]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/ppc4xx/adma.c
dmaengine: remove DMA unmap from drivers
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / ppc4xx / adma.c
1 /*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
3 *
4 * Author: Yuri Tikhonov <yur@emcraft.com>
5 *
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 */
26
27 /*
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
32 */
33
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49 #include "../dmaengine.h"
50
51 enum ppc_adma_init_code {
52 PPC_ADMA_INIT_OK = 0,
53 PPC_ADMA_INIT_MEMRES,
54 PPC_ADMA_INIT_MEMREG,
55 PPC_ADMA_INIT_ALLOC,
56 PPC_ADMA_INIT_COHERENT,
57 PPC_ADMA_INIT_CHANNEL,
58 PPC_ADMA_INIT_IRQ1,
59 PPC_ADMA_INIT_IRQ2,
60 PPC_ADMA_INIT_REGISTER
61 };
62
63 static char *ppc_adma_errors[] = {
64 [PPC_ADMA_INIT_OK] = "ok",
65 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
66 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
67 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
68 "structure",
69 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
70 "hardware descriptors",
71 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
72 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
73 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
74 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
75 };
76
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
79
80 struct ppc_dma_chan_ref {
81 struct dma_chan *chan;
82 struct list_head node;
83 };
84
85 /* The list of channels exported by ppc440spe ADMA */
86 struct list_head
87 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
88
89 /* This flag is set when want to refetch the xor chain in the interrupt
90 * handler
91 */
92 static u32 do_xor_refetch;
93
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf;
96
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
99 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
100
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot *xor_last_linked;
103 static struct ppc440spe_adma_desc_slot *xor_last_submit;
104
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword[16];
107
108 static atomic_t ppc440spe_adma_err_irq_ref;
109 static dcr_host_t ppc440spe_mq_dcr_host;
110 static unsigned int ppc440spe_mq_dcr_len;
111
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113 * the block size in transactions, then we do not allow to activate more than
114 * only one RXOR transactions simultaneously. So use this var to store
115 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116 * set) or not (PPC440SPE_RXOR_RUN is clear).
117 */
118 static unsigned long ppc440spe_rxor_state;
119
120 /* These are used in enable & check routines
121 */
122 static u32 ppc440spe_r6_enabled;
123 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
124 static struct completion ppc440spe_r6_test_comp;
125
126 static int ppc440spe_adma_dma2rxor_prep_src(
127 struct ppc440spe_adma_desc_slot *desc,
128 struct ppc440spe_rxor *cursor, int index,
129 int src_cnt, u32 addr);
130 static void ppc440spe_adma_dma2rxor_set_src(
131 struct ppc440spe_adma_desc_slot *desc,
132 int index, dma_addr_t addr);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134 struct ppc440spe_adma_desc_slot *desc,
135 int index, u8 mult);
136
137 #ifdef ADMA_LL_DEBUG
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
139 #else
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 #endif
142
143 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
144 {
145 struct dma_cdb *cdb;
146 struct xor_cb *cb;
147 int i;
148
149 switch (chan->device->id) {
150 case 0:
151 case 1:
152 cdb = block;
153
154 pr_debug("CDB at %p [%d]:\n"
155 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156 "\t sg1u 0x%08x sg1l 0x%08x\n"
157 "\t sg2u 0x%08x sg2l 0x%08x\n"
158 "\t sg3u 0x%08x sg3l 0x%08x\n",
159 cdb, chan->device->id,
160 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
161 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
162 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
163 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
164 );
165 break;
166 case 2:
167 cb = block;
168
169 pr_debug("CB at %p [%d]:\n"
170 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171 "\t cbtah 0x%08x cbtal 0x%08x\n"
172 "\t cblah 0x%08x cblal 0x%08x\n",
173 cb, chan->device->id,
174 cb->cbc, cb->cbbc, cb->cbs,
175 cb->cbtah, cb->cbtal,
176 cb->cblah, cb->cblal);
177 for (i = 0; i < 16; i++) {
178 if (i && !cb->ops[i].h && !cb->ops[i].l)
179 continue;
180 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181 i, cb->ops[i].h, cb->ops[i].l);
182 }
183 break;
184 }
185 }
186
187 static void print_cb_list(struct ppc440spe_adma_chan *chan,
188 struct ppc440spe_adma_desc_slot *iter)
189 {
190 for (; iter; iter = iter->hw_next)
191 print_cb(chan, iter->hw_desc);
192 }
193
