]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - drivers/dma/pl330.c
Merge branch 'next' into for-linus
[mirror_ubuntu-kernels.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/scatterlist.h>
26 #include <linux/of.h>
27 #include <linux/of_dma.h>
28 #include <linux/err.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/bug.h>
31
32 #include "dmaengine.h"
33 #define PL330_MAX_CHAN 8
34 #define PL330_MAX_IRQS 32
35 #define PL330_MAX_PERI 32
36 #define PL330_MAX_BURST 16
37
38 #define PL330_QUIRK_BROKEN_NO_FLUSHP BIT(0)
39
40 enum pl330_cachectrl {
41 CCTRL0, /* Noncacheable and nonbufferable */
42 CCTRL1, /* Bufferable only */
43 CCTRL2, /* Cacheable, but do not allocate */
44 CCTRL3, /* Cacheable and bufferable, but do not allocate */
45 INVALID1, /* AWCACHE = 0x1000 */
46 INVALID2,
47 CCTRL6, /* Cacheable write-through, allocate on writes only */
48 CCTRL7, /* Cacheable write-back, allocate on writes only */
49 };
50
51 enum pl330_byteswap {
52 SWAP_NO,
53 SWAP_2,
54 SWAP_4,
55 SWAP_8,
56 SWAP_16,
57 };
58
59 /* Register and Bit field Definitions */
60 #define DS 0x0
61 #define DS_ST_STOP 0x0
62 #define DS_ST_EXEC 0x1
63 #define DS_ST_CMISS 0x2
64 #define DS_ST_UPDTPC 0x3
65 #define DS_ST_WFE 0x4
66 #define DS_ST_ATBRR 0x5
67 #define DS_ST_QBUSY 0x6
68 #define DS_ST_WFP 0x7
69 #define DS_ST_KILL 0x8
70 #define DS_ST_CMPLT 0x9
71 #define DS_ST_FLTCMP 0xe
72 #define DS_ST_FAULT 0xf
73
74 #define DPC 0x4
75 #define INTEN 0x20
76 #define ES 0x24
77 #define INTSTATUS 0x28
78 #define INTCLR 0x2c
79 #define FSM 0x30
80 #define FSC 0x34
81 #define FTM 0x38
82
83 #define _FTC 0x40
84 #define FTC(n) (_FTC + (n)*0x4)
85
86 #define _CS 0x100
87 #define CS(n) (_CS + (n)*0x8)
88 #define CS_CNS (1 << 21)
89
90 #define _CPC 0x104
91 #define CPC(n) (_CPC + (n)*0x8)
92
93 #define _SA 0x400
94 #define SA(n) (_SA + (n)*0x20)
95
96 #define _DA 0x404
97 #define DA(n) (_DA + (n)*0x20)
98
99 #define _CC 0x408
100 #define CC(n) (_CC + (n)*0x20)
101
102 #define CC_SRCINC (1 << 0)
103 #define CC_DSTINC (1 << 14)
104 #define CC_SRCPRI (1 << 8)
105 #define CC_DSTPRI (1 << 22)
106 #define CC_SRCNS (1 << 9)
107 #define CC_DSTNS (1 << 23)
108 #define CC_SRCIA (1 << 10)
109 #define CC_DSTIA (1 << 24)
110 #define CC_SRCBRSTLEN_SHFT 4
111 #define CC_DSTBRSTLEN_SHFT 18
112 #define CC_SRCBRSTSIZE_SHFT 1
113 #define CC_DSTBRSTSIZE_SHFT 15
114 #define CC_SRCCCTRL_SHFT 11
115 #define CC_SRCCCTRL_MASK 0x7
116 #define CC_DSTCCTRL_SHFT 25
117 #define CC_DRCCCTRL_MASK 0x7
118 #define CC_SWAP_SHFT 28
119
120 #define _LC0 0x40c
121 #define LC0(n) (_LC0 + (n)*0x20)
122
123 #define _LC1 0x410
124 #define LC1(n) (_LC1 + (n)*0x20)
125
126 #define DBGSTATUS 0xd00
127 #define DBG_BUSY (1 << 0)
128
129 #define DBGCMD 0xd04
130 #define DBGINST0 0xd08
131 #define DBGINST1 0xd0c
132
133 #define CR0 0xe00
134 #define CR1 0xe04
135 #define CR2 0xe08
136 #define CR3 0xe0c
137 #define CR4 0xe10
138 #define CRD 0xe14
139
140 #define PERIPH_ID 0xfe0
141 #define PERIPH_REV_SHIFT 20
142 #define PERIPH_REV_MASK 0xf
143 #define PERIPH_REV_R0P0 0
144 #define PERIPH_REV_R1P0 1
145 #define PERIPH_REV_R1P1 2
146
147 #define CR0_PERIPH_REQ_SET (1 << 0)
148 #define CR0_BOOT_EN_SET (1 << 1)
149 #define CR0_BOOT_MAN_NS (1 << 2)
150 #define CR0_NUM_CHANS_SHIFT 4
151 #define CR0_NUM_CHANS_MASK 0x7
152 #define CR0_NUM_PERIPH_SHIFT 12
153 #define CR0_NUM_PERIPH_MASK 0x1f
154 #define CR0_NUM_EVENTS_SHIFT 17
155 #define CR0_NUM_EVENTS_MASK 0x1f
156
157 #define CR1_ICACHE_LEN_SHIFT 0
158 #define CR1_ICACHE_LEN_MASK 0x7
159 #define CR1_NUM_ICACHELINES_SHIFT 4
160 #define CR1_NUM_ICACHELINES_MASK 0xf
161
162 #define CRD_DATA_WIDTH_SHIFT 0
163 #define CRD_DATA_WIDTH_MASK 0x7
164 #define CRD_WR_CAP_SHIFT 4
165 #define CRD_WR_CAP_MASK 0x7
166 #define CRD_WR_Q_DEP_SHIFT 8
167 #define CRD_WR_Q_DEP_MASK 0xf
168 #define CRD_RD_CAP_SHIFT 12
169 #define CRD_RD_CAP_MASK 0x7
170 #define CRD_RD_Q_DEP_SHIFT 16
171 #define CRD_RD_Q_DEP_MASK 0xf
172 #define CRD_DATA_BUFF_SHIFT 20
173 #define CRD_DATA_BUFF_MASK 0x3ff
174
175 #define PART 0x330
176 #define DESIGNER 0x41
177 #define REVISION 0x0
178 #define INTEG_CFG 0x0
179 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
180
181 #define PL330_STATE_STOPPED (1 << 0)
182 #define PL330_STATE_EXECUTING (1 << 1)
183 #define PL330_STATE_WFE (1 << 2)
184 #define PL330_STATE_FAULTING (1 << 3)
185 #define PL330_STATE_COMPLETING (1 << 4)
186 #define PL330_STATE_WFP (1 << 5)
187 #define PL330_STATE_KILLING (1 << 6)
188 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
189 #define PL330_STATE_CACHEMISS (1 << 8)
190 #define PL330_STATE_UPDTPC (1 << 9)
191 #define PL330_STATE_ATBARRIER (1 << 10)
192 #define PL330_STATE_QUEUEBUSY (1 << 11)
193 #define PL330_STATE_INVALID (1 << 15)
194
195 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
196 | PL330_STATE_WFE | PL330_STATE_FAULTING)
197
198 #define CMD_DMAADDH 0x54
199 #define CMD_DMAEND 0x00
200 #define CMD_DMAFLUSHP 0x35
201 #define CMD_DMAGO 0xa0
202 #define CMD_DMALD 0x04
203 #define CMD_DMALDP 0x25
204 #define CMD_DMALP 0x20
205 #define CMD_DMALPEND 0x28
206 #define CMD_DMAKILL 0x01
207 #define CMD_DMAMOV 0xbc
208 #define CMD_DMANOP 0x18
209 #define CMD_DMARMB 0x12
210 #define CMD_DMASEV 0x34
211 #define CMD_DMAST 0x08
212 #define CMD_DMASTP 0x29
213 #define CMD_DMASTZ 0x0c
214 #define CMD_DMAWFE 0x36
215 #define CMD_DMAWFP 0x30
216 #define CMD_DMAWMB 0x13
217
218 #define SZ_DMAADDH 3
219 #define SZ_DMAEND 1
220 #define SZ_DMAFLUSHP 2
221 #define SZ_DMALD 1
222 #define SZ_DMALDP 2
223 #define SZ_DMALP 2
224 #define SZ_DMALPEND 2
225 #define SZ_DMAKILL 1
226 #define SZ_DMAMOV 6
227 #define SZ_DMANOP 1
228 #define SZ_DMARMB 1
229 #define SZ_DMASEV 2
230 #define SZ_DMAST 1
231 #define SZ_DMASTP 2
232 #define SZ_DMASTZ 1
233 #define SZ_DMAWFE 2
234 #define SZ_DMAWFP 2
235 #define SZ_DMAWMB 1
236 #define SZ_DMAGO 6
237
238 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
239 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
240
241 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
242 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
243
244 /*
245 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
246 * at 1byte/burst for P<->M and M<->M respectively.
247 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
248 * should be enough for P<->M and M<->M respectively.
249 */
250 #define MCODE_BUFF_PER_REQ 256
251
252 /* Use this _only_ to wait on transient states */
253 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
254
255 #ifdef PL330_DEBUG_MCGEN
256 static unsigned cmd_line;
257 #define PL330_DBGCMD_DUMP(off, x...) do { \
258 printk("%x:", cmd_line); \
259 printk(x); \
260 cmd_line += off; \
261 } while (0)
262 #define PL330_DBGMC_START(addr) (cmd_line = addr)
263 #else
264 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
265 #define PL330_DBGMC_START(addr) do {} while (0)
266 #endif
267
268 /* The number of default descriptors */
269
270 #define NR_DEFAULT_DESC 16
271
272 /* Delay for runtime PM autosuspend, ms */
273 #define PL330_AUTOSUSPEND_DELAY 20
274
275 /* Populated by the PL330 core driver for DMA API driver's info */
276 struct pl330_config {
277 u32 periph_id;
278 #define DMAC_MODE_NS (1 << 0)
279 unsigned int mode;
280 unsigned int data_bus_width:10; /* In number of bits */
281 unsigned int data_buf_dep:11;
282 unsigned int num_chan:4;
283 unsigned int num_peri:6;
284 u32 peri_ns;
285 unsigned int num_events:6;
286 u32 irq_ns;
287 };
288
289 /**
290 * Request Configuration.
291 * The PL330 core does not modify this and uses the last
292 * working configuration if the request doesn't provide any.
293 *
294 * The Client may want to provide this info only for the
295 * first request and a request with new settings.
296 */
297 struct pl330_reqcfg {
298 /* Address Incrementing */
299 unsigned dst_inc:1;
300 unsigned src_inc:1;
301
302 /*
303 * For now, the SRC & DST protection levels
304 * and burst size/length are assumed same.
305 */
306 bool nonsecure;
307 bool privileged;
308 bool insnaccess;
309 unsigned brst_len:5;
310 unsigned brst_size:3; /* in power of 2 */
311
312 enum pl330_cachectrl dcctl;
313 enum pl330_cachectrl scctl;
314 enum pl330_byteswap swap;
315 struct pl330_config *pcfg;
316 };
317
318 /*
319 * One cycle of DMAC operation.
320 * There may be more than one xfer in a request.
321 */
322 struct pl330_xfer {
323 u32 src_addr;
324 u32 dst_addr;
325 /* Size to xfer */
326 u32 bytes;
327 };
328
329 /* The xfer callbacks are made with one of these arguments. */
330 enum pl330_op_err {
331 /* The all xfers in the request were success. */
332 PL330_ERR_NONE,
333 /* If req aborted due to global error. */
334 PL330_ERR_ABORT,
335 /* If req failed due to problem with Channel. */
336 PL330_ERR_FAIL,
337 };
338
339 enum dmamov_dst {
340 SAR = 0,
341 CCR,
342 DAR,
343 };
344
345 enum pl330_dst {
346 SRC = 0,
347 DST,
348 };
349
350 enum pl330_cond {
351 SINGLE,
352 BURST,
353 ALWAYS,
354 };
355
356 struct dma_pl330_desc;
357
358 struct _pl330_req {
359 u32 mc_bus;
360 void *mc_cpu;
361 struct dma_pl330_desc *desc;
362 };
363
364 /* ToBeDone for tasklet */
365 struct _pl330_tbd {
366 bool reset_dmac;
367 bool reset_mngr;
368 u8 reset_chan;
369 };
370
371 /* A DMAC Thread */
372 struct pl330_thread {
373 u8 id;
374 int ev;
375 /* If the channel is not yet acquired by any client */
376 bool free;
377 /* Parent DMAC */
378 struct pl330_dmac *dmac;
379 /* Only two at a time */
380 struct _pl330_req req[2];
381 /* Index of the last enqueued request */
382 unsigned lstenq;
383 /* Index of the last submitted request or -1 if the DMA is stopped */
384 int req_running;
385 };
386
387 enum pl330_dmac_state {
388 UNINIT,
389 INIT,
390 DYING,
391 };
392
393 enum desc_status {
394 /* In the DMAC pool */
395 FREE,
396 /*
397 * Allocated to some channel during prep_xxx
398 * Also may be sitting on the work_list.
