 0xd04
129 #define DBGINST0 0xd08
130 #define DBGINST1 0xd0c
131
132 #define CR0 0xe00
133 #define CR1 0xe04
134 #define CR2 0xe08
135 #define CR3 0xe0c
136 #define CR4 0xe10
137 #define CRD 0xe14
138
139 #define PERIPH_ID 0xfe0
140 #define PERIPH_REV_SHIFT 20
141 #define PERIPH_REV_MASK 0xf
142 #define PERIPH_REV_R0P0 0
143 #define PERIPH_REV_R1P0 1
144 #define PERIPH_REV_R1P1 2
145
146 #define CR0_PERIPH_REQ_SET (1 << 0)
147 #define CR0_BOOT_EN_SET (1 << 1)
148 #define CR0_BOOT_MAN_NS (1 << 2)
149 #define CR0_NUM_CHANS_SHIFT 4
150 #define CR0_NUM_CHANS_MASK 0x7
151 #define CR0_NUM_PERIPH_SHIFT 12
152 #define CR0_NUM_PERIPH_MASK 0x1f
153 #define CR0_NUM_EVENTS_SHIFT 17
154 #define CR0_NUM_EVENTS_MASK 0x1f
155
156 #define CR1_ICACHE_LEN_SHIFT 0
157 #define CR1_ICACHE_LEN_MASK 0x7
158 #define CR1_NUM_ICACHELINES_SHIFT 4
159 #define CR1_NUM_ICACHELINES_MASK 0xf
160
161 #define CRD_DATA_WIDTH_SHIFT 0
162 #define CRD_DATA_WIDTH_MASK 0x7
163 #define CRD_WR_CAP_SHIFT 4
164 #define CRD_WR_CAP_MASK 0x7
165 #define CRD_WR_Q_DEP_SHIFT 8
166 #define CRD_WR_Q_DEP_MASK 0xf
167 #define CRD_RD_CAP_SHIFT 12
168 #define CRD_RD_CAP_MASK 0x7
169 #define CRD_RD_Q_DEP_SHIFT 16
170 #define CRD_RD_Q_DEP_MASK 0xf
171 #define CRD_DATA_BUFF_SHIFT 20
172 #define CRD_DATA_BUFF_MASK 0x3ff
173
174 #define PART 0x330
175 #define DESIGNER 0x41
176 #define REVISION 0x0
177 #define INTEG_CFG 0x0
178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
179
180 #define PL330_STATE_STOPPED (1 << 0)
181 #define PL330_STATE_EXECUTING (1 << 1)
182 #define PL330_STATE_WFE (1 << 2)
183 #define PL330_STATE_FAULTING (1 << 3)
184 #define PL330_STATE_COMPLETING (1 << 4)
185 #define PL330_STATE_WFP (1 << 5)
186 #define PL330_STATE_KILLING (1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
188 #define PL330_STATE_CACHEMISS (1 << 8)
189 #define PL330_STATE_UPDTPC (1 << 9)
190 #define PL330_STATE_ATBARRIER (1 << 10)
191 #define PL330_STATE_QUEUEBUSY (1 << 11)
192 #define PL330_STATE_INVALID (1 << 15)
193
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 | PL330_STATE_WFE | PL330_STATE_FAULTING)
196
197 #define CMD_DMAADDH 0x54
198 #define CMD_DMAEND 0x00
199 #define CMD_DMAFLUSHP 0x35
200 #define CMD_DMAGO 0xa0
201 #define CMD_DMALD 0x04
202 #define CMD_DMALDP 0x25
203 #define CMD_DMALP 0x20
204 #define CMD_DMALPEND 0x28
205 #define CMD_DMAKILL 0x01
206 #define CMD_DMAMOV 0xbc
207 #define CMD_DMANOP 0x18
208 #define CMD_DMARMB 0x12
209 #define CMD_DMASEV 0x34
210 #define CMD_DMAST 0x08
211 #define CMD_DMASTP 0x29
212 #define CMD_DMASTZ 0x0c
213 #define CMD_DMAWFE 0x36
214 #define CMD_DMAWFP 0x30
215 #define CMD_DMAWMB 0x13
216
217 #define SZ_DMAADDH 3
218 #define SZ_DMAEND 1
219 #define SZ_DMAFLUSHP 2
220 #define SZ_DMALD 1
221 #define SZ_DMALDP 2
222 #define SZ_DMALP 2
223 #define SZ_DMALPEND 2
224 #define SZ_DMAKILL 1
225 #define SZ_DMAMOV 6
226 #define SZ_DMANOP 1
227 #define SZ_DMARMB 1
228 #define SZ_DMASEV 2
229 #define SZ_DMAST 1
230 #define SZ_DMASTP 2
231 #define SZ_DMASTZ 1
232 #define SZ_DMAWFE 2
233 #define SZ_DMAWFP 2
234 #define SZ_DMAWMB 1
235 #define SZ_DMAGO 6
236
237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239
240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242
243 /*
244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245 * at 1byte/burst for P<->M and M<->M respectively.
246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247 * should be enough for P<->M and M<->M respectively.
248 */
249 #define MCODE_BUFF_PER_REQ 256
250
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
253
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...) do { \
257 printk("%x:", cmd_line); \
258 printk(x); \
259 cmd_line += off; \
260 } while (0)
261 #define PL330_DBGMC_START(addr) (cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
264 #define PL330_DBGMC_START(addr) do {} while (0)
265 #endif
266
267 /* The number of default descriptors */
268
269 #define NR_DEFAULT_DESC 16
270
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 u32 periph_id;
277 #define DMAC_MODE_NS (1 << 0)
278 unsigned int mode;
279 unsigned int data_bus_width:10; /* In number of bits */
280 unsigned int data_buf_dep:11;
281 unsigned int num_chan:4;
282 unsigned int num_peri:6;
283 u32 peri_ns;
284 unsigned int num_events:6;
285 u32 irq_ns;
286 };
287
288 /**
289 * Request Configuration.
290 * The PL330 core does not modify this and uses the last
291 * working configuration if the request doesn't provide any.
292 *
293 * The Client may want to provide this info only for the
294 * first request and a request with new settings.
295 */
296 struct pl330_reqcfg {
297 /* Address Incrementing */
298 unsigned dst_inc:1;
299 unsigned src_inc:1;
300
301 /*
302 * For now, the SRC & DST protection levels
303 * and burst size/length are assumed same.
304 */
305 bool nonsecure;
306 bool privileged;
307 bool insnaccess;
308 unsigned brst_len:5;
309 unsigned brst_size:3; /* in power of 2 */
310
311 enum pl330_cachectrl dcctl;
312 enum pl330_cachectrl scctl;
313 enum pl330_byteswap swap;
314 struct pl330_config *pcfg;
315 };
316
317 /*
318 * One cycle of DMAC operation.
319 * There may be more than one xfer in a request.
320 */
321 struct pl330_xfer {
322 u32 src_addr;
323 u32 dst_addr;
324 /* Size to xfer */
325 u32 bytes;
326 };
327
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 /* The all xfers in the request were success. */
331 PL330_ERR_NONE,
332 /* If req aborted due to global error. */
333 PL330_ERR_ABORT,
334 /* If req failed due to problem with Channel. */
335 PL330_ERR_FAIL,
336 };
337
338 enum dmamov_dst {
339 SAR = 0,
340 CCR,
341 DAR,
342 };
343
344 enum pl330_dst {
345 SRC = 0,
346 DST,
347 };
348
349 enum pl330_cond {
350 SINGLE,
351 BURST,
352 ALWAYS,
353 };
354
355 struct dma_pl330_desc;
356
357 struct _pl330_req {
358 u32 mc_bus;
359 void *mc_cpu;
360 struct dma_pl330_desc *desc;
361 };
362
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 bool reset_dmac;
366 bool reset_mngr;
367 u8 reset_chan;
368 };
369
370 /* A DMAC Thread */
371 struct pl330_thread {
372 u8 id;
373 int ev;
374 /* If the channel is not yet acquired by any client */
375 bool free;
376 /* Parent DMAC */
377 struct pl330_dmac *dmac;
378 /* Only two at a time */
379 struct _pl330_req req[2];
380 /* Index of the last enqueued request */
381 unsigned lstenq;
382 /* Index of the last submitted request or -1 if the DMA is stopped */
383 int req_running;
384 };
385
386 enum pl330_dmac_state {
387 UNINIT,
388 INIT,
389 DYING,
390 };
391
392 enum desc_status {
393 /* In the DMAC pool */
394 FREE,
395 /*
396 * Allocated to some channel during prep_xxx
397 * Also may be sitting on the work_list.
398 */
399 PREP,
400 /*
401 * Sitting on the work_list and already submitted
402 * to the PL330 core. Not more than two descriptors
403 * of a channel can be BUSY at any time.
404 */
405 BUSY,
406 /*
407 * Sitting on the channel work_list but xfer done
408 * by PL330 core
409 */
410 DONE,
411 };
412
413 struct dma_pl330_chan {
414 /* Schedule desc completion */
415 struct tasklet_struct task;
416
417 /* DMA-Engine Channel */
418 struct dma_chan chan;
419
420 /* List of submitted descriptors */
421 struct list_head submitted_list;
422 /* List of issued descriptors */
423 struct list_head work_list;
424 /* List of completed descriptors */
425 struct list_head completed_list;
426
427 /* Pointer to the DMAC that manages this channel,
428 * NULL if the channel is available to be acquired.
429 * As the parent, this DMAC also provides descriptors
430 * to the channel.
431 */
432 struct pl330_dmac *dmac;
433
434 /* To protect channel manipulation */
435 spinlock_t lock;
436
437 /*
438 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 * available.