194 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
195 unsigned int src_cnt)
196 {
197 int i;
198
199 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
200 for (i = 0; i < src_cnt; i++)
201 pr_debug("\t0x%016llx ", src[i]);
202 pr_debug("dst:\n\t0x%016llx\n", dst);
203 }
204
205 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
206 unsigned int src_cnt)
207 {
208 int i;
209
210 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
211 for (i = 0; i < src_cnt; i++)
212 pr_debug("\t0x%016llx ", src[i]);
213 pr_debug("dst: ");
214 for (i = 0; i < 2; i++)
215 pr_debug("\t0x%016llx ", dst[i]);
216 }
217
218 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
219 unsigned int src_cnt,
220 const unsigned char *scf)
221 {
222 int i;
223
224 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
225 if (scf) {
226 for (i = 0; i < src_cnt; i++)
227 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
228 } else {
229 for (i = 0; i < src_cnt; i++)
230 pr_debug("\t0x%016llx(no) ", src[i]);
231 }
232
233 pr_debug("dst: ");
234 for (i = 0; i < 2; i++)
235 pr_debug("\t0x%016llx ", src[src_cnt + i]);
236 }
237
238 /******************************************************************************
239 * Command (Descriptor) Blocks low-level routines
240 ******************************************************************************/
241 /**
242 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243 * pseudo operation
244 */
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
246 struct ppc440spe_adma_chan *chan)
247 {
248 struct xor_cb *p;
249
250 switch (chan->device->id) {
251 case PPC440SPE_XOR_ID:
252 p = desc->hw_desc;
253 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
254 /* NOP with Command Block Complete Enable */
255 p->cbc = XOR_CBCR_CBCE_BIT;
256 break;
257 case PPC440SPE_DMA0_ID:
258 case PPC440SPE_DMA1_ID:
259 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
260 /* NOP with interrupt */
261 set_bit(PPC440SPE_DESC_INT, &desc->flags);
262 break;
263 default:
264 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
265 __func__);
266 break;
267 }
268 }
269
270 /**
271 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272 * pseudo operation
273 */
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
275 {
276 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277 desc->hw_next = NULL;
278 desc->src_cnt = 0;
279 desc->dst_cnt = 1;
280 }
281
282 /**
283 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
284 */
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
286 int src_cnt, unsigned long flags)
287 {
288 struct xor_cb *hw_desc = desc->hw_desc;
289
290 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
291 desc->hw_next = NULL;
292 desc->src_cnt = src_cnt;
293 desc->dst_cnt = 1;
294
295 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
296 if (flags & DMA_PREP_INTERRUPT)
297 /* Enable interrupt on completion */
298 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
299 }
300
301 /**
302 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303 * operation in DMA2 controller
304 */
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
306 int dst_cnt, int src_cnt, unsigned long flags)
307 {
308 struct xor_cb *hw_desc = desc->hw_desc;
309
310 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
311 desc->hw_next = NULL;
312 desc->src_cnt = src_cnt;
313 desc->dst_cnt = dst_cnt;
314 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
315 desc->descs_per_op = 0;
316
317 hw_desc->cbc = XOR_CBCR_TGT_BIT;
318 if (flags & DMA_PREP_INTERRUPT)
319 /* Enable interrupt on completion */
320 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
321 }
322
323 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
326
327 /**
328 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329 * with DMA0/1
330 */
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
332 int dst_cnt, int src_cnt, unsigned long flags,
333 unsigned long op)
334 {
335 struct dma_cdb *hw_desc;
336 struct ppc440spe_adma_desc_slot *iter;
337 u8 dopc;
338
339 /* Common initialization of a PQ descriptors chain */
340 set_bits(op, &desc->flags);
341 desc->src_cnt = src_cnt;
342 desc->dst_cnt = dst_cnt;
343
344 /* WXOR MULTICAST if both P and Q are being computed
345 * MV_SG1_SG2 if Q only
346 */
347 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
348 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
349
350 list_for_each_entry(iter, &desc->group_list, chain_node) {
351 hw_desc = iter->hw_desc;
352 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
353
354 if (likely(!list_is_last(&iter->chain_node,
355 &desc->group_list))) {
356 /* set 'next' pointer */
357 iter->hw_next = list_entry(iter->chain_node.next,
358 struct ppc440spe_adma_desc_slot, chain_node);
359 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
360 } else {
361 /* this is the last descriptor.
