]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/pl330.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN 8
33 #define PL330_MAX_IRQS 32
34 #define PL330_MAX_PERI 32
35 #define PL330_MAX_BURST 16
36
37 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
38
39 enum pl330_cachectrl {
40 CCTRL0, /* Noncacheable and nonbufferable */
41 CCTRL1, /* Bufferable only */
42 CCTRL2, /* Cacheable, but do not allocate */
43 CCTRL3, /* Cacheable and bufferable, but do not allocate */
44 INVALID1, /* AWCACHE = 0x1000 */
45 INVALID2,
46 CCTRL6, /* Cacheable write-through, allocate on writes only */
47 CCTRL7, /* Cacheable write-back, allocate on writes only */
48 };
49
50 enum pl330_byteswap {
51 SWAP_NO,
52 SWAP_2,
53 SWAP_4,
54 SWAP_8,
55 SWAP_16,
56 };
57
58 /* Register and Bit field Definitions */
59 #define DS 0x0
60 #define DS_ST_STOP 0x0
61 #define DS_ST_EXEC 0x1
62 #define DS_ST_CMISS 0x2
63 #define DS_ST_UPDTPC 0x3
64 #define DS_ST_WFE 0x4
65 #define DS_ST_ATBRR 0x5
66 #define DS_ST_QBUSY 0x6
67 #define DS_ST_WFP 0x7
68 #define DS_ST_KILL 0x8
69 #define DS_ST_CMPLT 0x9
70 #define DS_ST_FLTCMP 0xe
71 #define DS_ST_FAULT 0xf
72
73 #define DPC 0x4
74 #define INTEN 0x20
75 #define ES 0x24
76 #define INTSTATUS 0x28
77 #define INTCLR 0x2c
78 #define FSM 0x30
79 #define FSC 0x34
80 #define FTM 0x38
81
82 #define _FTC 0x40
83 #define FTC(n) (_FTC + (n)*0x4)
84
85 #define _CS 0x100
86 #define CS(n) (_CS + (n)*0x8)
87 #define CS_CNS (1 << 21)
88
89 #define _CPC 0x104
90 #define CPC(n) (_CPC + (n)*0x8)
91
92 #define _SA 0x400
93 #define SA(n) (_SA + (n)*0x20)
94
95 #define _DA 0x404
96 #define DA(n) (_DA + (n)*0x20)
97
98 #define _CC 0x408
99 #define CC(n) (_CC + (n)*0x20)
100
101 #define CC_SRCINC (1 << 0)
102 #define CC_DSTINC (1 << 14)
103 #define CC_SRCPRI (1 << 8)
104 #define CC_DSTPRI (1 << 22)
105 #define CC_SRCNS (1 << 9)
106 #define CC_DSTNS (1 << 23)
107 #define CC_SRCIA (1 << 10)
108 #define CC_DSTIA (1 << 24)
109 #define CC_SRCBRSTLEN_SHFT 4
110 #define CC_DSTBRSTLEN_SHFT 18
111 #define CC_SRCBRSTSIZE_SHFT 1
112 #define CC_DSTBRSTSIZE_SHFT 15
113 #define CC_SRCCCTRL_SHFT 11
114 #define CC_SRCCCTRL_MASK 0x7
115 #define CC_DSTCCTRL_SHFT 25
116 #define CC_DRCCCTRL_MASK 0x7
117 #define CC_SWAP_SHFT 28
118
119 #define _LC0 0x40c
120 #define LC0(n) (_LC0 + (n)*0x20)
121
122 #define _LC1 0x410
123 #define LC1(n) (_LC1 + (n)*0x20)
124
125 #define DBGSTATUS 0xd00
126 #define DBG_BUSY (1 << 0)
127
128 #define DBGCMD 0xd04
129 #define DBGINST0 0xd08
130 #define DBGINST1 0xd0c
131
132 #define CR0 0xe00
133 #define CR1 0xe04
134 #define CR2 0xe08
135 #define CR3 0xe0c
136 #define CR4 0xe10
137 #define CRD 0xe14
138
139 #define PERIPH_ID 0xfe0
140 #define PERIPH_REV_SHIFT 20
141 #define PERIPH_REV_MASK 0xf
142 #define PERIPH_REV_R0P0 0
143 #define PERIPH_REV_R1P0 1
144 #define PERIPH_REV_R1P1 2
145
146 #define CR0_PERIPH_REQ_SET (1 << 0)
147 #define CR0_BOOT_EN_SET (1 << 1)
148 #define CR0_BOOT_MAN_NS (1 << 2)
149 #define CR0_NUM_CHANS_SHIFT 4
150 #define CR0_NUM_CHANS_MASK 0x7
151 #define CR0_NUM_PERIPH_SHIFT 12
152 #define CR0_NUM_PERIPH_MASK 0x1f
153 #define CR0_NUM_EVENTS_SHIFT 17
154 #define CR0_NUM_EVENTS_MASK 0x1f
155
156 #define CR1_ICACHE_LEN_SHIFT 0
157 #define CR1_ICACHE_LEN_MASK 0x7
158 #define CR1_NUM_ICACHELINES_SHIFT 4
159 #define CR1_NUM_ICACHELINES_MASK 0xf
160
161 #define CRD_DATA_WIDTH_SHIFT 0
162 #define CRD_DATA_WIDTH_MASK 0x7
163 #define CRD_WR_CAP_SHIFT 4
164 #define CRD_WR_CAP_MASK 0x7
165 #define CRD_WR_Q_DEP_SHIFT 8
166 #define CRD_WR_Q_DEP_MASK 0xf
167 #define CRD_RD_CAP_SHIFT 12
168 #define CRD_RD_CAP_MASK 0x7
169 #define CRD_RD_Q_DEP_SHIFT 16
170 #define CRD_RD_Q_DEP_MASK 0xf
171 #define CRD_DATA_BUFF_SHIFT 20
172 #define CRD_DATA_BUFF_MASK 0x3ff
173
174 #define PART 0x330
175 #define DESIGNER 0x41
176 #define REVISION 0x0
177 #define INTEG_CFG 0x0
178 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
179
180 #define PL330_STATE_STOPPED (1 << 0)
181 #define PL330_STATE_EXECUTING (1 << 1)
182 #define PL330_STATE_WFE (1 << 2)
183 #define PL330_STATE_FAULTING (1 << 3)
184 #define PL330_STATE_COMPLETING (1 << 4)
185 #define PL330_STATE_WFP (1 << 5)
186 #define PL330_STATE_KILLING (1 << 6)
187 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
188 #define PL330_STATE_CACHEMISS (1 << 8)
189 #define PL330_STATE_UPDTPC (1 << 9)
190 #define PL330_STATE_ATBARRIER (1 << 10)
191 #define PL330_STATE_QUEUEBUSY (1 << 11)
192 #define PL330_STATE_INVALID (1 << 15)
193
194 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
195 | PL330_STATE_WFE | PL330_STATE_FAULTING)
196
197 #define CMD_DMAADDH 0x54
198 #define CMD_DMAEND 0x00
199 #define CMD_DMAFLUSHP 0x35
200 #define CMD_DMAGO 0xa0
201 #define CMD_DMALD 0x04
202 #define CMD_DMALDP 0x25
203 #define CMD_DMALP 0x20
204 #define CMD_DMALPEND 0x28
205 #define CMD_DMAKILL 0x01
206 #define CMD_DMAMOV 0xbc
207 #define CMD_DMANOP 0x18
208 #define CMD_DMARMB 0x12
209 #define CMD_DMASEV 0x34
210 #define CMD_DMAST 0x08
211 #define CMD_DMASTP 0x29
212 #define CMD_DMASTZ 0x0c
213 #define CMD_DMAWFE 0x36
214 #define CMD_DMAWFP 0x30
215 #define CMD_DMAWMB 0x13
216
217 #define SZ_DMAADDH 3
218 #define SZ_DMAEND 1
219 #define SZ_DMAFLUSHP 2
220 #define SZ_DMALD 1
221 #define SZ_DMALDP 2
222 #define SZ_DMALP 2
223 #define SZ_DMALPEND 2
224 #define SZ_DMAKILL 1
225 #define SZ_DMAMOV 6
226 #define SZ_DMANOP 1
227 #define SZ_DMARMB 1
228 #define SZ_DMASEV 2
229 #define SZ_DMAST 1
230 #define SZ_DMASTP 2
231 #define SZ_DMASTZ 1
232 #define SZ_DMAWFE 2
233 #define SZ_DMAWFP 2
234 #define SZ_DMAWMB 1
235 #define SZ_DMAGO 6
236
237 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
238 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
239
240 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
241 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
242
243 /*
244 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
245 * at 1byte/burst for P<->M and M<->M respectively.
246 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
247 * should be enough for P<->M and M<->M respectively.
248 */
249 #define MCODE_BUFF_PER_REQ 256
250
251 /* Use this _only_ to wait on transient states */
252 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
253
254 #ifdef PL330_DEBUG_MCGEN
255 static unsigned cmd_line;
256 #define PL330_DBGCMD_DUMP(off, x...) do { \
257 printk("%x:", cmd_line); \
258 printk(x); \
259 cmd_line += off; \
260 } while (0)
261 #define PL330_DBGMC_START(addr) (cmd_line = addr)
262 #else
263 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
264 #define PL330_DBGMC_START(addr) do {} while (0)
265 #endif
266
267 /* The number of default descriptors */
268
269 #define NR_DEFAULT_DESC 16
270
271 /* Delay for runtime PM autosuspend, ms */
272 #define PL330_AUTOSUSPEND_DELAY 20
273
274 /* Populated by the PL330 core driver for DMA API driver's info */
275 struct pl330_config {
276 u32 periph_id;
277 #define DMAC_MODE_NS (1 << 0)
278 unsigned int mode;
279 unsigned int data_bus_width:10; /* In number of bits */
280 unsigned int data_buf_dep:11;
281 unsigned int num_chan:4;
282 unsigned int num_peri:6;
283 u32 peri_ns;
284 unsigned int num_events:6;
285 u32 irq_ns;
286 };
287
288 /**
289 * Request Configuration.
290 * The PL330 core does not modify this and uses the last
291 * working configuration if the request doesn't provide any.
292 *
293 * The Client may want to provide this info only for the
294 * first request and a request with new settings.
295 */
296 struct pl330_reqcfg {
297 /* Address Incrementing */
298 unsigned dst_inc:1;
299 unsigned src_inc:1;
300
301 /*
302 * For now, the SRC & DST protection levels
303 * and burst size/length are assumed same.
304 */
305 bool nonsecure;
306 bool privileged;
307 bool insnaccess;
308 unsigned brst_len:5;
309 unsigned brst_size:3; /* in power of 2 */
310
311 enum pl330_cachectrl dcctl;
312 enum pl330_cachectrl scctl;
313 enum pl330_byteswap swap;
314 struct pl330_config *pcfg;
315 };
316
317 /*
318 * One cycle of DMAC operation.
319 * There may be more than one xfer in a request.
