]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/pl330.c
Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30 #include <linux/pm_runtime.h>
31
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN 8
34 #define PL330_MAX_IRQS 32
35 #define PL330_MAX_PERI 32
36 #define PL330_MAX_BURST 16
37
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39
40 enum pl330_cachectrl {
41 CCTRL0, /* Noncacheable and nonbufferable */
42 CCTRL1, /* Bufferable only */
43 CCTRL2, /* Cacheable, but do not allocate */
44 CCTRL3, /* Cacheable and bufferable, but do not allocate */
45 INVALID1, /* AWCACHE = 0x1000 */
46 INVALID2,
47 CCTRL6, /* Cacheable write-through, allocate on writes only */
48 CCTRL7, /* Cacheable write-back, allocate on writes only */
49 };
50
51 enum pl330_byteswap {
52 SWAP_NO,
53 SWAP_2,
54 SWAP_4,
55 SWAP_8,
56 SWAP_16,
57 };
58
59 /* Register and Bit field Definitions */
60 #define DS 0x0
61 #define DS_ST_STOP 0x0
62 #define DS_ST_EXEC 0x1
63 #define DS_ST_CMISS 0x2
64 #define DS_ST_UPDTPC 0x3
65 #define DS_ST_WFE 0x4
66 #define DS_ST_ATBRR 0x5
67 #define DS_ST_QBUSY 0x6
68 #define DS_ST_WFP 0x7
69 #define DS_ST_KILL 0x8
70 #define DS_ST_CMPLT 0x9
71 #define DS_ST_FLTCMP 0xe
72 #define DS_ST_FAULT 0xf
73
74 #define DPC 0x4
75 #define INTEN 0x20
76 #define ES 0x24
77 #define INTSTATUS 0x28
78 #define INTCLR 0x2c
79 #define FSM 0x30
80 #define FSC 0x34
81 #define FTM 0x38
82
83 #define _FTC 0x40
84 #define FTC(n) (_FTC + (n)*0x4)
85
86 #define _CS 0x100
87 #define CS(n) (_CS + (n)*0x8)
88 #define CS_CNS (1 << 21)
89
90 #define _CPC 0x104
91 #define CPC(n) (_CPC + (n)*0x8)
92
93 #define _SA 0x400
94 #define SA(n) (_SA + (n)*0x20)
95
96 #define _DA 0x404
97 #define DA(n) (_DA + (n)*0x20)
98
99 #define _CC 0x408
100 #define CC(n) (_CC + (n)*0x20)
101
102 #define CC_SRCINC (1 << 0)
103 #define CC_DSTINC (1 << 14)
104 #define CC_SRCPRI (1 << 8)
105 #define CC_DSTPRI (1 << 22)
106 #define CC_SRCNS (1 << 9)
107 #define CC_DSTNS (1 << 23)
108 #define CC_SRCIA (1 << 10)
109 #define CC_DSTIA (1 << 24)
110 #define CC_SRCBRSTLEN_SHFT 4
111 #define CC_DSTBRSTLEN_SHFT 18
112 #define CC_SRCBRSTSIZE_SHFT 1
113 #define CC_DSTBRSTSIZE_SHFT 15
114 #define CC_SRCCCTRL_SHFT 11
115 #define CC_SRCCCTRL_MASK 0x7
116 #define CC_DSTCCTRL_SHFT 25
117 #define CC_DRCCCTRL_MASK 0x7
118 #define CC_SWAP_SHFT 28
119
120 #define _LC0 0x40c
121 #define LC0(n) (_LC0 + (n)*0x20)
122
123 #define _LC1 0x410
124 #define LC1(n) (_LC1 + (n)*0x20)
125
126 #define DBGSTATUS 0xd00
127 #define DBG_BUSY (1 << 0)
128
129 #define DBGCMD 0xd04
130 #define DBGINST0 0xd08
131 #define DBGINST1 0xd0c
132
133 #define CR0 0xe00
134 #define CR1 0xe04
135 #define CR2 0xe08
136 #define CR3 0xe0c
137 #define CR4 0xe10
138 #define CRD 0xe14
139
140 #define PERIPH_ID 0xfe0
141 #define PERIPH_REV_SHIFT 20
142 #define PERIPH_REV_MASK 0xf
143 #define PERIPH_REV_R0P0 0
144 #define PERIPH_REV_R1P0 1
145 #define PERIPH_REV_R1P1 2
146
147 #define CR0_PERIPH_REQ_SET (1 << 0)
148 #define CR0_BOOT_EN_SET (1 << 1)
149 #define CR0_BOOT_MAN_NS (1 << 2)
150 #define CR0_NUM_CHANS_SHIFT 4
151 #define CR0_NUM_CHANS_MASK 0x7
152 #define CR0_NUM_PERIPH_SHIFT 12
153 #define CR0_NUM_PERIPH_MASK 0x1f
154 #define CR0_NUM_EVENTS_SHIFT 17
155 #define CR0_NUM_EVENTS_MASK 0x1f
156
157 #define CR1_ICACHE_LEN_SHIFT 0
158 #define CR1_ICACHE_LEN_MASK 0x7
159 #define CR1_NUM_ICACHELINES_SHIFT 4
160 #define CR1_NUM_ICACHELINES_MASK 0xf
161
162 #define CRD_DATA_WIDTH_SHIFT 0
163 #define CRD_DATA_WIDTH_MASK 0x7
164 #define CRD_WR_CAP_SHIFT 4
165 #define CRD_WR_CAP_MASK 0x7
166 #define CRD_WR_Q_DEP_SHIFT 8
167 #define CRD_WR_Q_DEP_MASK 0xf
168 #define CRD_RD_CAP_SHIFT 12
169 #define CRD_RD_CAP_MASK 0x7
170 #define CRD_RD_Q_DEP_SHIFT 16
171 #define CRD_RD_Q_DEP_MASK 0xf
172 #define CRD_DATA_BUFF_SHIFT 20
173 #define CRD_DATA_BUFF_MASK 0x3ff
174
175 #define PART 0x330
176 #define DESIGNER 0x41
177 #define REVISION 0x0
178 #define INTEG_CFG 0x0
179 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
180
181 #define PL330_STATE_STOPPED (1 << 0)
182 #define PL330_STATE_EXECUTING (1 << 1)
183 #define PL330_STATE_WFE (1 << 2)
184 #define PL330_STATE_FAULTING (1 << 3)
185 #define PL330_STATE_COMPLETING (1 << 4)
186 #define PL330_STATE_WFP (1 << 5)
187 #define PL330_STATE_KILLING (1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
189 #define PL330_STATE_CACHEMISS (1 << 8)
190 #define PL330_STATE_UPDTPC (1 << 9)
191 #define PL330_STATE_ATBARRIER (1 << 10)
192 #define PL330_STATE_QUEUEBUSY (1 << 11)
193 #define PL330_STATE_INVALID (1 << 15)
194
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 | PL330_STATE_WFE | PL330_STATE_FAULTING)
197
198 #define CMD_DMAADDH 0x54
199 #define CMD_DMAEND 0x00
200 #define CMD_DMAFLUSHP 0x35
201 #define CMD_DMAGO 0xa0
202 #define CMD_DMALD 0x04
203 #define CMD_DMALDP 0x25
204 #define CMD_DMALP 0x20
205 #define CMD_DMALPEND 0x28
206 #define CMD_DMAKILL 0x01
207 #define CMD_DMAMOV 0xbc
208 #define CMD_DMANOP 0x18
209 #define CMD_DMARMB 0x12
210 #define CMD_DMASEV 0x34
211 #define CMD_DMAST 0x08
212 #define CMD_DMASTP 0x29
213 #define CMD_DMASTZ 0x0c
214 #define CMD_DMAWFE 0x36
215 #define CMD_DMAWFP 0x30
216 #define CMD_DMAWMB 0x13
217
218 #define SZ_DMAADDH 3
219 #define SZ_DMAEND 1
220 #define SZ_DMAFLUSHP 2
221 #define SZ_DMALD 1
222 #define SZ_DMALDP 2
223 #define SZ_DMALP 2
224 #define SZ_DMALPEND 2
225 #define SZ_DMAKILL 1
226 #define SZ_DMAMOV 6
227 #define SZ_DMANOP 1
228 #define SZ_DMARMB 1
229 #define SZ_DMASEV 2
230 #define SZ_DMAST 1
231 #define SZ_DMASTP 2
232 #define SZ_DMASTZ 1
233 #define SZ_DMAWFE 2
234 #define SZ_DMAWFP 2
235 #define SZ_DMAWMB 1
236 #define SZ_DMAGO 6
237
238 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240
241 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243
244 /*
245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246 * at 1byte/burst for P<->M and M<->M respectively.
247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248 * should be enough for P<->M and M<->M respectively.
249 */
250 #define MCODE_BUFF_PER_REQ 256
251
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
254
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...) do { \
258 printk("%x:", cmd_line); \
259 printk(x); \
260 cmd_line += off; \
261 } while (0)
262 #define PL330_DBGMC_START(addr) (cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
265 #define PL330_DBGMC_START(addr) do {} while (0)
266 #endif
267
268 /* The number of default descriptors */
269
270 #define NR_DEFAULT_DESC 16
271
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 u32 periph_id;
278 #define DMAC_MODE_NS (1 << 0)
279 unsigned int mode;
280 unsigned int data_bus_width:10; /* In number of bits */
281 unsigned int data_buf_dep:11;
282 unsigned int num_chan:4;
283 unsigned int num_peri:6;
284 u32 peri_ns;
285 unsigned int num_events:6;
286 u32 irq_ns;
287 };
288
289 /**
290 * Request Configuration.
291 * The PL330 core does not modify this and uses the last
292 * working configuration if the request doesn't provide any.
293 *
294 * The Client may want to provide this info only for the
295 * first request and a request with new settings.
296 */
297 struct pl330_reqcfg {
298 /* Address Incrementing */
299 unsigned dst_inc:1;
300 unsigned src_inc:1;
301
302 /*
303 * For now, the SRC & DST protection levels
304 * and burst size/length are assumed same.
305 */
306 bool nonsecure;
307 bool privileged;
308 bool insnaccess;
309 unsigned brst_len:5;
310 unsigned brst_size:3; /* in power of 2 */
311
312 enum pl330_cachectrl dcctl;
313 enum pl330_cachectrl scctl;
314 enum pl330_byteswap swap;
315 struct pl330_config *pcfg;
316 };
317
318 /*
319 * One cycle of DMAC operation.
320 * There may be more than one xfer in a request.