399 */
400 PREP,
401 /*
402 * Sitting on the work_list and already submitted
403 * to the PL330 core. Not more than two descriptors
404 * of a channel can be BUSY at any time.
405 */
406 BUSY,
407 /*
408 * Sitting on the channel work_list but xfer done
409 * by PL330 core
410 */
411 DONE,
412 };
413
414 struct dma_pl330_chan {
415 /* Schedule desc completion */
416 struct tasklet_struct task;
417
418 /* DMA-Engine Channel */
419 struct dma_chan chan;
420
421 /* List of submitted descriptors */
422 struct list_head submitted_list;
423 /* List of issued descriptors */
424 struct list_head work_list;
425 /* List of completed descriptors */
426 struct list_head completed_list;
427
428 /* Pointer to the DMAC that manages this channel,
429 * NULL if the channel is available to be acquired.
430 * As the parent, this DMAC also provides descriptors
431 * to the channel.
432 */
433 struct pl330_dmac *dmac;
434
435 /* To protect channel manipulation */
436 spinlock_t lock;
437
438 /*
439 * Hardware channel thread of PL330 DMAC. NULL if the channel is
440 * available.
441 */
442 struct pl330_thread *thread;
443
444 /* For D-to-M and M-to-D channels */
445 int burst_sz; /* the peripheral fifo width */
446 int burst_len; /* the number of burst */
447 phys_addr_t fifo_addr;
448 /* DMA-mapped view of the FIFO; may differ if an IOMMU is present */
449 dma_addr_t fifo_dma;
450 enum dma_data_direction dir;
451 struct dma_slave_config slave_config;
452
453 /* for cyclic capability */
454 bool cyclic;
455
456 /* for runtime pm tracking */
457 bool active;
458 };
459
460 struct pl330_dmac {
461 /* DMA-Engine Device */
462 struct dma_device ddma;
463
464 /* Holds info about sg limitations */
465 struct device_dma_parameters dma_parms;
466
467 /* Pool of descriptors available for the DMAC's channels */
468 struct list_head desc_pool;
469 /* To protect desc_pool manipulation */
470 spinlock_t pool_lock;
471
472 /* Size of MicroCode buffers for each channel. */
473 unsigned mcbufsz;
474 /* ioremap'ed address of PL330 registers. */
475 void __iomem *base;
476 /* Populated by the PL330 core driver during pl330_add */
477 struct pl330_config pcfg;
478
479 spinlock_t lock;
480 /* Maximum possible events/irqs */
481 int events[32];
482 /* BUS address of MicroCode buffer */
483 dma_addr_t mcode_bus;
484 /* CPU address of MicroCode buffer */
485 void *mcode_cpu;
486 /* List of all Channel threads */
487 struct pl330_thread *channels;
488 /* Pointer to the MANAGER thread */
489 struct pl330_thread *manager;
490 /* To handle bad news in interrupt */
491 struct tasklet_struct tasks;
492 struct _pl330_tbd dmac_tbd;
493 /* State of DMAC operation */
494 enum pl330_dmac_state state;
495 /* Holds list of reqs with due callbacks */
496 struct list_head req_done;
497
498 /* Peripheral channels connected to this DMAC */
499 unsigned int num_peripherals;
500 struct dma_pl330_chan *peripherals; /* keep at end */
501 int quirks;
502 };
503
504 static struct pl330_of_quirks {
505 char *quirk;
506 int id;
507 } of_quirks[] = {
508 {
509 .quirk = "arm,pl330-broken-no-flushp",
510 .id = PL330_QUIRK_BROKEN_NO_FLUSHP,
511 }
512 };
513
514 struct dma_pl330_desc {
515 /* To attach to a queue as child */
516 struct list_head node;
517
518 /* Descriptor for the DMA Engine API */
519 struct dma_async_tx_descriptor txd;
520
521 /* Xfer for PL330 core */
522 struct pl330_xfer px;
523
524 struct pl330_reqcfg rqcfg;
525
526 enum desc_status status;
527
528 int bytes_requested;
529 bool last;
530
531 /* The channel which currently holds this desc */
532 struct dma_pl330_chan *pchan;
533
534 enum dma_transfer_direction rqtype;
535 /* Index of peripheral for the xfer. */
536 unsigned peri:5;
537 /* Hook to attach to DMAC's list of reqs with due callback */
538 struct list_head rqd;
539 };
540
541 struct _xfer_spec {
542 u32 ccr;
543 struct dma_pl330_desc *desc;
544 };
545
546 static int pl330_config_write(struct dma_chan *chan,
547 struct dma_slave_config *slave_config,
548 enum dma_transfer_direction direction);
549
550 static inline bool _queue_full(struct pl330_thread *thrd)
551 {
552 return thrd->req[0].desc != NULL && thrd->req[1].desc != NULL;
553 }
554
555 static inline bool is_manager(struct pl330_thread *thrd)
556 {
557 return thrd->dmac->manager == thrd;
558 }
559
560 /* If manager of the thread is in Non-Secure mode */
561 static inline bool _manager_ns(struct pl330_thread *thrd)
562 {
563 return (thrd->dmac->pcfg.mode & DMAC_MODE_NS) ? true : false;
564 }
565
566 static inline u32 get_revision(u32 periph_id)
567 {
568 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
569 }
570
571 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
572 {
573 if (dry_run)
574 return SZ_DMAEND;
575
576 buf[0] = CMD_DMAEND;
577
578 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
579
580 return SZ_DMAEND;
581 }
582
583 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
584 {
585 if (dry_run)
586 return SZ_DMAFLUSHP;
587
588 buf[0] = CMD_DMAFLUSHP;
589
590 peri &= 0x1f;
591 peri <<= 3;
592 buf[1] = peri;
593
594 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
595
596 return SZ_DMAFLUSHP;
597 }
598
599 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
600 {
601 if (dry_run)
602 return SZ_DMALD;
603
604 buf[0] = CMD_DMALD;
605
606 if (cond == SINGLE)
607 buf[0] |= (0 << 1) | (1 << 0);
608 else if (cond == BURST)
609 buf[0] |= (1 << 1) | (1 << 0);
610
611 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
612 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
613
614 return SZ_DMALD;
615 }
616
617 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
618 enum pl330_cond cond, u8 peri)
619 {
620 if (dry_run)
621 return SZ_DMALDP;
622
623 buf[0] = CMD_DMALDP;
624
625 if (cond == BURST)
626 buf[0] |= (1 << 1);
627
628 peri &= 0x1f;
629 peri <<= 3;
630 buf[1] = peri;
631
632 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
633 cond == SINGLE ? 'S' : 'B', peri >> 3);
634
635 return SZ_DMALDP;
636 }
637
638 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
639 unsigned loop, u8 cnt)
640 {
641 if (dry_run)
642 return SZ_DMALP;
643
644 buf[0] = CMD_DMALP;
645
646 if (loop)
647 buf[0] |= (1 << 1);
648
649 cnt--; /* DMAC increments by 1 internally */
650 buf[1] = cnt;
651
652 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
653
654 return SZ_DMALP;
655 }
656
657 struct _arg_LPEND {
658 enum pl330_cond cond;
659 bool forever;
660 unsigned loop;
661 u8 bjump;
662 };
663
664 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
665 const struct _arg_LPEND *arg)
666 {
667 enum pl330_cond cond = arg->cond;
668 bool forever = arg->forever;
669 unsigned loop = arg->loop;
670 u8 bjump = arg->bjump;
671
672 if (dry_run)
673 return SZ_DMALPEND;
674
675 buf[0] = CMD_DMALPEND;
676
677 if (loop)
678 buf[0] |= (1 << 2);
679
680 if (!forever)
681 buf[0] |= (1 << 4);
682
683 if (cond == SINGLE)
684 buf[0] |= (0 << 1) | (1 << 0);
685 else if (cond == BURST)
686 buf[0] |= (1 << 1) | (1 << 0);
687
688 buf[1] = bjump;
689
690 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
691 forever ? "FE" : "END",
692 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
693 loop ? '1' : '0',
694 bjump);
695
696 return SZ_DMALPEND;
697 }
698
699 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
700 {
701 if (dry_run)
702 return SZ_DMAKILL;
703
704 buf[0] = CMD_DMAKILL;
705
706 return SZ_DMAKILL;
707 }
708
709 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
710 enum dmamov_dst dst, u32 val)
711 {
712 if (dry_run)
713 return SZ_DMAMOV;
714
715 buf[0] = CMD_DMAMOV;
716 buf[1] = dst;
717 buf[2] = val;
718 buf[3] = val >> 8;
719 buf[4] = val >> 16;
720 buf[5] = val >> 24;
721
722 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
723 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
724
725 return SZ_DMAMOV;
726 }
727
728 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
729 {
730 if (dry_run)
731 return SZ_DMARMB;
732
733 buf[0] = CMD_DMARMB;
734
735 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
736
737 return SZ_DMARMB;
738 }
739
740 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
741 {
742 if (dry_run)
743 return SZ_DMASEV;
744
745 buf[0] = CMD_DMASEV;
746
747 ev &= 0x1f;
748 ev <<= 3;
749 buf[1] = ev;
750
751 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
752
753 return SZ_DMASEV;
754 }
755
756 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
757 {
758 if (dry_run)
759 return SZ_DMAST;
760
761 buf[0] = CMD_DMAST;
762
763 if (cond == SINGLE)
764 buf[0] |= (0 << 1) | (1 << 0);
765 else if (cond == BURST)
766 buf[0] |= (1 << 1) | (1 << 0);
767
768 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
769 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
770
771 return SZ_DMAST;
772 }
773
774 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
775 enum pl330_cond cond, u8 peri)
776 {
777 if (dry_run)
778 return SZ_DMASTP;
779
780 buf[0] = CMD_DMASTP;
781
782 if (cond == BURST)
783 buf[0] |= (1 << 1);
784
785 peri &= 0x1f;
786 peri <<= 3;
787 buf[1] = peri;
788
789 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
790 cond == SINGLE ? 'S' : 'B', peri >> 3);
791
792 return SZ_DMASTP;
793 }
794
795 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
796 enum pl330_cond cond, u8 peri)
797 {
798 if (dry_run)
799 return SZ_DMAWFP;
800
801 buf[0] = CMD_DMAWFP;
802
803 if (cond == SINGLE)
804 buf[0] |= (0 << 1) | (0 << 0);
805 else if (cond == BURST)
806 buf[0] |= (1 << 1) | (0 << 0);
807 else
808 buf[0] |= (0 << 1) | (1 << 0);
809
810 peri &= 0x1f;
811 peri <<= 3;
812 buf[1] = peri;
813
814 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
815 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
816
817 return SZ_DMAWFP;
818 }
819
820 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
821 {
822 if (dry_run)
823 return SZ_DMAWMB;
824
825 buf[0] = CMD_DMAWMB;
826