320 */
321 struct pl330_xfer {
322 u32 src_addr;
323 u32 dst_addr;
324 /* Size to xfer */
325 u32 bytes;
326 };
327
328 /* The xfer callbacks are made with one of these arguments. */
329 enum pl330_op_err {
330 /* The all xfers in the request were success. */
331 PL330_ERR_NONE,
332 /* If req aborted due to global error. */
333 PL330_ERR_ABORT,
334 /* If req failed due to problem with Channel. */
335 PL330_ERR_FAIL,
336 };
337
338 enum dmamov_dst {
339 SAR = 0,
340 CCR,
341 DAR,
342 };
343
344 enum pl330_dst {
345 SRC = 0,
346 DST,
347 };
348
349 enum pl330_cond {
350 SINGLE,
351 BURST,
352 ALWAYS,
353 };
354
355 struct dma_pl330_desc;
356
357 struct _pl330_req {
358 u32 mc_bus;
359 void *mc_cpu;
360 struct dma_pl330_desc *desc;
361 };
362
363 /* ToBeDone for tasklet */
364 struct _pl330_tbd {
365 bool reset_dmac;
366 bool reset_mngr;
367 u8 reset_chan;
368 };
369
370 /* A DMAC Thread */
371 struct pl330_thread {
372 u8 id;
373 int ev;
374 /* If the channel is not yet acquired by any client */
375 bool free;
376 /* Parent DMAC */
377 struct pl330_dmac *dmac;
378 /* Only two at a time */
379 struct _pl330_req req[2];
380 /* Index of the last enqueued request */
381 unsigned lstenq;
382 /* Index of the last submitted request or -1 if the DMA is stopped */
383 int req_running;
384 };
385
386 enum pl330_dmac_state {
387 UNINIT,
388 INIT,
389 DYING,
390 };
391
392 enum desc_status {
393 /* In the DMAC pool */
394 FREE,
395 /*
396 * Allocated to some channel during prep_xxx
397 * Also may be sitting on the work_list.
398 */
399 PREP,
400 /*
401 * Sitting on the work_list and already submitted
402 * to the PL330 core. Not more than two descriptors
403 * of a channel can be BUSY at any time.
404 */
405 BUSY,
406 /*
407 * Sitting on the channel work_list but xfer done
408 * by PL330 core
409 */
410 DONE,
411 };
412
413 struct dma_pl330_chan {
414 /* Schedule desc completion */
415 struct tasklet_struct task;
416
417 /* DMA-Engine Channel */
418 struct dma_chan chan;
419
420 /* List of submitted descriptors */
421 struct list_head submitted_list;
422 /* List of issued descriptors */
423 struct list_head work_list;
424 /* List of completed descriptors */
425 struct list_head completed_list;
426
427 /* Pointer to the DMAC that manages this channel,
428 * NULL if the channel is available to be acquired.
429 * As the parent, this DMAC also provides descriptors
430 * to the channel.
431 */
432 struct pl330_dmac *dmac;
433
434 /* To protect channel manipulation */
435 spinlock_t lock;
436
437 /*
438 * Hardware channel thread of PL330 DMAC. NULL if the channel is
439 * available.
440 */
441 struct pl330_thread *thread;
442
443 /* For D-to-M and M-to-D channels */
444 int burst_sz; /* the peripheral fifo width */
445 int burst_len; /* the number of burst */
446 phys_addr_t fifo_addr;
447 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
448 dma_addr_t fifo_dma;
449 enum dma_data_direction dir;
450
451 /* for cyclic capability */
452 bool cyclic;
453
454 /* for runtime pm tracking */
455 bool active;
456 };
457
458 struct pl330_dmac {
459 /* DMA-Engine Device */
460 struct dma_device ddma;
461
462 /* Holds info about sg limitations */
463 struct device_dma_parameters dma_parms;
464
465 /* Pool of descriptors available for the DMAC's channels */
466 struct list_head desc_pool;
467 /* To protect desc_pool manipulation */
468 spinlock_t pool_lock;
469
470 /* Size of MicroCode buffers for each channel. */
471 unsigned mcbufsz;
472 /* ioremap'ed address of PL330 registers. */
473 void __iomem *base;
474 /* Populated by the PL330 core driver during pl330_add */
475 struct pl330_config pcfg;
476
477 spinlock_t lock;
478 /* Maximum possible events/irqs */
479 int events[32];
480 /* BUS address of MicroCode buffer */
481 dma_addr_t mcode_bus;
482 /* CPU address of MicroCode buffer */
483 void *mcode_cpu;
484 /* List of all Channel threads */
485 struct pl330_thread *channels;
486 /* Pointer to the MANAGER thread */
487 struct pl330_thread *manager;
488 /* To handle bad news in interrupt */
489 struct tasklet_struct tasks;
490 struct _pl330_tbd dmac_tbd;
491 /* State of DMAC operation */
492 enum pl330_dmac_state state;
493 /* Holds list of reqs with due callbacks */
494 struct list_head req_done;
495
496 /* Peripheral channels connected to this DMAC */
497 unsigned int num_peripherals;
498 struct dma_pl330_chan *peripherals; /* keep at end */
499 int quirks;
500 };
501
502 static struct pl330_of_quirks {
503 char *quirk;
504 int id;
505 } of_quirks[] = {
506 {
507 .quirk = "arm,pl330-broken-no-flushp",
508 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
509 }
510 };
511
512 struct dma_pl330_desc {
513 /* To attach to a queue as child */
514 struct list_head node;
515
516 /* Descriptor for the DMA Engine API */
517 struct dma_async_tx_descriptor txd;
518
519 /* Xfer for PL330 core */
520 struct pl330_xfer px;
521
522 struct pl330_reqcfg rqcfg;
523
524 enum desc_status status;
525
526 int bytes_requested;
527 bool last;
528
529 /* The channel which currently holds this desc */
530 struct dma_pl330_chan *pchan;
531
532 enum dma_transfer_direction rqtype;
533 /* Index of peripheral for the xfer. */
534 unsigned peri:5;
535 /* Hook to attach to DMAC's list of reqs with due callback */
536 struct list_head rqd;
537 };
538
539 struct _xfer_spec {
540 u32 ccr;
541 struct dma_pl330_desc *desc;
542 };
543
544 static inline bool _queue_full(struct pl330_thread *thrd)
545 {
546 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
547 }
548
549 static inline bool is_manager(struct pl330_thread *thrd)
550 {
551 return thrd->dmac->manager == thrd;
552 }
553
554 /* If manager of the thread is in Non-Secure mode */
555 static inline bool _manager_ns(struct pl330_thread *thrd)
556 {
557 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
558 }
559
560 static inline u32 get_revision(u32 periph_id)
561 {
562 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
563 }
564
565 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
566 {
567 if (dry_run)
568 return SZ_DMAEND;
569
570 buf[0] = CMD_DMAEND;
571
572 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
573
574 return SZ_DMAEND;
575 }
576
577 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
578 {
579 if (dry_run)
580 return SZ_DMAFLUSHP;
581
582 buf[0] = CMD_DMAFLUSHP;
583
584 peri &= 0x1f;
585 peri <<= 3;
586 buf[1] = peri;
587
588 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
589
590 return SZ_DMAFLUSHP;
591 }
592
593 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
594 {
595 if (dry_run)
596 return SZ_DMALD;
597
598 buf[0] = CMD_DMALD;
599
600 if (cond == SINGLE)
601 buf[0] |= (0 << 1) | (1 << 0);
602 else if (cond == BURST)
603 buf[0] |= (1 << 1) | (1 << 0);
604
605 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
606 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
607
608 return SZ_DMALD;
609 }
610
611 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
612 enum pl330_cond cond, u8 peri)
613 {
614 if (dry_run)
615 return SZ_DMALDP;
616
617 buf[0] = CMD_DMALDP;
618
619 if (cond == BURST)
620 buf[0] |= (1 << 1);
621
622 peri &= 0x1f;
623 peri <<= 3;
624 buf[1] = peri;
625
626 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
627 cond == SINGLE ? 'S' : 'B', peri >> 3);
628
629 return SZ_DMALDP;
630 }
631
632 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
633 unsigned loop, u8 cnt)
634 {
635 if (dry_run)
636 return SZ_DMALP;
637
638 buf[0] = CMD_DMALP;
639
640 if (loop)
641 buf[0] |= (1 << 1);
642
643 cnt--; /* DMAC increments by 1 internally */
644 buf[1] = cnt;
645
646 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
647
648 return SZ_DMALP;
649 }
650
651 struct _arg_LPEND {
652 enum pl330_cond cond;
653 bool forever;
654 unsigned loop;
655 u8 bjump;
656 };
657
658 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
659 const struct _arg_LPEND *arg)
660 {
661 enum pl330_cond cond = arg->cond;
662 bool forever = arg->forever;
663 unsigned loop = arg->loop;
664 u8 bjump = arg->bjump;
665
666 if (dry_run)
667 return SZ_DMALPEND;
668
669 buf[0] = CMD_DMALPEND;
670
671 if (loop)
672 buf[0] |= (1 << 2);
673
674 if (!forever)
675 buf[0] |= (1 << 4);
676
677 if (cond == SINGLE)
678 buf[0] |= (0 << 1) | (1 << 0);
679 else if (cond == BURST)
680 buf[0] |= (1 << 1) | (1 << 0);
681
682 buf[1] = bjump;
683
684 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
685 forever ? "FE" : "END",
686 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
687 loop ? '1' : '0',
688 bjump);
689
690 return SZ_DMALPEND;
691 }
692
693 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
694 {
695 if (dry_run)
696 return SZ_DMAKILL;
697
698 buf[0] = CMD_DMAKILL;
699
700 return SZ_DMAKILL;
701 }
702
703 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
704 enum dmamov_dst dst, u32 val)
705 {
706 if (dry_run)
707 return SZ_DMAMOV;
708
709 buf[0] = CMD_DMAMOV;
710 buf[1] = dst;
711 buf[2] = val;
712 buf[3] = val >> 8;
713 buf[4] = val >> 16;
714 buf[5] = val >> 24;
715
716 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
717 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
718
719 return SZ_DMAMOV;
720 }
721
722 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
723 {
724 if (dry_run)
725 return SZ_DMARMB;
726
727 buf[0] = CMD_DMARMB;
728
729 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
730
731 return SZ_DMARMB;
732 }
733
734 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
735 {
736 if (dry_run)
737 return SZ_DMASEV;
738
739 buf[0] = CMD_DMASEV;
740
741 ev &= 0x1f;
742 ev <<= 3;
743 buf[1] = ev;
744
745 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
746
747 return SZ_DMASEV;
748 }
749
750 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
751 {
752 if (dry_run)
753 return SZ_DMAST;
754
755 buf[0] = CMD_DMAST;
756
757 if (cond == SINGLE)
758 buf[0] |= (0 << 1) | (1 << 0);
759 else if (cond == BURST)
760 buf[0] |= (1 << 1) | (1 << 0);
761
762 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
763 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
764
765 return SZ_DMAST;
766 }
767
768 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
769 enum pl330_cond cond, u8 peri)
770 {
771 if (dry_run)
772 return SZ_DMASTP;
773
774 buf[0] = CMD_DMASTP;
775
776 if (cond == BURST)
777 buf[0] |= (1 << 1);
778
779 peri &= 0x1f;
780 peri <<= 3;
781 buf[1] = peri;
782
783 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
784 cond == SINGLE ? 'S' : 'B', peri >> 3);
785
786 return SZ_DMASTP;
787 }
788
789 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
790 enum pl330_cond cond, u8 peri)
791 {
792 if (dry_run)
793 return SZ_DMAWFP;
794
795 buf[0] = CMD_DMAWFP;
796
797 if (cond == SINGLE)
798 buf[0] |= (0 << 1) | (0 << 0);
799 else if (cond == BURST)
800 buf[0] |= (1 << 1) | (0 << 0);
801 else
802 buf[0] |= (0 << 1) | (1 << 0);
803
804 peri &= 0x1f;
805 peri <<= 3;
806 buf[1] = peri;
807
808 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
809 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
810
811 return SZ_DMAWFP;
812 }
813
814 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
815 {
816 if (dry_run)
817 return SZ_DMAWMB;
818
819 buf[0] = CMD_DMAWMB;
820
821 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
822
823 return SZ_DMAWMB;
824 }
825
826 struct _arg_GO {
827 u8 chan;
828 u32 addr;
829 unsigned ns;
830 };
831
832 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