321 */
322 struct pl330_xfer {
323 u32 src_addr;
324 u32 dst_addr;
325 /* Size to xfer */
326 u32 bytes;
327 };
328
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 /* The all xfers in the request were success. */
332 PL330_ERR_NONE,
333 /* If req aborted due to global error. */
334 PL330_ERR_ABORT,
335 /* If req failed due to problem with Channel. */
336 PL330_ERR_FAIL,
337 };
338
339 enum dmamov_dst {
340 SAR = 0,
341 CCR,
342 DAR,
343 };
344
345 enum pl330_dst {
346 SRC = 0,
347 DST,
348 };
349
350 enum pl330_cond {
351 SINGLE,
352 BURST,
353 ALWAYS,
354 };
355
356 struct dma_pl330_desc;
357
358 struct _pl330_req {
359 u32 mc_bus;
360 void *mc_cpu;
361 struct dma_pl330_desc *desc;
362 };
363
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 bool reset_dmac;
367 bool reset_mngr;
368 u8 reset_chan;
369 };
370
371 /* A DMAC Thread */
372 struct pl330_thread {
373 u8 id;
374 int ev;
375 /* If the channel is not yet acquired by any client */
376 bool free;
377 /* Parent DMAC */
378 struct pl330_dmac *dmac;
379 /* Only two at a time */
380 struct _pl330_req req[2];
381 /* Index of the last enqueued request */
382 unsigned lstenq;
383 /* Index of the last submitted request or -1 if the DMA is stopped */
384 int req_running;
385 };
386
387 enum pl330_dmac_state {
388 UNINIT,
389 INIT,
390 DYING,
391 };
392
393 enum desc_status {
394 /* In the DMAC pool */
395 FREE,
396 /*
397 * Allocated to some channel during prep_xxx
398 * Also may be sitting on the work_list.
399 */
400 PREP,
401 /*
402 * Sitting on the work_list and already submitted
403 * to the PL330 core. Not more than two descriptors
404 * of a channel can be BUSY at any time.
405 */
406 BUSY,
407 /*
408 * Sitting on the channel work_list but xfer done
409 * by PL330 core
410 */
411 DONE,
412 };
413
414 struct dma_pl330_chan {
415 /* Schedule desc completion */
416 struct tasklet_struct task;
417
418 /* DMA-Engine Channel */
419 struct dma_chan chan;
420
421 /* List of submitted descriptors */
422 struct list_head submitted_list;
423 /* List of issued descriptors */
424 struct list_head work_list;
425 /* List of completed descriptors */
426 struct list_head completed_list;
427
428 /* Pointer to the DMAC that manages this channel,
429 * NULL if the channel is available to be acquired.
430 * As the parent, this DMAC also provides descriptors
431 * to the channel.
432 */
433 struct pl330_dmac *dmac;
434
435 /* To protect channel manipulation */
436 spinlock_t lock;
437
438 /*
439 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 * available.
441 */
442 struct pl330_thread *thread;
443
444 /* For D-to-M and M-to-D channels */
445 int burst_sz; /* the peripheral fifo width */
446 int burst_len; /* the number of burst */
447 dma_addr_t fifo_addr;
448
449 /* for cyclic capability */
450 bool cyclic;
451
452 /* for runtime pm tracking */
453 bool active;
454 };
455
456 struct pl330_dmac {
457 /* DMA-Engine Device */
458 struct dma_device ddma;
459
460 /* Holds info about sg limitations */
461 struct device_dma_parameters dma_parms;
462
463 /* Pool of descriptors available for the DMAC's channels */
464 struct list_head desc_pool;
465 /* To protect desc_pool manipulation */
466 spinlock_t pool_lock;
467
468 /* Size of MicroCode buffers for each channel. */
469 unsigned mcbufsz;
470 /* ioremap'ed address of PL330 registers. */
471 void __iomem *base;
472 /* Populated by the PL330 core driver during pl330_add */
473 struct pl330_config pcfg;
474
475 spinlock_t lock;
476 /* Maximum possible events/irqs */
477 int events[32];
478 /* BUS address of MicroCode buffer */
479 dma_addr_t mcode_bus;
480 /* CPU address of MicroCode buffer */
481 void *mcode_cpu;
482 /* List of all Channel threads */
483 struct pl330_thread *channels;
484 /* Pointer to the MANAGER thread */
485 struct pl330_thread *manager;
486 /* To handle bad news in interrupt */
487 struct tasklet_struct tasks;
488 struct _pl330_tbd dmac_tbd;
489 /* State of DMAC operation */
490 enum pl330_dmac_state state;
491 /* Holds list of reqs with due callbacks */
492 struct list_head req_done;
493
494 /* Peripheral channels connected to this DMAC */
495 unsigned int num_peripherals;
496 struct dma_pl330_chan *peripherals; /* keep at end */
497 int quirks;
498 };
499
500 static struct pl330_of_quirks {
501 char *quirk;
502 int id;
503 } of_quirks[] = {
504 {
505 .quirk = "arm,pl330-broken-no-flushp",
506 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
507 }
508 };
509
510 struct dma_pl330_desc {
511 /* To attach to a queue as child */
512 struct list_head node;
513
514 /* Descriptor for the DMA Engine API */
515 struct dma_async_tx_descriptor txd;
516
517 /* Xfer for PL330 core */
518 struct pl330_xfer px;
519
520 struct pl330_reqcfg rqcfg;
521
522 enum desc_status status;
523
524 int bytes_requested;
525 bool last;
526
527 /* The channel which currently holds this desc */
528 struct dma_pl330_chan *pchan;
529
530 enum dma_transfer_direction rqtype;
531 /* Index of peripheral for the xfer. */
532 unsigned peri:5;
533 /* Hook to attach to DMAC's list of reqs with due callback */
534 struct list_head rqd;
535 };
536
537 struct _xfer_spec {
538 u32 ccr;
539 struct dma_pl330_desc *desc;
540 };
541
542 static inline bool _queue_empty(struct pl330_thread *thrd)
543 {
544 return thrd->req[0].desc == NULL && thrd->req[1].desc == NULL;
545 }
546
547 static inline bool _queue_full(struct pl330_thread *thrd)
548 {
549 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
550 }
551
552 static inline bool is_manager(struct pl330_thread *thrd)
553 {
554 return thrd->dmac->manager == thrd;
555 }
556
557 /* If manager of the thread is in Non-Secure mode */
558 static inline bool _manager_ns(struct pl330_thread *thrd)
559 {
560 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
561 }
562
563 static inline u32 get_revision(u32 periph_id)
564 {
565 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
566 }
567
568 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
569 enum pl330_dst da, u16 val)
570 {
571 if (dry_run)
572 return SZ_DMAADDH;
573
574 buf[0] = CMD_DMAADDH;
575 buf[0] |= (da << 1);
576 buf[1] = val;
577 buf[2] = val >> 8;
578
579 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
580 da == 1 ? "DA" : "SA", val);
581
582 return SZ_DMAADDH;
583 }
584
585 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
586 {
587 if (dry_run)
588 return SZ_DMAEND;
589
590 buf[0] = CMD_DMAEND;
591
592 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
593
594 return SZ_DMAEND;
595 }
596
597 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
598 {
599 if (dry_run)
600 return SZ_DMAFLUSHP;
601
602 buf[0] = CMD_DMAFLUSHP;
603
604 peri &= 0x1f;
605 peri <<= 3;
606 buf[1] = peri;
607
608 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
609
610 return SZ_DMAFLUSHP;
611 }
612
613 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
614 {
615 if (dry_run)
616 return SZ_DMALD;
617
618 buf[0] = CMD_DMALD;
619
620 if (cond == SINGLE)
621 buf[0] |= (0 << 1) | (1 << 0);
622 else if (cond == BURST)
623 buf[0] |= (1 << 1) | (1 << 0);
624
625 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
626 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
627
628 return SZ_DMALD;
629 }
630
631 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
632 enum pl330_cond cond, u8 peri)
633 {
634 if (dry_run)
635 return SZ_DMALDP;
636
637 buf[0] = CMD_DMALDP;
638
639 if (cond == BURST)
640 buf[0] |= (1 << 1);
641
642 peri &= 0x1f;
643 peri <<= 3;
644 buf[1] = peri;
645
646 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
647 cond == SINGLE ? 'S' : 'B', peri >> 3);
648
649 return SZ_DMALDP;
650 }
651
652 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
653 unsigned loop, u8 cnt)
654 {
655 if (dry_run)
656 return SZ_DMALP;
657
658 buf[0] = CMD_DMALP;
659
660 if (loop)
661 buf[0] |= (1 << 1);
662
663 cnt--; /* DMAC increments by 1 internally */
664 buf[1] = cnt;
665
666 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
667
668 return SZ_DMALP;
669 }
670
671 struct _arg_LPEND {
672 enum pl330_cond cond;
673 bool forever;
674 unsigned loop;
675 u8 bjump;
676 };
677
678 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
679 const struct _arg_LPEND *arg)
680 {
681 enum pl330_cond cond = arg->cond;
682 bool forever = arg->forever;
683 unsigned loop = arg->loop;
684 u8 bjump = arg->bjump;
685
686 if (dry_run)
687 return SZ_DMALPEND;
688
689 buf[0] = CMD_DMALPEND;
690
691 if (loop)
692 buf[0] |= (1 << 2);
693
694 if (!forever)
695 buf[0] |= (1 << 4);
696
697 if (cond == SINGLE)
698 buf[0] |= (0 << 1) | (1 << 0);
699 else if (cond == BURST)
700 buf[0] |= (1 << 1) | (1 << 0);
701
702 buf[1] = bjump;
703
704 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
705 forever ? "FE" : "END",
706 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
707 loop ? '1' : '0',
708 bjump);
709
710 return SZ_DMALPEND;
711 }
712
713 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
714 {
715 if (dry_run)
716 return SZ_DMAKILL;
717
718 buf[0] = CMD_DMAKILL;
719
720 return SZ_DMAKILL;
721 }
722
723 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
724 enum dmamov_dst dst, u32 val)
725 {
726 if (dry_run)
727 return SZ_DMAMOV;
728
729 buf[0] = CMD_DMAMOV;
730 buf[1] = dst;
731 buf[2] = val;
732 buf[3] = val >> 8;
733 buf[4] = val >> 16;
734 buf[5] = val >> 24;
735
736 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
737 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
738
739 return SZ_DMAMOV;
740 }
741
742 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
743 {
744 if (dry_run)
745 return SZ_DMANOP;
746
747 buf[0] = CMD_DMANOP;
748
749 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
750
751 return SZ_DMANOP;
752 }
753
754 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
755 {
756 if (dry_run)
757 return SZ_DMARMB;
758
759 buf[0] = CMD_DMARMB;
760
761 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
762
763 return SZ_DMARMB;
764 }
765
766 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
767 {
768 if (dry_run)
769 return SZ_DMASEV;
770
771 buf[0] = CMD_DMASEV;
772
773 ev &= 0x1f;
774 ev <<= 3;
775 buf[1] = ev;
776
777 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
778
779 return SZ_DMASEV;
780 }
781
782 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
783 {
784 if (dry_run)
785 return SZ_DMAST;
786
787 buf[0] = CMD_DMAST;
788
789 if (cond == SINGLE)
790 buf[0] |= (0 << 1) | (1 << 0);
791 else if (cond == BURST)
792 buf[0] |= (1 << 1) | (1 << 0);
793
794 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
795 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
796
797 return SZ_DMAST;
798 }
799
800 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
801 enum pl330_cond cond, u8 peri)
802 {
803 if (dry_run)
804 return SZ_DMASTP;
805
806 buf[0] = CMD_DMASTP;
807
808 if (cond == BURST)
809 buf[0] |= (1 << 1);
810
811 peri &= 0x1f;
812 peri <<= 3;
813 buf[1] = peri;
814
815 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
816 cond == SINGLE ? 'S' : 'B', peri >> 3);
817
818 return SZ_DMASTP;
819 }
820
821 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
822 {
823 if (dry_run)
824 return SZ_DMASTZ;
825
826 buf[0] = CMD_DMASTZ;
827
828 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
829
830 return SZ_DMASTZ;
831 }
832
833 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
834 unsigned invalidate)
835 {
836 if (dry_run)
837 return SZ_DMAWFE;
838
839 buf[0] = CMD_DMAWFE;
840
841 ev &= 0x1f;
842 ev <<= 3;
843 buf[1] = ev;
844
845 if (invalidate)
846 buf[1] |= (1 << 1);
847
848 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
849 ev >> 3, invalidate ? ", I" : "");
850
851 return SZ_DMAWFE;
852 }
853
854 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
855 enum pl330_cond cond, u8 peri)
856 {
857 if (dry_run)
858 return SZ_DMAWFP;
859
860 buf[0] = CMD_DMAWFP;
861
862 if (cond == SINGLE)
863 buf[0] |= (0 << 1) | (0 << 0);
864 else if (cond == BURST)
865 buf[0] |= (1 << 1) | (0 << 0);
866 else
867 buf[0] |= (0 << 1) | (1 << 0);
868
869 peri &= 0x1f;
870 peri <<= 3;
871 buf[1] = peri;
872