827 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
828
829 return SZ_DMAWMB;
830 }
831
832 struct _arg_GO {
833 u8 chan;
834 u32 addr;
835 unsigned ns;
836 };
837
838 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
839 const struct _arg_GO *arg)
840 {
841 u8 chan = arg->chan;
842 u32 addr = arg->addr;
843 unsigned ns = arg->ns;
844
845 if (dry_run)
846 return SZ_DMAGO;
847
848 buf[0] = CMD_DMAGO;
849 buf[0] |= (ns << 1);
850 buf[1] = chan & 0x7;
851 buf[2] = addr;
852 buf[3] = addr >> 8;
853 buf[4] = addr >> 16;
854 buf[5] = addr >> 24;
855
856 return SZ_DMAGO;
857 }
858
859 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
860
861 /* Returns Time-Out */
862 static bool _until_dmac_idle(struct pl330_thread *thrd)
863 {
864 void __iomem *regs = thrd->dmac->base;
865 unsigned long loops = msecs_to_loops(5);
866
867 do {
868 /* Until Manager is Idle */
869 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
870 break;
871
872 cpu_relax();
873 } while (--loops);
874
875 if (!loops)
876 return true;
877
878 return false;
879 }
880
881 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
882 u8 insn[], bool as_manager)
883 {
884 void __iomem *regs = thrd->dmac->base;
885 u32 val;
886
887 val = (insn[0] << 16) | (insn[1] << 24);
888 if (!as_manager) {
889 val |= (1 << 0);
890 val |= (thrd->id << 8); /* Channel Number */
891 }
892 writel(val, regs + DBGINST0);
893
894 val = le32_to_cpu(*((__le32 *)&insn[2]));
895 writel(val, regs + DBGINST1);
896
897 /* If timed out due to halted state-machine */
898 if (_until_dmac_idle(thrd)) {
899 dev_err(thrd->dmac->ddma.dev, "DMAC halted!\n");
900 return;
901 }
902
903 /* Get going */
904 writel(0, regs + DBGCMD);
905 }
906
907 static inline u32 _state(struct pl330_thread *thrd)
908 {
909 void __iomem *regs = thrd->dmac->base;
910 u32 val;
911
912 if (is_manager(thrd))
913 val = readl(regs + DS) & 0xf;
914 else
915 val = readl(regs + CS(thrd->id)) & 0xf;
916
917 switch (val) {
918 case DS_ST_STOP:
919 return PL330_STATE_STOPPED;
920 case DS_ST_EXEC:
921 return PL330_STATE_EXECUTING;
922 case DS_ST_CMISS:
923 return PL330_STATE_CACHEMISS;
924 case DS_ST_UPDTPC:
925 return PL330_STATE_UPDTPC;
926 case DS_ST_WFE:
927 return PL330_STATE_WFE;
928 case DS_ST_FAULT:
929 return PL330_STATE_FAULTING;
930 case DS_ST_ATBRR:
931 if (is_manager(thrd))
932 return PL330_STATE_INVALID;
933 else
934 return PL330_STATE_ATBARRIER;
935 case DS_ST_QBUSY:
936 if (is_manager(thrd))
937 return PL330_STATE_INVALID;
938 else
939 return PL330_STATE_QUEUEBUSY;
940 case DS_ST_WFP:
941 if (is_manager(thrd))
942 return PL330_STATE_INVALID;
943 else
944 return PL330_STATE_WFP;
945 case DS_ST_KILL:
946 if (is_manager(thrd))
947 return PL330_STATE_INVALID;
948 else
949 return PL330_STATE_KILLING;
950 case DS_ST_CMPLT:
951 if (is_manager(thrd))
952 return PL330_STATE_INVALID;
953 else
954 return PL330_STATE_COMPLETING;
955 case DS_ST_FLTCMP:
956 if (is_manager(thrd))
957 return PL330_STATE_INVALID;
958 else
959 return PL330_STATE_FAULT_COMPLETING;
960 default:
961 return PL330_STATE_INVALID;
962 }
963 }
964
965 static void _stop(struct pl330_thread *thrd)
966 {
967 void __iomem *regs = thrd->dmac->base;
968 u8 insn[6] = {0, 0, 0, 0, 0, 0};
969
970 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
971 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
972
973 /* Return if nothing needs to be done */
974 if (_state(thrd) == PL330_STATE_COMPLETING
975 || _state(thrd) == PL330_STATE_KILLING
976 || _state(thrd) == PL330_STATE_STOPPED)
977 return;
978
979 _emit_KILL(0, insn);
980
981 /* Stop generating interrupts for SEV */
982 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
983
984 _execute_DBGINSN(thrd, insn, is_manager(thrd));
985 }
986
987 /* Start doing req 'idx' of thread 'thrd' */
988 static bool _trigger(struct pl330_thread *thrd)
989 {
990 void __iomem *regs = thrd->dmac->base;
991 struct _pl330_req *req;
992 struct dma_pl330_desc *desc;
993 struct _arg_GO go;
994 unsigned ns;
995 u8 insn[6] = {0, 0, 0, 0, 0, 0};
996 int idx;
997
998 /* Return if already ACTIVE */
999 if (_state(thrd) != PL330_STATE_STOPPED)
1000 return true;
1001
1002 idx = 1 - thrd->lstenq;
1003 if (thrd->req[idx].desc != NULL) {
1004 req = &thrd->req[idx];
1005 } else {
1006 idx = thrd->lstenq;
1007 if (thrd->req[idx].desc != NULL)
1008 req = &thrd->req[idx];
1009 else
1010 req = NULL;
1011 }
1012
1013 /* Return if no request */
1014 if (!req)
1015 return true;
1016
1017 /* Return if req is running */
1018 if (idx == thrd->req_running)
1019 return true;
1020
1021 desc = req->desc;
1022
1023 ns = desc->rqcfg.nonsecure ? 1 : 0;
1024
1025 /* See 'Abort Sources' point-4 at Page 2-25 */
1026 if (_manager_ns(thrd) && !ns)
1027 dev_info(thrd->dmac->ddma.dev, "%s:%d Recipe for ABORT!\n",
1028 __func__, __LINE__);
1029
1030 go.chan = thrd->id;
1031 go.addr = req->mc_bus;
1032 go.ns = ns;
1033 _emit_GO(0, insn, &go);
1034
1035 /* Set to generate interrupts for SEV */
1036 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1037
1038 /* Only manager can execute GO */
1039 _execute_DBGINSN(thrd, insn, true);
1040
1041 thrd->req_running = idx;
1042
1043 return true;
1044 }
1045
1046 static bool _start(struct pl330_thread *thrd)
1047 {
1048 switch (_state(thrd)) {
1049 case PL330_STATE_FAULT_COMPLETING:
1050 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1051
1052 if (_state(thrd) == PL330_STATE_KILLING)
1053 UNTIL(thrd, PL330_STATE_STOPPED)
1054 /* fall through */
1055
1056 case PL330_STATE_FAULTING:
1057 _stop(thrd);
1058 /* fall through */
1059
1060 case PL330_STATE_KILLING:
1061 case PL330_STATE_COMPLETING:
1062 UNTIL(thrd, PL330_STATE_STOPPED)
1063 /* fall through */
1064
1065 case PL330_STATE_STOPPED:
1066 return _trigger(thrd);
1067
1068 case PL330_STATE_WFP:
1069 case PL330_STATE_QUEUEBUSY:
1070 case PL330_STATE_ATBARRIER:
1071 case PL330_STATE_UPDTPC:
1072 case PL330_STATE_CACHEMISS:
1073 case PL330_STATE_EXECUTING:
1074 return true;
1075
1076 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1077 default:
1078 return false;
1079 }
1080 }
1081
1082 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1083 const struct _xfer_spec *pxs, int cyc)
1084 {
1085 int off = 0;
1086 struct pl330_config *pcfg = pxs->desc->rqcfg.pcfg;
1087
1088 /* check lock-up free version */
1089 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1090 while (cyc--) {
1091 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1092 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1093 }
1094 } else {
1095 while (cyc--) {
1096 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1097 off += _emit_RMB(dry_run, &buf[off]);
1098 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1099 off += _emit_WMB(dry_run, &buf[off]);
1100 }
1101 }
1102
1103 return off;
1104 }
1105
1106 static u32 _emit_load(unsigned int dry_run, u8 buf[],
1107 enum pl330_cond cond, enum dma_transfer_direction direction,
1108 u8 peri)
1109 {
1110 int off = 0;
1111
1112 switch (direction) {
1113 case DMA_MEM_TO_MEM:
1114 /* fall through */
1115 case DMA_MEM_TO_DEV:
1116 off += _emit_LD(dry_run, &buf[off], cond);
1117 break;
1118
1119 case DMA_DEV_TO_MEM:
1120 if (cond == ALWAYS) {
1121 off += _emit_LDP(dry_run, &buf[off], SINGLE,
1122 peri);
1123 off += _emit_LDP(dry_run, &buf[off], BURST,
1124 peri);
1125 } else {
1126 off += _emit_LDP(dry_run, &buf[off], cond,
1127 peri);
1128 }
1129 break;
1130
1131 default:
1132 /* this code should be unreachable */
1133 WARN_ON(1);
1134 break;
1135 }
1136
1137 return off;
1138 }
1139
1140 static inline u32 _emit_store(unsigned int dry_run, u8 buf[],
1141 enum pl330_cond cond, enum dma_transfer_direction direction,
1142 u8 peri)
1143 {
1144 int off = 0;
1145
1146 switch (direction) {
1147 case DMA_MEM_TO_MEM:
1148 /* fall through */
1149 case DMA_DEV_TO_MEM:
1150 off += _emit_ST(dry_run, &buf[off], cond);
1151 break;
1152
1153 case DMA_MEM_TO_DEV:
1154 if (cond == ALWAYS) {
1155 off += _emit_STP(dry_run, &buf[off], SINGLE,
1156 peri);
1157 off += _emit_STP(dry_run, &buf[off], BURST,
1158 peri);
1159 } else {
1160 off += _emit_STP(dry_run, &buf[off], cond,
1161 peri);
1162 }
1163 break;
1164
1165 default:
1166 /* this code should be unreachable */
1167 WARN_ON(1);
1168 break;
1169 }
1170
1171 return off;
1172 }
1173
1174 static inline int _ldst_peripheral(struct pl330_dmac *pl330,
1175 unsigned dry_run, u8 buf[],
1176 const struct _xfer_spec *pxs, int cyc,
1177 enum pl330_cond cond)
1178 {
1179 int off = 0;
1180
1181 if (pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
1182 cond = BURST;
1183
1184 /*
1185 * do FLUSHP at beginning to clear any stale dma requests before the
1186 * first WFP.
1187 */
1188 if (!(pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP))
1189 off += _emit_FLUSHP(dry_run, &buf[off], pxs->desc->peri);
1190 while (cyc--) {
1191 off += _emit_WFP(dry_run, &buf[off], cond, pxs->desc->peri);
1192 off += _emit_load(dry_run, &buf[off], cond, pxs->desc->rqtype,
1193 pxs->desc->peri);
1194 off += _emit_store(dry_run, &buf[off], cond, pxs->desc->rqtype,
1195 pxs->desc->peri);
1196 }
1197
1198 return off;
1199 }
1200
1201 static int _bursts(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1202 const struct _xfer_spec *pxs, int cyc)
1203 {
1204 int off = 0;
1205 enum pl330_cond cond = BRST_LEN(pxs->ccr) > 1 ? BURST : SINGLE;
1206
1207 switch (pxs->desc->rqtype) {
1208 case DMA_MEM_TO_DEV:
1209 /* fall through */
1210 case DMA_DEV_TO_MEM:
1211 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs, cyc,
1212 cond);
1213 break;
1214
1215 case DMA_MEM_TO_MEM:
1216 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1217 break;
1218
1219 default:
1220 /* this code should be unreachable */
1221 WARN_ON(1);
1222 break;
1223 }
1224
1225 return off;
1226 }
1227
1228 /*
1229 * transfer dregs with single transfers to peripheral, or a reduced size burst
1230 * for mem-to-mem.