833 const struct _arg_GO *arg)
834 {
835 u8 chan = arg->chan;
836 u32 addr = arg->addr;
837 unsigned ns = arg->ns;
838
839 if (dry_run)
840 return SZ_DMAGO;
841
842 buf[0] = CMD_DMAGO;
843 buf[0] |= (ns << 1);
844 buf[1] = chan & 0x7;
845 buf[2] = addr;
846 buf[3] = addr >> 8;
847 buf[4] = addr >> 16;
848 buf[5] = addr >> 24;
849
850 return SZ_DMAGO;
851 }
852
853 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
854
855 /* Returns Time-Out */
856 static bool _until_dmac_idle(struct pl330_thread *thrd)
857 {
858 void __iomem *regs = thrd->dmac->base;
859 unsigned long loops = msecs_to_loops(5);
860
861 do {
862 /* Until Manager is Idle */
863 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
864 break;
865
866 cpu_relax();
867 } while (--loops);
868
869 if (!loops)
870 return true;
871
872 return false;
873 }
874
875 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
876 u8 insn[], bool as_manager)
877 {
878 void __iomem *regs = thrd->dmac->base;
879 u32 val;
880
881 val = (insn[0] << 16) | (insn[1] << 24);
882 if (!as_manager) {
883 val |= (1 << 0);
884 val |= (thrd->id << 8); /* Channel Number */
885 }
886 writel(val, regs + DBGINST0);
887
888 val = le32_to_cpu(*((__le32 *)&insn[2]));
889 writel(val, regs + DBGINST1);
890
891 /* If timed out due to halted state-machine */
892 if (_until_dmac_idle(thrd)) {
893 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
894 return;
895 }
896
897 /* Get going */
898 writel(0, regs + DBGCMD);
899 }
900
901 static inline u32 _state(struct pl330_thread *thrd)
902 {
903 void __iomem *regs = thrd->dmac->base;
904 u32 val;
905
906 if (is_manager(thrd))
907 val = readl(regs + DS) & 0xf;
908 else
909 val = readl(regs + CS(thrd->id)) & 0xf;
910
911 switch (val) {
912 case DS_ST_STOP:
913 return PL330_STATE_STOPPED;
914 case DS_ST_EXEC:
915 return PL330_STATE_EXECUTING;
916 case DS_ST_CMISS:
917 return PL330_STATE_CACHEMISS;
918 case DS_ST_UPDTPC:
919 return PL330_STATE_UPDTPC;
920 case DS_ST_WFE:
921 return PL330_STATE_WFE;
922 case DS_ST_FAULT:
923 return PL330_STATE_FAULTING;
924 case DS_ST_ATBRR:
925 if (is_manager(thrd))
926 return PL330_STATE_INVALID;
927 else
928 return PL330_STATE_ATBARRIER;
929 case DS_ST_QBUSY:
930 if (is_manager(thrd))
931 return PL330_STATE_INVALID;
932 else
933 return PL330_STATE_QUEUEBUSY;
934 case DS_ST_WFP:
935 if (is_manager(thrd))
936 return PL330_STATE_INVALID;
937 else
938 return PL330_STATE_WFP;
939 case DS_ST_KILL:
940 if (is_manager(thrd))
941 return PL330_STATE_INVALID;
942 else
943 return PL330_STATE_KILLING;
944 case DS_ST_CMPLT:
945 if (is_manager(thrd))
946 return PL330_STATE_INVALID;
947 else
948 return PL330_STATE_COMPLETING;
949 case DS_ST_FLTCMP:
950 if (is_manager(thrd))
951 return PL330_STATE_INVALID;
952 else
953 return PL330_STATE_FAULT_COMPLETING;
954 default:
955 return PL330_STATE_INVALID;
956 }
957 }
958
959 static void _stop(struct pl330_thread *thrd)
960 {
961 void __iomem *regs = thrd->dmac->base;
962 u8 insn[6] = {0, 0, 0, 0, 0, 0};
963
964 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
965 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
966
967 /* Return if nothing needs to be done */
968 if (_state(thrd) == PL330_STATE_COMPLETING
969 || _state(thrd) == PL330_STATE_KILLING
970 || _state(thrd) == PL330_STATE_STOPPED)
971 return;
972
973 _emit_KILL(0, insn);
974
975 /* Stop generating interrupts for SEV */
976 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
977
978 _execute_DBGINSN(thrd, insn, is_manager(thrd));
979 }
980
981 /* Start doing req 'idx' of thread 'thrd' */
982 static bool _trigger(struct pl330_thread *thrd)
983 {
984 void __iomem *regs = thrd->dmac->base;
985 struct _pl330_req *req;
986 struct dma_pl330_desc *desc;
987 struct _arg_GO go;
988 unsigned ns;
989 u8 insn[6] = {0, 0, 0, 0, 0, 0};
990 int idx;
991
992 /* Return if already ACTIVE */
993 if (_state(thrd) != PL330_STATE_STOPPED)
994 return true;
995
996 idx = 1 - thrd->lstenq;
997 if (thrd->req[idx].desc != NULL) {
998 req = &thrd->req[idx];
999 } else {
1000 idx = thrd->lstenq;
1001 if (thrd->req[idx].desc != NULL)
1002 req = &thrd->req[idx];
1003 else
1004 req = NULL;
1005 }
1006
1007 /* Return if no request */
1008 if (!req)
1009 return true;
1010
1011 /* Return if req is running */
1012 if (idx == thrd->req_running)
1013 return true;
1014
1015 desc = req->desc;
1016
1017 ns = desc->rqcfg.nonsecure ? 1 : 0;
1018
1019 /* See 'Abort Sources' point-4 at Page 2-25 */
1020 if (_manager_ns(thrd) && !ns)
1021 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1022 __func__, __LINE__);
1023
1024 go.chan = thrd->id;
1025 go.addr = req->mc_bus;
1026 go.ns = ns;
1027 _emit_GO(0, insn, &go);
1028
1029 /* Set to generate interrupts for SEV */
1030 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1031
1032 /* Only manager can execute GO */
1033 _execute_DBGINSN(thrd, insn, true);
1034
1035 thrd->req_running = idx;
1036
1037 return true;
1038 }
1039
1040 static bool _start(struct pl330_thread *thrd)
1041 {
1042 switch (_state(thrd)) {
1043 case PL330_STATE_FAULT_COMPLETING:
1044 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1045
1046 if (_state(thrd) == PL330_STATE_KILLING)
1047 UNTIL(thrd, PL330_STATE_STOPPED)
1048
1049 case PL330_STATE_FAULTING:
1050 _stop(thrd);
1051
1052 case PL330_STATE_KILLING:
1053 case PL330_STATE_COMPLETING:
1054 UNTIL(thrd, PL330_STATE_STOPPED)
1055
1056 case PL330_STATE_STOPPED:
1057 return _trigger(thrd);
1058
1059 case PL330_STATE_WFP:
1060 case PL330_STATE_QUEUEBUSY:
1061 case PL330_STATE_ATBARRIER:
1062 case PL330_STATE_UPDTPC:
1063 case PL330_STATE_CACHEMISS:
1064 case PL330_STATE_EXECUTING:
1065 return true;
1066
1067 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1068 default:
1069 return false;
1070 }
1071 }
1072
1073 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1074 const struct _xfer_spec *pxs, int cyc)
1075 {
1076 int off = 0;
1077 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1078
1079 /* check lock-up free version */
1080 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1081 while (cyc--) {
1082 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1083 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1084 }
1085 } else {
1086 while (cyc--) {
1087 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1088 off += _emit_RMB(dry_run, &buf[off]);
1089 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1090 off += _emit_WMB(dry_run, &buf[off]);
1091 }
1092 }
1093
1094 return off;
1095 }
1096
1097 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1098 u8 buf[], const struct _xfer_spec *pxs,
1099 int cyc)
1100 {
1101 int off = 0;
1102 enum pl330_cond cond;
1103
1104 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1105 cond = BURST;
1106 else
1107 cond = SINGLE;
1108
1109 while (cyc--) {
1110 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1111 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1112 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1113
1114 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1115 off += _emit_FLUSHP(dry_run, &buf[off],
1116 pxs->desc->peri);
1117 }
1118
1119 return off;
1120 }
1121
1122 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1123 unsigned dry_run, u8 buf[],
1124 const struct _xfer_spec *pxs, int cyc)
1125 {
1126 int off = 0;
1127 enum pl330_cond cond;
1128
1129 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1130 cond = BURST;
1131 else
1132 cond = SINGLE;
1133
1134 while (cyc--) {
1135 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1136 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1137 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1138
1139 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1140 off += _emit_FLUSHP(dry_run, &buf[off],
1141 pxs->desc->peri);
1142 }
1143
1144 return off;
1145 }
1146
1147 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1148 const struct _xfer_spec *pxs, int cyc)
1149 {
1150 int off = 0;
1151
1152 switch (pxs->desc->rqtype) {
1153 case DMA_MEM_TO_DEV:
1154 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1155 break;
1156 case DMA_DEV_TO_MEM:
1157 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1158 break;
1159 case DMA_MEM_TO_MEM:
1160 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1161 break;
1162 default:
1163 off += 0x40000000; /* Scare off the Client */
1164 break;
1165 }
1166
1167 return off;
1168 }
1169
1170 /* Returns bytes consumed and updates bursts */
1171 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1172 unsigned long *bursts, const struct _xfer_spec *pxs)
1173 {
1174 int cyc, cycmax, szlp, szlpend, szbrst, off;
1175 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1176 struct _arg_LPEND lpend;
1177
1178 if (*bursts == 1)
1179 return _bursts(pl330, dry_run, buf, pxs, 1);
1180
1181 /* Max iterations possible in DMALP is 256 */
1182 if (*bursts >= 256*256) {
1183 lcnt1 = 256;
1184 lcnt0 = 256;
1185 cyc = *bursts / lcnt1 / lcnt0;
1186 } else if (*bursts > 256) {
1187 lcnt1 = 256;
1188 lcnt0 = *bursts / lcnt1;
1189 cyc = 1;
1190 } else {
1191 lcnt1 = *bursts;
1192 lcnt0 = 0;
1193 cyc = 1;
1194 }
1195
1196 szlp = _emit_LP(1, buf, 0, 0);
1197 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1198
1199 lpend.cond = ALWAYS;
1200 lpend.forever = false;
1201 lpend.loop = 0;
1202 lpend.bjump = 0;
1203 szlpend = _emit_LPEND(1, buf, &lpend);
1204
1205 if (lcnt0) {
1206 szlp *= 2;
1207 szlpend *= 2;
1208 }
1209
1210 /*
1211 * Max bursts that we can unroll due to limit on the
1212 * size of backward jump that can be encoded in DMALPEND
1213 * which is 8-bits and hence 255
1214 */
1215 cycmax = (255 - (szlp + szlpend)) / szbrst;
1216
1217 cyc = (cycmax < cyc) ? cycmax : cyc;
1218
1219 off = 0;
1220
1221 if (lcnt0) {
1222 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1223 ljmp0 = off;
1224 }
1225
1226 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1227 ljmp1 = off;
1228
1229 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1230
1231 lpend.cond = ALWAYS;
1232 lpend.forever = false;
1233 lpend.loop = 1;
1234 lpend.bjump = off - ljmp1;
1235 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1236
1237 if (lcnt0) {
1238 lpend.cond = ALWAYS;
1239 lpend.forever = false;
1240 lpend.loop = 0;
1241 lpend.bjump = off - ljmp0;
1242 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1243 }
1244
1245 *bursts = lcnt1 * cyc;
1246 if (lcnt0)
1247 *bursts *= lcnt0;
1248
1249 return off;
1250 }
1251
1252 static inline int _setup_loops(struct pl330_dmac *pl330,
1253 unsigned dry_run, u8 buf[],
1254 const struct _xfer_spec *pxs)
1255 {
1256 struct pl330_xfer *x = &pxs->desc->px;
1257 u32 ccr = pxs->ccr;
1258 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1259 int off = 0;
1260
1261 while (bursts) {
1262 c = bursts;
1263 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1264 bursts -= c;
1265 }
1266
1267 return off;
1268 }
1269
1270 static inline int _setup_xfer(struct pl330_dmac *pl330,
1271 unsigned dry_run, u8 buf[],
1272 const struct _xfer_spec *pxs)
1273 {
1274 struct pl330_xfer *x = &pxs->desc->px;
1275 int off = 0;
1276
1277 /* DMAMOV SAR, x->src_addr */
1278 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1279 /* DMAMOV DAR, x->dst_addr */
1280 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1281
1282 /* Setup Loop(s) */
1283 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1284
1285 return off;
1286 }
1287
1288 /*
1289 * A req is a sequence of one or more xfer units.