873 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
874 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
875
876 return SZ_DMAWFP;
877 }
878
879 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
880 {
881 if (dry_run)
882 return SZ_DMAWMB;
883
884 buf[0] = CMD_DMAWMB;
885
886 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
887
888 return SZ_DMAWMB;
889 }
890
891 struct _arg_GO {
892 u8 chan;
893 u32 addr;
894 unsigned ns;
895 };
896
897 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
898 const struct _arg_GO *arg)
899 {
900 u8 chan = arg->chan;
901 u32 addr = arg->addr;
902 unsigned ns = arg->ns;
903
904 if (dry_run)
905 return SZ_DMAGO;
906
907 buf[0] = CMD_DMAGO;
908 buf[0] |= (ns << 1);
909 buf[1] = chan & 0x7;
910 buf[2] = addr;
911 buf[3] = addr >> 8;
912 buf[4] = addr >> 16;
913 buf[5] = addr >> 24;
914
915 return SZ_DMAGO;
916 }
917
918 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
919
920 /* Returns Time-Out */
921 static bool _until_dmac_idle(struct pl330_thread *thrd)
922 {
923 void __iomem *regs = thrd->dmac->base;
924 unsigned long loops = msecs_to_loops(5);
925
926 do {
927 /* Until Manager is Idle */
928 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
929 break;
930
931 cpu_relax();
932 } while (--loops);
933
934 if (!loops)
935 return true;
936
937 return false;
938 }
939
940 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
941 u8 insn[], bool as_manager)
942 {
943 void __iomem *regs = thrd->dmac->base;
944 u32 val;
945
946 val = (insn[0] << 16) | (insn[1] << 24);
947 if (!as_manager) {
948 val |= (1 << 0);
949 val |= (thrd->id << 8); /* Channel Number */
950 }
951 writel(val, regs + DBGINST0);
952
953 val = le32_to_cpu(*((__le32 *)&insn[2]));
954 writel(val, regs + DBGINST1);
955
956 /* If timed out due to halted state-machine */
957 if (_until_dmac_idle(thrd)) {
958 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
959 return;
960 }
961
962 /* Get going */
963 writel(0, regs + DBGCMD);
964 }
965
966 static inline u32 _state(struct pl330_thread *thrd)
967 {
968 void __iomem *regs = thrd->dmac->base;
969 u32 val;
970
971 if (is_manager(thrd))
972 val = readl(regs + DS) & 0xf;
973 else
974 val = readl(regs + CS(thrd->id)) & 0xf;
975
976 switch (val) {
977 case DS_ST_STOP:
978 return PL330_STATE_STOPPED;
979 case DS_ST_EXEC:
980 return PL330_STATE_EXECUTING;
981 case DS_ST_CMISS:
982 return PL330_STATE_CACHEMISS;
983 case DS_ST_UPDTPC:
984 return PL330_STATE_UPDTPC;
985 case DS_ST_WFE:
986 return PL330_STATE_WFE;
987 case DS_ST_FAULT:
988 return PL330_STATE_FAULTING;
989 case DS_ST_ATBRR:
990 if (is_manager(thrd))
991 return PL330_STATE_INVALID;
992 else
993 return PL330_STATE_ATBARRIER;
994 case DS_ST_QBUSY:
995 if (is_manager(thrd))
996 return PL330_STATE_INVALID;
997 else
998 return PL330_STATE_QUEUEBUSY;
999 case DS_ST_WFP:
1000 if (is_manager(thrd))
1001 return PL330_STATE_INVALID;
1002 else
1003 return PL330_STATE_WFP;
1004 case DS_ST_KILL:
1005 if (is_manager(thrd))
1006 return PL330_STATE_INVALID;
1007 else
1008 return PL330_STATE_KILLING;
1009 case DS_ST_CMPLT:
1010 if (is_manager(thrd))
1011 return PL330_STATE_INVALID;
1012 else
1013 return PL330_STATE_COMPLETING;
1014 case DS_ST_FLTCMP:
1015 if (is_manager(thrd))
1016 return PL330_STATE_INVALID;
1017 else
1018 return PL330_STATE_FAULT_COMPLETING;
1019 default:
1020 return PL330_STATE_INVALID;
1021 }
1022 }
1023
1024 static void _stop(struct pl330_thread *thrd)
1025 {
1026 void __iomem *regs = thrd->dmac->base;
1027 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1028
1029 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1030 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1031
1032 /* Return if nothing needs to be done */
1033 if (_state(thrd) == PL330_STATE_COMPLETING
1034 || _state(thrd) == PL330_STATE_KILLING
1035 || _state(thrd) == PL330_STATE_STOPPED)
1036 return;
1037
1038 _emit_KILL(0, insn);
1039
1040 /* Stop generating interrupts for SEV */
1041 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1042
1043 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1044 }
1045
1046 /* Start doing req 'idx' of thread 'thrd' */
1047 static bool _trigger(struct pl330_thread *thrd)
1048 {
1049 void __iomem *regs = thrd->dmac->base;
1050 struct _pl330_req *req;
1051 struct dma_pl330_desc *desc;
1052 struct _arg_GO go;
1053 unsigned ns;
1054 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1055 int idx;
1056
1057 /* Return if already ACTIVE */
1058 if (_state(thrd) != PL330_STATE_STOPPED)
1059 return true;
1060
1061 idx = 1 - thrd->lstenq;
1062 if (thrd->req[idx].desc != NULL) {
1063 req = &thrd->req[idx];
1064 } else {
1065 idx = thrd->lstenq;
1066 if (thrd->req[idx].desc != NULL)
1067 req = &thrd->req[idx];
1068 else
1069 req = NULL;
1070 }
1071
1072 /* Return if no request */
1073 if (!req)
1074 return true;
1075
1076 /* Return if req is running */
1077 if (idx == thrd->req_running)
1078 return true;
1079
1080 desc = req->desc;
1081
1082 ns = desc->rqcfg.nonsecure ? 1 : 0;
1083
1084 /* See 'Abort Sources' point-4 at Page 2-25 */
1085 if (_manager_ns(thrd) && !ns)
1086 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1087 __func__, __LINE__);
1088
1089 go.chan = thrd->id;
1090 go.addr = req->mc_bus;
1091 go.ns = ns;
1092 _emit_GO(0, insn, &go);
1093
1094 /* Set to generate interrupts for SEV */
1095 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1096
1097 /* Only manager can execute GO */
1098 _execute_DBGINSN(thrd, insn, true);
1099
1100 thrd->req_running = idx;
1101
1102 return true;
1103 }
1104
1105 static bool _start(struct pl330_thread *thrd)
1106 {
1107 switch (_state(thrd)) {
1108 case PL330_STATE_FAULT_COMPLETING:
1109 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1110
1111 if (_state(thrd) == PL330_STATE_KILLING)
1112 UNTIL(thrd, PL330_STATE_STOPPED)
1113
1114 case PL330_STATE_FAULTING:
1115 _stop(thrd);
1116
1117 case PL330_STATE_KILLING:
1118 case PL330_STATE_COMPLETING:
1119 UNTIL(thrd, PL330_STATE_STOPPED)
1120
1121 case PL330_STATE_STOPPED:
1122 return _trigger(thrd);
1123
1124 case PL330_STATE_WFP:
1125 case PL330_STATE_QUEUEBUSY:
1126 case PL330_STATE_ATBARRIER:
1127 case PL330_STATE_UPDTPC:
1128 case PL330_STATE_CACHEMISS:
1129 case PL330_STATE_EXECUTING:
1130 return true;
1131
1132 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1133 default:
1134 return false;
1135 }
1136 }
1137
1138 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1139 const struct _xfer_spec *pxs, int cyc)
1140 {
1141 int off = 0;
1142 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1143
1144 /* check lock-up free version */
1145 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1146 while (cyc--) {
1147 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1148 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1149 }
1150 } else {
1151 while (cyc--) {
1152 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1153 off += _emit_RMB(dry_run, &buf[off]);
1154 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1155 off += _emit_WMB(dry_run, &buf[off]);
1156 }
1157 }
1158
1159 return off;
1160 }
1161
1162 static inline int _ldst_devtomem(struct pl330_dmac *pl330, unsigned dry_run,
1163 u8 buf[], const struct _xfer_spec *pxs,
1164 int cyc)
1165 {
1166 int off = 0;
1167 enum pl330_cond cond;
1168
1169 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1170 cond = BURST;
1171 else
1172 cond = SINGLE;
1173
1174 while (cyc--) {
1175 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1176 off += _emit_LDP(dry_run, &buf[off], cond, pxs->desc->peri);
1177 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1178
1179 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1180 off += _emit_FLUSHP(dry_run, &buf[off],
1181 pxs->desc->peri);
1182 }
1183
1184 return off;
1185 }
1186
1187 static inline int _ldst_memtodev(struct pl330_dmac *pl330,
1188 unsigned dry_run, u8 buf[],
1189 const struct _xfer_spec *pxs, int cyc)
1190 {
1191 int off = 0;
1192 enum pl330_cond cond;
1193
1194 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1195 cond = BURST;
1196 else
1197 cond = SINGLE;
1198
1199 while (cyc--) {
1200 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1201 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1202 off += _emit_STP(dry_run, &buf[off], cond, pxs->desc->peri);
1203
1204 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1205 off += _emit_FLUSHP(dry_run, &buf[off],
1206 pxs->desc->peri);
1207 }
1208
1209 return off;
1210 }
1211
1212 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1213 const struct _xfer_spec *pxs, int cyc)
1214 {
1215 int off = 0;
1216
1217 switch (pxs->desc->rqtype) {
1218 case DMA_MEM_TO_DEV:
1219 off += _ldst_memtodev(pl330, dry_run, &buf[off], pxs, cyc);
1220 break;
1221 case DMA_DEV_TO_MEM:
1222 off += _ldst_devtomem(pl330, dry_run, &buf[off], pxs, cyc);
1223 break;
1224 case DMA_MEM_TO_MEM:
1225 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1226 break;
1227 default:
1228 off += 0x40000000; /* Scare off the Client */
1229 break;
1230 }
1231
1232 return off;
1233 }
1234
1235 /* Returns bytes consumed and updates bursts */
1236 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1237 unsigned long *bursts, const struct _xfer_spec *pxs)
1238 {
1239 int cyc, cycmax, szlp, szlpend, szbrst, off;
1240 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1241 struct _arg_LPEND lpend;
1242
1243 if (*bursts == 1)
1244 return _bursts(pl330, dry_run, buf, pxs, 1);
1245
1246 /* Max iterations possible in DMALP is 256 */
1247 if (*bursts >= 256*256) {
1248 lcnt1 = 256;
1249 lcnt0 = 256;
1250 cyc = *bursts / lcnt1 / lcnt0;
1251 } else if (*bursts > 256) {
1252 lcnt1 = 256;
1253 lcnt0 = *bursts / lcnt1;
1254 cyc = 1;
1255 } else {
1256 lcnt1 = *bursts;
1257 lcnt0 = 0;
1258 cyc = 1;
1259 }
1260
1261 szlp = _emit_LP(1, buf, 0, 0);
1262 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1263
1264 lpend.cond = ALWAYS;
1265 lpend.forever = false;
1266 lpend.loop = 0;
1267 lpend.bjump = 0;
1268 szlpend = _emit_LPEND(1, buf, &lpend);
1269
1270 if (lcnt0) {
1271 szlp *= 2;
1272 szlpend *= 2;
1273 }
1274
1275 /*
1276 * Max bursts that we can unroll due to limit on the
1277 * size of backward jump that can be encoded in DMALPEND
1278 * which is 8-bits and hence 255
1279 */
1280 cycmax = (255 - (szlp + szlpend)) / szbrst;
1281
1282 cyc = (cycmax < cyc) ? cycmax : cyc;
1283
1284 off = 0;
1285
1286 if (lcnt0) {
1287 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1288 ljmp0 = off;
1289 }
1290
1291 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1292 ljmp1 = off;
1293
1294 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1295
1296 lpend.cond = ALWAYS;
1297 lpend.forever = false;
1298 lpend.loop = 1;
1299 lpend.bjump = off - ljmp1;
1300 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1301
1302 if (lcnt0) {
1303 lpend.cond = ALWAYS;
1304 lpend.forever = false;
1305 lpend.loop = 0;
1306 lpend.bjump = off - ljmp0;
1307 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1308 }
1309
1310 *bursts = lcnt1 * cyc;
1311 if (lcnt0)
1312 *bursts *= lcnt0;
1313
1314 return off;
1315 }
1316
1317 static inline int _setup_loops(struct pl330_dmac *pl330,
1318 unsigned dry_run, u8 buf[],
1319 const struct _xfer_spec *pxs)
1320 {
1321 struct pl330_xfer *x = &pxs->desc->px;
1322 u32 ccr = pxs->ccr;
1323 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1324 int off = 0;
1325
1326 while (bursts) {
1327 c = bursts;
1328 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1329 bursts -= c;
1330 }
1331
1332 return off;
1333 }
1334
1335 static inline int _setup_xfer(struct pl330_dmac *pl330,
1336 unsigned dry_run, u8 buf[],
1337 const struct _xfer_spec *pxs)
1338 {
1339 struct pl330_xfer *x = &pxs->desc->px;
1340 int off = 0;
1341
1342 /* DMAMOV SAR, x->src_addr */
1343 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1344 /* DMAMOV DAR, x->dst_addr */
1345 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1346
1347 /* Setup Loop(s) */
1348 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1349
1350 return off;
1351 }
1352
1353 /*
1354 * A req is a sequence of one or more xfer units.