1231 */
1232 static int _dregs(struct pl330_dmac *pl330, unsigned int dry_run, u8 buf[],
1233 const struct _xfer_spec *pxs, int transfer_length)
1234 {
1235 int off = 0;
1236 int dregs_ccr;
1237
1238 if (transfer_length == 0)
1239 return off;
1240
1241 switch (pxs->desc->rqtype) {
1242 case DMA_MEM_TO_DEV:
1243 /* fall through */
1244 case DMA_DEV_TO_MEM:
1245 off += _ldst_peripheral(pl330, dry_run, &buf[off], pxs,
1246 transfer_length, SINGLE);
1247 break;
1248
1249 case DMA_MEM_TO_MEM:
1250 dregs_ccr = pxs->ccr;
1251 dregs_ccr &= ~((0xf << CC_SRCBRSTLEN_SHFT) |
1252 (0xf << CC_DSTBRSTLEN_SHFT));
1253 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1254 CC_SRCBRSTLEN_SHFT);
1255 dregs_ccr |= (((transfer_length - 1) & 0xf) <<
1256 CC_DSTBRSTLEN_SHFT);
1257 off += _emit_MOV(dry_run, &buf[off], CCR, dregs_ccr);
1258 off += _ldst_memtomem(dry_run, &buf[off], pxs, 1);
1259 break;
1260
1261 default:
1262 /* this code should be unreachable */
1263 WARN_ON(1);
1264 break;
1265 }
1266
1267 return off;
1268 }
1269
1270 /* Returns bytes consumed and updates bursts */
1271 static inline int _loop(struct pl330_dmac *pl330, unsigned dry_run, u8 buf[],
1272 unsigned long *bursts, const struct _xfer_spec *pxs)
1273 {
1274 int cyc, cycmax, szlp, szlpend, szbrst, off;
1275 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1276 struct _arg_LPEND lpend;
1277
1278 if (*bursts == 1)
1279 return _bursts(pl330, dry_run, buf, pxs, 1);
1280
1281 /* Max iterations possible in DMALP is 256 */
1282 if (*bursts >= 256*256) {
1283 lcnt1 = 256;
1284 lcnt0 = 256;
1285 cyc = *bursts / lcnt1 / lcnt0;
1286 } else if (*bursts > 256) {
1287 lcnt1 = 256;
1288 lcnt0 = *bursts / lcnt1;
1289 cyc = 1;
1290 } else {
1291 lcnt1 = *bursts;
1292 lcnt0 = 0;
1293 cyc = 1;
1294 }
1295
1296 szlp = _emit_LP(1, buf, 0, 0);
1297 szbrst = _bursts(pl330, 1, buf, pxs, 1);
1298
1299 lpend.cond = ALWAYS;
1300 lpend.forever = false;
1301 lpend.loop = 0;
1302 lpend.bjump = 0;
1303 szlpend = _emit_LPEND(1, buf, &lpend);
1304
1305 if (lcnt0) {
1306 szlp *= 2;
1307 szlpend *= 2;
1308 }
1309
1310 /*
1311 * Max bursts that we can unroll due to limit on the
1312 * size of backward jump that can be encoded in DMALPEND
1313 * which is 8-bits and hence 255
1314 */
1315 cycmax = (255 - (szlp + szlpend)) / szbrst;
1316
1317 cyc = (cycmax < cyc) ? cycmax : cyc;
1318
1319 off = 0;
1320
1321 if (lcnt0) {
1322 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1323 ljmp0 = off;
1324 }
1325
1326 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1327 ljmp1 = off;
1328
1329 off += _bursts(pl330, dry_run, &buf[off], pxs, cyc);
1330
1331 lpend.cond = ALWAYS;
1332 lpend.forever = false;
1333 lpend.loop = 1;
1334 lpend.bjump = off - ljmp1;
1335 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1336
1337 if (lcnt0) {
1338 lpend.cond = ALWAYS;
1339 lpend.forever = false;
1340 lpend.loop = 0;
1341 lpend.bjump = off - ljmp0;
1342 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1343 }
1344
1345 *bursts = lcnt1 * cyc;
1346 if (lcnt0)
1347 *bursts *= lcnt0;
1348
1349 return off;
1350 }
1351
1352 static inline int _setup_loops(struct pl330_dmac *pl330,
1353 unsigned dry_run, u8 buf[],
1354 const struct _xfer_spec *pxs)
1355 {
1356 struct pl330_xfer *x = &pxs->desc->px;
1357 u32 ccr = pxs->ccr;
1358 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1359 int num_dregs = (x->bytes - BURST_TO_BYTE(bursts, ccr)) /
1360 BRST_SIZE(ccr);
1361 int off = 0;
1362
1363 while (bursts) {
1364 c = bursts;
1365 off += _loop(pl330, dry_run, &buf[off], &c, pxs);
1366 bursts -= c;
1367 }
1368 off += _dregs(pl330, dry_run, &buf[off], pxs, num_dregs);
1369
1370 return off;
1371 }
1372
1373 static inline int _setup_xfer(struct pl330_dmac *pl330,
1374 unsigned dry_run, u8 buf[],
1375 const struct _xfer_spec *pxs)
1376 {
1377 struct pl330_xfer *x = &pxs->desc->px;
1378 int off = 0;
1379
1380 /* DMAMOV SAR, x->src_addr */
1381 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1382 /* DMAMOV DAR, x->dst_addr */
1383 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1384
1385 /* Setup Loop(s) */
1386 off += _setup_loops(pl330, dry_run, &buf[off], pxs);
1387
1388 return off;
1389 }
1390
1391 /*
1392 * A req is a sequence of one or more xfer units.
1393 * Returns the number of bytes taken to setup the MC for the req.
1394 */
1395 static int _setup_req(struct pl330_dmac *pl330, unsigned dry_run,
1396 struct pl330_thread *thrd, unsigned index,
1397 struct _xfer_spec *pxs)
1398 {
1399 struct _pl330_req *req = &thrd->req[index];
1400 u8 *buf = req->mc_cpu;
1401 int off = 0;
1402
1403 PL330_DBGMC_START(req->mc_bus);
1404
1405 /* DMAMOV CCR, ccr */
1406 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1407
1408 off += _setup_xfer(pl330, dry_run, &buf[off], pxs);
1409
1410 /* DMASEV peripheral/event */
1411 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1412 /* DMAEND */
1413 off += _emit_END(dry_run, &buf[off]);
1414
1415 return off;
1416 }
1417
1418 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1419 {
1420 u32 ccr = 0;
1421
1422 if (rqc->src_inc)
1423 ccr |= CC_SRCINC;
1424
1425 if (rqc->dst_inc)
1426 ccr |= CC_DSTINC;
1427
1428 /* We set same protection levels for Src and DST for now */
1429 if (rqc->privileged)
1430 ccr |= CC_SRCPRI | CC_DSTPRI;
1431 if (rqc->nonsecure)
1432 ccr |= CC_SRCNS | CC_DSTNS;
1433 if (rqc->insnaccess)
1434 ccr |= CC_SRCIA | CC_DSTIA;
1435
1436 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1437 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1438
1439 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1440 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1441
1442 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1443 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1444
1445 ccr |= (rqc->swap << CC_SWAP_SHFT);
1446
1447 return ccr;
1448 }
1449
1450 /*
1451 * Submit a list of xfers after which the client wants notification.
1452 * Client is not notified after each xfer unit, just once after all
1453 * xfer units are done or some error occurs.
1454 */
1455 static int pl330_submit_req(struct pl330_thread *thrd,
1456 struct dma_pl330_desc *desc)
1457 {
1458 struct pl330_dmac *pl330 = thrd->dmac;
1459 struct _xfer_spec xs;
1460 unsigned long flags;
1461 unsigned idx;
1462 u32 ccr;
1463 int ret = 0;
1464
1465 switch (desc->rqtype) {
1466 case DMA_MEM_TO_DEV:
1467 break;
1468
1469 case DMA_DEV_TO_MEM:
1470 break;
1471
1472 case DMA_MEM_TO_MEM:
1473 break;
1474
1475 default:
1476 return -ENOTSUPP;
1477 }
1478
1479 if (pl330->state == DYING
1480 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1481 dev_info(thrd->dmac->ddma.dev, "%s:%d\n",
1482 __func__, __LINE__);
1483 return -EAGAIN;
1484 }
1485
1486 /* If request for non-existing peripheral */
1487 if (desc->rqtype != DMA_MEM_TO_MEM &&
1488 desc->peri >= pl330->pcfg.num_peri) {
1489 dev_info(thrd->dmac->ddma.dev,
1490 "%s:%d Invalid peripheral(%u)!\n",
1491 __func__, __LINE__, desc->peri);
1492 return -EINVAL;
1493 }
1494
1495 spin_lock_irqsave(&pl330->lock, flags);
1496
1497 if (_queue_full(thrd)) {
1498 ret = -EAGAIN;
1499 goto xfer_exit;
1500 }
1501
1502 /* Prefer Secure Channel */
1503 if (!_manager_ns(thrd))
1504 desc->rqcfg.nonsecure = 0;
1505 else
1506 desc->rqcfg.nonsecure = 1;
1507
1508 ccr = _prepare_ccr(&desc->rqcfg);
1509
1510 idx = thrd->req[0].desc == NULL ? 0 : 1;
1511
1512 xs.ccr = ccr;
1513 xs.desc = desc;
1514
1515 /* First dry run to check if req is acceptable */
1516 ret = _setup_req(pl330, 1, thrd, idx, &xs);
1517 if (ret < 0)
1518 goto xfer_exit;
1519
1520 if (ret > pl330->mcbufsz / 2) {
1521 dev_info(pl330->ddma.dev, "%s:%d Try increasing mcbufsz (%i/%i)\n",
1522 __func__, __LINE__, ret, pl330->mcbufsz / 2);
1523 ret = -ENOMEM;
1524 goto xfer_exit;
1525 }
1526
1527 /* Hook the request */
1528 thrd->lstenq = idx;
1529 thrd->req[idx].desc = desc;
1530 _setup_req(pl330, 0, thrd, idx, &xs);
1531
1532 ret = 0;
1533
1534 xfer_exit:
1535 spin_unlock_irqrestore(&pl330->lock, flags);
1536
1537 return ret;
1538 }
1539
1540 static void dma_pl330_rqcb(struct dma_pl330_desc *desc, enum pl330_op_err err)
1541 {
1542 struct dma_pl330_chan *pch;
1543 unsigned long flags;
1544
1545 if (!desc)
1546 return;
1547
1548 pch = desc->pchan;
1549
1550 /* If desc aborted */
1551 if (!pch)
1552 return;
1553
1554 spin_lock_irqsave(&pch->lock, flags);
1555
1556 desc->status = DONE;
1557
1558 spin_unlock_irqrestore(&pch->lock, flags);
1559
1560 tasklet_schedule(&pch->task);
1561 }
1562
1563 static void pl330_dotask(unsigned long data)
1564 {
1565 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1566 unsigned long flags;
1567 int i;
1568
1569 spin_lock_irqsave(&pl330->lock, flags);
1570
1571 /* The DMAC itself gone nuts */
1572 if (pl330->dmac_tbd.reset_dmac) {
1573 pl330->state = DYING;
1574 /* Reset the manager too */
1575 pl330->dmac_tbd.reset_mngr = true;
1576 /* Clear the reset flag */
1577 pl330->dmac_tbd.reset_dmac = false;
1578 }
1579
1580 if (pl330->dmac_tbd.reset_mngr) {
1581 _stop(pl330->manager);
1582 /* Reset all channels */
1583 pl330->dmac_tbd.reset_chan = (1 << pl330->pcfg.num_chan) - 1;
1584 /* Clear the reset flag */
1585 pl330->dmac_tbd.reset_mngr = false;
1586 }
1587
1588 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1589
1590 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1591 struct pl330_thread *thrd = &pl330->channels[i];
1592 void __iomem *regs = pl330->base;
1593 enum pl330_op_err err;
1594
1595 _stop(thrd);
1596
1597 if (readl(regs + FSC) & (1 << thrd->id))
1598 err = PL330_ERR_FAIL;
1599 else
1600 err = PL330_ERR_ABORT;
1601
1602 spin_unlock_irqrestore(&pl330->lock, flags);
1603 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, err);
1604 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, err);
1605 spin_lock_irqsave(&pl330->lock, flags);
1606
1607 thrd->req[0].desc = NULL;
1608 thrd->req[1].desc = NULL;
1609 thrd->req_running = -1;
1610
1611 /* Clear the reset flag */
1612 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1613 }
1614 }
1615
1616 spin_unlock_irqrestore(&pl330->lock, flags);
1617
1618 return;
1619 }
1620
1621 /* Returns 1 if state was updated, 0 otherwise */
1622 static int pl330_update(struct pl330_dmac *pl330)
1623 {
1624 struct dma_pl330_desc *descdone;
1625 unsigned long flags;
1626 void __iomem *regs;
1627 u32 val;
1628 int id, ev, ret = 0;
1629
1630 regs = pl330->base;
1631
1632 spin_lock_irqsave(&pl330->lock, flags);
1633
1634 val = readl(regs + FSM) & 0x1;
1635 if (val)
1636 pl330->dmac_tbd.reset_mngr = true;
1637 else
1638 pl330->dmac_tbd.reset_mngr = false;
1639
1640 val = readl(regs + FSC) & ((1 << pl330->pcfg.num_chan) - 1);
1641 pl330->dmac_tbd.reset_chan |= val;
1642 if (val) {
1643 int i = 0;
1644 while (i < pl330->pcfg.num_chan) {
1645 if (val & (1 << i)) {
1646 dev_info(pl330->ddma.dev,
1647 "Reset Channel-%d\t CS-%x FTC-%x\n",
1648 i, readl(regs + CS(i)),
1649 readl(regs + FTC(i)));
1650 _stop(&pl330->channels[i]);
1651 }
1652 i++;
1653 }
1654 }
1655
1656 /* Check which event happened i.e, thread notified */
1657 val = readl(regs + ES);
1658 if (pl330->pcfg.num_events < 32
1659 && val & ~((1 << pl330->pcfg.num_events) - 1)) {
1660 pl330->dmac_tbd.reset_dmac = true;
1661 dev_err(pl330->ddma.dev, "%s:%d Unexpected!\n", __func__,
1662 __LINE__);
1663 ret = 1;
1664 goto updt_exit;
1665 }
1666
1667 for (ev = 0; ev < pl330->pcfg.num_events; ev++) {
1668 if (val & (1 << ev)) { /* Event occurred */
1669 struct pl330_thread *thrd;
1670 u32 inten = readl(regs + INTEN);
1671 int active;
1672
1673 /* Clear the event */
1674 if (inten & (1 << ev))
1675 writel(1 << ev, regs + INTCLR);
1676
1677 ret = 1;
1678
1679 id = pl330->events[ev];
1680
1681 thrd = &pl330->channels[id];
1682
1683 active = thrd->req_running;
1684 if (active == -1) /* Aborted */
1685 continue;
1686
1687 /* Detach the req */
1688 descdone = thrd->req[active].desc;
1689 thrd->req[active].desc = NULL;
1690
1691 thrd->req_running = -1;
1692
1693 /* Get going again ASAP */
1694 _start(thrd);
1695
1696 /* For now, just make a list of callbacks to be done */
1697 list_add_tail(&descdone->rqd, &pl330->req_done);
1698 }
1699 }
1700
1701 /* Now that we are in no hurry, do the callbacks */
1702 while (!list_empty(&pl330->req_done)) {
1703 descdone = list_first_entry(&pl330->req_done,
1704 struct dma_pl330_desc, rqd);
1705 list_del(&descdone->rqd);
1706 spin_unlock_irqrestore(&pl330->lock, flags);
1707 dma_pl330_rqcb(descdone, PL330_ERR_NONE);
1708 spin_lock_irqsave(&pl330->lock, flags);
1709 }
1710
1711 updt_exit:
1712 spin_unlock_irqrestore(&pl330->lock, flags);
1713
1714 if (pl330->dmac_tbd.reset_dmac
1715 || pl330->dmac_tbd.reset_mngr
1716 || pl330->dmac_tbd.reset_chan) {
1717 ret = 1;
1718 tasklet_schedule(&pl330->tasks);
1719 }
1720
1721 return ret;
1722 }
1723
1724 /* Reserve an event */
1725 static inline int _alloc_event(struct pl330_thread *thrd)
1726 {
1727 struct pl330_dmac *pl330 = thrd->dmac;
1728 int ev;
1729
1730 for (ev = 0; ev < pl330->pcfg.num_events; ev++)
1731 if (pl330->events[ev] == -1) {
1732 pl330->events[ev] = thrd->id;
1733 return ev;
1734 }
1735
1736 return -1;
1737 }
1738
1739 static bool _chan_ns(const struct pl330_dmac *pl330, int i)
1740 {
1741 return pl330->pcfg.irq_ns & (1 << i);
1742 }
1743
1744 /* Upon success, returns IdentityToken for the
1745 * allocated channel, NULL otherwise.