1290 * Returns the number of bytes taken to setup the MC for the req.
1291 */
1292 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1293 struct pl330_thread *thrd, unsigned index,
1294 struct _xfer_spec *pxs)
1295 {
1296 struct _pl330_req *req = &thrd->req[index];
1297 struct pl330_xfer *x;
1298 u8 *buf = req->mc_cpu;
1299 int off = 0;
1300
1301 PL330_DBGMC_START(req->mc_bus);
1302
1303 /* DMAMOV CCR, ccr */
1304 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1305
1306 x = &pxs->desc->px;
1307 /* Error if xfer length is not aligned at burst size */
1308 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1309 return -EINVAL;
1310
1311 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1312
1313 /* DMASEV peripheral/event */
1314 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1315 /* DMAEND */
1316 off += _emit_END(dry_run, &buf[off]);
1317
1318 return off;
1319 }
1320
1321 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1322 {
1323 u32 ccr = 0;
1324
1325 if (rqc->src_inc)
1326 ccr |= CC_SRCINC;
1327
1328 if (rqc->dst_inc)
1329 ccr |= CC_DSTINC;
1330
1331 /* We set same protection levels for Src and DST for now */
1332 if (rqc->privileged)
1333 ccr |= CC_SRCPRI | CC_DSTPRI;
1334 if (rqc->nonsecure)
1335 ccr |= CC_SRCNS | CC_DSTNS;
1336 if (rqc->insnaccess)
1337 ccr |= CC_SRCIA | CC_DSTIA;
1338
1339 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1340 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1341
1342 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1343 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1344
1345 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1346 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1347
1348 ccr |= (rqc->swap << CC_SWAP_SHFT);
1349
1350 return ccr;
1351 }
1352
1353 /*
1354 * Submit a list of xfers after which the client wants notification.
1355 * Client is not notified after each xfer unit, just once after all
1356 * xfer units are done or some error occurs.
1357 */
1358 static int pl330_submit_req(struct pl330_thread *thrd,
1359 struct dma_pl330_desc *desc)
1360 {
1361 struct pl330_dmac *pl330 = thrd->dmac;
1362 struct _xfer_spec xs;
1363 unsigned long flags;
1364 unsigned idx;
1365 u32 ccr;
1366 int ret = 0;
1367
1368 if (pl330->state == DYING
1369 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1370 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1371 __func__, __LINE__);
1372 return -EAGAIN;
1373 }
1374
1375 /* If request for non-existing peripheral */
1376 if (desc->rqtype != DMA_MEM_TO_MEM &&
1377 desc->peri >= pl330->pcfg.num_peri) {
1378 dev_info(thrd->dmac->ddma.dev,
1379 "%s:%d Invalid peripheral(%u)!\n",
1380 __func__, __LINE__, desc->peri);
1381 return -EINVAL;
1382 }
1383
1384 spin_lock_irqsave(&pl330->lock, flags);
1385
1386 if (_queue_full(thrd)) {
1387 ret = -EAGAIN;
1388 goto xfer_exit;
1389 }
1390
1391 /* Prefer Secure Channel */
1392 if (!_manager_ns(thrd))
1393 desc->rqcfg.nonsecure = 0;
1394 else
1395 desc->rqcfg.nonsecure = 1;
1396
1397 ccr = _prepare_ccr(&desc->rqcfg);
1398
1399 idx = thrd->req[0].desc == NULL ? 0 : 1;
1400
1401 xs.ccr = ccr;
1402 xs.desc = desc;
1403
1404 /* First dry run to check if req is acceptable */
1405 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1406 if (ret < 0)
1407 goto xfer_exit;
1408
1409 if (ret > pl330->mcbufsz / 2) {
1410 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1411 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1412 ret = -ENOMEM;
1413 goto xfer_exit;
1414 }
1415
1416 /* Hook the request */
1417 thrd->lstenq = idx;
1418 thrd->req[idx].desc = desc;
1419 _setup_req(pl330, 0, thrd, idx, &xs);
1420
1421 ret = 0;
1422
1423 xfer_exit:
1424 spin_unlock_irqrestore(&pl330->lock, flags);
1425
1426 return ret;
1427 }
1428
1429 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1430 {
1431 struct dma_pl330_chan *pch;
1432 unsigned long flags;
1433
1434 if (!desc)
1435 return;
1436
1437 pch = desc->pchan;
1438
1439 /* If desc aborted */
1440 if (!pch)
1441 return;
1442
1443 spin_lock_irqsave(&pch->lock, flags);
1444
1445 desc->status = DONE;
1446
1447 spin_unlock_irqrestore(&pch->lock, flags);
1448
1449 tasklet_schedule(&pch->task);
1450 }
1451
1452 static void pl330_dotask(unsigned long data)
1453 {
1454 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1455 unsigned long flags;
1456 int i;
1457
1458 spin_lock_irqsave(&pl330->lock, flags);
1459
1460 /* The DMAC itself gone nuts */
1461 if (pl330->dmac_tbd.reset_dmac) {
1462 pl330->state = DYING;
1463 /* Reset the manager too */
1464 pl330->dmac_tbd.reset_mngr = true;
1465 /* Clear the reset flag */
1466 pl330->dmac_tbd.reset_dmac = false;
1467 }
1468
1469 if (pl330->dmac_tbd.reset_mngr) {
1470 _stop(pl330->manager);
1471 /* Reset all channels */
1472 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1473 /* Clear the reset flag */
1474 pl330->dmac_tbd.reset_mngr = false;
1475 }
1476
1477 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1478
1479 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1480 struct pl330_thread *thrd = &pl330->channels[i];
1481 void __iomem *regs = pl330->base;
1482 enum pl330_op_err err;
1483
1484 _stop(thrd);
1485
1486 if (readl(regs + FSC) & (1 << thrd->id))
1487 err = PL330_ERR_FAIL;
1488 else
1489 err = PL330_ERR_ABORT;
1490
1491 spin_unlock_irqrestore(&pl330->lock, flags);
1492 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1493 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1494 spin_lock_irqsave(&pl330->lock, flags);
1495
1496 thrd->req[0].desc = NULL;
1497 thrd->req[1].desc = NULL;
1498 thrd->req_running = -1;
1499
1500 /* Clear the reset flag */
1501 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1502 }
1503 }
1504
1505 spin_unlock_irqrestore(&pl330->lock, flags);
1506
1507 return;
1508 }
1509
1510 /* Returns 1 if state was updated, 0 otherwise */
1511 static int pl330_update(struct pl330_dmac *pl330)
1512 {
1513 struct dma_pl330_desc *descdone;
1514 unsigned long flags;
1515 void __iomem *regs;
1516 u32 val;
1517 int id, ev, ret = 0;
1518
1519 regs = pl330->base;
1520
1521 spin_lock_irqsave(&pl330->lock, flags);
1522
1523 val = readl(regs + FSM) & 0x1;
1524 if (val)
1525 pl330->dmac_tbd.reset_mngr = true;
1526 else
1527 pl330->dmac_tbd.reset_mngr = false;
1528
1529 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1530 pl330->dmac_tbd.reset_chan |= val;
1531 if (val) {
1532 int i = 0;
1533 while (i < pl330->pcfg.num_chan) {
1534 if (val & (1 << i)) {
1535 dev_info(pl330->ddma.dev,
1536 "Reset Channel-%d\t CS-%x FTC-%x\n",
1537 i, readl(regs + CS(i)),
1538 readl(regs + FTC(i)));
1539 _stop(&pl330->channels[i]);
1540 }
1541 i++;
1542 }
1543 }
1544
1545 /* Check which event happened i.e, thread notified */
1546 val = readl(regs + ES);
1547 if (pl330->pcfg.num_events < 32
1548 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1549 pl330->dmac_tbd.reset_dmac = true;
1550 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1551 __LINE__);
1552 ret = 1;
1553 goto updt_exit;
1554 }
1555
1556 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1557 if (val & (1 << ev)) { /* Event occurred */
1558 struct pl330_thread *thrd;
1559 u32 inten = readl(regs + INTEN);
1560 int active;
1561
1562 /* Clear the event */
1563 if (inten & (1 << ev))
1564 writel(1 << ev, regs + INTCLR);
1565
1566 ret = 1;
1567
1568 id = pl330->events[ev];
1569
1570 thrd = &pl330->channels[id];
1571
1572 active = thrd->req_running;
1573 if (active == -1) /* Aborted */
1574 continue;
1575
1576 /* Detach the req */
1577 descdone = thrd->req[active].desc;
1578 thrd->req[active].desc = NULL;
1579
1580 thrd->req_running = -1;
1581
1582 /* Get going again ASAP */
1583 _start(thrd);
1584
1585 /* For now, just make a list of callbacks to be done */
1586 list_add_tail(&descdone->rqd, &pl330->req_done);
1587 }
1588 }
1589
1590 /* Now that we are in no hurry, do the callbacks */
1591 while (!list_empty(&pl330->req_done)) {
1592 descdone = list_first_entry(&pl330->req_done,
1593 struct dma_pl330_desc, rqd);
1594 list_del(&descdone->rqd);
1595 spin_unlock_irqrestore(&pl330->lock, flags);
1596 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1597 spin_lock_irqsave(&pl330->lock, flags);
1598 }
1599
1600 updt_exit:
1601 spin_unlock_irqrestore(&pl330->lock, flags);
1602
1603 if (pl330->dmac_tbd.reset_dmac
1604 || pl330->dmac_tbd.reset_mngr
1605 || pl330->dmac_tbd.reset_chan) {
1606 ret = 1;
1607 tasklet_schedule(&pl330->tasks);
1608 }
1609
1610 return ret;
1611 }
1612
1613 /* Reserve an event */
1614 static inline int _alloc_event(struct pl330_thread *thrd)
1615 {
1616 struct pl330_dmac *pl330 = thrd->dmac;
1617 int ev;
1618
1619 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1620 if (pl330->events[ev] == -1) {
1621 pl330->events[ev] = thrd->id;
1622 return ev;
1623 }
1624
1625 return -1;
1626 }
1627
1628 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1629 {
1630 return pl330->pcfg.irq_ns & (1 << i);
1631 }
1632
1633 /* Upon success, returns IdentityToken for the
1634 * allocated channel, NULL otherwise.