1355 * Returns the number of bytes taken to setup the MC for the req.
1356 */
1357 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1358 struct pl330_thread *thrd, unsigned index,
1359 struct _xfer_spec *pxs)
1360 {
1361 struct _pl330_req *req = &thrd->req[index];
1362 struct pl330_xfer *x;
1363 u8 *buf = req->mc_cpu;
1364 int off = 0;
1365
1366 PL330_DBGMC_START(req->mc_bus);
1367
1368 /* DMAMOV CCR, ccr */
1369 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1370
1371 x = &pxs->desc->px;
1372 /* Error if xfer length is not aligned at burst size */
1373 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1374 return -EINVAL;
1375
1376 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1377
1378 /* DMASEV peripheral/event */
1379 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1380 /* DMAEND */
1381 off += _emit_END(dry_run, &buf[off]);
1382
1383 return off;
1384 }
1385
1386 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1387 {
1388 u32 ccr = 0;
1389
1390 if (rqc->src_inc)
1391 ccr |= CC_SRCINC;
1392
1393 if (rqc->dst_inc)
1394 ccr |= CC_DSTINC;
1395
1396 /* We set same protection levels for Src and DST for now */
1397 if (rqc->privileged)
1398 ccr |= CC_SRCPRI | CC_DSTPRI;
1399 if (rqc->nonsecure)
1400 ccr |= CC_SRCNS | CC_DSTNS;
1401 if (rqc->insnaccess)
1402 ccr |= CC_SRCIA | CC_DSTIA;
1403
1404 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1405 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1406
1407 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1408 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1409
1410 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1411 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1412
1413 ccr |= (rqc->swap << CC_SWAP_SHFT);
1414
1415 return ccr;
1416 }
1417
1418 /*
1419 * Submit a list of xfers after which the client wants notification.
1420 * Client is not notified after each xfer unit, just once after all
1421 * xfer units are done or some error occurs.
1422 */
1423 static int pl330_submit_req(struct pl330_thread *thrd,
1424 struct dma_pl330_desc *desc)
1425 {
1426 struct pl330_dmac *pl330 = thrd->dmac;
1427 struct _xfer_spec xs;
1428 unsigned long flags;
1429 unsigned idx;
1430 u32 ccr;
1431 int ret = 0;
1432
1433 if (pl330->state == DYING
1434 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1435 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1436 __func__, __LINE__);
1437 return -EAGAIN;
1438 }
1439
1440 /* If request for non-existing peripheral */
1441 if (desc->rqtype != DMA_MEM_TO_MEM &&
1442 desc->peri >= pl330->pcfg.num_peri) {
1443 dev_info(thrd->dmac->ddma.dev,
1444 "%s:%d Invalid peripheral(%u)!\n",
1445 __func__, __LINE__, desc->peri);
1446 return -EINVAL;
1447 }
1448
1449 spin_lock_irqsave(&pl330->lock, flags);
1450
1451 if (_queue_full(thrd)) {
1452 ret = -EAGAIN;
1453 goto xfer_exit;
1454 }
1455
1456 /* Prefer Secure Channel */
1457 if (!_manager_ns(thrd))
1458 desc->rqcfg.nonsecure = 0;
1459 else
1460 desc->rqcfg.nonsecure = 1;
1461
1462 ccr = _prepare_ccr(&desc->rqcfg);
1463
1464 idx = thrd->req[0].desc == NULL ? 0 : 1;
1465
1466 xs.ccr = ccr;
1467 xs.desc = desc;
1468
1469 /* First dry run to check if req is acceptable */
1470 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1471 if (ret < 0)
1472 goto xfer_exit;
1473
1474 if (ret > pl330->mcbufsz / 2) {
1475 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1476 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1477 ret = -ENOMEM;
1478 goto xfer_exit;
1479 }
1480
1481 /* Hook the request */
1482 thrd->lstenq = idx;
1483 thrd->req[idx].desc = desc;
1484 _setup_req(pl330, 0, thrd, idx, &xs);
1485
1486 ret = 0;
1487
1488 xfer_exit:
1489 spin_unlock_irqrestore(&pl330->lock, flags);
1490
1491 return ret;
1492 }
1493
1494 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1495 {
1496 struct dma_pl330_chan *pch;
1497 unsigned long flags;
1498
1499 if (!desc)
1500 return;
1501
1502 pch = desc->pchan;
1503
1504 /* If desc aborted */
1505 if (!pch)
1506 return;
1507
1508 spin_lock_irqsave(&pch->lock, flags);
1509
1510 desc->status = DONE;
1511
1512 spin_unlock_irqrestore(&pch->lock, flags);
1513
1514 tasklet_schedule(&pch->task);
1515 }
1516
1517 static void pl330_dotask(unsigned long data)
1518 {
1519 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1520 unsigned long flags;
1521 int i;
1522
1523 spin_lock_irqsave(&pl330->lock, flags);
1524
1525 /* The DMAC itself gone nuts */
1526 if (pl330->dmac_tbd.reset_dmac) {
1527 pl330->state = DYING;
1528 /* Reset the manager too */
1529 pl330->dmac_tbd.reset_mngr = true;
1530 /* Clear the reset flag */
1531 pl330->dmac_tbd.reset_dmac = false;
1532 }
1533
1534 if (pl330->dmac_tbd.reset_mngr) {
1535 _stop(pl330->manager);
1536 /* Reset all channels */
1537 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1538 /* Clear the reset flag */
1539 pl330->dmac_tbd.reset_mngr = false;
1540 }
1541
1542 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1543
1544 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1545 struct pl330_thread *thrd = &pl330->channels[i];
1546 void __iomem *regs = pl330->base;
1547 enum pl330_op_err err;
1548
1549 _stop(thrd);
1550
1551 if (readl(regs + FSC) & (1 << thrd->id))
1552 err = PL330_ERR_FAIL;
1553 else
1554 err = PL330_ERR_ABORT;
1555
1556 spin_unlock_irqrestore(&pl330->lock, flags);
1557 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1558 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1559 spin_lock_irqsave(&pl330->lock, flags);
1560
1561 thrd->req[0].desc = NULL;
1562 thrd->req[1].desc = NULL;
1563 thrd->req_running = -1;
1564
1565 /* Clear the reset flag */
1566 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1567 }
1568 }
1569
1570 spin_unlock_irqrestore(&pl330->lock, flags);
1571
1572 return;
1573 }
1574
1575 /* Returns 1 if state was updated, 0 otherwise */
1576 static int pl330_update(struct pl330_dmac *pl330)
1577 {
1578 struct dma_pl330_desc *descdone, *tmp;
1579 unsigned long flags;
1580 void __iomem *regs;
1581 u32 val;
1582 int id, ev, ret = 0;
1583
1584 regs = pl330->base;
1585
1586 spin_lock_irqsave(&pl330->lock, flags);
1587
1588 val = readl(regs + FSM) & 0x1;
1589 if (val)
1590 pl330->dmac_tbd.reset_mngr = true;
1591 else
1592 pl330->dmac_tbd.reset_mngr = false;
1593
1594 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1595 pl330->dmac_tbd.reset_chan |= val;
1596 if (val) {
1597 int i = 0;
1598 while (i < pl330->pcfg.num_chan) {
1599 if (val & (1 << i)) {
1600 dev_info(pl330->ddma.dev,
1601 "Reset Channel-%d\t CS-%x FTC-%x\n",
1602 i, readl(regs + CS(i)),
1603 readl(regs + FTC(i)));
1604 _stop(&pl330->channels[i]);
1605 }
1606 i++;
1607 }
1608 }
1609
1610 /* Check which event happened i.e, thread notified */
1611 val = readl(regs + ES);
1612 if (pl330->pcfg.num_events < 32
1613 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1614 pl330->dmac_tbd.reset_dmac = true;
1615 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1616 __LINE__);
1617 ret = 1;
1618 goto updt_exit;
1619 }
1620
1621 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1622 if (val & (1 << ev)) { /* Event occurred */
1623 struct pl330_thread *thrd;
1624 u32 inten = readl(regs + INTEN);
1625 int active;
1626
1627 /* Clear the event */
1628 if (inten & (1 << ev))
1629 writel(1 << ev, regs + INTCLR);
1630
1631 ret = 1;
1632
1633 id = pl330->events[ev];
1634
1635 thrd = &pl330->channels[id];
1636
1637 active = thrd->req_running;
1638 if (active == -1) /* Aborted */
1639 continue;
1640
1641 /* Detach the req */
1642 descdone = thrd->req[active].desc;
1643 thrd->req[active].desc = NULL;
1644
1645 thrd->req_running = -1;
1646
1647 /* Get going again ASAP */
1648 _start(thrd);
1649
1650 /* For now, just make a list of callbacks to be done */
1651 list_add_tail(&descdone->rqd, &pl330->req_done);
1652 }
1653 }
1654
1655 /* Now that we are in no hurry, do the callbacks */
1656 list_for_each_entry_safe(descdone, tmp, &pl330->req_done, rqd) {
1657 list_del(&descdone->rqd);
1658 spin_unlock_irqrestore(&pl330->lock, flags);
1659 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1660 spin_lock_irqsave(&pl330->lock, flags);
1661 }
1662
1663 updt_exit:
1664 spin_unlock_irqrestore(&pl330->lock, flags);
1665
1666 if (pl330->dmac_tbd.reset_dmac
1667 || pl330->dmac_tbd.reset_mngr
1668 || pl330->dmac_tbd.reset_chan) {
1669 ret = 1;
1670 tasklet_schedule(&pl330->tasks);
1671 }
1672
1673 return ret;
1674 }
1675
1676 /* Reserve an event */
1677 static inline int _alloc_event(struct pl330_thread *thrd)
1678 {
1679 struct pl330_dmac *pl330 = thrd->dmac;
1680 int ev;
1681
1682 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1683 if (pl330->events[ev] == -1) {
1684 pl330->events[ev] = thrd->id;
1685 return ev;
1686 }
1687
1688 return -1;
1689 }
1690
1691 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1692 {
1693 return pl330->pcfg.irq_ns & (1 << i);
1694 }
1695
1696 /* Upon success, returns IdentityToken for the
1697 * allocated channel, NULL otherwise.