440 */
441 struct pl330_thread *thread;
442
443 /* For D-to-M and M-to-D channels */
444 int burst_sz; /* the peripheral fifo width */
445 int burst_len; /* the number of burst */
446 dma_addr_t fifo_addr;
447
448 /* for cyclic capability */
449 bool cyclic;
450
451 /* for runtime pm tracking */
452 bool active;
453 };
454
455 struct pl330_dmac {
456 /* DMA-Engine Device */
457 struct dma_device ddma;
458
459 /* Holds info about sg limitations */
460 struct device_dma_parameters dma_parms;
461
462 /* Pool of descriptors available for the DMAC's channels */
463 struct list_head desc_pool;
464 /* To protect desc_pool manipulation */
465 spinlock_t pool_lock;
466
467 /* Size of MicroCode buffers for each channel. */
468 unsigned mcbufsz;
469 /* ioremap'ed address of PL330 registers. */
470 void __iomem *base;
471 /* Populated by the PL330 core driver during pl330_add */
472 struct pl330_config pcfg;
473
474 spinlock_t lock;
475 /* Maximum possible events/irqs */
476 int events[32];
477 /* BUS address of MicroCode buffer */
478 dma_addr_t mcode_bus;
479 /* CPU address of MicroCode buffer */
480 void *mcode_cpu;
481 /* List of all Channel threads */
482 struct pl330_thread *channels;
483 /* Pointer to the MANAGER thread */
484 struct pl330_thread *manager;
485 /* To handle bad news in interrupt */
486 struct tasklet_struct tasks;
487 struct _pl330_tbd dmac_tbd;
488 /* State of DMAC operation */
489 enum pl330_dmac_state state;
490 /* Holds list of reqs with due callbacks */
491 struct list_head req_done;
492
493 /* Peripheral channels connected to this DMAC */
494 unsigned int num_peripherals;
495 struct dma_pl330_chan *peripherals; /* keep at end */
496 int quirks;
497 };
498
499 static struct pl330_of_quirks {
500 char *quirk;
501 int id;
502 } of_quirks[] = {
503 {
504 .quirk = "arm,pl330-broken-no-flushp",
505 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
506 }
507 };
508
509 struct dma_pl330_desc {
510 /* To attach to a queue as child */
511 struct list_head node;
512
513 /* Descriptor for the DMA Engine API */
514 struct dma_async_tx_descriptor txd;
515
516 /* Xfer for PL330 core */
517 struct pl330_xfer px;
518
519 struct pl330_reqcfg rqcfg;
520
521 enum desc_status status;
522
523 int bytes_requested;
524 bool last;
525
526 /* The channel which currently holds this desc */
527 struct dma_pl330_chan *pchan;
528
529 enum dma_transfer_direction rqtype;
530 /* Index of peripheral for the xfer. */
531 unsigned peri:5;
532 /* Hook to attach to DMAC's list of reqs with due callback */
533 struct list_head rqd;
534 };
535
536 struct _xfer_spec {
537 u32 ccr;
538 struct dma_pl330_desc *desc;
539 };
540
541 static inline bool _queue_empty(struct pl330_thread *thrd)
542 {
543 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
544 }
545
546 static inline bool _queue_full(struct pl330_thread *thrd)
547 {
548 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
549 }
550
551 static inline bool is_manager(struct pl330_thread *thrd)
552 {
553 return thrd->dmac->manager == thrd;
554 }
555
556 /* If manager of the thread is in Non-Secure mode */
557 static inline bool _manager_ns(struct pl330_thread *thrd)
558 {
559 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
560 }
561
562 static inline u32 get_revision(u32 periph_id)
563 {
564 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
565 }
566
567 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
568 enum pl330_dst da, u16 val)
569 {
570 if (dry_run)
571 return SZ_DMAADDH;
572
573 buf[0] = CMD_DMAADDH;
574 buf[0] |= (da << 1);
575 buf[1] = val;
576 buf[2] = val >> 8;
577
578 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
579 da == 1 ? "DA" : "SA", val);
580
581 return SZ_DMAADDH;
582 }
583
584 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
585 {
586 if (dry_run)
587 return SZ_DMAEND;
588
589 buf[0] = CMD_DMAEND;
590
591 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
592
593 return SZ_DMAEND;
594 }
595
596 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
597 {
598 if (dry_run)
599 return SZ_DMAFLUSHP;
600
601 buf[0] = CMD_DMAFLUSHP;
602
603 peri &= 0x1f;
604 peri <<= 3;
605 buf[1] = peri;
606
607 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
608
609 return SZ_DMAFLUSHP;
610 }
611
612 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
613 {
614 if (dry_run)
615 return SZ_DMALD;
616
617 buf[0] = CMD_DMALD;
618
619 if (cond == SINGLE)
620 buf[0] |= (0 << 1) | (1 << 0);
621 else if (cond == BURST)
622 buf[0] |= (1 << 1) | (1 << 0);
623
624 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
625 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
626
627 return SZ_DMALD;
628 }
629
630 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
631 enum pl330_cond cond, u8 peri)
632 {
633 if (dry_run)
634 return SZ_DMALDP;
635
636 buf[0] = CMD_DMALDP;
637
638 if (cond == BURST)
639 buf[0] |= (1 << 1);
640
641 peri &= 0x1f;
642 peri <<= 3;
643 buf[1] = peri;
644
645 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
646 cond == SINGLE ? 'S' : 'B', peri >> 3);
647
648 return SZ_DMALDP;
649 }
650
651 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
652 unsigned loop, u8 cnt)
653 {
654 if (dry_run)
655 return SZ_DMALP;
656
657 buf[0] = CMD_DMALP;
658
659 if (loop)
660 buf[0] |= (1 << 1);
661
662 cnt--; /* DMAC increments by 1 internally */
663 buf[1] = cnt;
664
665 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
666
667 return SZ_DMALP;
668 }
669
670 struct _arg_LPEND {
671 enum pl330_cond cond;
672 bool forever;
673 unsigned loop;
674 u8 bjump;
675 };
676
677 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
678 const struct _arg_LPEND *arg)
679 {
680 enum pl330_cond cond = arg->cond;
681 bool forever = arg->forever;
682 unsigned loop = arg->loop;
683 u8 bjump = arg->bjump;
684
685 if (dry_run)
686 return SZ_DMALPEND;
687
688 buf[0] = CMD_DMALPEND;
689
690 if (loop)
691 buf[0] |= (1 << 2);
692
693 if (!forever)
694 buf[0] |= (1 << 4);
695
696 if (cond == SINGLE)
697 buf[0] |= (0 << 1) | (1 << 0);
698 else if (cond == BURST)
699 buf[0] |= (1 << 1) | (1 << 0);
700
701 buf[1] = bjump;
702
703 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
704 forever ? "FE" : "END",
705 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
706 loop ? '1' : '0',
707 bjump);
708
709 return SZ_DMALPEND;
710 }
711
712 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
713 {
714 if (dry_run)
715 return SZ_DMAKILL;
716
717 buf[0] = CMD_DMAKILL;
718
719 return SZ_DMAKILL;
720 }
721
722 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
723 enum dmamov_dst dst, u32 val)
724 {
725 if (dry_run)
726 return SZ_DMAMOV;
727
728 buf[0] = CMD_DMAMOV;
729 buf[1] = dst;
730 buf[2] = val;
731 buf[3] = val >> 8;
732 buf[4] = val >> 16;
733 buf[5] = val >> 24;
734
735 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
736 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
737
738 return SZ_DMAMOV;
739 }
740
741 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
742 {
743 if (dry_run)
744 return SZ_DMANOP;
745
746 buf[0] = CMD_DMANOP;
747
748 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
749
750 return SZ_DMANOP;
751 }
752
753 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
754 {
755 if (dry_run)
756 return SZ_DMARMB;
757
758 buf[0] = CMD_DMARMB;
759
760 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
761
762 return SZ_DMARMB;
763 }
764
765 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
766 {
767 if (dry_run)
768 return SZ_DMASEV;
769
770 buf[0] = CMD_DMASEV;
771
772 ev &= 0x1f;
773 ev <<= 3;
774 buf[1] = ev;
775
776 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
777
778 return SZ_DMASEV;
779 }
780
781 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
782 {
783 if (dry_run)
784 return SZ_DMAST;
785
786 buf[0] = CMD_DMAST;
787
788 if (cond == SINGLE)
789 buf[0] |= (0 << 1) | (1 << 0);
790 else if (cond == BURST)
791 buf[0] |= (1 << 1) | (1 << 0);
792
793 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
794 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
795
796 return SZ_DMAST;
797 }
798
799 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
800 enum pl330_cond cond, u8 peri)
801 {
802 if (dry_run)
803 return SZ_DMASTP;
804
805 buf[0] = CMD_DMASTP;
806
807 if (cond == BURST)
808 buf[0] |= (1 << 1);
809
810 peri &= 0x1f;
811 peri <<= 3;
812 buf[1] = peri;
813
814 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
815 cond == SINGLE ? 'S' : 'B', peri >> 3);
816
817 return SZ_DMASTP;
818 }
819
820 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
821 {
822 if (dry_run)
823 return SZ_DMASTZ;
824
825 buf[0] = CMD_DMASTZ;
826
827 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
828
829 return SZ_DMASTZ;
830 }
831
832 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
833 unsigned invalidate)
834 {
835 if (dry_run)
836 return SZ_DMAWFE;
837
838 buf[0] = CMD_DMAWFE;
839
840 ev &= 0x1f;
841 ev <<= 3;
842 buf[1] = ev;
843
844 if (invalidate)
845 buf[1] |= (1 << 1);
846
847 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
848 ev >> 3, invalidate ? ", I" : "");
849
850 return SZ_DMAWFE;
851 }
852
853 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
854 enum pl330_cond cond, u8 peri)
855 {
856 if (dry_run)
857 return SZ_DMAWFP;
858
859 buf[0] = CMD_DMAWFP;
860
861 if (cond == SINGLE)
862 buf[0] |= (0 << 1) | (0 << 0);
863 else if (cond == BURST)
864 buf[0] |= (1 << 1) | (0 << 0);
865 else
866 buf[0] |= (0 << 1) | (1 << 0);
867
868 peri &= 0x1f;
869 peri <<= 3;
870 buf[1] = peri;
871
872 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
873 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
874
875 return SZ_DMAWFP;
876 }
877
878 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
879 {
880 if (dry_run)
881 return SZ_DMAWMB;
882
883 buf[0] = CMD_DMAWMB;
884
885 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
886
887 return SZ_DMAWMB;
888 }
889
890 struct _arg_GO {
891 u8 chan;
892 u32 addr;
893 unsigned ns;
894 };
895
896 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
897 const struct _arg_GO *arg)
898 {
899 u8 chan = arg->chan;
900 u32 addr = arg->addr;
901 unsigned ns = arg->ns;
902
903 if (dry_run)
904 return SZ_DMAGO;
905
906 buf[0] = CMD_DMAGO;
907 buf[0] |= (ns << 1);
908 buf[1] = chan & 0x7;
909 buf[2] = addr;
910 buf[3] = addr >> 8;
911 buf[4] = addr >> 16;
912 buf[5] = addr >> 24;
913
914 return SZ_DMAGO;
915 }
916
917 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
918
919 /* Returns Time-Out */
920 static bool _until_dmac_idle(struct pl330_thread *thrd)
921 {
922 void __iomem *regs = thrd->dmac->base;
923 unsigned long loops = msecs_to_loops(5);
924
925 do {
926 /* Until Manager is Idle */
927 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
928 break;
929
930 cpu_relax();
931 } while (--loops);