1635 */
1636 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1637 {
1638 struct pl330_thread *thrd = NULL;
1639 int chans, i;
1640
1641 if (pl330->state == DYING)
1642 return NULL;
1643
1644 chans = pl330->pcfg.num_chan;
1645
1646 for (i = 0; i < chans; i++) {
1647 thrd = &pl330->channels[i];
1648 if ((thrd->free) && (!_manager_ns(thrd) ||
1649 _chan_ns(pl330, i))) {
1650 thrd->ev = _alloc_event(thrd);
1651 if (thrd->ev >= 0) {
1652 thrd->free = false;
1653 thrd->lstenq = 1;
1654 thrd->req[0].desc = NULL;
1655 thrd->req[1].desc = NULL;
1656 thrd->req_running = -1;
1657 break;
1658 }
1659 }
1660 thrd = NULL;
1661 }
1662
1663 return thrd;
1664 }
1665
1666 /* Release an event */
1667 static inline void _free_event(struct pl330_thread *thrd, int ev)
1668 {
1669 struct pl330_dmac *pl330 = thrd->dmac;
1670
1671 /* If the event is valid and was held by the thread */
1672 if (ev >= 0 && ev < pl330->pcfg.num_events
1673 && pl330->events[ev] == thrd->id)
1674 pl330->events[ev] = -1;
1675 }
1676
1677 static void pl330_release_channel(struct pl330_thread *thrd)
1678 {
1679 struct pl330_dmac *pl330;
1680
1681 if (!thrd || thrd->free)
1682 return;
1683
1684 _stop(thrd);
1685
1686 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1687 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1688
1689 pl330 = thrd->dmac;
1690
1691 _free_event(thrd, thrd->ev);
1692 thrd->free = true;
1693 }
1694
1695 /* Initialize the structure for PL330 configuration, that can be used
1696 * by the client driver the make best use of the DMAC
1697 */
1698 static void read_dmac_config(struct pl330_dmac *pl330)
1699 {
1700 void __iomem *regs = pl330->base;
1701 u32 val;
1702
1703 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1704 val &= CRD_DATA_WIDTH_MASK;
1705 pl330->pcfg.data_bus_width = 8 * (1 << val);
1706
1707 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1708 val &= CRD_DATA_BUFF_MASK;
1709 pl330->pcfg.data_buf_dep = val + 1;
1710
1711 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1712 val &= CR0_NUM_CHANS_MASK;
1713 val += 1;
1714 pl330->pcfg.num_chan = val;
1715
1716 val = readl(regs + CR0);
1717 if (val & CR0_PERIPH_REQ_SET) {
1718 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1719 val += 1;
1720 pl330->pcfg.num_peri = val;
1721 pl330->pcfg.peri_ns = readl(regs + CR4);
1722 } else {
1723 pl330->pcfg.num_peri = 0;
1724 }
1725
1726 val = readl(regs + CR0);
1727 if (val & CR0_BOOT_MAN_NS)
1728 pl330->pcfg.mode |= DMAC_MODE_NS;
1729 else
1730 pl330->pcfg.mode &= ~DMAC_MODE_NS;
1731
1732 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1733 val &= CR0_NUM_EVENTS_MASK;
1734 val += 1;
1735 pl330->pcfg.num_events = val;
1736
1737 pl330->pcfg.irq_ns = readl(regs + CR3);
1738 }
1739
1740 static inline void _reset_thread(struct pl330_thread *thrd)
1741 {
1742 struct pl330_dmac *pl330 = thrd->dmac;
1743
1744 thrd->req[0].mc_cpu = pl330->mcode_cpu
1745 + (thrd->id * pl330->mcbufsz);
1746 thrd->req[0].mc_bus = pl330->mcode_bus
1747 + (thrd->id * pl330->mcbufsz);
1748 thrd->req[0].desc = NULL;
1749
1750 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1751 + pl330->mcbufsz / 2;
1752 thrd->req[1].mc_bus = thrd->req[0].mc_bus
1753 + pl330->mcbufsz / 2;
1754 thrd->req[1].desc = NULL;
1755
1756 thrd->req_running = -1;
1757 }
1758
1759 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1760 {
1761 int chans = pl330->pcfg.num_chan;
1762 struct pl330_thread *thrd;
1763 int i;
1764
1765 /* Allocate 1 Manager and 'chans' Channel threads */
1766 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1767 GFP_KERNEL);
1768 if (!pl330->channels)
1769 return -ENOMEM;
1770
1771 /* Init Channel threads */
1772 for (i = 0; i < chans; i++) {
1773 thrd = &pl330->channels[i];
1774 thrd->id = i;
1775 thrd->dmac = pl330;
1776 _reset_thread(thrd);
1777 thrd->free = true;
1778 }
1779
1780 /* MANAGER is indexed at the end */
1781 thrd = &pl330->channels[chans];
1782 thrd->id = chans;
1783 thrd->dmac = pl330;
1784 thrd->free = false;
1785 pl330->manager = thrd;
1786
1787 return 0;
1788 }
1789
1790 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1791 {
1792 int chans = pl330->pcfg.num_chan;
1793 int ret;
1794
1795 /*
1796 * Alloc MicroCode buffer for 'chans' Channel threads.
1797 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1798 */
1799 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1800 chans * pl330->mcbufsz,
1801 &pl330->mcode_bus, GFP_KERNEL,
1802 DMA_ATTR_PRIVILEGED);
1803 if (!pl330->mcode_cpu) {
1804 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1805 __func__, __LINE__);
1806 return -ENOMEM;
1807 }
1808
1809 ret = dmac_alloc_threads(pl330);
1810 if (ret) {
1811 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1812 __func__, __LINE__);
1813 dma_free_coherent(pl330->ddma.dev,
1814 chans * pl330->mcbufsz,
1815 pl330->mcode_cpu, pl330->mcode_bus);
1816 return ret;
1817 }
1818
1819 return 0;
1820 }
1821
1822 static int pl330_add(struct pl330_dmac *pl330)
1823 {
1824 int i, ret;
1825
1826 /* Check if we can handle this DMAC */
1827 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1828 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1829 pl330->pcfg.periph_id);
1830 return -EINVAL;
1831 }
1832
1833 /* Read the configuration of the DMAC */
1834 read_dmac_config(pl330);
1835
1836 if (pl330->pcfg.num_events == 0) {
1837 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1838 __func__, __LINE__);
1839 return -EINVAL;
1840 }
1841
1842 spin_lock_init(&pl330->lock);
1843
1844 INIT_LIST_HEAD(&pl330->req_done);
1845
1846 /* Use default MC buffer size if not provided */
1847 if (!pl330->mcbufsz)
1848 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1849
1850 /* Mark all events as free */
1851 for (i = 0; i < pl330->pcfg.num_events; i++)
1852 pl330->events[i] = -1;
1853
1854 /* Allocate resources needed by the DMAC */
1855 ret = dmac_alloc_resources(pl330);
1856 if (ret) {
1857 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1858 return ret;
1859 }
1860
1861 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1862
1863 pl330->state = INIT;
1864
1865 return 0;
1866 }
1867
1868 static int dmac_free_threads(struct pl330_dmac *pl330)
1869 {
1870 struct pl330_thread *thrd;
1871 int i;
1872
1873 /* Release Channel threads */
1874 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1875 thrd = &pl330->channels[i];
1876 pl330_release_channel(thrd);
1877 }
1878
1879 /* Free memory */
1880 kfree(pl330->channels);
1881
1882 return 0;
1883 }
1884
1885 static void pl330_del(struct pl330_dmac *pl330)
1886 {
1887 pl330->state = UNINIT;
1888
1889 tasklet_kill(&pl330->tasks);
1890
1891 /* Free DMAC resources */
1892 dmac_free_threads(pl330);
1893
1894 dma_free_coherent(pl330->ddma.dev,
1895 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1896 pl330->mcode_bus);
1897 }
1898
1899 /* forward declaration */
1900 static struct amba_driver pl330_driver;
1901
1902 static inline struct dma_pl330_chan *
1903 to_pchan(struct dma_chan *ch)
1904 {
1905 if (!ch)
1906 return NULL;
1907
1908 return container_of(ch, struct dma_pl330_chan, chan);
1909 }
1910
1911 static inline struct dma_pl330_desc *
1912 to_desc(struct dma_async_tx_descriptor *tx)
1913 {
1914 return container_of(tx, struct dma_pl330_desc, txd);
1915 }
1916
1917 static inline void fill_queue(struct dma_pl330_chan *pch)
1918 {
1919 struct dma_pl330_desc *desc;
1920 int ret;
1921
1922 list_for_each_entry(desc, &pch->work_list, node) {
1923
1924 /* If already submitted */
1925 if (desc->status == BUSY)
1926 continue;
1927
1928 ret = pl330_submit_req(pch->thread, desc);
1929 if (!ret) {
1930 desc->status = BUSY;
1931 } else if (ret == -EAGAIN) {
1932 /* QFull or DMAC Dying */
1933 break;
1934 } else {
1935 /* Unacceptable request */
1936 desc->status = DONE;
1937 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
1938 __func__, __LINE__, desc->txd.cookie);
1939 tasklet_schedule(&pch->task);
1940 }
1941 }
1942 }
1943
1944 static void pl330_tasklet(unsigned long data)
1945 {
1946 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
1947 struct dma_pl330_desc *desc, *_dt;
1948 unsigned long flags;
1949 bool power_down = false;
1950
1951 spin_lock_irqsave(&pch->lock, flags);
1952
1953 /* Pick up ripe tomatoes */
1954 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
1955 if (desc->status == DONE) {
1956 if (!pch->cyclic)
1957 dma_cookie_complete(&desc->txd);
1958 list_move_tail(&desc->node, &pch->completed_list);
1959 }
1960
1961 /* Try to submit a req imm. next to the last completed cookie */
1962 fill_queue(pch);
1963
1964 if (list_empty(&pch->work_list)) {
1965 spin_lock(&pch->thread->dmac->lock);
1966 _stop(pch->thread);
1967 spin_unlock(&pch->thread->dmac->lock);
1968 power_down = true;
1969 pch->active = false;
1970 } else {
1971 /* Make sure the PL330 Channel thread is active */
1972 spin_lock(&pch->thread->dmac->lock);
1973 _start(pch->thread);
1974 spin_unlock(&pch->thread->dmac->lock);
1975 }
1976
1977 while (!list_empty(&pch->completed_list)) {
1978 struct dmaengine_desc_callback cb;
1979
1980 desc = list_first_entry(&pch->completed_list,
1981 struct dma_pl330_desc, node);
1982
1983 dmaengine_desc_get_callback(&desc->txd, &cb);
1984
1985 if (pch->cyclic) {
1986 desc->status = PREP;
1987 list_move_tail(&desc->node, &pch->work_list);
1988 if (power_down) {
1989 pch->active = true;
1990 spin_lock(&pch->thread->dmac->lock);
1991 _start(pch->thread);
1992 spin_unlock(&pch->thread->dmac->lock);
1993 power_down = false;
1994 }
1995 } else {
1996 desc->status = FREE;
1997 list_move_tail(&desc->node, &pch->dmac->desc_pool);
1998 }
1999
2000 dma_descriptor_unmap(&desc->txd);
2001