1698 */
1699 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1700 {
1701 struct pl330_thread *thrd = NULL;
1702 int chans, i;
1703
1704 if (pl330->state == DYING)
1705 return NULL;
1706
1707 chans = pl330->pcfg.num_chan;
1708
1709 for (i = 0; i < chans; i++) {
1710 thrd = &pl330->channels[i];
1711 if ((thrd->free) && (!_manager_ns(thrd) ||
1712 _chan_ns(pl330, i))) {
1713 thrd->ev = _alloc_event(thrd);
1714 if (thrd->ev >= 0) {
1715 thrd->free = false;
1716 thrd->lstenq = 1;
1717 thrd->req[0].desc = NULL;
1718 thrd->req[1].desc = NULL;
1719 thrd->req_running = -1;
1720 break;
1721 }
1722 }
1723 thrd = NULL;
1724 }
1725
1726 return thrd;
1727 }
1728
1729 /* Release an event */
1730 static inline void _free_event(struct pl330_thread *thrd, int ev)
1731 {
1732 struct pl330_dmac *pl330 = thrd->dmac;
1733
1734 /* If the event is valid and was held by the thread */
1735 if (ev >= 0 && ev < pl330->pcfg.num_events
1736 && pl330->events[ev] == thrd->id)
1737 pl330->events[ev] = -1;
1738 }
1739
1740 static void pl330_release_channel(struct pl330_thread *thrd)
1741 {
1742 struct pl330_dmac *pl330;
1743
1744 if (!thrd || thrd->free)
1745 return;
1746
1747 _stop(thrd);
1748
1749 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1750 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1751
1752 pl330 = thrd->dmac;
1753
1754 _free_event(thrd, thrd->ev);
1755 thrd->free = true;
1756 }
1757
1758 /* Initialize the structure for PL330 configuration, that can be used
1759 * by the client driver the make best use of the DMAC
1760 */
1761 static void read_dmac_config(struct pl330_dmac *pl330)
1762 {
1763 void __iomem *regs = pl330->base;
1764 u32 val;
1765
1766 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1767 val &= CRD_DATA_WIDTH_MASK;
1768 pl330->pcfg.data_bus_width = 8 * (1 << val);
1769
1770 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1771 val &= CRD_DATA_BUFF_MASK;
1772 pl330->pcfg.data_buf_dep = val + 1;
1773
1774 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1775 val &= CR0_NUM_CHANS_MASK;
1776 val += 1;
1777 pl330->pcfg.num_chan = val;
1778
1779 val = readl(regs + CR0);
1780 if (val & CR0_PERIPH_REQ_SET) {
1781 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1782 val += 1;
1783 pl330->pcfg.num_peri = val;
1784 pl330->pcfg.peri_ns = readl(regs + CR4);
1785 } else {
1786 pl330->pcfg.num_peri = 0;
1787 }
1788
1789 val = readl(regs + CR0);
1790 if (val & CR0_BOOT_MAN_NS)
1791 pl330->pcfg.mode |= DMAC_MODE_NS;
1792 else
1793 pl330->pcfg.mode &= ~DMAC_MODE_NS;
1794
1795 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1796 val &= CR0_NUM_EVENTS_MASK;
1797 val += 1;
1798 pl330->pcfg.num_events = val;
1799
1800 pl330->pcfg.irq_ns = readl(regs + CR3);
1801 }
1802
1803 static inline void _reset_thread(struct pl330_thread *thrd)
1804 {
1805 struct pl330_dmac *pl330 = thrd->dmac;
1806
1807 thrd->req[0].mc_cpu = pl330->mcode_cpu
1808 + (thrd->id * pl330->mcbufsz);
1809 thrd->req[0].mc_bus = pl330->mcode_bus
1810 + (thrd->id * pl330->mcbufsz);
1811 thrd->req[0].desc = NULL;
1812
1813 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1814 + pl330->mcbufsz / 2;
1815 thrd->req[1].mc_bus = thrd->req[0].mc_bus
1816 + pl330->mcbufsz / 2;
1817 thrd->req[1].desc = NULL;
1818
1819 thrd->req_running = -1;
1820 }
1821
1822 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1823 {
1824 int chans = pl330->pcfg.num_chan;
1825 struct pl330_thread *thrd;
1826 int i;
1827
1828 /* Allocate 1 Manager and 'chans' Channel threads */
1829 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
1830 GFP_KERNEL);
1831 if (!pl330->channels)
1832 return -ENOMEM;
1833
1834 /* Init Channel threads */
1835 for (i = 0; i < chans; i++) {
1836 thrd = &pl330->channels[i];
1837 thrd->id = i;
1838 thrd->dmac = pl330;
1839 _reset_thread(thrd);
1840 thrd->free = true;
1841 }
1842
1843 /* MANAGER is indexed at the end */
1844 thrd = &pl330->channels[chans];
1845 thrd->id = chans;
1846 thrd->dmac = pl330;
1847 thrd->free = false;
1848 pl330->manager = thrd;
1849
1850 return 0;
1851 }
1852
1853 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1854 {
1855 int chans = pl330->pcfg.num_chan;
1856 int ret;
1857
1858 /*
1859 * Alloc MicroCode buffer for 'chans' Channel threads.
1860 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1861 */
1862 pl330->mcode_cpu = dma_alloc_coherent(pl330->ddma.dev,
1863 chans * pl330->mcbufsz,
1864 &pl330->mcode_bus, GFP_KERNEL);
1865 if (!pl330->mcode_cpu) {
1866 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1867 __func__, __LINE__);
1868 return -ENOMEM;
1869 }
1870
1871 ret = dmac_alloc_threads(pl330);
1872 if (ret) {
1873 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1874 __func__, __LINE__);
1875 dma_free_coherent(pl330->ddma.dev,
1876 chans * pl330->mcbufsz,
1877 pl330->mcode_cpu, pl330->mcode_bus);
1878 return ret;
1879 }
1880
1881 return 0;
1882 }
1883
1884 static int pl330_add(struct pl330_dmac *pl330)
1885 {
1886 int i, ret;
1887
1888 /* Check if we can handle this DMAC */
1889 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1890 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1891 pl330->pcfg.periph_id);
1892 return -EINVAL;
1893 }
1894
1895 /* Read the configuration of the DMAC */
1896 read_dmac_config(pl330);
1897
1898 if (pl330->pcfg.num_events == 0) {
1899 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1900 __func__, __LINE__);
1901 return -EINVAL;
1902 }
1903
1904 spin_lock_init(&pl330->lock);
1905
1906 INIT_LIST_HEAD(&pl330->req_done);
1907
1908 /* Use default MC buffer size if not provided */
1909 if (!pl330->mcbufsz)
1910 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1911
1912 /* Mark all events as free */
1913 for (i = 0; i < pl330->pcfg.num_events; i++)
1914 pl330->events[i] = -1;
1915
1916 /* Allocate resources needed by the DMAC */
1917 ret = dmac_alloc_resources(pl330);
1918 if (ret) {
1919 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1920 return ret;
1921 }
1922
1923 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1924
1925 pl330->state = INIT;
1926
1927 return 0;
1928 }
1929
1930 static int dmac_free_threads(struct pl330_dmac *pl330)
1931 {
1932 struct pl330_thread *thrd;
1933 int i;
1934
1935 /* Release Channel threads */
1936 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1937 thrd = &pl330->channels[i];
1938 pl330_release_channel(thrd);
1939 }
1940
1941 /* Free memory */
1942 kfree(pl330->channels);
1943
1944 return 0;
1945 }
1946
1947 static void pl330_del(struct pl330_dmac *pl330)
1948 {
1949 pl330->state = UNINIT;
1950
1951 tasklet_kill(&pl330->tasks);
1952
1953 /* Free DMAC resources */
1954 dmac_free_threads(pl330);
1955
1956 dma_free_coherent(pl330->ddma.dev,
1957 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
1958 pl330->mcode_bus);
1959 }
1960
1961 /* forward declaration */
1962 static struct amba_driver pl330_driver;
1963
1964 static inline struct dma_pl330_chan *
1965 to_pchan(struct dma_chan *ch)
1966 {
1967 if (!ch)
1968 return NULL;
1969
1970 return container_of(ch, struct dma_pl330_chan, chan);
1971 }
1972
1973 static inline struct dma_pl330_desc *
1974 to_desc(struct dma_async_tx_descriptor *tx)
1975 {
1976 return container_of(tx, struct dma_pl330_desc, txd);
1977 }
1978
1979 static inline void fill_queue(struct dma_pl330_chan *pch)
1980 {
1981 struct dma_pl330_desc *desc;
1982 int ret;
1983
1984 list_for_each_entry(desc, &pch->work_list, node) {
1985
1986 /* If already submitted */
1987 if (desc->status == BUSY)
1988 continue;
1989
1990 ret = pl330_submit_req(pch->thread, desc);
1991 if (!ret) {
1992 desc->status = BUSY;
1993 } else if (ret == -EAGAIN) {
1994 /* QFull or DMAC Dying */
1995 break;
1996 } else {
1997 /* Unacceptable request */
1998 desc->status = DONE;
1999 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2000 __func__, __LINE__, desc->txd.cookie);
2001 tasklet_schedule(&pch->task);
2002 }
2003 }
2004 }
2005
2006 static void pl330_tasklet(unsigned long data)
2007 {
2008 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2009 struct dma_pl330_desc *desc, *_dt;
2010 unsigned long flags;
2011 bool power_down = false;
2012
2013 spin_lock_irqsave(&pch->lock, flags);
2014
2015 /* Pick up ripe tomatoes */
2016 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2017 if (desc->status == DONE) {
2018 if (!pch->cyclic)
2019 dma_cookie_complete(&desc->txd);
2020 list_move_tail(&desc->node, &pch->completed_list);
2021 }
2022
2023 /* Try to submit a req imm. next to the last completed cookie */
2024 fill_queue(pch);
2025
2026 if (list_empty(&pch->work_list)) {
2027 spin_lock(&pch->thread->dmac->lock);
2028 _stop(pch->thread);
2029 spin_unlock(&pch->thread->dmac->lock);
2030 power_down = true;
2031 pch->active = false;
2032 } else {
2033 /* Make sure the PL330 Channel thread is active */
2034 spin_lock(&pch->thread->dmac->lock);
2035 _start(pch->thread);
2036 spin_unlock(&pch->thread->dmac->lock);
2037 }
2038
2039 while (!list_empty(&pch->completed_list)) {
2040 struct dmaengine_desc_callback cb;
2041
2042 desc = list_first_entry(&pch->completed_list,