932
933 if (!loops)
934 return true;
935
936 return false;
937 }
938
939 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
940 u8 insn[], bool as_manager)
941 {
942 void __iomem *regs = thrd->dmac->base;
943 u32 val;
944
945 val = (insn[0] << 16) | (insn[1] << 24);
946 if (!as_manager) {
947 val |= (1 << 0);
948 val |= (thrd->id << 8); /* Channel Number */
949 }
950 writel(val, regs + DBGINST0);
951
952 val = le32_to_cpu(*((__le32 *)&insn[2]));
953 writel(val, regs + DBGINST1);
954
955 /* If timed out due to halted state-machine */
956 if (_until_dmac_idle(thrd)) {
957 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
958 return;
959 }
960
961 /* Get going */
962 writel(0, regs + DBGCMD);
963 }
964
965 static inline u32 _state(struct pl330_thread *thrd)
966 {
967 void __iomem *regs = thrd->dmac->base;
968 u32 val;
969
970 if (is_manager(thrd))
971 val = readl(regs + DS) & 0xf;
972 else
973 val = readl(regs + CS(thrd->id)) & 0xf;
974
975 switch (val) {
976 case DS_ST_STOP:
977 return PL330_STATE_STOPPED;
978 case DS_ST_EXEC:
979 return PL330_STATE_EXECUTING;
980 case DS_ST_CMISS:
981 return PL330_STATE_CACHEMISS;
982 case DS_ST_UPDTPC:
983 return PL330_STATE_UPDTPC;
984 case DS_ST_WFE:
985 return PL330_STATE_WFE;
986 case DS_ST_FAULT:
987 return PL330_STATE_FAULTING;
988 case DS_ST_ATBRR:
989 if (is_manager(thrd))
990 return PL330_STATE_INVALID;
991 else
992 return PL330_STATE_ATBARRIER;
993 case DS_ST_QBUSY:
994 if (is_manager(thrd))
995 return PL330_STATE_INVALID;
996 else
997 return PL330_STATE_QUEUEBUSY;
998 case DS_ST_WFP:
999 if (is_manager(thrd))
1000 return PL330_STATE_INVALID;
1001 else
1002 return PL330_STATE_WFP;
1003 case DS_ST_KILL:
1004 if (is_manager(thrd))
1005 return PL330_STATE_INVALID;
1006 else
1007 return PL330_STATE_KILLING;
1008 case DS_ST_CMPLT:
1009 if (is_manager(thrd))
1010 return PL330_STATE_INVALID;
1011 else
1012 return PL330_STATE_COMPLETING;
1013 case DS_ST_FLTCMP:
1014 if (is_manager(thrd))
1015 return PL330_STATE_INVALID;
1016 else
1017 return PL330_STATE_FAULT_COMPLETING;
1018 default:
1019 return PL330_STATE_INVALID;
1020 }
1021 }
1022
1023 static void _stop(struct pl330_thread *thrd)
1024 {
1025 void __iomem *regs = thrd->dmac->base;
1026 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1027
1028 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1029 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1030
1031 /* Return if nothing needs to be done */
1032 if (_state(thrd) == PL330_STATE_COMPLETING
1033 || _state(thrd) == PL330_STATE_KILLING
1034 || _state(thrd) == PL330_STATE_STOPPED)
1035 return;
1036
1037 _emit_KILL(0, insn);
1038
1039 /* Stop generating interrupts for SEV */
1040 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1041
1042 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1043 }
1044
1045 /* Start doing req 'idx' of thread 'thrd' */
1046 static bool _trigger(struct pl330_thread *thrd)
1047 {
1048 void __iomem *regs = thrd->dmac->base;
1049 struct _pl330_req *req;
1050 struct dma_pl330_desc *desc;
1051 struct _arg_GO go;
1052 unsigned ns;
1053 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1054 int idx;
1055
1056 /* Return if already ACTIVE */
1057 if (_state(thrd) != PL330_STATE_STOPPED)
1058 return true;
1059
1060 idx = 1 - thrd->lstenq;
1061 if (thrd->req[idx].desc != NULL) {
1062 req = &thrd->req[idx];
1063 } else {
1064 idx = thrd->lstenq;
1065 if (thrd->req[idx].desc != NULL)
1066 req = &thrd->req[idx];
1067 else
1068 req = NULL;
1069 }
1070
1071 /* Return if no request */
1072 if (!req)
1073 return true;
1074
1075 /* Return if req is running */
1076 if (idx == thrd->req_running)
1077 return true;
1078
1079 desc = req->desc;
1080
1081 ns = desc->rqcfg.nonsecure ? 1 : 0;
1082
1083 /* See 'Abort Sources' point-4 at Page 2-25 */
1084 if (_manager_ns(thrd) && !ns)
1085 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1086 __func__, __LINE__);
1087
1088 go.chan = thrd->id;
1089 go.addr = req->mc_bus;
1090 go.ns = ns;
1091 _emit_GO(0, insn, &go);
1092
1093 /* Set to generate interrupts for SEV */
1094 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1095
1096 /* Only manager can execute GO */
1097 _execute_DBGINSN(thrd, insn, true);
1098
1099 thrd->req_running = idx;
1100
1101 return true;
1102 }
1103
1104 static bool _start(struct pl330_thread *thrd)
1105 {
1106 switch (_state(thrd)) {
1107 case PL330_STATE_FAULT_COMPLETING:
1108 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1109
1110 if (_state(thrd) == PL330_STATE_KILLING)
1111 UNTIL(thrd, PL330_STATE_STOPPED)
1112
1113 case PL330_STATE_FAULTING:
1114 _stop(thrd);
1115
1116 case PL330_STATE_KILLING:
1117 case PL330_STATE_COMPLETING:
1118 UNTIL(thrd, PL330_STATE_STOPPED)
1119
1120 case PL330_STATE_STOPPED:
1121 return _trigger(thrd);
1122
1123 case PL330_STATE_WFP:
1124 case PL330_STATE_QUEUEBUSY:
1125 case PL330_STATE_ATBARRIER:
1126 case PL330_STATE_UPDTPC:
1127 case PL330_STATE_CACHEMISS:
1128 case PL330_STATE_EXECUTING:
1129 return true;
1130
1131 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1132 default:
1133 return false;
1134 }
1135 }
1136
1137 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1138 const struct _xfer_spec *pxs, int cyc)
1139 {
1140 int off = 0;
1141 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1142
1143 /* check lock-up free version */
1144 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1145 while (cyc--) {
1146 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1147 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1148 }
1149 } else {
1150 while (cyc--) {
1151 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1152 off += _emit_RMB(dry_run, &buf[off]);
1153 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1154 off += _emit_WMB(dry_run, &buf[off]);
1155 }
1156 }
1157
1158 return off;
1159 }
1160
1161 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1162 u8 buf[], const struct _xfer_spec *pxs,
1163 int cyc)
1164 {
1165 int off = 0;
1166 enum pl330_cond cond;
1167
1168 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1169 cond = BURST;
1170 else
1171 cond = SINGLE;
1172
1173 while (cyc--) {
1174 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1175 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1176 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1177
1178 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1179 off += _emit_FLUSHP(dry_run, &buf[off],
1180 pxs->desc->peri);
1181 }
1182
1183 return off;
1184 }
1185
1186 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1187 unsigned dry_run, u8 buf[],
1188 const struct _xfer_spec *pxs, int cyc)
1189 {
1190 int off = 0;
1191 enum pl330_cond cond;
1192
1193 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1194 cond = BURST;
1195 else
1196 cond = SINGLE;
1197
1198 while (cyc--) {
1199 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1200 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1201 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1202
1203 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1204 off += _emit_FLUSHP(dry_run, &buf[off],
1205 pxs->desc->peri);
1206 }
1207
1208 return off;
1209 }
1210
1211 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1212 const struct _xfer_spec *pxs, int cyc)
1213 {
1214 int off = 0;
1215
1216 switch (pxs->desc->rqtype) {
1217 case DMA_MEM_TO_DEV:
1218 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1219 break;
1220 case DMA_DEV_TO_MEM:
1221 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1222 break;
1223 case DMA_MEM_TO_MEM:
1224 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1225 break;
1226 default:
1227 off += 0x40000000; /* Scare off the Client */
1228 break;
1229 }
1230
1231 return off;
1232 }
1233
1234 /* Returns bytes consumed and updates bursts */
1235 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1236 unsigned long *bursts, const struct _xfer_spec *pxs)
1237 {
1238 int cyc, cycmax, szlp, szlpend, szbrst, off;
1239 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1240 struct _arg_LPEND lpend;
1241
1242 if (*bursts == 1)
1243 return _bursts(pl330, dry_run, buf, pxs, 1);
1244
1245 /* Max iterations possible in DMALP is 256 */
1246 if (*bursts >= 256*256) {
1247 lcnt1 = 256;
1248 lcnt0 = 256;
1249 cyc = *bursts / lcnt1 / lcnt0;
1250 } else if (*bursts > 256) {
1251 lcnt1 = 256;
1252 lcnt0 = *bursts / lcnt1;
1253 cyc = 1;
1254 } else {
1255 lcnt1 = *bursts;
1256 lcnt0 = 0;
1257 cyc = 1;
1258 }
1259
1260 szlp = _emit_LP(1, buf, 0, 0);
1261 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1262
1263 lpend.cond = ALWAYS;
1264 lpend.forever = false;
1265 lpend.loop = 0;
1266 lpend.bjump = 0;
1267 szlpend = _emit_LPEND(1, buf, &lpend);
1268
1269 if (lcnt0) {
1270 szlp *= 2;
1271 szlpend *= 2;
1272 }
1273
1274 /*
1275 * Max bursts that we can unroll due to limit on the
1276 * size of backward jump that can be encoded in DMALPEND
1277 * which is 8-bits and hence 255
1278 */
1279 cycmax = (255 - (szlp + szlpend)) / szbrst;
1280
1281 cyc = (cycmax < cyc) ? cycmax : cyc;
1282
1283 off = 0;
1284
1285 if (lcnt0) {
1286 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1287 ljmp0 = off;
1288 }
1289
1290 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1291 ljmp1 = off;
1292
1293 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1294
1295 lpend.cond = ALWAYS;
1296 lpend.forever = false;
1297 lpend.loop = 1;
1298 lpend.bjump = off - ljmp1;
1299 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1300
1301 if (lcnt0) {
1302 lpend.cond = ALWAYS;
1303 lpend.forever = false;
1304 lpend.loop = 0;
1305 lpend.bjump = off - ljmp0;
1306 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1307 }
1308
1309 *bursts = lcnt1 * cyc;
1310 if (lcnt0)
1311 *bursts *= lcnt0;
1312
1313 return off;
1314 }
1315
1316 static inline int _setup_loops(struct pl330_dmac *pl330,
1317 unsigned dry_run, u8 buf[],
1318 const struct _xfer_spec *pxs)
1319 {
1320 struct pl330_xfer *x = &pxs->desc->px;
1321 u32 ccr = pxs->ccr;
1322 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1323 int off = 0;
1324
1325 while (bursts) {
1326 c = bursts;
1327 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1328 bursts -= c;
1329 }
1330
1331 return off;
1332 }
1333
1334 static inline int _setup_xfer(struct pl330_dmac *pl330,
1335 unsigned dry_run, u8 buf[],
1336 const struct _xfer_spec *pxs)
1337 {
1338 struct pl330_xfer *x = &pxs->desc->px;
1339 int off = 0;
1340
1341 /* DMAMOV SAR, x->src_addr */
1342 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1343 /* DMAMOV DAR, x->dst_addr */
1344 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1345
1346 /* Setup Loop(s) */
1347 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1348
1349 return off;
1350 }
1351
1352 /*
1353 * A req is a sequence of one or more xfer units.