1746 */
1747 static struct pl330_thread *pl330_request_channel(struct pl330_dmac *pl330)
1748 {
1749 struct pl330_thread *thrd = NULL;
1750 int chans, i;
1751
1752 if (pl330->state == DYING)
1753 return NULL;
1754
1755 chans = pl330->pcfg.num_chan;
1756
1757 for (i = 0; i < chans; i++) {
1758 thrd = &pl330->channels[i];
1759 if ((thrd->free) && (!_manager_ns(thrd) ||
1760 _chan_ns(pl330, i))) {
1761 thrd->ev = _alloc_event(thrd);
1762 if (thrd->ev >= 0) {
1763 thrd->free = false;
1764 thrd->lstenq = 1;
1765 thrd->req[0].desc = NULL;
1766 thrd->req[1].desc = NULL;
1767 thrd->req_running = -1;
1768 break;
1769 }
1770 }
1771 thrd = NULL;
1772 }
1773
1774 return thrd;
1775 }
1776
1777 /* Release an event */
1778 static inline void _free_event(struct pl330_thread *thrd, int ev)
1779 {
1780 struct pl330_dmac *pl330 = thrd->dmac;
1781
1782 /* If the event is valid and was held by the thread */
1783 if (ev >= 0 && ev < pl330->pcfg.num_events
1784 && pl330->events[ev] == thrd->id)
1785 pl330->events[ev] = -1;
1786 }
1787
1788 static void pl330_release_channel(struct pl330_thread *thrd)
1789 {
1790 if (!thrd || thrd->free)
1791 return;
1792
1793 _stop(thrd);
1794
1795 dma_pl330_rqcb(thrd->req[1 - thrd->lstenq].desc, PL330_ERR_ABORT);
1796 dma_pl330_rqcb(thrd->req[thrd->lstenq].desc, PL330_ERR_ABORT);
1797
1798 _free_event(thrd, thrd->ev);
1799 thrd->free = true;
1800 }
1801
1802 /* Initialize the structure for PL330 configuration, that can be used
1803 * by the client driver the make best use of the DMAC
1804 */
1805 static void read_dmac_config(struct pl330_dmac *pl330)
1806 {
1807 void __iomem *regs = pl330->base;
1808 u32 val;
1809
1810 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1811 val &= CRD_DATA_WIDTH_MASK;
1812 pl330->pcfg.data_bus_width = 8 * (1 << val);
1813
1814 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1815 val &= CRD_DATA_BUFF_MASK;
1816 pl330->pcfg.data_buf_dep = val + 1;
1817
1818 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1819 val &= CR0_NUM_CHANS_MASK;
1820 val += 1;
1821 pl330->pcfg.num_chan = val;
1822
1823 val = readl(regs + CR0);
1824 if (val & CR0_PERIPH_REQ_SET) {
1825 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1826 val += 1;
1827 pl330->pcfg.num_peri = val;
1828 pl330->pcfg.peri_ns = readl(regs + CR4);
1829 } else {
1830 pl330->pcfg.num_peri = 0;
1831 }
1832
1833 val = readl(regs + CR0);
1834 if (val & CR0_BOOT_MAN_NS)
1835 pl330->pcfg.mode |= DMAC_MODE_NS;
1836 else
1837 pl330->pcfg.mode &= ~DMAC_MODE_NS;
1838
1839 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1840 val &= CR0_NUM_EVENTS_MASK;
1841 val += 1;
1842 pl330->pcfg.num_events = val;
1843
1844 pl330->pcfg.irq_ns = readl(regs + CR3);
1845 }
1846
1847 static inline void _reset_thread(struct pl330_thread *thrd)
1848 {
1849 struct pl330_dmac *pl330 = thrd->dmac;
1850
1851 thrd->req[0].mc_cpu = pl330->mcode_cpu
1852 + (thrd->id * pl330->mcbufsz);
1853 thrd->req[0].mc_bus = pl330->mcode_bus
1854 + (thrd->id * pl330->mcbufsz);
1855 thrd->req[0].desc = NULL;
1856
1857 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
1858 + pl330->mcbufsz / 2;
1859 thrd->req[1].mc_bus = thrd->req[0].mc_bus
1860 + pl330->mcbufsz / 2;
1861 thrd->req[1].desc = NULL;
1862
1863 thrd->req_running = -1;
1864 }
1865
1866 static int dmac_alloc_threads(struct pl330_dmac *pl330)
1867 {
1868 int chans = pl330->pcfg.num_chan;
1869 struct pl330_thread *thrd;
1870 int i;
1871
1872 /* Allocate 1 Manager and 'chans' Channel threads */
1873 pl330->channels = kcalloc(1 + chans, sizeof(*thrd),
1874 GFP_KERNEL);
1875 if (!pl330->channels)
1876 return -ENOMEM;
1877
1878 /* Init Channel threads */
1879 for (i = 0; i < chans; i++) {
1880 thrd = &pl330->channels[i];
1881 thrd->id = i;
1882 thrd->dmac = pl330;
1883 _reset_thread(thrd);
1884 thrd->free = true;
1885 }
1886
1887 /* MANAGER is indexed at the end */
1888 thrd = &pl330->channels[chans];
1889 thrd->id = chans;
1890 thrd->dmac = pl330;
1891 thrd->free = false;
1892 pl330->manager = thrd;
1893
1894 return 0;
1895 }
1896
1897 static int dmac_alloc_resources(struct pl330_dmac *pl330)
1898 {
1899 int chans = pl330->pcfg.num_chan;
1900 int ret;
1901
1902 /*
1903 * Alloc MicroCode buffer for 'chans' Channel threads.
1904 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
1905 */
1906 pl330->mcode_cpu = dma_alloc_attrs(pl330->ddma.dev,
1907 chans * pl330->mcbufsz,
1908 &pl330->mcode_bus, GFP_KERNEL,
1909 DMA_ATTR_PRIVILEGED);
1910 if (!pl330->mcode_cpu) {
1911 dev_err(pl330->ddma.dev, "%s:%d Can't allocate memory!\n",
1912 __func__, __LINE__);
1913 return -ENOMEM;
1914 }
1915
1916 ret = dmac_alloc_threads(pl330);
1917 if (ret) {
1918 dev_err(pl330->ddma.dev, "%s:%d Can't to create channels for DMAC!\n",
1919 __func__, __LINE__);
1920 dma_free_coherent(pl330->ddma.dev,
1921 chans * pl330->mcbufsz,
1922 pl330->mcode_cpu, pl330->mcode_bus);
1923 return ret;
1924 }
1925
1926 return 0;
1927 }
1928
1929 static int pl330_add(struct pl330_dmac *pl330)
1930 {
1931 int i, ret;
1932
1933 /* Check if we can handle this DMAC */
1934 if ((pl330->pcfg.periph_id & 0xfffff) != PERIPH_ID_VAL) {
1935 dev_err(pl330->ddma.dev, "PERIPH_ID 0x%x !\n",
1936 pl330->pcfg.periph_id);
1937 return -EINVAL;
1938 }
1939
1940 /* Read the configuration of the DMAC */
1941 read_dmac_config(pl330);
1942
1943 if (pl330->pcfg.num_events == 0) {
1944 dev_err(pl330->ddma.dev, "%s:%d Can't work without events!\n",
1945 __func__, __LINE__);
1946 return -EINVAL;
1947 }
1948
1949 spin_lock_init(&pl330->lock);
1950
1951 INIT_LIST_HEAD(&pl330->req_done);
1952
1953 /* Use default MC buffer size if not provided */
1954 if (!pl330->mcbufsz)
1955 pl330->mcbufsz = MCODE_BUFF_PER_REQ * 2;
1956
1957 /* Mark all events as free */
1958 for (i = 0; i < pl330->pcfg.num_events; i++)
1959 pl330->events[i] = -1;
1960
1961 /* Allocate resources needed by the DMAC */
1962 ret = dmac_alloc_resources(pl330);
1963 if (ret) {
1964 dev_err(pl330->ddma.dev, "Unable to create channels for DMAC\n");
1965 return ret;
1966 }
1967
1968 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
1969
1970 pl330->state = INIT;
1971
1972 return 0;
1973 }
1974
1975 static int dmac_free_threads(struct pl330_dmac *pl330)
1976 {
1977 struct pl330_thread *thrd;
1978 int i;
1979
1980 /* Release Channel threads */
1981 for (i = 0; i < pl330->pcfg.num_chan; i++) {
1982 thrd = &pl330->channels[i];
1983 pl330_release_channel(thrd);
1984 }
1985
1986 /* Free memory */
1987 kfree(pl330->channels);
1988
1989 return 0;
1990 }
1991
1992 static void pl330_del(struct pl330_dmac *pl330)
1993 {
1994 pl330->state = UNINIT;
1995
1996 tasklet_kill(&pl330->tasks);
1997
1998 /* Free DMAC resources */
1999 dmac_free_threads(pl330);
2000
2001 dma_free_coherent(pl330->ddma.dev,
2002 pl330->pcfg.num_chan * pl330->mcbufsz, pl330->mcode_cpu,
2003 pl330->mcode_bus);
2004 }
2005
2006 /* forward declaration */
2007 static struct amba_driver pl330_driver;
2008
2009 static inline struct dma_pl330_chan *
2010 to_pchan(struct dma_chan *ch)
2011 {
2012 if (!ch)
2013 return NULL;
2014
2015 return container_of(ch, struct dma_pl330_chan, chan);
2016 }
2017
2018 static inline struct dma_pl330_desc *
2019 to_desc(struct dma_async_tx_descriptor *tx)
2020 {
2021 return container_of(tx, struct dma_pl330_desc, txd);
2022 }
2023
2024 static inline void fill_queue(struct dma_pl330_chan *pch)
2025 {
2026 struct dma_pl330_desc *desc;
2027 int ret;
2028
2029 list_for_each_entry(desc, &pch->work_list, node) {
2030
2031 /* If already submitted */
2032 if (desc->status == BUSY)
2033 continue;
2034
2035 ret = pl330_submit_req(pch->thread, desc);
2036 if (!ret) {
2037 desc->status = BUSY;
2038 } else if (ret == -EAGAIN) {
2039 /* QFull or DMAC Dying */
2040 break;
2041 } else {
2042 /* Unacceptable request */
2043 desc->status = DONE;
2044 dev_err(pch->dmac->ddma.dev, "%s:%d Bad Desc(%d)\n",
2045 __func__, __LINE__, desc->txd.cookie);
2046 tasklet_schedule(&pch->task);
2047 }
2048 }
2049 }
2050
2051 static void pl330_tasklet(unsigned long data)
2052 {
2053 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2054 struct dma_pl330_desc *desc, *_dt;
2055 unsigned long flags;
2056 bool power_down = false;
2057
2058 spin_lock_irqsave(&pch->lock, flags);
2059
2060 /* Pick up ripe tomatoes */
2061 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2062 if (desc->status == DONE) {
2063 if (!pch->cyclic)
2064 dma_cookie_complete(&desc->txd);
2065 list_move_tail(&desc->node, &pch->completed_list);
2066 }
2067
2068 /* Try to submit a req imm. next to the last completed cookie */
2069 fill_queue(pch);
2070
2071 if (list_empty(&pch->work_list)) {
2072 spin_lock(&pch->thread->dmac->lock);
2073 _stop(pch->thread);
2074 spin_unlock(&pch->thread->dmac->lock);
2075 power_down = true;
2076 pch->active = false;
2077 } else {
2078 /* Make sure the PL330 Channel thread is active */
2079 spin_lock(&pch->thread->dmac->lock);
2080 _start(pch->thread);
2081 spin_unlock(&pch->thread->dmac->lock);
2082 }
2083
2084 while (!list_empty(&pch->completed_list)) {
2085 struct dmaengine_desc_callback cb;
2086
2087 desc = list_first_entry(&pch->completed_list,
2088 struct dma_pl330_desc, node);
2089
2090 dmaengine_desc_get_callback(&desc->txd, &cb);
2091
2092 if (pch->cyclic) {
2093 desc->status = PREP;
2094 list_move_tail(&desc->node, &pch->work_list);
2095 if (power_down) {
2096 pch->active = true;
2097 spin_lock(&pch->thread->dmac->lock);
2098 _start(pch->thread);
2099 spin_unlock(&pch->thread->dmac->lock);
2100 power_down = false;
2101 }
2102 } else {
2103 desc->status = FREE;
2104 list_move_tail(&desc->node, &pch->dmac->desc_pool);
2105 }
2106
2107 dma_descriptor_unmap(&desc->txd);
2108
2109 if (dmaengine_desc_callback_valid(&cb)) {
2110 spin_unlock_irqrestore(&pch->lock, flags);
2111 dmaengine_desc_callback_invoke(&cb, NULL);
2112 spin_lock_irqsave(&pch->lock, flags);
2113 }
2114 }
2115 spin_unlock_irqrestore(&pch->lock, flags);
2116
2117 /* If work list empty, power down */
2118 if (power_down) {
2119 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2120 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2121 }
2122 }
2123
2124 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2125 struct of_dma *ofdma)
2126 {
2127 int count = dma_spec->args_count;
2128 struct pl330_dmac *pl330 = ofdma->of_dma_data;
2129 unsigned int chan_id;
2130
2131 if (!pl330)
2132 return NULL;
2133
2134 if (count != 1)
2135 return NULL;
2136
2137 chan_id = dma_spec->args[0];
2138 if (chan_id >= pl330->num_peripherals)
2139 return NULL;
2140
2141 return dma_get_slave_channel(&pl330->peripherals[chan_id].chan);
2142 }
2143
2144 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2145 {
2146 struct dma_pl330_chan *pch = to_pchan(chan);
2147 struct pl330_dmac *pl330 = pch->dmac;
2148 unsigned long flags;
2149
2150 spin_lock_irqsave(&pl330->lock, flags);
2151
2152 dma_cookie_init(chan);
2153 pch->cyclic = false;
2154
2155 pch->thread = pl330_request_channel(pl330);
2156 if (!pch->thread) {
2157 spin_unlock_irqrestore(&pl330->lock, flags);
2158 return -ENOMEM;
2159 }
2160
2161 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2162
2163 spin_unlock_irqrestore(&pl330->lock, flags);
2164
2165 return 1;
2166 }
2167
2168 /*
2169 * We need the data direction between the DMAC (the dma-mapping "device") and
2170 * the FIFO (the dmaengine "dev"), from the FIFO's point of view. Confusing!