2043 struct dma_pl330_desc, node);
2044
2045 dmaengine_desc_get_callback(&desc->txd, &cb);
2046
2047 if (pch->cyclic) {
2048 desc->status = PREP;
2049 list_move_tail(&desc->node, &pch->work_list);
2050 if (power_down) {
2051 pch->active = true;
2052 spin_lock(&pch->thread->dmac->lock);
2053 _start(pch->thread);
2054 spin_unlock(&pch->thread->dmac->lock);
2055 power_down = false;
2056 }
2057 } else {
2058 desc->status = FREE;
2059 list_move_tail(&desc->node, &pch->dmac->desc_pool);
2060 }
2061
2062 dma_descriptor_unmap(&desc->txd);
2063
2064 if (dmaengine_desc_callback_valid(&cb)) {
2065 spin_unlock_irqrestore(&pch->lock, flags);
2066 dmaengine_desc_callback_invoke(&cb, NULL);
2067 spin_lock_irqsave(&pch->lock, flags);
2068 }
2069 }
2070 spin_unlock_irqrestore(&pch->lock, flags);
2071
2072 /* If work list empty, power down */
2073 if (power_down) {
2074 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2075 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2076 }
2077 }
2078
2079 bool pl330_filter(struct dma_chan *chan, void *param)
2080 {
2081 u8 *peri_id;
2082
2083 if (chan->device->dev->driver != &pl330_driver.drv)
2084 return false;
2085
2086 peri_id = chan->private;
2087 return *peri_id == (unsigned long)param;
2088 }
2089 EXPORT_SYMBOL(pl330_filter);
2090
2091 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2092 struct of_dma *ofdma)
2093 {
2094 int count = dma_spec->args_count;
2095 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2096 unsigned int chan_id;
2097
2098 if (!pl330)
2099 return NULL;
2100
2101 if (count != 1)
2102 return NULL;
2103
2104 chan_id = dma_spec->args[0];
2105 if (chan_id >= pl330->num_peripherals)
2106 return NULL;
2107
2108 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2109 }
2110
2111 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2112 {
2113 struct dma_pl330_chan *pch = to_pchan(chan);
2114 struct pl330_dmac *pl330 = pch->dmac;
2115 unsigned long flags;
2116
2117 spin_lock_irqsave(&pl330->lock, flags);
2118
2119 dma_cookie_init(chan);
2120 pch->cyclic = false;
2121
2122 pch->thread = pl330_request_channel(pl330);
2123 if (!pch->thread) {
2124 spin_unlock_irqrestore(&pl330->lock, flags);
2125 return -ENOMEM;
2126 }
2127
2128 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2129
2130 spin_unlock_irqrestore(&pl330->lock, flags);
2131
2132 return 1;
2133 }
2134
2135 static int pl330_config(struct dma_chan *chan,
2136 struct dma_slave_config *slave_config)
2137 {
2138 struct dma_pl330_chan *pch = to_pchan(chan);
2139
2140 if (slave_config->direction == DMA_MEM_TO_DEV) {
2141 if (slave_config->dst_addr)
2142 pch->fifo_addr = slave_config->dst_addr;
2143 if (slave_config->dst_addr_width)
2144 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2145 if (slave_config->dst_maxburst)
2146 pch->burst_len = slave_config->dst_maxburst;
2147 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2148 if (slave_config->src_addr)
2149 pch->fifo_addr = slave_config->src_addr;
2150 if (slave_config->src_addr_width)
2151 pch->burst_sz = __ffs(slave_config->src_addr_width);
2152 if (slave_config->src_maxburst)
2153 pch->burst_len = slave_config->src_maxburst;
2154 }
2155
2156 return 0;
2157 }
2158
2159 static int pl330_terminate_all(struct dma_chan *chan)
2160 {
2161 struct dma_pl330_chan *pch = to_pchan(chan);
2162 struct dma_pl330_desc *desc;
2163 unsigned long flags;
2164 struct pl330_dmac *pl330 = pch->dmac;
2165 LIST_HEAD(list);
2166 bool power_down = false;
2167
2168 pm_runtime_get_sync(pl330->ddma.dev);
2169 spin_lock_irqsave(&pch->lock, flags);
2170 spin_lock(&pl330->lock);
2171 _stop(pch->thread);
2172 spin_unlock(&pl330->lock);
2173
2174 pch->thread->req[0].desc = NULL;
2175 pch->thread->req[1].desc = NULL;
2176 pch->thread->req_running = -1;
2177 power_down = pch->active;
2178 pch->active = false;
2179
2180 /* Mark all desc done */
2181 list_for_each_entry(desc, &pch->submitted_list, node) {
2182 desc->status = FREE;
2183 dma_cookie_complete(&desc->txd);
2184 }
2185
2186 list_for_each_entry(desc, &pch->work_list , node) {
2187 desc->status = FREE;
2188 dma_cookie_complete(&desc->txd);
2189 }
2190
2191 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2192 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2193 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2194 spin_unlock_irqrestore(&pch->lock, flags);
2195 pm_runtime_mark_last_busy(pl330->ddma.dev);
2196 if (power_down)
2197 pm_runtime_put_autosuspend(pl330->ddma.dev);
2198 pm_runtime_put_autosuspend(pl330->ddma.dev);
2199
2200 return 0;
2201 }
2202
2203 /*
2204 * We don't support DMA_RESUME command because of hardware
2205 * limitations, so after pausing the channel we cannot restore
2206 * it to active state. We have to terminate channel and setup
2207 * DMA transfer again. This pause feature was implemented to
2208 * allow safely read residue before channel termination.
2209 */
2210 static int pl330_pause(struct dma_chan *chan)
2211 {
2212 struct dma_pl330_chan *pch = to_pchan(chan);
2213 struct pl330_dmac *pl330 = pch->dmac;
2214 unsigned long flags;
2215
2216 pm_runtime_get_sync(pl330->ddma.dev);
2217 spin_lock_irqsave(&pch->lock, flags);
2218
2219 spin_lock(&pl330->lock);
2220 _stop(pch->thread);
2221 spin_unlock(&pl330->lock);
2222
2223 spin_unlock_irqrestore(&pch->lock, flags);
2224 pm_runtime_mark_last_busy(pl330->ddma.dev);
2225 pm_runtime_put_autosuspend(pl330->ddma.dev);
2226
2227 return 0;
2228 }
2229
2230 static void pl330_free_chan_resources(struct dma_chan *chan)
2231 {
2232 struct dma_pl330_chan *pch = to_pchan(chan);
2233 struct pl330_dmac *pl330 = pch->dmac;
2234 unsigned long flags;
2235
2236 tasklet_kill(&pch->task);
2237
2238 pm_runtime_get_sync(pch->dmac->ddma.dev);
2239 spin_lock_irqsave(&pl330->lock, flags);
2240
2241 pl330_release_channel(pch->thread);
2242 pch->thread = NULL;
2243
2244 if (pch->cyclic)
2245 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2246
2247 spin_unlock_irqrestore(&pl330->lock, flags);
2248 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2249 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2250 }
2251
2252 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2253 struct dma_pl330_desc *desc)
2254 {
2255 struct pl330_thread *thrd = pch->thread;
2256 struct pl330_dmac *pl330 = pch->dmac;
2257 void __iomem *regs = thrd->dmac->base;
2258 u32 val, addr;
2259
2260 pm_runtime_get_sync(pl330->ddma.dev);
2261 val = addr = 0;
2262 if (desc->rqcfg.src_inc) {
2263 val = readl(regs + SA(thrd->id));
2264 addr = desc->px.src_addr;
2265 } else {
2266 val = readl(regs + DA(thrd->id));
2267 addr = desc->px.dst_addr;
2268 }
2269 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2270 pm_runtime_put_autosuspend(pl330->ddma.dev);
2271
2272 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2273 if (!val)
2274 return 0;
2275
2276 return val - addr;
2277 }
2278
2279 static enum dma_status
2280 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2281 struct dma_tx_state *txstate)
2282 {
2283 enum dma_status ret;
2284 unsigned long flags;
2285 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2286 struct dma_pl330_chan *pch = to_pchan(chan);
2287 unsigned int transferred, residual = 0;
2288
2289 ret = dma_cookie_status(chan, cookie, txstate);
2290
2291 if (!txstate)
2292 return ret;
2293
2294 if (ret == DMA_COMPLETE)
2295 goto out;
2296
2297 spin_lock_irqsave(&pch->lock, flags);
2298 spin_lock(&pch->thread->dmac->lock);
2299
2300 if (pch->thread->req_running != -1)
2301 running = pch->thread->req[pch->thread->req_running].desc;
2302
2303 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2304
2305 /* Check in pending list */
2306 list_for_each_entry(desc, &pch->work_list, node) {
2307 if (desc->status == DONE)
2308 transferred = desc->bytes_requested;
2309 else if (running && desc == running)
2310 transferred =
2311 pl330_get_current_xferred_count(pch, desc);
2312 else if (desc->status == BUSY)
2313 /*
2314 * Busy but not running means either just enqueued,
2315 * or finished and not yet marked done
2316 */
2317 if (desc == last_enq)
2318 transferred = 0;
2319 else
2320 transferred = desc->bytes_requested;
2321 else
2322 transferred = 0;
2323 residual += desc->bytes_requested - transferred;
2324 if (desc->txd.cookie == cookie) {
2325 switch (desc->status) {
2326 case DONE:
2327 ret = DMA_COMPLETE;
2328 break;
2329 case PREP:
2330 case BUSY:
2331 ret = DMA_IN_PROGRESS;
2332 break;
2333 default:
2334 WARN_ON(1);
2335 }
2336 break;
2337 }
2338 if (desc->last)
2339 residual = 0;
2340 }
2341 spin_unlock(&pch->thread->dmac->lock);
2342 spin_unlock_irqrestore(&pch->lock, flags);
2343
2344 out:
2345 dma_set_residue(txstate, residual);
2346
2347 return ret;
2348 }
2349
2350 static void pl330_issue_pending(struct dma_chan *chan)
2351 {
2352 struct dma_pl330_chan *pch = to_pchan(chan);
2353 unsigned long flags;
2354
2355 spin_lock_irqsave(&pch->lock, flags);
2356 if (list_empty(&pch->work_list)) {
2357 /*
2358 * Warn on nothing pending. Empty submitted_list may
2359 * break our pm_runtime usage counter as it is
2360 * updated on work_list emptiness status.