362 * this slot will be pasted from ADMA level
363 * each time it wants to configure parameters
364 * of the transaction (src, dst, ...)
365 */
366 iter->hw_next = NULL;
367 if (flags & DMA_PREP_INTERRUPT)
368 set_bit(PPC440SPE_DESC_INT, &iter->flags);
369 else
370 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
371 }
372 }
373
374 /* Set OPS depending on WXOR/RXOR type of operation */
375 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
376 /* This is a WXOR only chain:
377 * - first descriptors are for zeroing destinations
378 * if PPC440SPE_ZERO_P/Q set;
379 * - descriptors remained are for GF-XOR operations.
380 */
381 iter = list_first_entry(&desc->group_list,
382 struct ppc440spe_adma_desc_slot,
383 chain_node);
384
385 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
386 hw_desc = iter->hw_desc;
387 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
388 iter = list_first_entry(&iter->chain_node,
389 struct ppc440spe_adma_desc_slot,
390 chain_node);
391 }
392
393 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
394 hw_desc = iter->hw_desc;
395 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
396 iter = list_first_entry(&iter->chain_node,
397 struct ppc440spe_adma_desc_slot,
398 chain_node);
399 }
400
401 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
402 hw_desc = iter->hw_desc;
403 hw_desc->opc = dopc;
404 }
405 } else {
406 /* This is either RXOR-only or mixed RXOR/WXOR */
407
408 /* The first 1 or 2 slots in chain are always RXOR,
409 * if need to calculate P & Q, then there are two
410 * RXOR slots; if only P or only Q, then there is one
411 */
412 iter = list_first_entry(&desc->group_list,
413 struct ppc440spe_adma_desc_slot,
414 chain_node);
415 hw_desc = iter->hw_desc;
416 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
417
418 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
419 iter = list_first_entry(&iter->chain_node,
420 struct ppc440spe_adma_desc_slot,
421 chain_node);
422 hw_desc = iter->hw_desc;
423 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
424 }
425
426 /* The remaining descs (if any) are WXORs */
427 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
428 iter = list_first_entry(&iter->chain_node,
429 struct ppc440spe_adma_desc_slot,
430 chain_node);
431 list_for_each_entry_from(iter, &desc->group_list,
432 chain_node) {
433 hw_desc = iter->hw_desc;
434 hw_desc->opc = dopc;
435 }
436 }
437 }
438 }
439
440 /**
441 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442 * for PQ_ZERO_SUM operation
443 */
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445 struct ppc440spe_adma_desc_slot *desc,
446 int dst_cnt, int src_cnt)
447 {
448 struct dma_cdb *hw_desc;
449 struct ppc440spe_adma_desc_slot *iter;
450 int i = 0;
451 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
452 DMA_CDB_OPC_MV_SG1_SG2;
453 /*
454 * Initialize starting from 2nd or 3rd descriptor dependent
455 * on dst_cnt. First one or two slots are for cloning P
456 * and/or Q to chan->pdest and/or chan->qdest as we have
457 * to preserve original P/Q.
458 */
459 iter = list_first_entry(&desc->group_list,
460 struct ppc440spe_adma_desc_slot, chain_node);
461 iter = list_entry(iter->chain_node.next,
462 struct ppc440spe_adma_desc_slot, chain_node);
463
464 if (dst_cnt > 1) {
465 iter = list_entry(iter->chain_node.next,
466 struct ppc440spe_adma_desc_slot, chain_node);
467 }
468 /* initialize each source descriptor in chain */
469 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
470 hw_desc = iter->hw_desc;
471 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
472 iter->src_cnt = 0;
473 iter->dst_cnt = 0;
474
475 /* This is a ZERO_SUM operation:
476 * - <src_cnt> descriptors starting from 2nd or 3rd
477 * descriptor are for GF-XOR operations;
478 * - remaining <dst_cnt> descriptors are for checking the result
479 */
480 if (i++ < src_cnt)
481 /* MV_SG1_SG2 if only Q is being verified
482 * MULTICAST if both P and Q are being verified
483 */
484 hw_desc->opc = dopc;
485 else
486 /* DMA_CDB_OPC_DCHECK128 operation */
487 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
488
489 if (likely(!list_is_last(&iter->chain_node,
490 &desc->group_list))) {
491 /* set 'next' pointer */
492 iter->hw_next = list_entry(iter->chain_node.next,
493 struct ppc440spe_adma_desc_slot,
494 chain_node);
495 } else {
496 /* this is the last descriptor.