2171 */
2172 static enum dma_data_direction
2173 pl330_dma_slave_map_dir(enum dma_transfer_direction dir)
2174 {
2175 switch (dir) {
2176 case DMA_MEM_TO_DEV:
2177 return DMA_FROM_DEVICE;
2178 case DMA_DEV_TO_MEM:
2179 return DMA_TO_DEVICE;
2180 case DMA_DEV_TO_DEV:
2181 return DMA_BIDIRECTIONAL;
2182 default:
2183 return DMA_NONE;
2184 }
2185 }
2186
2187 static void pl330_unprep_slave_fifo(struct dma_pl330_chan *pch)
2188 {
2189 if (pch->dir != DMA_NONE)
2190 dma_unmap_resource(pch->chan.device->dev, pch->fifo_dma,
2191 1 << pch->burst_sz, pch->dir, 0);
2192 pch->dir = DMA_NONE;
2193 }
2194
2195
2196 static bool pl330_prep_slave_fifo(struct dma_pl330_chan *pch,
2197 enum dma_transfer_direction dir)
2198 {
2199 struct device *dev = pch->chan.device->dev;
2200 enum dma_data_direction dma_dir = pl330_dma_slave_map_dir(dir);
2201
2202 /* Already mapped for this config? */
2203 if (pch->dir == dma_dir)
2204 return true;
2205
2206 pl330_unprep_slave_fifo(pch);
2207 pch->fifo_dma = dma_map_resource(dev, pch->fifo_addr,
2208 1 << pch->burst_sz, dma_dir, 0);
2209 if (dma_mapping_error(dev, pch->fifo_dma))
2210 return false;
2211
2212 pch->dir = dma_dir;
2213 return true;
2214 }
2215
2216 static int fixup_burst_len(int max_burst_len, int quirks)
2217 {
2218 if (quirks & PL330_QUIRK_BROKEN_NO_FLUSHP)
2219 return 1;
2220 else if (max_burst_len > PL330_MAX_BURST)
2221 return PL330_MAX_BURST;
2222 else if (max_burst_len < 1)
2223 return 1;
2224 else
2225 return max_burst_len;
2226 }
2227
2228 static int pl330_config_write(struct dma_chan *chan,
2229 struct dma_slave_config *slave_config,
2230 enum dma_transfer_direction direction)
2231 {
2232 struct dma_pl330_chan *pch = to_pchan(chan);
2233
2234 pl330_unprep_slave_fifo(pch);
2235 if (direction == DMA_MEM_TO_DEV) {
2236 if (slave_config->dst_addr)
2237 pch->fifo_addr = slave_config->dst_addr;
2238 if (slave_config->dst_addr_width)
2239 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2240 pch->burst_len = fixup_burst_len(slave_config->dst_maxburst,
2241 pch->dmac->quirks);
2242 } else if (direction == DMA_DEV_TO_MEM) {
2243 if (slave_config->src_addr)
2244 pch->fifo_addr = slave_config->src_addr;
2245 if (slave_config->src_addr_width)
2246 pch->burst_sz = __ffs(slave_config->src_addr_width);
2247 pch->burst_len = fixup_burst_len(slave_config->src_maxburst,
2248 pch->dmac->quirks);
2249 }
2250
2251 return 0;
2252 }
2253
2254 static int pl330_config(struct dma_chan *chan,
2255 struct dma_slave_config *slave_config)
2256 {
2257 struct dma_pl330_chan *pch = to_pchan(chan);
2258
2259 memcpy(&pch->slave_config, slave_config, sizeof(*slave_config));
2260
2261 return 0;
2262 }
2263
2264 static int pl330_terminate_all(struct dma_chan *chan)
2265 {
2266 struct dma_pl330_chan *pch = to_pchan(chan);
2267 struct dma_pl330_desc *desc;
2268 unsigned long flags;
2269 struct pl330_dmac *pl330 = pch->dmac;
2270 bool power_down = false;
2271
2272 pm_runtime_get_sync(pl330->ddma.dev);
2273 spin_lock_irqsave(&pch->lock, flags);
2274
2275 spin_lock(&pl330->lock);
2276 _stop(pch->thread);
2277 pch->thread->req[0].desc = NULL;
2278 pch->thread->req[1].desc = NULL;
2279 pch->thread->req_running = -1;
2280 spin_unlock(&pl330->lock);
2281
2282 power_down = pch->active;
2283 pch->active = false;
2284
2285 /* Mark all desc done */
2286 list_for_each_entry(desc, &pch->submitted_list, node) {
2287 desc->status = FREE;
2288 dma_cookie_complete(&desc->txd);
2289 }
2290
2291 list_for_each_entry(desc, &pch->work_list , node) {
2292 desc->status = FREE;
2293 dma_cookie_complete(&desc->txd);
2294 }
2295
2296 list_splice_tail_init(&pch->submitted_list, &pl330->desc_pool);
2297 list_splice_tail_init(&pch->work_list, &pl330->desc_pool);
2298 list_splice_tail_init(&pch->completed_list, &pl330->desc_pool);
2299 spin_unlock_irqrestore(&pch->lock, flags);
2300 pm_runtime_mark_last_busy(pl330->ddma.dev);
2301 if (power_down)
2302 pm_runtime_put_autosuspend(pl330->ddma.dev);
2303 pm_runtime_put_autosuspend(pl330->ddma.dev);
2304
2305 return 0;
2306 }
2307
2308 /*
2309 * We don't support DMA_RESUME command because of hardware
2310 * limitations, so after pausing the channel we cannot restore
2311 * it to active state. We have to terminate channel and setup
2312 * DMA transfer again. This pause feature was implemented to
2313 * allow safely read residue before channel termination.
2314 */
2315 static int pl330_pause(struct dma_chan *chan)
2316 {
2317 struct dma_pl330_chan *pch = to_pchan(chan);
2318 struct pl330_dmac *pl330 = pch->dmac;
2319 unsigned long flags;
2320
2321 pm_runtime_get_sync(pl330->ddma.dev);
2322 spin_lock_irqsave(&pch->lock, flags);
2323
2324 spin_lock(&pl330->lock);
2325 _stop(pch->thread);
2326 spin_unlock(&pl330->lock);
2327
2328 spin_unlock_irqrestore(&pch->lock, flags);
2329 pm_runtime_mark_last_busy(pl330->ddma.dev);
2330 pm_runtime_put_autosuspend(pl330->ddma.dev);
2331
2332 return 0;
2333 }
2334
2335 static void pl330_free_chan_resources(struct dma_chan *chan)
2336 {
2337 struct dma_pl330_chan *pch = to_pchan(chan);
2338 struct pl330_dmac *pl330 = pch->dmac;
2339 unsigned long flags;
2340
2341 tasklet_kill(&pch->task);
2342
2343 pm_runtime_get_sync(pch->dmac->ddma.dev);
2344 spin_lock_irqsave(&pl330->lock, flags);
2345
2346 pl330_release_channel(pch->thread);
2347 pch->thread = NULL;
2348
2349 if (pch->cyclic)
2350 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2351
2352 spin_unlock_irqrestore(&pl330->lock, flags);
2353 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2354 pm_runtime_put_autosuspend(pch->dmac->ddma.dev);
2355 pl330_unprep_slave_fifo(pch);
2356 }
2357
2358 static int pl330_get_current_xferred_count(struct dma_pl330_chan *pch,
2359 struct dma_pl330_desc *desc)
2360 {
2361 struct pl330_thread *thrd = pch->thread;
2362 struct pl330_dmac *pl330 = pch->dmac;
2363 void __iomem *regs = thrd->dmac->base;
2364 u32 val, addr;
2365
2366 pm_runtime_get_sync(pl330->ddma.dev);
2367 val = addr = 0;
2368 if (desc->rqcfg.src_inc) {
2369 val = readl(regs + SA(thrd->id));
2370 addr = desc->px.src_addr;
2371 } else {
2372 val = readl(regs + DA(thrd->id));
2373 addr = desc->px.dst_addr;
2374 }
2375 pm_runtime_mark_last_busy(pch->dmac->ddma.dev);
2376 pm_runtime_put_autosuspend(pl330->ddma.dev);
2377
2378 /* If DMAMOV hasn't finished yet, SAR/DAR can be zero */
2379 if (!val)
2380 return 0;
2381
2382 return val - addr;
2383 }
2384
2385 static enum dma_status
2386 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2387 struct dma_tx_state *txstate)
2388 {
2389 enum dma_status ret;
2390 unsigned long flags;
2391 struct dma_pl330_desc *desc, *running = NULL, *last_enq = NULL;
2392 struct dma_pl330_chan *pch = to_pchan(chan);
2393 unsigned int transferred, residual = 0;
2394
2395 ret = dma_cookie_status(chan, cookie, txstate);
2396
2397 if (!txstate)
2398 return ret;
2399
2400 if (ret == DMA_COMPLETE)
2401 goto out;
2402
2403 spin_lock_irqsave(&pch->lock, flags);
2404 spin_lock(&pch->thread->dmac->lock);
2405
2406 if (pch->thread->req_running != -1)
2407 running = pch->thread->req[pch->thread->req_running].desc;
2408
2409 last_enq = pch->thread->req[pch->thread->lstenq].desc;
2410
2411 /* Check in pending list */
2412 list_for_each_entry(desc, &pch->work_list, node) {
2413 if (desc->status == DONE)
2414 transferred = desc->bytes_requested;
2415 else if (running && desc == running)
2416 transferred =
2417 pl330_get_current_xferred_count(pch, desc);
2418 else if (desc->status == BUSY)
2419 /*
2420 * Busy but not running means either just enqueued,
2421 * or finished and not yet marked done
2422 */
2423 if (desc == last_enq)
2424 transferred = 0;
2425 else
2426 transferred = desc->bytes_requested;
2427 else
2428 transferred = 0;
2429 residual += desc->bytes_requested - transferred;
2430 if (desc->txd.cookie == cookie) {
2431 switch (desc->status) {
2432 case DONE:
2433 ret = DMA_COMPLETE;
2434 break;
2435 case PREP:
2436 case BUSY:
2437 ret = DMA_IN_PROGRESS;
2438 break;
2439 default:
2440 WARN_ON(1);
2441 }
2442 break;
2443 }
2444 if (desc->last)
2445 residual = 0;
2446 }
2447 spin_unlock(&pch->thread->dmac->lock);
2448 spin_unlock_irqrestore(&pch->lock, flags);
2449
2450 out:
2451 dma_set_residue(txstate, residual);
2452
2453 return ret;
2454 }
2455
2456 static void pl330_issue_pending(struct dma_chan *chan)
2457 {
2458 struct dma_pl330_chan *pch = to_pchan(chan);
2459 unsigned long flags;
2460
2461 spin_lock_irqsave(&pch->lock, flags);
2462 if (list_empty(&pch->work_list)) {
2463 /*
2464 * Warn on nothing pending. Empty submitted_list may
2465 * break our pm_runtime usage counter as it is
2466 * updated on work_list emptiness status.