1354 * Returns the number of bytes taken to setup the MC for the req.
1355 */
1356 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1357 struct pl330_thread *thrd, unsigned index,
1358 struct _xfer_spec *pxs)
1359 {
1360 struct _pl330_req *req = &thrd->req[index];
1361 struct pl330_xfer *x;
1362 u8 *buf = req->mc_cpu;
1363 int off = 0;
1364
1365 PL330_DBGMC_START(req->mc_bus);
1366
1367 /* DMAMOV CCR, ccr */
1368 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1369
1370 x = &pxs->desc->px;
1371 /* Error if xfer length is not aligned at burst size */
1372 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1373 return -EINVAL;
1374
1375 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1376
1377 /* DMASEV peripheral/event */
1378 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1379 /* DMAEND */
1380 off += _emit_END(dry_run, &buf[off]);
1381
1382 return off;
1383 }
1384
1385 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1386 {
1387 u32 ccr = 0;
1388
1389 if (rqc->src_inc)
1390 ccr |= CC_SRCINC;
1391
1392 if (rqc->dst_inc)
1393 ccr |= CC_DSTINC;
1394
1395 /* We set same protection levels for Src and DST for now */
1396 if (rqc->privileged)
1397 ccr |= CC_SRCPRI | CC_DSTPRI;
1398 if (rqc->nonsecure)
1399 ccr |= CC_SRCNS | CC_DSTNS;
1400 if (rqc->insnaccess)
1401 ccr |= CC_SRCIA | CC_DSTIA;
1402
1403 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1404 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1405
1406 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1407 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1408
1409 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1410 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1411
1412 ccr |= (rqc->swap << CC_SWAP_SHFT);
1413
1414 return ccr;
1415 }
1416
1417 /*
1418 * Submit a list of xfers after which the client wants notification.
1419 * Client is not notified after each xfer unit, just once after all
1420 * xfer units are done or some error occurs.
1421 */
1422 static int pl330_submit_req(struct pl330_thread *thrd,
1423 struct dma_pl330_desc *desc)
1424 {
1425 struct pl330_dmac *pl330 = thrd->dmac;
1426 struct _xfer_spec xs;
1427 unsigned long flags;
1428 unsigned idx;
1429 u32 ccr;
1430 int ret = 0;
1431
1432 if (pl330->state == DYING
1433 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1434 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1435 __func__, __LINE__);
1436 return -EAGAIN;
1437 }
1438
1439 /* If request for non-existing peripheral */
1440 if (desc->rqtype != DMA_MEM_TO_MEM &&
1441 desc->peri >= pl330->pcfg.num_peri) {
1442 dev_info(thrd->dmac->ddma.dev,
1443 "%s:%d Invalid peripheral(%u)!\n",
1444 __func__, __LINE__, desc->peri);
1445 return -EINVAL;
1446 }
1447
1448 spin_lock_irqsave(&pl330->lock, flags);
1449
1450 if (_queue_full(thrd)) {
1451 ret = -EAGAIN;
1452 goto xfer_exit;
1453 }
1454
1455 /* Prefer Secure Channel */
1456 if (!_manager_ns(thrd))
1457 desc->rqcfg.nonsecure = 0;
1458 else
1459 desc->rqcfg.nonsecure = 1;
1460
1461 ccr = _prepare_ccr(&desc->rqcfg);
1462
1463 idx = thrd->req[0].desc == NULL ? 0 : 1;
1464
1465 xs.ccr = ccr;
1466 xs.desc = desc;
1467
1468 /* First dry run to check if req is acceptable */
1469 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1470 if (ret < 0)
1471 goto xfer_exit;
1472
1473 if (ret > pl330->mcbufsz / 2) {
1474 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1475 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1476 ret = -ENOMEM;
1477 goto xfer_exit;
1478 }
1479
1480 /* Hook the request */
1481 thrd->lstenq = idx;
1482 thrd->req[idx].desc = desc;
1483 _setup_req(pl330, 0, thrd, idx, &xs);
1484
1485 ret = 0;
1486
1487 xfer_exit:
1488 spin_unlock_irqrestore(&pl330->lock, flags);
1489
1490 return ret;
1491 }
1492
1493 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1494 {
1495 struct dma_pl330_chan *pch;
1496 unsigned long flags;
1497
1498 if (!desc)
1499 return;
1500
1501 pch = desc->pchan;
1502
1503 /* If desc aborted */
1504 if (!pch)
1505 return;
1506
1507 spin_lock_irqsave(&pch->lock, flags);
1508
1509 desc->status = DONE;
1510
1511 spin_unlock_irqrestore(&pch->lock, flags);
1512
1513 tasklet_schedule(&pch->task);
1514 }
1515
1516 static void pl330_dotask(unsigned long data)
1517 {
1518 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1519 unsigned long flags;
1520 int i;
1521
1522 spin_lock_irqsave(&pl330->lock, flags);
1523
1524 /* The DMAC itself gone nuts */
1525 if (pl330->dmac_tbd.reset_dmac) {
1526 pl330->state = DYING;
1527 /* Reset the manager too */
1528 pl330->dmac_tbd.reset_mngr = true;
1529 /* Clear the reset flag */
1530 pl330->dmac_tbd.reset_dmac = false;
1531 }
1532
1533 if (pl330->dmac_tbd.reset_mngr) {
1534 _stop(pl330->manager);
1535 /* Reset all channels */
1536 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1537 /* Clear the reset flag */
1538 pl330->dmac_tbd.reset_mngr = false;
1539 }
1540
1541 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1542
1543 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1544 struct pl330_thread *thrd = &pl330->channels[i];
1545 void __iomem *regs = pl330->base;
1546 enum pl330_op_err err;
1547
1548 _stop(thrd);
1549
1550 if (readl(regs + FSC) & (1 << thrd->id))
1551 err = PL330_ERR_FAIL;
1552 else
1553 err = PL330_ERR_ABORT;
1554
1555 spin_unlock_irqrestore(&pl330->lock, flags);
1556 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1557 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1558 spin_lock_irqsave(&pl330->lock, flags);
1559
1560 thrd->req[0].desc = NULL;
1561 thrd->req[1].desc = NULL;
1562 thrd->req_running = -1;
1563
1564 /* Clear the reset flag */
1565 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1566 }
1567 }
1568
1569 spin_unlock_irqrestore(&pl330->lock, flags);
1570
1571 return;
1572 }
1573
1574 /* Returns 1 if state was updated, 0 otherwise */
1575 static int pl330_update(struct pl330_dmac *pl330)
1576 {
1577 struct dma_pl330_desc *descdone, *tmp;
1578 unsigned long flags;
1579 void __iomem *regs;
1580 u32 val;
1581 int id, ev, ret = 0;
1582
1583 regs = pl330->base;
1584
1585 spin_lock_irqsave(&pl330->lock, flags);
1586
1587 val = readl(regs + FSM) & 0x1;
1588 if (val)
1589 pl330->dmac_tbd.reset_mngr = true;
1590 else
1591 pl330->dmac_tbd.reset_mngr = false;
1592
1593 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1594 pl330->dmac_tbd.reset_chan |= val;
1595 if (val) {
1596 int i = 0;
1597 while (i < pl330->pcfg.num_chan) {
1598 if (val & (1 << i)) {
1599 dev_info(pl330->ddma.dev,
1600 "Reset Channel-%d\t CS-%x FTC-%x\n",
1601 i, readl(regs + CS(i)),
1602 readl(regs + FTC(i)));
1603 _stop(&pl330->channels[i]);
1604 }
1605 i++;
1606 }
1607 }
1608
1609 /* Check which event happened i.e, thread notified */
1610 val = readl(regs + ES);
1611 if (pl330->pcfg.num_events < 32
1612 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1613 pl330->dmac_tbd.reset_dmac = true;
1614 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1615 __LINE__);
1616 ret = 1;
1617 goto updt_exit;
1618 }
1619
1620 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1621 if (val & (1 << ev)) { /* Event occurred */
1622 struct pl330_thread *thrd;
1623 u32 inten = readl(regs + INTEN);
1624 int active;
1625
1626 /* Clear the event */
1627 if (inten & (1 << ev))
1628 writel(1 << ev, regs + INTCLR);
1629
1630 ret = 1;
1631
1632 id = pl330->events[ev];
1633
1634 thrd = &pl330->channels[id];
1635
1636 active = thrd->req_running;
1637 if (active == -1) /* Aborted */
1638 continue;
1639
1640 /* Detach the req */
1641 descdone = thrd->req[active].desc;
1642 thrd->req[active].desc = NULL;
1643
1644 thrd->req_running = -1;
1645
1646 /* Get going again ASAP */
1647 _start(thrd);
1648
1649 /* For now, just make a list of callbacks to be done */
1650 list_add_tail(&descdone->rqd, &pl330->req_done);
1651 }
1652 }
1653
1654 /* Now that we are in no hurry, do the callbacks */
1655 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1656 list_del(&descdone->rqd);
1657 spin_unlock_irqrestore(&pl330->lock, flags);
1658 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1659 spin_lock_irqsave(&pl330->lock, flags);
1660 }
1661
1662 updt_exit:
1663 spin_unlock_irqrestore(&pl330->lock, flags);
1664
1665 if (pl330->dmac_tbd.reset_dmac
1666 || pl330->dmac_tbd.reset_mngr
1667 || pl330->dmac_tbd.reset_chan) {
1668 ret = 1;
1669 tasklet_schedule(&pl330->tasks);
1670 }
1671
1672 return ret;
1673 }
1674
1675 /* Reserve an event */
1676 static inline int _alloc_event(struct pl330_thread *thrd)
1677 {
1678 struct pl330_dmac *pl330 = thrd->dmac;
1679 int ev;
1680
1681 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1682 if (pl330->events[ev] == -1) {
1683 pl330->events[ev] = thrd->id;
1684 return ev;
1685 }
1686
1687 return -1;
1688 }
1689
1690 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1691 {
1692 return pl330->pcfg.irq_ns & (1 << i);
1693 }
1694
1695 /* Upon success, returns IdentityToken for the
1696 * allocated channel, NULL otherwise.