2002 if (dmaengine_desc_callback_valid(&cb)) {
2003 spin_unlock_irqrestore(&pch->lock, flags);
2004 dmaengine_desc_callback_invoke(&cb, NULL);
2005 spin_lock_irqsave(&pch->lock, flags);
2006 }
2007 }
2008 spin_unlock_irqrestore(&pch->lock, flags);
2009
2010 /* If work list empty, power down */
2011 if (power_down) {
2012 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2013 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2014 }
2015 }
2016
2017 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2018 struct of_dma *ofdma)
2019 {
2020 int count = dma_spec->args_count;
2021 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2022 unsigned int chan_id;
2023
2024 if (!pl330)
2025 return NULL;
2026
2027 if (count != 1)
2028 return NULL;
2029
2030 chan_id = dma_spec->args[0];
2031 if (chan_id >= pl330->num_peripherals)
2032 return NULL;
2033
2034 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2035 }
2036
2037 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2038 {
2039 struct dma_pl330_chan *pch = to_pchan(chan);
2040 struct pl330_dmac *pl330 = pch->dmac;
2041 unsigned long flags;
2042
2043 spin_lock_irqsave(&pl330->lock, flags);
2044
2045 dma_cookie_init(chan);
2046 pch->cyclic = false;
2047
2048 pch->thread = pl330_request_channel(pl330);
2049 if (!pch->thread) {
2050 spin_unlock_irqrestore(&pl330->lock, flags);
2051 return -ENOMEM;
2052 }
2053
2054 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2055
2056 spin_unlock_irqrestore(&pl330->lock, flags);
2057
2058 return 1;
2059 }
2060
2061 /*
2062 * We need the data direction between the DMAC (the dma-mapping "device") and
2063 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2064 */
2065 static enum dma_data_direction
2066 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2067 {
2068 switch (dir) {
2069 case DMA_MEM_TO_DEV:
2070 return DMA_FROM_DEVICE;
2071 case DMA_DEV_TO_MEM:
2072 return DMA_TO_DEVICE;
2073 case DMA_DEV_TO_DEV:
2074 return DMA_BIDIRECTIONAL;
2075 default:
2076 return DMA_NONE;
2077 }
2078 }
2079
2080 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2081 {
2082 if (pch->dir != DMA_NONE)
2083 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2084 1 << pch->burst_sz, pch->dir, 0);
2085 pch->dir = DMA_NONE;
2086 }
2087
2088
2089 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2090 enum dma_transfer_direction dir)
2091 {
2092 struct device *dev = pch->chan.device->dev;
2093 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2094
2095 /* Already mapped for this config? */
2096 if (pch->dir == dma_dir)
2097 return true;
2098
2099 pl330_unprep_slave_fifo(pch);
2100 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2101 1 << pch->burst_sz, dma_dir, 0);
2102 if (dma_mapping_error(dev, pch->fifo_dma))
2103 return false;
2104
2105 pch->dir = dma_dir;
2106 return true;
2107 }
2108
2109 static int pl330_config(struct dma_chan *chan,
2110 struct dma_slave_config *slave_config)
2111 {
2112 struct dma_pl330_chan *pch = to_pchan(chan);
2113
2114 pl330_unprep_slave_fifo(pch);
2115 if (slave_config->direction == DMA_MEM_TO_DEV) {
2116 if (slave_config->dst_addr)
2117 pch->fifo_addr = slave_config->dst_addr;
2118 if (slave_config->dst_addr_width)
2119 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2120 if (slave_config->dst_maxburst)
2121 pch->burst_len = slave_config->dst_maxburst;
2122 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2123 if (slave_config->src_addr)
2124 pch->fifo_addr = slave_config->src_addr;
2125 if (slave_config->src_addr_width)
2126 pch->burst_sz = __ffs(slave_config->src_addr_width);
2127 if (slave_config->src_maxburst)
2128 pch->burst_len = slave_config->src_maxburst;
2129 }
2130
2131 return 0;
2132 }
2133
2134 static int pl330_terminate_all(struct dma_chan *chan)
2135 {
2136 struct dma_pl330_chan *pch = to_pchan(chan);
2137 struct dma_pl330_desc *desc;
2138 unsigned long flags;
2139 struct pl330_dmac *pl330 = pch->dmac;
2140 LIST_HEAD(list);
2141 bool power_down = false;
2142
2143 pm_runtime_get_sync(pl330->ddma.dev);
2144 spin_lock_irqsave(&pch->lock, flags);
2145 spin_lock(&pl330->lock);
2146 _stop(pch->thread);
2147 spin_unlock(&pl330->lock);
2148
2149 pch->thread->req[0].desc = NULL;
2150 pch->thread->req[1].desc = NULL;
2151 pch->thread->req_running = -1;
2152 power_down = pch->active;
2153 pch->active = false;
2154
2155 /* Mark all desc done */
2156 list_for_each_entry(desc, &pch->submitted_list, node) {
2157 desc->status = FREE;
2158 dma_cookie_complete(&desc->txd);
2159 }
2160
2161 list_for_each_entry(desc, &pch->work_list , node) {
2162 desc->status = FREE;
2163 dma_cookie_complete(&desc->txd);
2164 }
2165
2166 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2167 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2168 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2169 spin_unlock_irqrestore(&pch->lock, flags);
2170 pm_runtime_mark_last_busy(pl330->ddma.dev);
2171 if (power_down)
2172 pm_runtime_put_autosuspend(pl330->ddma.dev);
2173 pm_runtime_put_autosuspend(pl330->ddma.dev);
2174
2175 return 0;
2176 }
2177
2178 /*
2179 * We don't support DMA_RESUME command because of hardware
2180 * limitations, so after pausing the channel we cannot restore
2181 * it to active state. We have to terminate channel and setup
2182 * DMA transfer again. This pause feature was implemented to
2183 * allow safely read residue before channel termination.
2184 */
2185 static int pl330_pause(struct dma_chan *chan)
2186 {
2187 struct dma_pl330_chan *pch = to_pchan(chan);
2188 struct pl330_dmac *pl330 = pch->dmac;
2189 unsigned long flags;
2190
2191 pm_runtime_get_sync(pl330->ddma.dev);
2192 spin_lock_irqsave(&pch->lock, flags);
2193
2194 spin_lock(&pl330->lock);
2195 _stop(pch->thread);
2196 spin_unlock(&pl330->lock);
2197
2198 spin_unlock_irqrestore(&pch->lock, flags);
2199 pm_runtime_mark_last_busy(pl330->ddma.dev);
2200 pm_runtime_put_autosuspend(pl330->ddma.dev);
2201
2202 return 0;
2203 }
2204
2205 static void pl330_free_chan_resources(struct dma_chan *chan)
2206 {
2207 struct dma_pl330_chan *pch = to_pchan(chan);
2208 struct pl330_dmac *pl330 = pch->dmac;
2209 unsigned long flags;
2210
2211 tasklet_kill(&pch->task);
2212
2213 pm_runtime_get_sync(pch->dmac->ddma.dev);
2214 spin_lock_irqsave(&pl330->lock, flags);
2215
2216 pl330_release_channel(pch->thread);
2217 pch->thread = NULL;
2218
2219 if (pch->cyclic)
2220 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2221
2222 spin_unlock_irqrestore(&pl330->lock, flags);
2223 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2224 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2225 pl330_unprep_slave_fifo(pch);
2226 }
2227
2228 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2229 struct dma_pl330_desc *desc)
2230 {
2231 struct pl330_thread *thrd = pch->thread;
2232 struct pl330_dmac *pl330 = pch->dmac;
2233 void __iomem *regs = thrd->dmac->base;
2234 u32 val, addr;
2235
2236 pm_runtime_get_sync(pl330->ddma.dev);
2237 val = addr = 0;
2238 if (desc->rqcfg.src_inc) {
2239 val = readl(regs + SA(thrd->id));
2240 addr = desc->px.src_addr;
2241 } else {
2242 val = readl(regs + DA(thrd->id));
2243 addr = desc->px.dst_addr;
2244 }
2245 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2246 pm_runtime_put_autosuspend(pl330->ddma.dev);
2247
2248 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2249 if (!val)
2250 return 0;
2251
2252 return val - addr;
2253 }
2254
2255 static enum dma_status
2256 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2257 struct dma_tx_state *txstate)
2258 {
2259 enum dma_status ret;
2260 unsigned long flags;
2261 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2262 struct dma_pl330_chan *pch = to_pchan(chan);
2263 unsigned int transferred, residual = 0;
2264
2265 ret = dma_cookie_status(chan, cookie, txstate);
2266
2267 if (!txstate)
2268 return ret;
2269
2270 if (ret == DMA_COMPLETE)
2271 goto out;
2272
2273 spin_lock_irqsave(&pch->lock, flags);
2274 spin_lock(&pch->thread->dmac->lock);
2275
2276 if (pch->thread->req_running != -1)
2277 running = pch->thread->req[pch->thread->req_running].desc;
2278
2279 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2280
2281 /* Check in pending list */
2282 list_for_each_entry(desc, &pch->work_list, node) {
2283 if (desc->status == DONE)
2284 transferred = desc->bytes_requested;
2285 else if (running && desc == running)
2286 transferred =
2287 pl330_get_current_xferred_count(pch, desc);
2288 else if (desc->status == BUSY)
2289 /*
2290 * Busy but not running means either just enqueued,
2291 * or finished and not yet marked done
2292 */
2293 if (desc == last_enq)
2294 transferred = 0;
2295 else
2296 transferred = desc->bytes_requested;
2297 else
2298 transferred = 0;
2299 residual += desc->bytes_requested - transferred;
2300 if (desc->txd.cookie == cookie) {
2301 switch (desc->status) {
2302 case DONE:
2303 ret = DMA_COMPLETE;
2304 break;
2305 case PREP:
2306 case BUSY:
2307 ret = DMA_IN_PROGRESS;
2308 break;
2309 default:
2310 WARN_ON(1);
2311 }
2312 break;
2313 }
2314 if (desc->last)
2315 residual = 0;
2316 }
2317 spin_unlock(&pch->thread->dmac->lock);
2318 spin_unlock_irqrestore(&pch->lock, flags);
2319
2320 out:
2321 dma_set_residue(txstate, residual);
2322
2323 return ret;
2324 }
2325
2326 static void pl330_issue_pending(struct dma_chan *chan)
2327 {
2328 struct dma_pl330_chan *pch = to_pchan(chan);
2329 unsigned long flags;
2330
2331 spin_lock_irqsave(&pch->lock, flags);
2332 if (list_empty(&pch->work_list)) {
2333 /*
2334 * Warn on nothing pending. Empty submitted_list may
2335 * break our pm_runtime usage counter as it is
2336 * updated on work_list emptiness status.