2467 */
2468 WARN_ON(list_empty(&pch->submitted_list));
2469 pch->active = true;
2470 pm_runtime_get_sync(pch->dmac->ddma.dev);
2471 }
2472 list_splice_tail_init(&pch->submitted_list, &pch->work_list);
2473 spin_unlock_irqrestore(&pch->lock, flags);
2474
2475 pl330_tasklet((unsigned long)pch);
2476 }
2477
2478 /*
2479 * We returned the last one of the circular list of descriptor(s)
2480 * from prep_xxx, so the argument to submit corresponds to the last
2481 * descriptor of the list.
2482 */
2483 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2484 {
2485 struct dma_pl330_desc *desc, *last = to_desc(tx);
2486 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2487 dma_cookie_t cookie;
2488 unsigned long flags;
2489
2490 spin_lock_irqsave(&pch->lock, flags);
2491
2492 /* Assign cookies to all nodes */
2493 while (!list_empty(&last->node)) {
2494 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2495 if (pch->cyclic) {
2496 desc->txd.callback = last->txd.callback;
2497 desc->txd.callback_param = last->txd.callback_param;
2498 }
2499 desc->last = false;
2500
2501 dma_cookie_assign(&desc->txd);
2502
2503 list_move_tail(&desc->node, &pch->submitted_list);
2504 }
2505
2506 last->last = true;
2507 cookie = dma_cookie_assign(&last->txd);
2508 list_add_tail(&last->node, &pch->submitted_list);
2509 spin_unlock_irqrestore(&pch->lock, flags);
2510
2511 return cookie;
2512 }
2513
2514 static inline void _init_desc(struct dma_pl330_desc *desc)
2515 {
2516 desc->rqcfg.swap = SWAP_NO;
2517 desc->rqcfg.scctl = CCTRL0;
2518 desc->rqcfg.dcctl = CCTRL0;
2519 desc->txd.tx_submit = pl330_tx_submit;
2520
2521 INIT_LIST_HEAD(&desc->node);
2522 }
2523
2524 /* Returns the number of descriptors added to the DMAC pool */
2525 static int add_desc(struct list_head *pool, spinlock_t *lock,
2526 gfp_t flg, int count)
2527 {
2528 struct dma_pl330_desc *desc;
2529 unsigned long flags;
2530 int i;
2531
2532 desc = kcalloc(count, sizeof(*desc), flg);
2533 if (!desc)
2534 return 0;
2535
2536 spin_lock_irqsave(lock, flags);
2537
2538 for (i = 0; i < count; i++) {
2539 _init_desc(&desc[i]);
2540 list_add_tail(&desc[i].node, pool);
2541 }
2542
2543 spin_unlock_irqrestore(lock, flags);
2544
2545 return count;
2546 }
2547
2548 static struct dma_pl330_desc *pluck_desc(struct list_head *pool,
2549 spinlock_t *lock)
2550 {
2551 struct dma_pl330_desc *desc = NULL;
2552 unsigned long flags;
2553
2554 spin_lock_irqsave(lock, flags);
2555
2556 if (!list_empty(pool)) {
2557 desc = list_entry(pool->next,
2558 struct dma_pl330_desc, node);
2559
2560 list_del_init(&desc->node);
2561
2562 desc->status = PREP;
2563 desc->txd.callback = NULL;
2564 }
2565
2566 spin_unlock_irqrestore(lock, flags);
2567
2568 return desc;
2569 }
2570
2571 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2572 {
2573 struct pl330_dmac *pl330 = pch->dmac;
2574 u8 *peri_id = pch->chan.private;
2575 struct dma_pl330_desc *desc;
2576
2577 /* Pluck one desc from the pool of DMAC */
2578 desc = pluck_desc(&pl330->desc_pool, &pl330->pool_lock);
2579
2580 /* If the DMAC pool is empty, alloc new */
2581 if (!desc) {
2582 DEFINE_SPINLOCK(lock);
2583 LIST_HEAD(pool);
2584
2585 if (!add_desc(&pool, &lock, GFP_ATOMIC, 1))
2586 return NULL;
2587
2588 desc = pluck_desc(&pool, &lock);
2589 WARN_ON(!desc || !list_empty(&pool));
2590 }
2591
2592 /* Initialize the descriptor */
2593 desc->pchan = pch;
2594 desc->txd.cookie = 0;
2595 async_tx_ack(&desc->txd);
2596
2597 desc->peri = peri_id ? pch->chan.chan_id : 0;
2598 desc->rqcfg.pcfg = &pch->dmac->pcfg;
2599
2600 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2601
2602 return desc;
2603 }
2604
2605 static inline void fill_px(struct pl330_xfer *px,
2606 dma_addr_t dst, dma_addr_t src, size_t len)
2607 {
2608 px->bytes = len;
2609 px->dst_addr = dst;
2610 px->src_addr = src;
2611 }
2612
2613 static struct dma_pl330_desc *
2614 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2615 dma_addr_t src, size_t len)
2616 {
2617 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2618
2619 if (!desc) {
2620 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2621 __func__, __LINE__);
2622 return NULL;
2623 }
2624
2625 /*
2626 * Ideally we should lookout for reqs bigger than
2627 * those that can be programmed with 256 bytes of
2628 * MC buffer, but considering a req size is seldom
2629 * going to be word-unaligned and more than 200MB,
2630 * we take it easy.
2631 * Also, should the limit is reached we'd rather
2632 * have the platform increase MC buffer size than
2633 * complicating this API driver.
2634 */
2635 fill_px(&desc->px, dst, src, len);
2636
2637 return desc;
2638 }
2639
2640 /* Call after fixing burst size */
2641 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2642 {
2643 struct dma_pl330_chan *pch = desc->pchan;
2644 struct pl330_dmac *pl330 = pch->dmac;
2645 int burst_len;
2646
2647 burst_len = pl330->pcfg.data_bus_width / 8;
2648 burst_len *= pl330->pcfg.data_buf_dep / pl330->pcfg.num_chan;
2649 burst_len >>= desc->rqcfg.brst_size;
2650
2651 /* src/dst_burst_len can't be more than 16 */
2652 if (burst_len > PL330_MAX_BURST)
2653 burst_len = PL330_MAX_BURST;
2654
2655 return burst_len;
2656 }
2657
2658 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2659 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2660 size_t period_len, enum dma_transfer_direction direction,
2661 unsigned long flags)
2662 {
2663 struct dma_pl330_desc *desc = NULL, *first = NULL;
2664 struct dma_pl330_chan *pch = to_pchan(chan);
2665 struct pl330_dmac *pl330 = pch->dmac;
2666 unsigned int i;
2667 dma_addr_t dst;
2668 dma_addr_t src;
2669
2670 if (len % period_len != 0)
2671 return NULL;
2672
2673 if (!is_slave_direction(direction)) {
2674 dev_err(pch->dmac->ddma.dev, "%s:%d Invalid dma direction\n",
2675 __func__, __LINE__);
2676 return NULL;
2677 }
2678
2679 pl330_config_write(chan, &pch->slave_config, direction);
2680
2681 if (!pl330_prep_slave_fifo(pch, direction))
2682 return NULL;
2683
2684 for (i = 0; i < len / period_len; i++) {
2685 desc = pl330_get_desc(pch);
2686 if (!desc) {
2687 dev_err(pch->dmac->ddma.dev, "%s:%d Unable to fetch desc\n",
2688 __func__, __LINE__);
2689
2690 if (!first)
2691 return NULL;
2692
2693 spin_lock_irqsave(&pl330->pool_lock, flags);
2694
2695 while (!list_empty(&first->node)) {
2696 desc = list_entry(first->node.next,
2697 struct dma_pl330_desc, node);
2698 list_move_tail(&desc->node, &pl330->desc_pool);
2699 }
2700
2701 list_move_tail(&first->node, &pl330->desc_pool);
2702
2703 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2704
2705 return NULL;
2706 }
2707
2708 switch (direction) {
2709 case DMA_MEM_TO_DEV:
2710 desc->rqcfg.src_inc = 1;
2711 desc->rqcfg.dst_inc = 0;
2712 src = dma_addr;
2713 dst = pch->fifo_dma;
2714 break;
2715 case DMA_DEV_TO_MEM:
2716 desc->rqcfg.src_inc = 0;
2717 desc->rqcfg.dst_inc = 1;
2718 src = pch->fifo_dma;
2719 dst = dma_addr;
2720 break;
2721 default:
2722 break;
2723 }
2724
2725 desc->rqtype = direction;
2726 desc->rqcfg.brst_size = pch->burst_sz;
2727 desc->rqcfg.brst_len = pch->burst_len;
2728 desc->bytes_requested = period_len;
2729 fill_px(&desc->px, dst, src, period_len);
2730
2731 if (!first)
2732 first = desc;
2733 else
2734 list_add_tail(&desc->node, &first->node);
2735
2736 dma_addr += period_len;
2737 }
2738
2739 if (!desc)
2740 return NULL;
2741
2742 pch->cyclic = true;
2743 desc->txd.flags = flags;
2744
2745 return &desc->txd;
2746 }
2747
2748 static struct dma_async_tx_descriptor *
2749 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2750 dma_addr_t src, size_t len, unsigned long flags)
2751 {
2752 struct dma_pl330_desc *desc;
2753 struct dma_pl330_chan *pch = to_pchan(chan);
2754 struct pl330_dmac *pl330;
2755 int burst;
2756
2757 if (unlikely(!pch || !len))
2758 return NULL;
2759
2760 pl330 = pch->dmac;
2761
2762 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2763 if (!desc)
2764 return NULL;
2765
2766 desc->rqcfg.src_inc = 1;
2767 desc->rqcfg.dst_inc = 1;
2768 desc->rqtype = DMA_MEM_TO_MEM;
2769
2770 /* Select max possible burst size */
2771 burst = pl330->pcfg.data_bus_width / 8;
2772
2773 /*
2774 * Make sure we use a burst size that aligns with all the memcpy
2775 * parameters because our DMA programming algorithm doesn't cope with
2776 * transfers which straddle an entry in the DMA device's MFIFO.
2777 */
2778 while ((src | dst | len) & (burst - 1))
2779 burst /= 2;
2780
2781 desc->rqcfg.brst_size = 0;
2782 while (burst != (1 << desc->rqcfg.brst_size))
2783 desc->rqcfg.brst_size++;
2784
2785 /*
2786 * If burst size is smaller than bus width then make sure we only
2787 * transfer one at a time to avoid a burst stradling an MFIFO entry.