1697 */
1698 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1699 {
1700 struct pl330_thread *thrd = NULL;
1701 int chans, i;
1702
1703 if (pl330->state == DYING)
1704 return NULL;
1705
1706 chans = pl330->pcfg.num_chan;
1707
1708 for (i = 0; i < chans; i++) {
1709 thrd = &pl330->channels[i];
1710 if ((thrd->free) && (!_manager_ns(thrd) ||
1711 _chan_ns(pl330, i))) {
1712 thrd->ev = _alloc_event(thrd);
1713 if (thrd->ev >= 0) {
1714 thrd->free = false;
1715 thrd->lstenq = 1;
1716 thrd->req[0].desc = NULL;
1717 thrd->req[1].desc = NULL;
1718 thrd->req_running = -1;
1719 break;
1720 }
1721 }
1722 thrd = NULL;
1723 }
1724
1725 return thrd;
1726 }
1727
1728 /* Release an event */
1729 static inline void _free_event(struct pl330_thread *thrd, int ev)
1730 {
1731 struct pl330_dmac *pl330 = thrd->dmac;
1732
1733 /* If the event is valid and was held by the thread */
1734 if (ev >= 0 && ev < pl330->pcfg.num_events
1735 && pl330->events[ev] == thrd->id)
1736 pl330->events[ev] = -1;
1737 }
1738
1739 static void pl330_release_channel(struct pl330_thread *thrd)
1740 {
1741 struct pl330_dmac *pl330;
1742
1743 if (!thrd || thrd->free)
1744 return;
1745
1746 _stop(thrd);
1747
1748 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1749 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1750
1751 pl330 = thrd->dmac;
1752
1753 _free_event(thrd, thrd->ev);
1754 thrd->free = true;
1755 }
1756
1757 /* Initialize the structure for PL330 configuration, that can be used
1758 * by the client driver the make best use of the DMAC
1759 */
1760 static void read_dmac_config(struct pl330_dmac *pl330)
1761 {
1762 void __iomem *regs = pl330->base;
1763 u32 val;
1764
1765 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1766 val &= CRD_DATA_WIDTH_MASK;
1767 pl330->pcfg.data_bus_width = 8 * (1 << val);
1768
1769 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1770 val &= CRD_DATA_BUFF_MASK;
1771 pl330->pcfg.data_buf_dep = val + 1;
1772
1773 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1774 val &= CR0_NUM_CHANS_MASK;
1775 val += 1;
1776 pl330->pcfg.num_chan = val;
1777
1778 val = readl(regs + CR0);
1779 if (val & CR0_PERIPH_REQ_SET) {
1780 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1781 val += 1;
1782 pl330->pcfg.num_peri = val;
1783 pl330->pcfg.peri_ns = readl(regs + CR4);
1784 } else {
1785 pl330->pcfg.num_peri = 0;
1786 }
1787
1788 val = readl(regs + CR0);
1789 if (val & CR0_BOOT_MAN_NS)
1790 pl330->pcfg.mode |= DMAC_MODE_NS;
1791 else
1792 pl330->pcfg.mode &= ~DMAC_MODE_NS;
1793
1794 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1795 val &= CR0_NUM_EVENTS_MASK;
1796 val += 1;
1797 pl330->pcfg.num_events = val;
1798
1799 pl330->pcfg.irq_ns = readl(regs + CR3);
1800 }
1801
1802 static inline void _reset_thread(struct pl330_thread *thrd)
1803 {
1804 struct pl330_dmac *pl330 = thrd->dmac;
1805
1806 thrd->req[0].mc_cpu = pl330->mcode_cpu
1807 + (thrd->id * pl330->mcbufsz);
1808 thrd->req[0].mc_bus = pl330->mcode_bus
1809 + (thrd->id * pl330->mcbufsz);
1810 thrd->req[0].desc = NULL;
1811
1812 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1813 + pl330->mcbufsz / 2;
1814 thrd->req[1].mc_bus = thrd->req[0].mc_bus
1815 + pl330->mcbufsz / 2;
1816 thrd->req[1].desc = NULL;
1817
1818 thrd->req_running = -1;
1819 }
1820
1821 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1822 {
1823 int chans = pl330->pcfg.num_chan;
1824 struct pl330_thread *thrd;
1825 int i;
1826
1827 /* Allocate 1 Manager and 'chans' Channel threads */
1828 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1829 GFP_KERNEL);
1830 if (!pl330->channels)
1831 return -ENOMEM;
1832
1833 /* Init Channel threads */
1834 for (i = 0; i < chans; i++) {
1835 thrd = &pl330->channels[i];
1836 thrd->id = i;
1837 thrd->dmac = pl330;
1838 _reset_thread(thrd);
1839 thrd->free = true;
1840 }
1841
1842 /* MANAGER is indexed at the end */
1843 thrd = &pl330->channels[chans];
1844 thrd->id = chans;
1845 thrd->dmac = pl330;
1846 thrd->free = false;
1847 pl330->manager = thrd;
1848
1849 return 0;
1850 }
1851
1852 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1853 {
1854 int chans = pl330->pcfg.num_chan;
1855 int ret;
1856
1857 /*
1858 * Alloc MicroCode buffer for 'chans' Channel threads.
1859 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1860 */
1861 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1862 chans * pl330->mcbufsz,
1863 &pl330->mcode_bus, GFP_KERNEL,
1864 DMA_ATTR_PRIVILEGED);
1865 if (!pl330->mcode_cpu) {
1866 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1867 __func__, __LINE__);
1868 return -ENOMEM;
1869 }
1870
1871 ret = dmac_alloc_threads(pl330);
1872 if (ret) {
1873 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1874 __func__, __LINE__);
1875 dma_free_coherent(pl330->ddma.dev,
1876 chans * pl330->mcbufsz,
1877 pl330->mcode_cpu, pl330->mcode_bus);
1878 return ret;
1879 }
1880
1881 return 0;
1882 }
1883
1884 static int pl330_add(struct pl330_dmac *pl330)
1885 {
1886 int i, ret;
1887
1888 /* Check if we can handle this DMAC */
1889 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1890 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1891 pl330->pcfg.periph_id);
1892 return -EINVAL;
1893 }
1894
1895 /* Read the configuration of the DMAC */
1896 read_dmac_config(pl330);
1897
1898 if (pl330->pcfg.num_events == 0) {
1899 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1900 __func__, __LINE__);
1901 return -EINVAL;
1902 }
1903
1904 spin_lock_init(&pl330->lock);
1905
1906 INIT_LIST_HEAD(&pl330->req_done);
1907
1908 /* Use default MC buffer size if not provided */
1909 if (!pl330->mcbufsz)
1910 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1911
1912 /* Mark all events as free */
1913 for (i = 0; i < pl330->pcfg.num_events; i++)
1914 pl330->events[i] = -1;
1915
1916 /* Allocate resources needed by the DMAC */
1917 ret = dmac_alloc_resources(pl330);
1918 if (ret) {
1919 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1920 return ret;
1921 }
1922
1923 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1924
1925 pl330->state = INIT;
1926
1927 return 0;
1928 }
1929
1930 static int dmac_free_threads(struct pl330_dmac *pl330)
1931 {
1932 struct pl330_thread *thrd;
1933 int i;
1934
1935 /* Release Channel threads */
1936 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1937 thrd = &pl330->channels[i];
1938 pl330_release_channel(thrd);
1939 }
1940
1941 /* Free memory */
1942 kfree(pl330->channels);
1943
1944 return 0;
1945 }
1946
1947 static void pl330_del(struct pl330_dmac *pl330)
1948 {
1949 pl330->state = UNINIT;
1950
1951 tasklet_kill(&pl330->tasks);
1952
1953 /* Free DMAC resources */
1954 dmac_free_threads(pl330);
1955
1956 dma_free_coherent(pl330->ddma.dev,
1957 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1958 pl330->mcode_bus);
1959 }
1960
1961 /* forward declaration */
1962 static struct amba_driver pl330_driver;
1963
1964 static inline struct dma_pl330_chan *
1965 to_pchan(struct dma_chan *ch)
1966 {
1967 if (!ch)
1968 return NULL;
1969
1970 return container_of(ch, struct dma_pl330_chan, chan);
1971 }
1972
1973 static inline struct dma_pl330_desc *
1974 to_desc(struct dma_async_tx_descriptor *tx)
1975 {
1976 return container_of(tx, struct dma_pl330_desc, txd);
1977 }
1978
1979 static inline void fill_queue(struct dma_pl330_chan *pch)
1980 {
1981 struct dma_pl330_desc *desc;
1982 int ret;
1983
1984 list_for_each_entry(desc, &pch->work_list, node) {
1985
1986 /* If already submitted */
1987 if (desc->status == BUSY)
1988 continue;
1989
1990 ret = pl330_submit_req(pch->thread, desc);
1991 if (!ret) {
1992 desc->status = BUSY;
1993 } else if (ret == -EAGAIN) {
1994 /* QFull or DMAC Dying */
1995 break;
1996 } else {
1997 /* Unacceptable request */
1998 desc->status = DONE;
1999 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2000 __func__, __LINE__, desc->txd.cookie);
2001 tasklet_schedule(&pch->task);
2002 }
2003 }
2004 }
2005
2006 static void pl330_tasklet(unsigned long data)
2007 {
2008 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2009 struct dma_pl330_desc *desc, *_dt;
2010 unsigned long flags;
2011 bool power_down = false;
2012
2013 spin_lock_irqsave(&pch->lock, flags);
2014
2015 /* Pick up ripe tomatoes */
2016 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2017 if (desc->status == DONE) {
2018 if (!pch->cyclic)
2019 dma_cookie_complete(&desc->txd);
2020 list_move_tail(&desc->node, &pch->completed_list);
2021 }
2022
2023 /* Try to submit a req imm. next to the last completed cookie */
2024 fill_queue(pch);
2025
2026 if (list_empty(&pch->work_list)) {
2027 spin_lock(&pch->thread->dmac->lock);
2028 _stop(pch->thread);
2029 spin_unlock(&pch->thread->dmac->lock);
2030 power_down = true;
2031 pch->active = false;
2032 } else {
2033 /* Make sure the PL330 Channel thread is active */
2034 spin_lock(&pch->thread->dmac->lock);
2035 _start(pch->thread);
2036 spin_unlock(&pch->thread->dmac->lock);
2037 }
2038