2361 */
2362 WARN_ON(list_empty(&pch->submitted_list));
2363 pch->active = true;
2364 pm_runtime_get_sync(pch->dmac->ddma.dev);
2365 }
2366 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2367 spin_unlock_irqrestore(&pch->lock, flags);
2368
2369 pl330_tasklet((unsigned long)pch);
2370 }
2371
2372 /*
2373 * We returned the last one of the circular list of descriptor(s)
2374 * from prep_xxx, so the argument to submit corresponds to the last
2375 * descriptor of the list.
2376 */
2377 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2378 {
2379 struct dma_pl330_desc *desc, *last = to_desc(tx);
2380 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2381 dma_cookie_t cookie;
2382 unsigned long flags;
2383
2384 spin_lock_irqsave(&pch->lock, flags);
2385
2386 /* Assign cookies to all nodes */
2387 while (!list_empty(&last->node)) {
2388 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2389 if (pch->cyclic) {
2390 desc->txd.callback = last->txd.callback;
2391 desc->txd.callback_param = last->txd.callback_param;
2392 }
2393 desc->last = false;
2394
2395 dma_cookie_assign(&desc->txd);
2396
2397 list_move_tail(&desc->node, &pch->submitted_list);
2398 }
2399
2400 last->last = true;
2401 cookie = dma_cookie_assign(&last->txd);
2402 list_add_tail(&last->node, &pch->submitted_list);
2403 spin_unlock_irqrestore(&pch->lock, flags);
2404
2405 return cookie;
2406 }
2407
2408 static inline void _init_desc(struct dma_pl330_desc *desc)
2409 {
2410 desc->rqcfg.swap = SWAP_NO;
2411 desc->rqcfg.scctl = CCTRL0;
2412 desc->rqcfg.dcctl = CCTRL0;
2413 desc->txd.tx_submit = pl330_tx_submit;
2414
2415 INIT_LIST_HEAD(&desc->node);
2416 }
2417
2418 /* Returns the number of descriptors added to the DMAC pool */
2419 static int add_desc(struct pl330_dmac *pl330, gfp_t flg, int count)
2420 {
2421 struct dma_pl330_desc *desc;
2422 unsigned long flags;
2423 int i;
2424
2425 desc = kcalloc(count, sizeof(*desc), flg);
2426 if (!desc)
2427 return 0;
2428
2429 spin_lock_irqsave(&pl330->pool_lock, flags);
2430
2431 for (i = 0; i < count; i++) {
2432 _init_desc(&desc[i]);
2433 list_add_tail(&desc[i].node, &pl330->desc_pool);
2434 }
2435
2436 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2437
2438 return count;
2439 }
2440
2441 static struct dma_pl330_desc *pluck_desc(struct pl330_dmac *pl330)
2442 {
2443 struct dma_pl330_desc *desc = NULL;
2444 unsigned long flags;
2445
2446 spin_lock_irqsave(&pl330->pool_lock, flags);
2447
2448 if (!list_empty(&pl330->desc_pool)) {
2449 desc = list_entry(pl330->desc_pool.next,
2450 struct dma_pl330_desc, node);
2451
2452 list_del_init(&desc->node);
2453
2454 desc->status = PREP;
2455 desc->txd.callback = NULL;
2456 }
2457
2458 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2459
2460 return desc;
2461 }
2462
2463 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2464 {
2465 struct pl330_dmac *pl330 = pch->dmac;
2466 u8 *peri_id = pch->chan.private;
2467 struct dma_pl330_desc *desc;
2468
2469 /* Pluck one desc from the pool of DMAC */
2470 desc = pluck_desc(pl330);
2471
2472 /* If the DMAC pool is empty, alloc new */
2473 if (!desc) {
2474 if (!add_desc(pl330, GFP_ATOMIC, 1))
2475 return NULL;
2476
2477 /* Try again */
2478 desc = pluck_desc(pl330);
2479 if (!desc) {
2480 dev_err(pch->dmac->ddma.dev,
2481 "%s:%d ALERT!\n", __func__, __LINE__);
2482 return NULL;
2483 }
2484 }
2485
2486 /* Initialize the descriptor */
2487 desc->pchan = pch;
2488 desc->txd.cookie = 0;
2489 async_tx_ack(&desc->txd);
2490
2491 desc->peri = peri_id ? pch->chan.chan_id : 0;
2492 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2493
2494 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2495
2496 return desc;
2497 }
2498
2499 static inline void fill_px(struct pl330_xfer *px,
2500 dma_addr_t dst, dma_addr_t src, size_t len)
2501 {
2502 px->bytes = len;
2503 px->dst_addr = dst;
2504 px->src_addr = src;
2505 }
2506
2507 static struct dma_pl330_desc *
2508 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2509 dma_addr_t src, size_t len)
2510 {
2511 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2512
2513 if (!desc) {
2514 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2515 __func__, __LINE__);
2516 return NULL;
2517 }
2518
2519 /*
2520 * Ideally we should lookout for reqs bigger than
2521 * those that can be programmed with 256 bytes of
2522 * MC buffer, but considering a req size is seldom
2523 * going to be word-unaligned and more than 200MB,
2524 * we take it easy.
2525 * Also, should the limit is reached we'd rather
2526 * have the platform increase MC buffer size than
2527 * complicating this API driver.
2528 */
2529 fill_px(&desc->px, dst, src, len);
2530
2531 return desc;
2532 }
2533
2534 /* Call after fixing burst size */
2535 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2536 {
2537 struct dma_pl330_chan *pch = desc->pchan;
2538 struct pl330_dmac *pl330 = pch->dmac;
2539 int burst_len;
2540
2541 burst_len = pl330->pcfg.data_bus_width / 8;
2542 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2543 burst_len >>= desc->rqcfg.brst_size;
2544
2545 /* src/dst_burst_len can't be more than 16 */
2546 if (burst_len > 16)
2547 burst_len = 16;
2548
2549 while (burst_len > 1) {
2550 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2551 break;
2552 burst_len--;
2553 }
2554
2555 return burst_len;
2556 }
2557
2558 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2559 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2560 size_t period_len, enum dma_transfer_direction direction,
2561 unsigned long flags)
2562 {
2563 struct dma_pl330_desc *desc = NULL, *first = NULL;
2564 struct dma_pl330_chan *pch = to_pchan(chan);
2565 struct pl330_dmac *pl330 = pch->dmac;
2566 unsigned int i;
2567 dma_addr_t dst;
2568 dma_addr_t src;
2569
2570 if (len % period_len != 0)
2571 return NULL;
2572
2573 if (!is_slave_direction(direction)) {
2574 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2575 __func__, __LINE__);
2576 return NULL;
2577 }
2578
2579 for (i = 0; i < len / period_len; i++) {
2580 desc = pl330_get_desc(pch);
2581 if (!desc) {
2582 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2583 __func__, __LINE__);
2584
2585 if (!first)
2586 return NULL;
2587
2588 spin_lock_irqsave(&pl330->pool_lock, flags);
2589
2590 while (!list_empty(&first->node)) {
2591 desc = list_entry(first->node.next,
2592 struct dma_pl330_desc, node);
2593 list_move_tail(&desc->node, &pl330->desc_pool);
2594 }
2595
2596 list_move_tail(&first->node, &pl330->desc_pool);
2597
2598 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2599
2600 return NULL;
2601 }
2602
2603 switch (direction) {
2604 case DMA_MEM_TO_DEV:
2605 desc->rqcfg.src_inc = 1;
2606 desc->rqcfg.dst_inc = 0;
2607 src = dma_addr;
2608 dst = pch->fifo_addr;
2609 break;
2610 case DMA_DEV_TO_MEM:
2611 desc->rqcfg.src_inc = 0;
2612 desc->rqcfg.dst_inc = 1;
2613 src = pch->fifo_addr;
2614 dst = dma_addr;
2615 break;
2616 default:
2617 break;
2618 }
2619
2620 desc->rqtype = direction;
2621 desc->rqcfg.brst_size = pch->burst_sz;
2622 desc->rqcfg.brst_len = 1;
2623 desc->bytes_requested = period_len;
2624 fill_px(&desc->px, dst, src, period_len);
2625
2626 if (!first)
2627 first = desc;
2628 else
2629 list_add_tail(&desc->node, &first->node);
2630
2631 dma_addr += period_len;
2632 }
2633
2634 if (!desc)
2635 return NULL;
2636
2637 pch->cyclic = true;
2638 desc->txd.flags = flags;
2639
2640 return &desc->txd;
2641 }
2642
2643 static struct dma_async_tx_descriptor *
2644 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2645 dma_addr_t src, size_t len, unsigned long flags)
2646 {
2647 struct dma_pl330_desc *desc;
2648 struct dma_pl330_chan *pch = to_pchan(chan);
2649 struct pl330_dmac *pl330;
2650 int burst;
2651
2652 if (unlikely(!pch || !len))
2653 return NULL;
2654
2655 pl330 = pch->dmac;
2656
2657 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2658 if (!desc)
2659 return NULL;
2660
2661 desc->rqcfg.src_inc = 1;
2662 desc->rqcfg.dst_inc = 1;
2663 desc->rqtype = DMA_MEM_TO_MEM;
2664
2665 /* Select max possible burst size */
2666 burst = pl330->pcfg.data_bus_width / 8;
2667
2668 /*
2669 * Make sure we use a burst size that aligns with all the memcpy
2670 * parameters because our DMA programming algorithm doesn't cope with
2671 * transfers which straddle an entry in the DMA device's MFIFO.