2337 */
2338 WARN_ON(list_empty(&pch->submitted_list));
2339 pch->active = true;
2340 pm_runtime_get_sync(pch->dmac->ddma.dev);
2341 }
2342 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2343 spin_unlock_irqrestore(&pch->lock, flags);
2344
2345 pl330_tasklet((unsigned long)pch);
2346 }
2347
2348 /*
2349 * We returned the last one of the circular list of descriptor(s)
2350 * from prep_xxx, so the argument to submit corresponds to the last
2351 * descriptor of the list.
2352 */
2353 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2354 {
2355 struct dma_pl330_desc *desc, *last = to_desc(tx);
2356 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2357 dma_cookie_t cookie;
2358 unsigned long flags;
2359
2360 spin_lock_irqsave(&pch->lock, flags);
2361
2362 /* Assign cookies to all nodes */
2363 while (!list_empty(&last->node)) {
2364 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2365 if (pch->cyclic) {
2366 desc->txd.callback = last->txd.callback;
2367 desc->txd.callback_param = last->txd.callback_param;
2368 }
2369 desc->last = false;
2370
2371 dma_cookie_assign(&desc->txd);
2372
2373 list_move_tail(&desc->node, &pch->submitted_list);
2374 }
2375
2376 last->last = true;
2377 cookie = dma_cookie_assign(&last->txd);
2378 list_add_tail(&last->node, &pch->submitted_list);
2379 spin_unlock_irqrestore(&pch->lock, flags);
2380
2381 return cookie;
2382 }
2383
2384 static inline void _init_desc(struct dma_pl330_desc *desc)
2385 {
2386 desc->rqcfg.swap = SWAP_NO;
2387 desc->rqcfg.scctl = CCTRL0;
2388 desc->rqcfg.dcctl = CCTRL0;
2389 desc->txd.tx_submit = pl330_tx_submit;
2390
2391 INIT_LIST_HEAD(&desc->node);
2392 }
2393
2394 /* Returns the number of descriptors added to the DMAC pool */
2395 static int add_desc(struct list_head *pool, spinlock_t *lock,
2396 gfp_t flg, int count)
2397 {
2398 struct dma_pl330_desc *desc;
2399 unsigned long flags;
2400 int i;
2401
2402 desc = kcalloc(count, sizeof(*desc), flg);
2403 if (!desc)
2404 return 0;
2405
2406 spin_lock_irqsave(lock, flags);
2407
2408 for (i = 0; i < count; i++) {
2409 _init_desc(&desc[i]);
2410 list_add_tail(&desc[i].node, pool);
2411 }
2412
2413 spin_unlock_irqrestore(lock, flags);
2414
2415 return count;
2416 }
2417
2418 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2419 spinlock_t *lock)
2420 {
2421 struct dma_pl330_desc *desc = NULL;
2422 unsigned long flags;
2423
2424 spin_lock_irqsave(lock, flags);
2425
2426 if (!list_empty(pool)) {
2427 desc = list_entry(pool->next,
2428 struct dma_pl330_desc, node);
2429
2430 list_del_init(&desc->node);
2431
2432 desc->status = PREP;
2433 desc->txd.callback = NULL;
2434 }
2435
2436 spin_unlock_irqrestore(lock, flags);
2437
2438 return desc;
2439 }
2440
2441 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2442 {
2443 struct pl330_dmac *pl330 = pch->dmac;
2444 u8 *peri_id = pch->chan.private;
2445 struct dma_pl330_desc *desc;
2446
2447 /* Pluck one desc from the pool of DMAC */
2448 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2449
2450 /* If the DMAC pool is empty, alloc new */
2451 if (!desc) {
2452 DEFINE_SPINLOCK(lock);
2453 LIST_HEAD(pool);
2454
2455 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2456 return NULL;
2457
2458 desc = pluck_desc(&pool, &lock);
2459 WARN_ON(!desc || !list_empty(&pool));
2460 }
2461
2462 /* Initialize the descriptor */
2463 desc->pchan = pch;
2464 desc->txd.cookie = 0;
2465 async_tx_ack(&desc->txd);
2466
2467 desc->peri = peri_id ? pch->chan.chan_id : 0;
2468 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2469
2470 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2471
2472 return desc;
2473 }
2474
2475 static inline void fill_px(struct pl330_xfer *px,
2476 dma_addr_t dst, dma_addr_t src, size_t len)
2477 {
2478 px->bytes = len;
2479 px->dst_addr = dst;
2480 px->src_addr = src;
2481 }
2482
2483 static struct dma_pl330_desc *
2484 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2485 dma_addr_t src, size_t len)
2486 {
2487 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2488
2489 if (!desc) {
2490 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2491 __func__, __LINE__);
2492 return NULL;
2493 }
2494
2495 /*
2496 * Ideally we should lookout for reqs bigger than
2497 * those that can be programmed with 256 bytes of
2498 * MC buffer, but considering a req size is seldom
2499 * going to be word-unaligned and more than 200MB,
2500 * we take it easy.
2501 * Also, should the limit is reached we'd rather
2502 * have the platform increase MC buffer size than
2503 * complicating this API driver.
2504 */
2505 fill_px(&desc->px, dst, src, len);
2506
2507 return desc;
2508 }
2509
2510 /* Call after fixing burst size */
2511 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2512 {
2513 struct dma_pl330_chan *pch = desc->pchan;
2514 struct pl330_dmac *pl330 = pch->dmac;
2515 int burst_len;
2516
2517 burst_len = pl330->pcfg.data_bus_width / 8;
2518 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2519 burst_len >>= desc->rqcfg.brst_size;
2520
2521 /* src/dst_burst_len can't be more than 16 */
2522 if (burst_len > 16)
2523 burst_len = 16;
2524
2525 while (burst_len > 1) {
2526 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2527 break;
2528 burst_len--;
2529 }
2530
2531 return burst_len;
2532 }
2533
2534 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2535 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2536 size_t period_len, enum dma_transfer_direction direction,
2537 unsigned long flags)
2538 {
2539 struct dma_pl330_desc *desc = NULL, *first = NULL;
2540 struct dma_pl330_chan *pch = to_pchan(chan);
2541 struct pl330_dmac *pl330 = pch->dmac;
2542 unsigned int i;
2543 dma_addr_t dst;
2544 dma_addr_t src;
2545
2546 if (len % period_len != 0)
2547 return NULL;
2548
2549 if (!is_slave_direction(direction)) {
2550 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2551 __func__, __LINE__);
2552 return NULL;
2553 }
2554
2555 if (!pl330_prep_slave_fifo(pch, direction))
2556 return NULL;
2557
2558 for (i = 0; i < len / period_len; i++) {
2559 desc = pl330_get_desc(pch);
2560 if (!desc) {
2561 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2562 __func__, __LINE__);
2563
2564 if (!first)
2565 return NULL;
2566
2567 spin_lock_irqsave(&pl330->pool_lock, flags);
2568
2569 while (!list_empty(&first->node)) {
2570 desc = list_entry(first->node.next,
2571 struct dma_pl330_desc, node);
2572 list_move_tail(&desc->node, &pl330->desc_pool);
2573 }
2574
2575 list_move_tail(&first->node, &pl330->desc_pool);
2576
2577 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2578
2579 return NULL;
2580 }
2581
2582 switch (direction) {
2583 case DMA_MEM_TO_DEV:
2584 desc->rqcfg.src_inc = 1;
2585 desc->rqcfg.dst_inc = 0;
2586 src = dma_addr;
2587 dst = pch->fifo_dma;
2588 break;
2589 case DMA_DEV_TO_MEM:
2590 desc->rqcfg.src_inc = 0;
2591 desc->rqcfg.dst_inc = 1;
2592 src = pch->fifo_dma;
2593 dst = dma_addr;
2594 break;
2595 default:
2596 break;
2597 }
2598
2599 desc->rqtype = direction;
2600 desc->rqcfg.brst_size = pch->burst_sz;
2601 desc->rqcfg.brst_len = 1;
2602 desc->bytes_requested = period_len;
2603 fill_px(&desc->px, dst, src, period_len);
2604
2605 if (!first)
2606 first = desc;
2607 else
2608 list_add_tail(&desc->node, &first->node);
2609
2610 dma_addr += period_len;
2611 }
2612
2613 if (!desc)
2614 return NULL;
2615
2616 pch->cyclic = true;
2617 desc->txd.flags = flags;
2618
2619 return &desc->txd;
2620 }
2621
2622 static struct dma_async_tx_descriptor *
2623 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2624 dma_addr_t src, size_t len, unsigned long flags)
2625 {
2626 struct dma_pl330_desc *desc;
2627 struct dma_pl330_chan *pch = to_pchan(chan);
2628 struct pl330_dmac *pl330;
2629 int burst;
2630
2631 if (unlikely(!pch || !len))
2632 return NULL;
2633
2634 pl330 = pch->dmac;
2635
2636 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2637 if (!desc)
2638 return NULL;
2639
2640 desc->rqcfg.src_inc = 1;
2641 desc->rqcfg.dst_inc = 1;
2642 desc->rqtype = DMA_MEM_TO_MEM;
2643
2644 /* Select max possible burst size */
2645 burst = pl330->pcfg.data_bus_width / 8;
2646
2647 /*
2648 * Make sure we use a burst size that aligns with all the memcpy
2649 * parameters because our DMA programming algorithm doesn't cope with
2650 * transfers which straddle an entry in the DMA device's MFIFO.