2788 */
2789 if (desc->rqcfg.brst_size * 8 < pl330->pcfg.data_bus_width)
2790 desc->rqcfg.brst_len = 1;
2791
2792 desc->rqcfg.brst_len = get_burst_len(desc, len);
2793 desc->bytes_requested = len;
2794
2795 desc->txd.flags = flags;
2796
2797 return &desc->txd;
2798 }
2799
2800 static void __pl330_giveback_desc(struct pl330_dmac *pl330,
2801 struct dma_pl330_desc *first)
2802 {
2803 unsigned long flags;
2804 struct dma_pl330_desc *desc;
2805
2806 if (!first)
2807 return;
2808
2809 spin_lock_irqsave(&pl330->pool_lock, flags);
2810
2811 while (!list_empty(&first->node)) {
2812 desc = list_entry(first->node.next,
2813 struct dma_pl330_desc, node);
2814 list_move_tail(&desc->node, &pl330->desc_pool);
2815 }
2816
2817 list_move_tail(&first->node, &pl330->desc_pool);
2818
2819 spin_unlock_irqrestore(&pl330->pool_lock, flags);
2820 }
2821
2822 static struct dma_async_tx_descriptor *
2823 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2824 unsigned int sg_len, enum dma_transfer_direction direction,
2825 unsigned long flg, void *context)
2826 {
2827 struct dma_pl330_desc *first, *desc = NULL;
2828 struct dma_pl330_chan *pch = to_pchan(chan);
2829 struct scatterlist *sg;
2830 int i;
2831
2832 if (unlikely(!pch || !sgl || !sg_len))
2833 return NULL;
2834
2835 pl330_config_write(chan, &pch->slave_config, direction);
2836
2837 if (!pl330_prep_slave_fifo(pch, direction))
2838 return NULL;
2839
2840 first = NULL;
2841
2842 for_each_sg(sgl, sg, sg_len, i) {
2843
2844 desc = pl330_get_desc(pch);
2845 if (!desc) {
2846 struct pl330_dmac *pl330 = pch->dmac;
2847
2848 dev_err(pch->dmac->ddma.dev,
2849 "%s:%d Unable to fetch desc\n",
2850 __func__, __LINE__);
2851 __pl330_giveback_desc(pl330, first);
2852
2853 return NULL;
2854 }
2855
2856 if (!first)
2857 first = desc;
2858 else
2859 list_add_tail(&desc->node, &first->node);
2860
2861 if (direction == DMA_MEM_TO_DEV) {
2862 desc->rqcfg.src_inc = 1;
2863 desc->rqcfg.dst_inc = 0;
2864 fill_px(&desc->px, pch->fifo_dma, sg_dma_address(sg),
2865 sg_dma_len(sg));
2866 } else {
2867 desc->rqcfg.src_inc = 0;
2868 desc->rqcfg.dst_inc = 1;
2869 fill_px(&desc->px, sg_dma_address(sg), pch->fifo_dma,
2870 sg_dma_len(sg));
2871 }
2872
2873 desc->rqcfg.brst_size = pch->burst_sz;
2874 desc->rqcfg.brst_len = pch->burst_len;
2875 desc->rqtype = direction;
2876 desc->bytes_requested = sg_dma_len(sg);
2877 }
2878
2879 /* Return the last desc in the chain */
2880 desc->txd.flags = flg;
2881 return &desc->txd;
2882 }
2883
2884 static irqreturn_t pl330_irq_handler(int irq, void *data)
2885 {
2886 if (pl330_update(data))
2887 return IRQ_HANDLED;
2888 else
2889 return IRQ_NONE;
2890 }
2891
2892 #define PL330_DMA_BUSWIDTHS \
2893 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
2894 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
2895 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
2896 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \
2897 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)
2898
2899 /*
2900 * Runtime PM callbacks are provided by amba/bus.c driver.
2901 *
2902 * It is assumed here that IRQ safe runtime PM is chosen in probe and amba
2903 * bus driver will only disable/enable the clock in runtime PM callbacks.
2904 */
2905 static int __maybe_unused pl330_suspend(struct device *dev)
2906 {
2907 struct amba_device *pcdev = to_amba_device(dev);
2908
2909 pm_runtime_disable(dev);
2910
2911 if (!pm_runtime_status_suspended(dev)) {
2912 /* amba did not disable the clock */
2913 amba_pclk_disable(pcdev);
2914 }
2915 amba_pclk_unprepare(pcdev);
2916
2917 return 0;
2918 }
2919
2920 static int __maybe_unused pl330_resume(struct device *dev)
2921 {
2922 struct amba_device *pcdev = to_amba_device(dev);
2923 int ret;
2924
2925 ret = amba_pclk_prepare(pcdev);
2926 if (ret)
2927 return ret;
2928
2929 if (!pm_runtime_status_suspended(dev))
2930 ret = amba_pclk_enable(pcdev);
2931
2932 pm_runtime_enable(dev);
2933
2934 return ret;
2935 }
2936
2937 static SIMPLE_DEV_PM_OPS(pl330_pm, pl330_suspend, pl330_resume);
2938
2939 static int
2940 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2941 {
2942 struct pl330_config *pcfg;
2943 struct pl330_dmac *pl330;
2944 struct dma_pl330_chan *pch, *_p;
2945 struct dma_device *pd;
2946 struct resource *res;
2947 int i, ret, irq;
2948 int num_chan;
2949 struct device_node *np = adev->dev.of_node;
2950
2951 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2952 if (ret)
2953 return ret;
2954
2955 /* Allocate a new DMAC and its Channels */
2956 pl330 = devm_kzalloc(&adev->dev, sizeof(*pl330), GFP_KERNEL);
2957 if (!pl330)
2958 return -ENOMEM;
2959
2960 pd = &pl330->ddma;
2961 pd->dev = &adev->dev;
2962
2963 pl330->mcbufsz = 0;
2964
2965 /* get quirk */
2966 for (i = 0; i < ARRAY_SIZE(of_quirks); i++)
2967 if (of_property_read_bool(np, of_quirks[i].quirk))
2968 pl330->quirks |= of_quirks[i].id;
2969
2970 res = &adev->res;
2971 pl330->base = devm_ioremap_resource(&adev->dev, res);
2972 if (IS_ERR(pl330->base))
2973 return PTR_ERR(pl330->base);
2974
2975 amba_set_drvdata(adev, pl330);
2976
2977 for (i = 0; i < AMBA_NR_IRQS; i++) {
2978 irq = adev->irq[i];
2979 if (irq) {
2980 ret = devm_request_irq(&adev->dev, irq,
2981 pl330_irq_handler, 0,
2982 dev_name(&adev->dev), pl330);
2983 if (ret)
2984 return ret;
2985 } else {
2986 break;
2987 }
2988 }
2989
2990 pcfg = &pl330->pcfg;
2991
2992 pcfg->periph_id = adev->periphid;
2993 ret = pl330_add(pl330);
2994 if (ret)
2995 return ret;
2996
2997 INIT_LIST_HEAD(&pl330->desc_pool);
2998 spin_lock_init(&pl330->pool_lock);
2999
3000 /* Create a descriptor pool of default size */
3001 if (!add_desc(&pl330->desc_pool, &pl330->pool_lock,
3002 GFP_KERNEL, NR_DEFAULT_DESC))
3003 dev_warn(&adev->dev, "unable to allocate desc\n");
3004
3005 INIT_LIST_HEAD(&pd->channels);
3006
3007 /* Initialize channel parameters */
3008 num_chan = max_t(int, pcfg->num_peri, pcfg->num_chan);
3009
3010 pl330->num_peripherals = num_chan;
3011
3012 pl330->peripherals = kcalloc(num_chan, sizeof(*pch), GFP_KERNEL);
3013 if (!pl330->peripherals) {
3014 ret = -ENOMEM;
3015 goto probe_err2;
3016 }
3017
3018 for (i = 0; i < num_chan; i++) {
3019 pch = &pl330->peripherals[i];
3020
3021 pch->chan.private = adev->dev.of_node;
3022 INIT_LIST_HEAD(&pch->submitted_list);
3023 INIT_LIST_HEAD(&pch->work_list);
3024 INIT_LIST_HEAD(&pch->completed_list);
3025 spin_lock_init(&pch->lock);
3026 pch->thread = NULL;
3027 pch->chan.device = pd;
3028 pch->dmac = pl330;
3029 pch->dir = DMA_NONE;
3030
3031 /* Add the channel to the DMAC list */
3032 list_add_tail(&pch->chan.device_node, &pd->channels);
3033 }
3034
3035 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3036 if (pcfg->num_peri) {
3037 dma_cap_set(DMA_SLAVE, pd->cap_mask);
3038 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3039 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3040 }
3041
3042 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3043 pd->device_free_chan_resources = pl330_free_chan_resources;
3044 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3045 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3046 pd->device_tx_status = pl330_tx_status;
3047 pd->device_prep_slave_sg = pl330_prep_slave_sg;
3048 pd->device_config = pl330_config;
3049 pd->device_pause = pl330_pause;
3050 pd->device_terminate_all = pl330_terminate_all;
3051 pd->device_issue_pending = pl330_issue_pending;
3052 pd->src_addr_widths = PL330_DMA_BUSWIDTHS;
3053 pd->dst_addr_widths = PL330_DMA_BUSWIDTHS;
3054 pd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
3055 pd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
3056 pd->max_burst = ((pl330->quirks & PL330_QUIRK_BROKEN_NO_FLUSHP) ?
3057 1 : PL330_MAX_BURST);
3058
3059 ret = dma_async_device_register(pd);
3060 if (ret) {
3061 dev_err(&adev->dev, "unable to register DMAC\n");
3062 goto probe_err3;
3063 }
3064
3065 if (adev->dev.of_node) {
3066 ret = of_dma_controller_register(adev->dev.of_node,
3067 of_dma_pl330_xlate, pl330);
3068 if (ret) {
3069 dev_err(&adev->dev,
3070 "unable to register DMA to the generic DT DMA helpers\n");
3071 }
3072 }
3073
3074 adev->dev.dma_parms = &pl330->dma_parms;
3075
3076 /*
3077 * This is the limit for transfers with a buswidth of 1, larger
3078 * buswidths will have larger limits.
3079 */
3080 ret = dma_set_max_seg_size(&adev->dev, 1900800);
3081 if (ret)
3082 dev_err(&adev->dev, "unable to set the seg size\n");
3083
3084
3085 dev_info(&adev->dev,
3086 "Loaded driver for PL330 DMAC-%x\n", adev->periphid);
3087 dev_info(&adev->dev,
3088 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3089 pcfg->data_buf_dep, pcfg->data_bus_width / 8, pcfg->num_chan,
3090 pcfg->num_peri, pcfg->num_events);
3091
3092 pm_runtime_irq_safe(&adev->dev);
3093 pm_runtime_use_autosuspend(&adev->dev);
3094 pm_runtime_set_autosuspend_delay(&adev->dev, PL330_AUTOSUSPEND_DELAY);
3095 pm_runtime_mark_last_busy(&adev->dev);
3096 pm_runtime_put_autosuspend(&adev->dev);
3097
3098 return 0;
3099 probe_err3:
3100 /* Idle the DMAC */
3101 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3102 chan.device_node) {
3103
3104 /* Remove the channel */
3105 list_del(&pch->chan.device_node);
3106
3107 /* Flush the channel */
3108 if (pch->thread) {
3109 pl330_terminate_all(&pch->chan);
3110 pl330_free_chan_resources(&pch->chan);
3111 }
3112 }
3113 probe_err2:
3114 pl330_del(pl330);
3115
3116 return ret;
3117 }
3118
3119 static int pl330_remove(struct amba_device *adev)
3120 {
3121 struct pl330_dmac *pl330 = amba_get_drvdata(adev);
3122 struct dma_pl330_chan *pch, *_p;
3123 int i, irq;
3124
3125 pm_runtime_get_noresume(pl330->ddma.dev);
3126
3127 if (adev->dev.of_node)
3128 of_dma_controller_free(adev->dev.of_node);
3129
3130 for (i = 0; i < AMBA_NR_IRQS; i++) {
3131 irq = adev->irq[i];
3132 if (irq)
3133 devm_free_irq(&adev->dev, irq, pl330);
3134 }
3135
3136 dma_async_device_unregister(&pl330->ddma);
3137
3138 /* Idle the DMAC */
3139 list_for_each_entry_safe(pch, _p, &pl330->ddma.channels,
3140 chan.device_node) {
3141
3142 /* Remove the channel */
3143 list_del(&pch->chan.device_node);
3144
3145 /* Flush the channel */
3146 if (pch->thread) {
3147 pl330_terminate_all(&pch->chan);
3148 pl330_free_chan_resources(&pch->chan);
3149 }
3150 }
3151
3152 pl330_del(pl330);
3153
3154 return 0;
3155 }
3156
3157 static const struct amba_id pl330_ids[] = {
3158 {
3159 .id = 0x00041330,
3160 .mask = 0x000fffff,
3161 },
3162 { 0, 0 },
3163 };
3164
3165 MODULE_DEVICE_TABLE(amba, pl330_ids);
3166
3167 static struct amba_driver pl330_driver = {
3168 .drv = {
3169 .owner = THIS_MODULE,
3170 .name = "dma-pl330",
3171 .pm = &pl330_pm,
3172 },
3173 .id_table = pl330_ids,
3174 .probe = pl330_probe,
3175 .remove = pl330_remove,
3176 };
3177
3178 module_amba_driver(pl330_driver);
3179
3180 MODULE_AUTHOR("Jaswinder Singh <jassisinghbrar@gmail.com>");
3181 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3182 MODULE_LICENSE("GPL");