2039 while (!list_empty(&pch->completed_list)) {
2040 struct dmaengine_desc_callback cb;
2041
2042 desc = list_first_entry(&pch->completed_list,
2043 struct dma_pl330_desc, node);
2044
2045 dmaengine_desc_get_callback(&desc->txd, &cb);
2046
2047 if (pch->cyclic) {
2048 desc->status = PREP;
2049 list_move_tail(&desc->node, &pch->work_list);
2050 if (power_down) {
2051 pch->active = true;
2052 spin_lock(&pch->thread->dmac->lock);
2053 _start(pch->thread);
2054 spin_unlock(&pch->thread->dmac->lock);
2055 power_down = false;
2056 }
2057 } else {
2058 desc->status = FREE;
2059 list_move_tail(&desc->node, &pch->dmac->desc_pool);
2060 }
2061
2062 dma_descriptor_unmap(&desc->txd);
2063
2064 if (dmaengine_desc_callback_valid(&cb)) {
2065 spin_unlock_irqrestore(&pch->lock, flags);
2066 dmaengine_desc_callback_invoke(&cb, NULL);
2067 spin_lock_irqsave(&pch->lock, flags);
2068 }
2069 }
2070 spin_unlock_irqrestore(&pch->lock, flags);
2071
2072 /* If work list empty, power down */
2073 if (power_down) {
2074 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2075 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2076 }
2077 }
2078
2079 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2080 struct of_dma *ofdma)
2081 {
2082 int count = dma_spec->args_count;
2083 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2084 unsigned int chan_id;
2085
2086 if (!pl330)
2087 return NULL;
2088
2089 if (count != 1)
2090 return NULL;
2091
2092 chan_id = dma_spec->args[0];
2093 if (chan_id >= pl330->num_peripherals)
2094 return NULL;
2095
2096 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2097 }
2098
2099 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2100 {
2101 struct dma_pl330_chan *pch = to_pchan(chan);
2102 struct pl330_dmac *pl330 = pch->dmac;
2103 unsigned long flags;
2104
2105 spin_lock_irqsave(&pl330->lock, flags);
2106
2107 dma_cookie_init(chan);
2108 pch->cyclic = false;
2109
2110 pch->thread = pl330_request_channel(pl330);
2111 if (!pch->thread) {
2112 spin_unlock_irqrestore(&pl330->lock, flags);
2113 return -ENOMEM;
2114 }
2115
2116 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2117
2118 spin_unlock_irqrestore(&pl330->lock, flags);
2119
2120 return 1;
2121 }
2122
2123 static int pl330_config(struct dma_chan *chan,
2124 struct dma_slave_config *slave_config)
2125 {
2126 struct dma_pl330_chan *pch = to_pchan(chan);
2127
2128 if (slave_config->direction == DMA_MEM_TO_DEV) {
2129 if (slave_config->dst_addr)
2130 pch->fifo_addr = slave_config->dst_addr;
2131 if (slave_config->dst_addr_width)
2132 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2133 if (slave_config->dst_maxburst)
2134 pch->burst_len = slave_config->dst_maxburst;
2135 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2136 if (slave_config->src_addr)
2137 pch->fifo_addr = slave_config->src_addr;
2138 if (slave_config->src_addr_width)
2139 pch->burst_sz = __ffs(slave_config->src_addr_width);
2140 if (slave_config->src_maxburst)
2141 pch->burst_len = slave_config->src_maxburst;
2142 }
2143
2144 return 0;
2145 }
2146
2147 static int pl330_terminate_all(struct dma_chan *chan)
2148 {
2149 struct dma_pl330_chan *pch = to_pchan(chan);
2150 struct dma_pl330_desc *desc;
2151 unsigned long flags;
2152 struct pl330_dmac *pl330 = pch->dmac;
2153 LIST_HEAD(list);
2154 bool power_down = false;
2155
2156 pm_runtime_get_sync(pl330->ddma.dev);
2157 spin_lock_irqsave(&pch->lock, flags);
2158 spin_lock(&pl330->lock);
2159 _stop(pch->thread);
2160 spin_unlock(&pl330->lock);
2161
2162 pch->thread->req[0].desc = NULL;
2163 pch->thread->req[1].desc = NULL;
2164 pch->thread->req_running = -1;
2165 power_down = pch->active;
2166 pch->active = false;
2167
2168 /* Mark all desc done */
2169 list_for_each_entry(desc, &pch->submitted_list, node) {
2170 desc->status = FREE;
2171 dma_cookie_complete(&desc->txd);
2172 }
2173
2174 list_for_each_entry(desc, &pch->work_list , node) {
2175 desc->status = FREE;
2176 dma_cookie_complete(&desc->txd);
2177 }
2178
2179 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2180 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2181 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2182 spin_unlock_irqrestore(&pch->lock, flags);
2183 pm_runtime_mark_last_busy(pl330->ddma.dev);
2184 if (power_down)
2185 pm_runtime_put_autosuspend(pl330->ddma.dev);
2186 pm_runtime_put_autosuspend(pl330->ddma.dev);
2187
2188 return 0;
2189 }
2190
2191 /*
2192 * We don't support DMA_RESUME command because of hardware
2193 * limitations, so after pausing the channel we cannot restore
2194 * it to active state. We have to terminate channel and setup
2195 * DMA transfer again. This pause feature was implemented to
2196 * allow safely read residue before channel termination.
2197 */
2198 static int pl330_pause(struct dma_chan *chan)
2199 {
2200 struct dma_pl330_chan *pch = to_pchan(chan);
2201 struct pl330_dmac *pl330 = pch->dmac;
2202 unsigned long flags;
2203
2204 pm_runtime_get_sync(pl330->ddma.dev);
2205 spin_lock_irqsave(&pch->lock, flags);
2206
2207 spin_lock(&pl330->lock);
2208 _stop(pch->thread);
2209 spin_unlock(&pl330->lock);
2210
2211 spin_unlock_irqrestore(&pch->lock, flags);
2212 pm_runtime_mark_last_busy(pl330->ddma.dev);
2213 pm_runtime_put_autosuspend(pl330->ddma.dev);
2214
2215 return 0;
2216 }
2217
2218 static void pl330_free_chan_resources(struct dma_chan *chan)
2219 {
2220 struct dma_pl330_chan *pch = to_pchan(chan);
2221 struct pl330_dmac *pl330 = pch->dmac;
2222 unsigned long flags;
2223
2224 tasklet_kill(&pch->task);
2225
2226 pm_runtime_get_sync(pch->dmac->ddma.dev);
2227 spin_lock_irqsave(&pl330->lock, flags);
2228
2229 pl330_release_channel(pch->thread);
2230 pch->thread = NULL;
2231
2232 if (pch->cyclic)
2233 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2234
2235 spin_unlock_irqrestore(&pl330->lock, flags);
2236 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2237 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2238 }
2239
2240 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2241 struct dma_pl330_desc *desc)
2242 {
2243 struct pl330_thread *thrd = pch->thread;
2244 struct pl330_dmac *pl330 = pch->dmac;
2245 void __iomem *regs = thrd->dmac->base;
2246 u32 val, addr;
2247
2248 pm_runtime_get_sync(pl330->ddma.dev);
2249 val = addr = 0;
2250 if (desc->rqcfg.src_inc) {
2251 val = readl(regs + SA(thrd->id));
2252 addr = desc->px.src_addr;
2253 } else {
2254 val = readl(regs + DA(thrd->id));
2255 addr = desc->px.dst_addr;
2256 }
2257 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2258 pm_runtime_put_autosuspend(pl330->ddma.dev);
2259
2260 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2261 if (!val)
2262 return 0;
2263
2264 return val - addr;
2265 }
2266
2267 static enum dma_status
2268 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2269 struct dma_tx_state *txstate)
2270 {
2271 enum dma_status ret;
2272 unsigned long flags;
2273 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2274 struct dma_pl330_chan *pch = to_pchan(chan);
2275 unsigned int transferred, residual = 0;
2276
2277 ret = dma_cookie_status(chan, cookie, txstate);
2278
2279 if (!txstate)
2280 return ret;
2281
2282 if (ret == DMA_COMPLETE)
2283 goto out;
2284
2285 spin_lock_irqsave(&pch->lock, flags);
2286 spin_lock(&pch->thread->dmac->lock);
2287
2288 if (pch->thread->req_running != -1)
2289 running = pch->thread->req[pch->thread->req_running].desc;
2290
2291 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2292
2293 /* Check in pending list */
2294 list_for_each_entry(desc, &pch->work_list, node) {
2295 if (desc->status == DONE)
2296 transferred = desc->bytes_requested;
2297 else if (running && desc == running)
2298 transferred =
2299 pl330_get_current_xferred_count(pch, desc);
2300 else if (desc->status == BUSY)
2301 /*
2302 * Busy but not running means either just enqueued,
2303 * or finished and not yet marked done
2304 */
2305 if (desc == last_enq)
2306 transferred = 0;
2307 else
2308 transferred = desc->bytes_requested;
2309 else
2310 transferred = 0;
2311 residual += desc->bytes_requested - transferred;
2312 if (desc->txd.cookie == cookie) {
2313 switch (desc->status) {
2314 case DONE:
2315 ret = DMA_COMPLETE;
2316 break;
2317 case PREP:
2318 case BUSY:
2319 ret = DMA_IN_PROGRESS;
2320 break;
2321 default:
2322 WARN_ON(1);
2323 }
2324 break;
2325 }
2326 if (desc->last)
2327 residual = 0;
2328 }
2329 spin_unlock(&pch->thread->dmac->lock);
2330 spin_unlock_irqrestore(&pch->lock, flags);
2331
2332 out:
2333 dma_set_residue(txstate, residual);
2334
2335 return ret;
2336 }
2337
2338 static void pl330_issue_pending(struct dma_chan *chan)
2339 {
2340 struct dma_pl330_chan *pch = to_pchan(chan);
2341 unsigned long flags;
2342
2343 spin_lock_irqsave(&pch->lock, flags);
2344 if (list_empty(&pch->work_list)) {
2345 /*
2346 * Warn on nothing pending. Empty submitted_list may
2347 * break our pm_runtime usage counter as it is
2348 * updated on work_list emptiness status.