2651 */
2652 while ((src | dst | len) & (burst - 1))
2653 burst /= 2;
2654
2655 desc->rqcfg.brst_size = 0;
2656 while (burst != (1 << desc->rqcfg.brst_size))
2657 desc->rqcfg.brst_size++;
2658
2659 /*
2660 * If burst size is smaller than bus width then make sure we only
2661 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2662 */
2663 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2664 desc->rqcfg.brst_len = 1;
2665
2666 desc->rqcfg.brst_len = get_burst_len(desc, len);
2667 desc->bytes_requested = len;
2668
2669 desc->txd.flags = flags;
2670
2671 return &desc->txd;
2672 }
2673
2674 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2675 struct dma_pl330_desc *first)
2676 {
2677 unsigned long flags;
2678 struct dma_pl330_desc *desc;
2679
2680 if (!first)
2681 return;
2682
2683 spin_lock_irqsave(&pl330->pool_lock, flags);
2684
2685 while (!list_empty(&first->node)) {
2686 desc = list_entry(first->node.next,
2687 struct dma_pl330_desc, node);
2688 list_move_tail(&desc->node, &pl330->desc_pool);
2689 }
2690
2691 list_move_tail(&first->node, &pl330->desc_pool);
2692
2693 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2694 }
2695
2696 static struct dma_async_tx_descriptor *
2697 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2698 unsigned int sg_len, enum dma_transfer_direction direction,
2699 unsigned long flg, void *context)
2700 {
2701 struct dma_pl330_desc *first, *desc = NULL;
2702 struct dma_pl330_chan *pch = to_pchan(chan);
2703 struct scatterlist *sg;
2704 int i;
2705
2706 if (unlikely(!pch || !sgl || !sg_len))
2707 return NULL;
2708
2709 if (!pl330_prep_slave_fifo(pch, direction))
2710 return NULL;
2711
2712 first = NULL;
2713
2714 for_each_sg(sgl, sg, sg_len, i) {
2715
2716 desc = pl330_get_desc(pch);
2717 if (!desc) {
2718 struct pl330_dmac *pl330 = pch->dmac;
2719
2720 dev_err(pch->dmac->ddma.dev,
2721 "%s:%d Unable to fetch desc\n",
2722 __func__, __LINE__);
2723 __pl330_giveback_desc(pl330, first);
2724
2725 return NULL;
2726 }
2727
2728 if (!first)
2729 first = desc;
2730 else
2731 list_add_tail(&desc->node, &first->node);
2732
2733 if (direction == DMA_MEM_TO_DEV) {
2734 desc->rqcfg.src_inc = 1;
2735 desc->rqcfg.dst_inc = 0;
2736 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2737 sg_dma_len(sg));
2738 } else {
2739 desc->rqcfg.src_inc = 0;
2740 desc->rqcfg.dst_inc = 1;
2741 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2742 sg_dma_len(sg));
2743 }
2744
2745 desc->rqcfg.brst_size = pch->burst_sz;
2746 desc->rqcfg.brst_len = 1;
2747 desc->rqtype = direction;
2748 desc->bytes_requested = sg_dma_len(sg);
2749 }
2750
2751 /* Return the last desc in the chain */
2752 desc->txd.flags = flg;
2753 return &desc->txd;
2754 }
2755
2756 static irqreturn_t pl330_irq_handler(int irq, void *data)
2757 {
2758 if (pl330_update(data))
2759 return IRQ_HANDLED;
2760 else
2761 return IRQ_NONE;
2762 }
2763
2764 #define PL330_DMA_BUSWIDTHS \
2765 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2766 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2767 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2768 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2769 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2770
2771 /*
2772 * Runtime PM callbacks are provided by amba/bus.c driver.
2773 *
2774 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2775 * bus driver will only disable/enable the clock in runtime PM callbacks.
2776 */
2777 static int __maybe_unused pl330_suspend(struct device *dev)
2778 {
2779 struct amba_device *pcdev = to_amba_device(dev);
2780
2781 pm_runtime_disable(dev);
2782
2783 if (!pm_runtime_status_suspended(dev)) {
2784 /* amba did not disable the clock */
2785 amba_pclk_disable(pcdev);
2786 }
2787 amba_pclk_unprepare(pcdev);
2788
2789 return 0;
2790 }
2791
2792 static int __maybe_unused pl330_resume(struct device *dev)
2793 {
2794 struct amba_device *pcdev = to_amba_device(dev);
2795 int ret;
2796
2797 ret = amba_pclk_prepare(pcdev);
2798 if (ret)
2799 return ret;
2800
2801 if (!pm_runtime_status_suspended(dev))
2802 ret = amba_pclk_enable(pcdev);
2803
2804 pm_runtime_enable(dev);
2805
2806 return ret;
2807 }
2808
2809 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2810
2811 static int
2812 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2813 {
2814 struct pl330_config *pcfg;
2815 struct pl330_dmac *pl330;
2816 struct dma_pl330_chan *pch, *_p;
2817 struct dma_device *pd;
2818 struct resource *res;
2819 int i, ret, irq;
2820 int num_chan;
2821 struct device_node *np = adev->dev.of_node;
2822
2823 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2824 if (ret)
2825 return ret;
2826
2827 /* Allocate a new DMAC and its Channels */
2828 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2829 if (!pl330)
2830 return -ENOMEM;
2831
2832 pd = &pl330->ddma;
2833 pd->dev = &adev->dev;
2834
2835 pl330->mcbufsz = 0;
2836
2837 /* get quirk */
2838 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2839 if (of_property_read_bool(np, of_quirks[i].quirk))
2840 pl330->quirks |= of_quirks[i].id;
2841
2842 res = &adev->res;
2843 pl330->base = devm_ioremap_resource(&adev->dev, res);
2844 if (IS_ERR(pl330->base))
2845 return PTR_ERR(pl330->base);
2846
2847 amba_set_drvdata(adev, pl330);
2848
2849 for (i = 0; i < AMBA_NR_IRQS; i++) {
2850 irq = adev->irq[i];
2851 if (irq) {
2852 ret = devm_request_irq(&adev->dev, irq,
2853 pl330_irq_handler, 0,
2854 dev_name(&adev->dev), pl330);
2855 if (ret)
2856 return ret;
2857 } else {
2858 break;
2859 }
2860 }
2861
2862 pcfg = &pl330->pcfg;
2863
2864 pcfg->periph_id = adev->periphid;
2865 ret = pl330_add(pl330);
2866 if (ret)
2867 return ret;
2868
2869 INIT_LIST_HEAD(&pl330->desc_pool);
2870 spin_lock_init(&pl330->pool_lock);
2871
2872 /* Create a descriptor pool of default size */
2873 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
2874 GFP_KERNEL, NR_DEFAULT_DESC))
2875 dev_warn(&adev->dev, "unable to allocate desc\n");
2876
2877 INIT_LIST_HEAD(&pd->channels);
2878
2879 /* Initialize channel parameters */
2880 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2881
2882 pl330->num_peripherals = num_chan;
2883
2884 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2885 if (!pl330->peripherals) {
2886 ret = -ENOMEM;
2887 goto probe_err2;
2888 }
2889
2890 for (i = 0; i < num_chan; i++) {
2891 pch = &pl330->peripherals[i];
2892
2893 pch->chan.private = adev->dev.of_node;
2894 INIT_LIST_HEAD(&pch->submitted_list);
2895 INIT_LIST_HEAD(&pch->work_list);
2896 INIT_LIST_HEAD(&pch->completed_list);
2897 spin_lock_init(&pch->lock);
2898 pch->thread = NULL;
2899 pch->chan.device = pd;
2900 pch->dmac = pl330;
2901 pch->dir = DMA_NONE;
2902
2903 /* Add the channel to the DMAC list */
2904 list_add_tail(&pch->chan.device_node, &pd->channels);
2905 }
2906
2907 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2908 if (pcfg->num_peri) {
2909 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2910 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2911 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2912 }
2913
2914 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2915 pd->device_free_chan_resources = pl330_free_chan_resources;
2916 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2917 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2918 pd->device_tx_status = pl330_tx_status;
2919 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2920 pd->device_config = pl330_config;
2921 pd->device_pause = pl330_pause;
2922 pd->device_terminate_all = pl330_terminate_all;
2923 pd->device_issue_pending = pl330_issue_pending;
2924 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2925 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2926 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2927 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2928 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2929 1 : PL330_MAX_BURST);
2930
2931 ret = dma_async_device_register(pd);
2932 if (ret) {
2933 dev_err(&adev->dev, "unable to register DMAC\n");
2934 goto probe_err3;
2935 }
2936
2937 if (adev->dev.of_node) {
2938 ret = of_dma_controller_register(adev->dev.of_node,
2939 of_dma_pl330_xlate, pl330);
2940 if (ret) {
2941 dev_err(&adev->dev,
2942 "unable to register DMA to the generic DT DMA helpers\n");
2943 }
2944 }
2945
2946 adev->dev.dma_parms = &pl330->dma_parms;
2947
2948 /*
2949 * This is the limit for transfers with a buswidth of 1, larger
2950 * buswidths will have larger limits.
2951 */
2952 ret = dma_set_max_seg_size(&adev->dev, 1900800);
2953 if (ret)
2954 dev_err(&adev->dev, "unable to set the seg size\n");
2955
2956
2957 dev_info(&adev->dev,
2958 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2959 dev_info(&adev->dev,
2960 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2961 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2962 pcfg->num_peri, pcfg->num_events);
2963
2964 pm_runtime_irq_safe(&adev->dev);
2965 pm_runtime_use_autosuspend(&adev->dev);
2966 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2967 pm_runtime_mark_last_busy(&adev->dev);
2968 pm_runtime_put_autosuspend(&adev->dev);
2969
2970 return 0;
2971 probe_err3:
2972 /* Idle the DMAC */
2973 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
2974 chan.device_node) {
2975
2976 /* Remove the channel */
2977 list_del(&pch->chan.device_node);
2978
2979 /* Flush the channel */
2980 if (pch->thread) {
2981 pl330_terminate_all(&pch->chan);
2982 pl330_free_chan_resources(&pch->chan);
2983 }
2984 }
2985 probe_err2:
2986 pl330_del(pl330);
2987
2988 return ret;
2989 }
2990
2991 static int pl330_remove(struct amba_device *adev)
2992 {
2993 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
2994 struct dma_pl330_chan *pch, *_p;
2995 int i, irq;
2996
2997 pm_runtime_get_noresume(pl330->ddma.dev);
2998
2999 if (adev->dev.of_node)
3000 of_dma_controller_free(adev->dev.of_node);
3001
3002 for (i = 0; i < AMBA_NR_IRQS; i++) {
3003 irq = adev->irq[i];
3004 if (irq)
3005 devm_free_irq(&adev->dev, irq, pl330);
3006 }
3007
3008 dma_async_device_unregister(&pl330->ddma);
3009
3010 /* Idle the DMAC */
3011 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3012 chan.device_node) {
3013
3014 /* Remove the channel */
3015 list_del(&pch->chan.device_node);
3016
3017 /* Flush the channel */
3018 if (pch->thread) {
3019 pl330_terminate_all(&pch->chan);
3020 pl330_free_chan_resources(&pch->chan);
3021 }
3022 }
3023
3024 pl330_del(pl330);
3025
3026 return 0;
3027 }
3028
3029 static const struct amba_id pl330_ids[] = {
3030 {
3031 .id = 0x00041330,
3032 .mask = 0x000fffff,
3033 },
3034 { 0, 0 },
3035 };
3036
3037 MODULE_DEVICE_TABLE(amba, pl330_ids);
3038
3039 static struct amba_driver pl330_driver = {
3040 .drv = {
3041 .owner = THIS_MODULE,
3042 .name = "dma-pl330",
3043 .pm = &pl330_pm,
3044 },
3045 .id_table = pl330_ids,
3046 .probe = pl330_probe,
3047 .remove = pl330_remove,
3048 };
3049
3050 module_amba_driver(pl330_driver);
3051
3052 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3053 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3054 MODULE_LICENSE("GPL");