2672 */
2673 while ((src | dst | len) & (burst - 1))
2674 burst /= 2;
2675
2676 desc->rqcfg.brst_size = 0;
2677 while (burst != (1 << desc->rqcfg.brst_size))
2678 desc->rqcfg.brst_size++;
2679
2680 /*
2681 * If burst size is smaller than bus width then make sure we only
2682 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2683 */
2684 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2685 desc->rqcfg.brst_len = 1;
2686
2687 desc->rqcfg.brst_len = get_burst_len(desc, len);
2688 desc->bytes_requested = len;
2689
2690 desc->txd.flags = flags;
2691
2692 return &desc->txd;
2693 }
2694
2695 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2696 struct dma_pl330_desc *first)
2697 {
2698 unsigned long flags;
2699 struct dma_pl330_desc *desc;
2700
2701 if (!first)
2702 return;
2703
2704 spin_lock_irqsave(&pl330->pool_lock, flags);
2705
2706 while (!list_empty(&first->node)) {
2707 desc = list_entry(first->node.next,
2708 struct dma_pl330_desc, node);
2709 list_move_tail(&desc->node, &pl330->desc_pool);
2710 }
2711
2712 list_move_tail(&first->node, &pl330->desc_pool);
2713
2714 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2715 }
2716
2717 static struct dma_async_tx_descriptor *
2718 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2719 unsigned int sg_len, enum dma_transfer_direction direction,
2720 unsigned long flg, void *context)
2721 {
2722 struct dma_pl330_desc *first, *desc = NULL;
2723 struct dma_pl330_chan *pch = to_pchan(chan);
2724 struct scatterlist *sg;
2725 int i;
2726 dma_addr_t addr;
2727
2728 if (unlikely(!pch || !sgl || !sg_len))
2729 return NULL;
2730
2731 addr = pch->fifo_addr;
2732
2733 first = NULL;
2734
2735 for_each_sg(sgl, sg, sg_len, i) {
2736
2737 desc = pl330_get_desc(pch);
2738 if (!desc) {
2739 struct pl330_dmac *pl330 = pch->dmac;
2740
2741 dev_err(pch->dmac->ddma.dev,
2742 "%s:%d Unable to fetch desc\n",
2743 __func__, __LINE__);
2744 __pl330_giveback_desc(pl330, first);
2745
2746 return NULL;
2747 }
2748
2749 if (!first)
2750 first = desc;
2751 else
2752 list_add_tail(&desc->node, &first->node);
2753
2754 if (direction == DMA_MEM_TO_DEV) {
2755 desc->rqcfg.src_inc = 1;
2756 desc->rqcfg.dst_inc = 0;
2757 fill_px(&desc->px,
2758 addr, sg_dma_address(sg), sg_dma_len(sg));
2759 } else {
2760 desc->rqcfg.src_inc = 0;
2761 desc->rqcfg.dst_inc = 1;
2762 fill_px(&desc->px,
2763 sg_dma_address(sg), addr, sg_dma_len(sg));
2764 }
2765
2766 desc->rqcfg.brst_size = pch->burst_sz;
2767 desc->rqcfg.brst_len = 1;
2768 desc->rqtype = direction;
2769 desc->bytes_requested = sg_dma_len(sg);
2770 }
2771
2772 /* Return the last desc in the chain */
2773 desc->txd.flags = flg;
2774 return &desc->txd;
2775 }
2776
2777 static irqreturn_t pl330_irq_handler(int irq, void *data)
2778 {
2779 if (pl330_update(data))
2780 return IRQ_HANDLED;
2781 else
2782 return IRQ_NONE;
2783 }
2784
2785 #define PL330_DMA_BUSWIDTHS \
2786 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2787 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2788 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2789 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2790 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2791
2792 /*
2793 * Runtime PM callbacks are provided by amba/bus.c driver.
2794 *
2795 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2796 * bus driver will only disable/enable the clock in runtime PM callbacks.
2797 */
2798 static int __maybe_unused pl330_suspend(struct device *dev)
2799 {
2800 struct amba_device *pcdev = to_amba_device(dev);
2801
2802 pm_runtime_disable(dev);
2803
2804 if (!pm_runtime_status_suspended(dev)) {
2805 /* amba did not disable the clock */
2806 amba_pclk_disable(pcdev);
2807 }
2808 amba_pclk_unprepare(pcdev);
2809
2810 return 0;
2811 }
2812
2813 static int __maybe_unused pl330_resume(struct device *dev)
2814 {
2815 struct amba_device *pcdev = to_amba_device(dev);
2816 int ret;
2817
2818 ret = amba_pclk_prepare(pcdev);
2819 if (ret)
2820 return ret;
2821
2822 if (!pm_runtime_status_suspended(dev))
2823 ret = amba_pclk_enable(pcdev);
2824
2825 pm_runtime_enable(dev);
2826
2827 return ret;
2828 }
2829
2830 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2831
2832 static int
2833 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2834 {
2835 struct dma_pl330_platdata *pdat;
2836 struct pl330_config *pcfg;
2837 struct pl330_dmac *pl330;
2838 struct dma_pl330_chan *pch, *_p;
2839 struct dma_device *pd;
2840 struct resource *res;
2841 int i, ret, irq;
2842 int num_chan;
2843 struct device_node *np = adev->dev.of_node;
2844
2845 pdat = dev_get_platdata(&adev->dev);
2846
2847 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2848 if (ret)
2849 return ret;
2850
2851 /* Allocate a new DMAC and its Channels */
2852 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2853 if (!pl330)
2854 return -ENOMEM;
2855
2856 pd = &pl330->ddma;
2857 pd->dev = &adev->dev;
2858
2859 pl330->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2860
2861 /* get quirk */
2862 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2863 if (of_property_read_bool(np, of_quirks[i].quirk))
2864 pl330->quirks |= of_quirks[i].id;
2865
2866 res = &adev->res;
2867 pl330->base = devm_ioremap_resource(&adev->dev, res);
2868 if (IS_ERR(pl330->base))
2869 return PTR_ERR(pl330->base);
2870
2871 amba_set_drvdata(adev, pl330);
2872
2873 for (i = 0; i < AMBA_NR_IRQS; i++) {
2874 irq = adev->irq[i];
2875 if (irq) {
2876 ret = devm_request_irq(&adev->dev, irq,
2877 pl330_irq_handler, 0,
2878 dev_name(&adev->dev), pl330);
2879 if (ret)
2880 return ret;
2881 } else {
2882 break;
2883 }
2884 }
2885
2886 pcfg = &pl330->pcfg;
2887
2888 pcfg->periph_id = adev->periphid;
2889 ret = pl330_add(pl330);
2890 if (ret)
2891 return ret;
2892
2893 INIT_LIST_HEAD(&pl330->desc_pool);
2894 spin_lock_init(&pl330->pool_lock);
2895
2896 /* Create a descriptor pool of default size */
2897 if (!add_desc(pl330, GFP_KERNEL, NR_DEFAULT_DESC))
2898 dev_warn(&adev->dev, "unable to allocate desc\n");
2899
2900 INIT_LIST_HEAD(&pd->channels);
2901
2902 /* Initialize channel parameters */
2903 if (pdat)
2904 num_chan = max_t(int, pdat->nr_valid_peri, pcfg->num_chan);
2905 else
2906 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
2907
2908 pl330->num_peripherals = num_chan;
2909
2910 pl330->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2911 if (!pl330->peripherals) {
2912 ret = -ENOMEM;
2913 goto probe_err2;
2914 }
2915
2916 for (i = 0; i < num_chan; i++) {
2917 pch = &pl330->peripherals[i];
2918 if (!adev->dev.of_node)
2919 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2920 else
2921 pch->chan.private = adev->dev.of_node;
2922
2923 INIT_LIST_HEAD(&pch->submitted_list);
2924 INIT_LIST_HEAD(&pch->work_list);
2925 INIT_LIST_HEAD(&pch->completed_list);
2926 spin_lock_init(&pch->lock);
2927 pch->thread = NULL;
2928 pch->chan.device = pd;
2929 pch->dmac = pl330;
2930
2931 /* Add the channel to the DMAC list */
2932 list_add_tail(&pch->chan.device_node, &pd->channels);
2933 }
2934
2935 if (pdat) {
2936 pd->cap_mask = pdat->cap_mask;
2937 } else {
2938 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
2939 if (pcfg->num_peri) {
2940 dma_cap_set(DMA_SLAVE, pd->cap_mask);
2941 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
2942 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
2943 }
2944 }
2945
2946 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
2947 pd->device_free_chan_resources = pl330_free_chan_resources;
2948 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
2949 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
2950 pd->device_tx_status = pl330_tx_status;
2951 pd->device_prep_slave_sg = pl330_prep_slave_sg;
2952 pd->device_config = pl330_config;
2953 pd->device_pause = pl330_pause;
2954 pd->device_terminate_all = pl330_terminate_all;
2955 pd->device_issue_pending = pl330_issue_pending;
2956 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
2957 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
2958 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2959 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2960 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
2961 1 : PL330_MAX_BURST);
2962
2963 ret = dma_async_device_register(pd);
2964 if (ret) {
2965 dev_err(&adev->dev, "unable to register DMAC\n");
2966 goto probe_err3;
2967 }
2968
2969 if (adev->dev.of_node) {
2970 ret = of_dma_controller_register(adev->dev.of_node,
2971 of_dma_pl330_xlate, pl330);
2972 if (ret) {
2973 dev_err(&adev->dev,
2974 "unable to register DMA to the generic DT DMA helpers\n");
2975 }
2976 }
2977
2978 adev->dev.dma_parms = &pl330->dma_parms;
2979
2980 /*
2981 * This is the limit for transfers with a buswidth of 1, larger
2982 * buswidths will have larger limits.
2983 */
2984 ret = dma_set_max_seg_size(&adev->dev, 1900800);
2985 if (ret)
2986 dev_err(&adev->dev, "unable to set the seg size\n");
2987
2988
2989 dev_info(&adev->dev,
2990 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
2991 dev_info(&adev->dev,
2992 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
2993 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
2994 pcfg->num_peri, pcfg->num_events);
2995
2996 pm_runtime_irq_safe(&adev->dev);
2997 pm_runtime_use_autosuspend(&adev->dev);
2998 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
2999 pm_runtime_mark_last_busy(&adev->dev);
3000 pm_runtime_put_autosuspend(&adev->dev);
3001
3002 return 0;
3003 probe_err3:
3004 /* Idle the DMAC */
3005 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3006 chan.device_node) {
3007
3008 /* Remove the channel */
3009 list_del(&pch->chan.device_node);
3010
3011 /* Flush the channel */
3012 if (pch->thread) {
3013 pl330_terminate_all(&pch->chan);
3014 pl330_free_chan_resources(&pch->chan);
3015 }
3016 }
3017 probe_err2:
3018 pl330_del(pl330);
3019
3020 return ret;
3021 }
3022
3023 static int pl330_remove(struct amba_device *adev)
3024 {
3025 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3026 struct dma_pl330_chan *pch, *_p;
3027 int i, irq;
3028
3029 pm_runtime_get_noresume(pl330->ddma.dev);
3030
3031 if (adev->dev.of_node)
3032 of_dma_controller_free(adev->dev.of_node);
3033
3034 for (i = 0; i < AMBA_NR_IRQS; i++) {
3035 irq = adev->irq[i];
3036 devm_free_irq(&adev->dev, irq, pl330);
3037 }
3038
3039 dma_async_device_unregister(&pl330->ddma);
3040
3041 /* Idle the DMAC */
3042 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3043 chan.device_node) {
3044
3045 /* Remove the channel */
3046 list_del(&pch->chan.device_node);
3047
3048 /* Flush the channel */
3049 if (pch->thread) {
3050 pl330_terminate_all(&pch->chan);
3051 pl330_free_chan_resources(&pch->chan);
3052 }
3053 }
3054
3055 pl330_del(pl330);
3056
3057 return 0;
3058 }
3059
3060 static struct amba_id pl330_ids[] = {
3061 {
3062 .id = 0x00041330,
3063 .mask = 0x000fffff,
3064 },
3065 { 0, 0 },
3066 };
3067
3068 MODULE_DEVICE_TABLE(amba, pl330_ids);
3069
3070 static struct amba_driver pl330_driver = {
3071 .drv = {
3072 .owner = THIS_MODULE,
3073 .name = "dma-pl330",
3074 .pm = &pl330_pm,
3075 },
3076 .id_table = pl330_ids,
3077 .probe = pl330_probe,
3078 .remove = pl330_remove,
3079 };
3080
3081 module_amba_driver(pl330_driver);
3082
3083 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3084 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3085 MODULE_LICENSE("GPL");