2349 */
2350 WARN_ON(list_empty(&pch->submitted_list));
2351 pch->active = true;
2352 pm_runtime_get_sync(pch->dmac->ddma.dev);
2353 }
2354 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2355 spin_unlock_irqrestore(&pch->lock, flags);
2356
2357 pl330_tasklet((unsigned long)pch);
2358 }
2359
2360 /*
2361 * We returned the last one of the circular list of descriptor(s)
2362 * from prep_xxx, so the argument to submit corresponds to the last
2363 * descriptor of the list.
2364 */
2365 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2366 {
2367 struct dma_pl330_desc *desc, *last = to_desc(tx);
2368 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2369 dma_cookie_t cookie;
2370 unsigned long flags;
2371
2372 spin_lock_irqsave(&pch->lock, flags);
2373
2374 /* Assign cookies to all nodes */
2375 while (!list_empty(&last->node)) {
2376 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2377 if (pch->cyclic) {
2378 desc->txd.callback = last->txd.callback;
2379 desc->txd.callback_param = last->txd.callback_param;
2380 }
2381 desc->last = false;
2382
2383 dma_cookie_assign(&desc->txd);
2384
2385 list_move_tail(&desc->node, &pch->submitted_list);
2386 }
2387
2388 last->last = true;
2389 cookie = dma_cookie_assign(&last->txd);
2390 list_add_tail(&last->node, &pch->submitted_list);
2391 spin_unlock_irqrestore(&pch->lock, flags);
2392
2393 return cookie;
2394 }
2395
2396 static inline void _init_desc(struct dma_pl330_desc *desc)
2397 {
2398 desc->rqcfg.swap = SWAP_NO;
2399 desc->rqcfg.scctl = CCTRL0;
2400 desc->rqcfg.dcctl = CCTRL0;
2401 desc->txd.tx_submit = pl330_tx_submit;
2402
2403 INIT_LIST_HEAD(&desc->node);
2404 }
2405
2406 /* Returns the number of descriptors added to the DMAC pool */
2407 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2408 {
2409 struct dma_pl330_desc *desc;
2410 unsigned long flags;
2411 int i;
2412
2413 desc = kcalloc(count, sizeof(*desc), flg);
2414 if (!desc)
2415 return 0;
2416
2417 spin_lock_irqsave(&pl330->pool_lock, flags);
2418
2419 for (i = 0; i < count; i++) {
2420 _init_desc(&desc[i]);
2421 list_add_tail(&desc[i].node, &pl330->desc_pool);
2422 }
2423
2424 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2425
2426 return count;
2427 }
2428
2429 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2430 {
2431 struct dma_pl330_desc *desc = NULL;
2432 unsigned long flags;
2433
2434 spin_lock_irqsave(&pl330->pool_lock, flags);
2435
2436 if (!list_empty(&pl330->desc_pool)) {
2437 desc = list_entry(pl330->desc_pool.next,
2438 struct dma_pl330_desc, node);
2439
2440 list_del_init(&desc->node);
2441
2442 desc->status = PREP;
2443 desc->txd.callback = NULL;
2444 }
2445
2446 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2447
2448 return desc;
2449 }
2450
2451 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2452 {
2453 struct pl330_dmac *pl330 = pch->dmac;
2454 u8 *peri_id = pch->chan.private;
2455 struct dma_pl330_desc *desc;
2456
2457 /* Pluck one desc from the pool of DMAC */
2458 desc = pluck_desc(pl330);
2459
2460 /* If the DMAC pool is empty, alloc new */
2461 if (!desc) {
2462 if (!add_desc(pl330, GFP_ATOMIC, 1))
2463 return NULL;
2464
2465 /* Try again */
2466 desc = pluck_desc(pl330);
2467 if (!desc) {
2468 dev_err(pch->dmac->ddma.dev,
2469 "%s:%d ALERT!\n", __func__, __LINE__);
2470 return NULL;
2471 }
2472 }
2473
2474 /* Initialize the descriptor */
2475 desc->pchan = pch;
2476 desc->txd.cookie = 0;
2477 async_tx_ack(&desc->txd);
2478
2479 desc->peri = peri_id ? pch->chan.chan_id : 0;
2480 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2481
2482 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2483
2484 return desc;
2485 }
2486
2487 static inline void fill_px(struct pl330_xfer *px,
2488 dma_addr_t dst, dma_addr_t src, size_t len)
2489 {
2490 px->bytes = len;
2491 px->dst_addr = dst;
2492 px->src_addr = src;
2493 }
2494
2495 static struct dma_pl330_desc *
2496 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2497 dma_addr_t src, size_t len)
2498 {
2499 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2500
2501 if (!desc) {
2502 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2503 __func__, __LINE__);
2504 return NULL;
2505 }
2506
2507 /*
2508 * Ideally we should lookout for reqs bigger than
2509 * those that can be programmed with 256 bytes of
2510 * MC buffer, but considering a req size is seldom
2511 * going to be word-unaligned and more than 200MB,
2512 * we take it easy.
2513 * Also, should the limit is reached we'd rather
2514 * have the platform increase MC buffer size than
2515 * complicating this API driver.
2516 */
2517 fill_px(&desc->px, dst, src, len);
2518
2519 return desc;
2520 }
2521
2522 /* Call after fixing burst size */
2523 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2524 {
2525 struct dma_pl330_chan *pch = desc->pchan;
2526 struct pl330_dmac *pl330 = pch->dmac;
2527 int burst_len;
2528
2529 burst_len = pl330->pcfg.data_bus_width / 8;
2530 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2531 burst_len >>= desc->rqcfg.brst_size;
2532
2533 /* src/dst_burst_len can't be more than 16 */
2534 if (burst_len > 16)
2535 burst_len = 16;
2536
2537 while (burst_len > 1) {
2538 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2539 break;
2540 burst_len--;
2541 }
2542
2543 return burst_len;
2544 }
2545
2546 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2547 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2548 size_t period_len, enum dma_transfer_direction direction,
2549 unsigned long flags)
2550 {
2551 struct dma_pl330_desc *desc = NULL, *first = NULL;
2552 struct dma_pl330_chan *pch = to_pchan(chan);
2553 struct pl330_dmac *pl330 = pch->dmac;
2554 unsigned int i;
2555 dma_addr_t dst;
2556 dma_addr_t src;
2557
2558 if (len % period_len != 0)
2559 return NULL;
2560
2561 if (!is_slave_direction(direction)) {
2562 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2563 __func__, __LINE__);
2564 return NULL;
2565 }
2566
2567 for (i = 0; i < len / period_len; i++) {
2568 desc = pl330_get_desc(pch);
2569 if (!desc) {
2570 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2571 __func__, __LINE__);
2572
2573 if (!first)
2574 return NULL;
2575
2576 spin_lock_irqsave(&pl330->pool_lock, flags);
2577
2578 while (!list_empty(&first->node)) {
2579 desc = list_entry(first->node.next,
2580 struct dma_pl330_desc, node);
2581 list_move_tail(&desc->node, &pl330->desc_pool);
2582 }
2583
2584 list_move_tail(&first->node, &pl330->desc_pool);
2585
2586 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2587
2588 return NULL;
2589 }
2590
2591 switch (direction) {
2592 case DMA_MEM_TO_DEV:
2593 desc->rqcfg.src_inc = 1;
2594 desc->rqcfg.dst_inc = 0;
2595 src = dma_addr;
2596 dst = pch->fifo_addr;
2597 break;
2598 case DMA_DEV_TO_MEM:
2599 desc->rqcfg.src_inc = 0;
2600 desc->rqcfg.dst_inc = 1;
2601 src = pch->fifo_addr;
2602 dst = dma_addr;
2603 break;
2604 default:
2605 break;
2606 }
2607
2608 desc->rqtype = direction;
2609 desc->rqcfg.brst_size = pch->burst_sz;
2610 desc->rqcfg.brst_len = 1;
2611 desc->bytes_requested = period_len;
2612 fill_px(&desc->px, dst, src, period_len);
2613
2614 if (!first)
2615 first = desc;
2616 else
2617 list_add_tail(&desc->node, &first->node);
2618
2619 dma_addr += period_len;
2620 }
2621
2622 if (!desc)
2623 return NULL;
2624
2625 pch->cyclic = true;
2626 desc->txd.flags = flags;
2627
2628 return &desc->txd;
2629 }
2630
2631 static struct dma_async_tx_descriptor *
2632 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2633 dma_addr_t src, size_t len, unsigned long flags)
2634 {
2635 struct dma_pl330_desc *desc;
2636 struct dma_pl330_chan *pch = to_pchan(chan);
2637 struct pl330_dmac *pl330;
2638 int burst;
2639
2640 if (unlikely(!pch || !len))
2641 return NULL;
2642
2643 pl330 = pch->dmac;
2644
2645 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2646 if (!desc)
2647 return NULL;
2648
2649 desc->rqcfg.src_inc = 1;
2650 desc->rqcfg.dst_inc = 1;
2651 desc->rqtype = DMA_MEM_TO_MEM;
2652
2653 /* Select max possible burst size */
2654 burst = pl330->pcfg.data_bus_width / 8;
2655
2656 /*
2657 * Make sure we use a burst size that aligns with all the memcpy
2658 * parameters because our DMA programming algorithm doesn't cope with
2659 * transfers which straddle an entry in the DMA device's MFIFO.
2660 */
2661 while ((src | dst | len) & (burst - 1))
2662 burst /= 2;
2663
2664 desc->rqcfg.brst_size = 0;
2665 while (burst != (1 << desc->rqcfg.brst_size))
2666 desc->rqcfg.brst_size++;
2667
2668 /*
2669 * If burst size is smaller than bus width then make sure we only
2670 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2671 */
2672 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2673 desc->rqcfg.brst_len = 1;
2674
2675 desc->rqcfg.brst_len = get_burst_len(desc, len);
2676 desc->bytes_requested = len;
2677
2678 desc->txd.flags = flags;
2679
2680 return &desc->txd;
2681 }
2682
2683 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2684 struct dma_pl330_desc *first)
2685 {
2686 unsigned long flags;
2687 struct dma_pl330_desc *desc;
2688
2689 if (!first)
2690 return;
2691
2692 spin_lock_irqsave(&pl330->pool_lock, flags);
2693
2694 while (!list_empty(&first->node)) {
2695 desc = list_entry(first->node.next,
2696 struct dma_pl330_desc, node);
2697 list_move_tail(&desc->node, &pl330->desc_pool);
2698 }
2699
2700 list_move_tail(&first->node, &pl330->desc_pool);
2701
2702 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2703 }
2704
2705 static struct dma_async_tx_descriptor *
2706 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2707 unsigned int sg_len, enum dma_transfer_direction direction,
2708 unsigned long flg, void *context)
2709 {
2710 struct dma_pl330_desc *first, *desc = NULL;
2711 struct dma_pl330_chan *pch = to_pchan(chan);
2712 struct scatterlist *sg;
2713 int i;
2714 dma_addr_t addr;
2715
2716 if (unlikely(!pch || !sgl || !sg_len))
2717 return NULL;
2718
2719 addr = pch->fifo_addr;
2720
2721 first = NULL;
2722
2723 for_each_sg(sgl, sg, sg_len, i) {
2724
2725 desc = pl330_get_desc(pch);
2726 if (!desc) {
2727 struct pl330_dmac *pl330 = pch->dmac;
2728
2729 dev_err(pch->dmac->ddma.dev,
2730 "%s:%d Unable to fetch desc\n",
2731 __func__, __LINE__);
2732 __pl330_giveback_desc(pl330, first);
2733
2734 return NULL;
2735 }
2736
2737 if (!first)
2738 first = desc;
2739 else
2740 list_add_tail(&desc->node, &first->node);
2741
2742 if (direction == DMA_MEM_TO_DEV) {
2743 desc->rqcfg.src_inc = 1;
2744 desc->rqcfg.dst_inc = 0;
2745 fill_px(&desc->px,
2746 addr, sg_dma_address(sg), sg_dma_len(sg));
2747 } else {
2748 desc->rqcfg.src_inc = 0;
2749 desc->rqcfg.dst_inc = 1;
2750 fill_px(&desc->px,
2751 sg_dma_address(sg), addr, sg_dma_len(sg));
2752 }
2753
2754 desc->rqcfg.brst_size = pch->burst_sz;
2755 desc->rqcfg.brst_len = 1;
2756 desc->rqtype = direction;
2757 desc->bytes_requested = sg_dma_len(sg);
2758 }
2759
2760 /* Return the last desc in the chain */
2761 desc->txd.flags = flg;
2762 return &desc->txd;
2763 }
2764
2765 static irqreturn_t pl330_irq_handler(int irq, void *data)
2766 {
2767 if (pl330_update(data))
2768 return IRQ_HANDLED;
2769 else
2770 return IRQ_NONE;
2771 }
2772
2773 #define PL330_DMA_BUSWIDTHS \
2774 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2775 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2776 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2777 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2778 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2779
2780 /*
2781 * Runtime PM callbacks are provided by amba/bus.c driver.
2782 *
2783 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2784 * bus driver will only disable/enable the clock in runtime PM callbacks.
2785 */
2786 static int __maybe_unused pl330_suspend(struct device *dev)
2787 {
2788 struct amba_device *pcdev = to_amba_device(dev);
2789
2790 pm_runtime_disable(dev);
2791
2792 if (!pm_runtime_status_suspended(dev)) {
2793 /* amba did not disable the clock */
2794 amba_pclk_disable(pcdev);
2795 }
2796 amba_pclk_unprepare(pcdev);
2797
2798 return 0;
2799 }
2800
2801 static int __maybe_unused pl330_resume(struct device *dev)
2802 {
2803 struct amba_device *pcdev = to_amba_device(dev);
2804 int ret;
2805
2806 ret = amba_pclk_prepare(pcdev);
2807 if (ret)
2808 return ret;
2809
2810 if (!pm_runtime_status_suspended(dev))
2811 ret = amba_pclk_enable(pcdev);
2812
2813 pm_runtime_enable(dev);
2814
2815 return ret;
2816 }
2817
2818 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2819
2820 static int
2821 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2822 {
2823 struct pl330_config *pcfg;
2824 struct pl330_dmac *pl330;
2825 struct dma_pl330_chan *pch, *_p;
2826 struct dma_device *pd;
2827 struct resource *res;
2828 int i, ret, irq;
2829 int num_chan;
2830 struct device_node *np = adev->dev.of_node;
2831
2832 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2833 if (ret)
2834 return ret;
2835
2836 /* Allocate a new DMAC and its Channels */
2837 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2838 if (!pl330)
2839 return -ENOMEM;
2840
2841 pd = &pl330->ddma;
2842 pd->dev = &adev->dev;
2843
2844 pl330->mcbufsz = 0;
2845
2846 /* get quirk */
2847 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2848 if (of_property_read_bool(np, of_quirks[i].quirk))
2849 pl330->quirks |= of_quirks[i].id;
2850
2851 res = &adev->res;
2852 pl330->base = devm_ioremap_resource(&adev->dev, res);
2853 if (IS_ERR(pl330->base))
2854 return PTR_ERR(pl330->base);
2855
2856 amba_set_drvdata(adev, pl330);
2857
2858 for (i = 0; i < AMBA_NR_IRQS; i++) {
2859 irq = adev->irq[i];
2860 if (irq) {
2861 ret = devm_request_irq(&adev->dev, irq,
2862 pl330_irq_handler, 0,
2863 dev_name(&adev->dev), pl330);
2864 if (ret)
2865 return ret;
2866 } else {
2867 break;
2868 }
2869 }
2870
2871 pcfg = &pl330->pcfg;
2872
2873 pcfg->periph_id = adev->periphid;
2874 ret = pl330_add(pl330);
2875 if (ret)
2876 return ret;
2877
2878 INIT_LIST_HEAD(&pl330->desc_pool);
2879 spin_lock_init(&pl330->pool_lock);
2880
2881 /* Create a descriptor pool of default size */
2882 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2883 dev_warn(&adev->dev, "unable to allocate desc\n");
2884
2885 INIT_LIST_HEAD(&pd->channels);
2886
2887 /* Initialize channel parameters */
2888 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2889
2890 pl330->num_peripherals = num_chan;
2891
2892 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2893 if (!pl330->peripherals) {
2894 ret = -ENOMEM;
2895 goto probe_err2;
2896 }
2897
2898 for (i = 0; i < num_chan; i++) {
2899 pch = &pl330->peripherals[i];
2900
2901 pch->chan.private = adev->dev.of_node;
2902 INIT_LIST_HEAD(&pch->submitted_list);
2903 INIT_LIST_HEAD(&pch->work_list);
2904 INIT_LIST_HEAD(&pch->completed_list);
2905 spin_lock_init(&pch->lock);
2906 pch->thread = NULL;
2907 pch->chan.device = pd;
2908 pch->dmac = pl330;
2909
2910 /* Add the channel to the DMAC list */
2911 list_add_tail(&pch->chan.device_node, &pd->channels);
2912 }
2913
2914 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2915 if (pcfg->num_peri) {
2916 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2917 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2918 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2919 }
2920
2921 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2922 pd->device_free_chan_resources = pl330_free_chan_resources;
2923 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2924 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2925 pd->device_tx_status = pl330_tx_status;
2926 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2927 pd->device_config = pl330_config;
2928 pd->device_pause = pl330_pause;
2929 pd->device_terminate_all = pl330_terminate_all;
2930 pd->device_issue_pending = pl330_issue_pending;
2931 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2932 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2933 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2934 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2935 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2936 1 : PL330_MAX_BURST);
2937
2938 ret = dma_async_device_register(pd);
2939 if (ret) {
2940 dev_err(&adev->dev, "unable to register DMAC\n");
2941 goto probe_err3;
2942 }
2943
2944 if (adev->dev.of_node) {
2945 ret = of_dma_controller_register(adev->dev.of_node,
2946 of_dma_pl330_xlate, pl330);
2947 if (ret) {
2948 dev_err(&adev->dev,
2949 "unable to register DMA to the generic DT DMA helpers\n");
2950 }
2951 }
2952
2953 adev->dev.dma_parms = &pl330->dma_parms;
2954
2955 /*
2956 * This is the limit for transfers with a buswidth of 1, larger
2957 * buswidths will have larger limits.
2958 */
2959 ret = dma_set_max_seg_size(&adev->dev, 1900800);
2960 if (ret)
2961 dev_err(&adev->dev, "unable to set the seg size\n");
2962
2963
2964 dev_info(&adev->dev,
2965 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2966 dev_info(&adev->dev,
2967 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2968 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2969 pcfg->num_peri, pcfg->num_events);
2970
2971 pm_runtime_irq_safe(&adev->dev);
2972 pm_runtime_use_autosuspend(&adev->dev);
2973 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2974 pm_runtime_mark_last_busy(&adev->dev);
2975 pm_runtime_put_autosuspend(&adev->dev);
2976
2977 return 0;
2978 probe_err3:
2979 /* Idle the DMAC */
2980 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2981 chan.device_node) {
2982
2983 /* Remove the channel */
2984 list_del(&pch->chan.device_node);
2985
2986 /* Flush the channel */
2987 if (pch->thread) {
2988 pl330_terminate_all(&pch->chan);
2989 pl330_free_chan_resources(&pch->chan);
2990 }
2991 }
2992 probe_err2:
2993 pl330_del(pl330);
2994
2995 return ret;
2996 }
2997
2998 static int pl330_remove(struct amba_device *adev)
2999 {
3000 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3001 struct dma_pl330_chan *pch, *_p;
3002 int i, irq;
3003
3004 pm_runtime_get_noresume(pl330->ddma.dev);
3005
3006 if (adev->dev.of_node)
3007 of_dma_controller_free(adev->dev.of_node);
3008
3009 for (i = 0; i < AMBA_NR_IRQS; i++) {
3010 irq = adev->irq[i];
3011 devm_free_irq(&adev->dev, irq, pl330);
3012 }
3013
3014 dma_async_device_unregister(&pl330->ddma);
3015
3016 /* Idle the DMAC */
3017 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3018 chan.device_node) {
3019
3020 /* Remove the channel */
3021 list_del(&pch->chan.device_node);
3022
3023 /* Flush the channel */
3024 if (pch->thread) {
3025 pl330_terminate_all(&pch->chan);
3026 pl330_free_chan_resources(&pch->chan);
3027 }
3028 }
3029
3030 pl330_del(pl330);
3031
3032 return 0;
3033 }
3034
3035 static struct amba_id pl330_ids[] = {
3036 {
3037 .id = 0x00041330,
3038 .mask = 0x000fffff,
3039 },
3040 { 0, 0 },
3041 };
3042
3043 MODULE_DEVICE_TABLE(amba, pl330_ids);
3044
3045 static struct amba_driver pl330_driver = {
3046 .drv = {
3047 .owner = THIS_MODULE,
3048 .name = "dma-pl330",
3049 .pm = &pl330_pm,
3050 },
3051 .id_table = pl330_ids,
3052 .probe = pl330_probe,
3053 .remove = pl330_remove,
3054 };
3055
3056 module_amba_driver(pl330_driver);
3057
3058 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3059 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3060 MODULE_LICENSE("GPL");