497 * this slot will be pasted from ADMA level
498 * each time it wants to configure parameters
499 * of the transaction (src, dst, ...)
500 */
501 iter->hw_next = NULL;
502 /* always enable interrupt generation since we get
503 * the status of pqzero from the handler
504 */
505 set_bit(PPC440SPE_DESC_INT, &iter->flags);
506 }
507 }
508 desc->src_cnt = src_cnt;
509 desc->dst_cnt = dst_cnt;
510 }
511
512 /**
513 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
514 */
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
516 unsigned long flags)
517 {
518 struct dma_cdb *hw_desc = desc->hw_desc;
519
520 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
521 desc->hw_next = NULL;
522 desc->src_cnt = 1;
523 desc->dst_cnt = 1;
524
525 if (flags & DMA_PREP_INTERRUPT)
526 set_bit(PPC440SPE_DESC_INT, &desc->flags);
527 else
528 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
529
530 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
531 }
532
533 /**
534 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
535 */
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
537 int value, unsigned long flags)
538 {
539 struct dma_cdb *hw_desc = desc->hw_desc;
540
541 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
542 desc->hw_next = NULL;
543 desc->src_cnt = 1;
544 desc->dst_cnt = 1;
545
546 if (flags & DMA_PREP_INTERRUPT)
547 set_bit(PPC440SPE_DESC_INT, &desc->flags);
548 else
549 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
550
551 hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
552 hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
553 hw_desc->opc = DMA_CDB_OPC_DFILL128;
554 }
555
556 /**
557 * ppc440spe_desc_set_src_addr - set source address into the descriptor
558 */
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
560 struct ppc440spe_adma_chan *chan,
561 int src_idx, dma_addr_t addrh,
562 dma_addr_t addrl)
563 {
564 struct dma_cdb *dma_hw_desc;
565 struct xor_cb *xor_hw_desc;
566 phys_addr_t addr64, tmplow, tmphi;
567
568 switch (chan->device->id) {
569 case PPC440SPE_DMA0_ID:
570 case PPC440SPE_DMA1_ID:
571 if (!addrh) {
572 addr64 = addrl;
573 tmphi = (addr64 >> 32);
574 tmplow = (addr64 & 0xFFFFFFFF);
575 } else {
576 tmphi = addrh;
577 tmplow = addrl;
578 }
579 dma_hw_desc = desc->hw_desc;
580 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
581 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
582 break;
583 case PPC440SPE_XOR_ID:
584 xor_hw_desc = desc->hw_desc;
585 xor_hw_desc->ops[src_idx].l = addrl;
586 xor_hw_desc->ops[src_idx].h |= addrh;
587 break;
588 }
589 }
590
591 /**
592 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
593 */
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
595 struct ppc440spe_adma_chan *chan, u32 mult_index,
596 int sg_index, unsigned char mult_value)
597 {
598 struct dma_cdb *dma_hw_desc;
599 struct xor_cb *xor_hw_desc;
600 u32 *psgu;
601
602 switch (chan->device->id) {
603 case PPC440SPE_DMA0_ID:
604 case PPC440SPE_DMA1_ID:
605 dma_hw_desc = desc->hw_desc;
606
607 switch (sg_index) {
608 /* for RXOR operations set multiplier
609 * into source cued address
610 */
611 case DMA_CDB_SG_SRC:
612 psgu = &dma_hw_desc->sg1u;
613 break;
614 /* for WXOR operations set multiplier
615 * into destination cued address(es)
616 */
617 case DMA_CDB_SG_DST1:
618 psgu = &dma_hw_desc->sg2u;
619 break;
620 case DMA_CDB_SG_DST2:
621 psgu = &dma_hw_desc->sg3u;
622 break;
623 default:
624 BUG();
625 }
626
627 *psgu |= cpu_to_le32(mult_value << mult_index);
628 break;
629 case PPC440SPE_XOR_ID:
630 xor_hw_desc = desc->hw_desc;
631 break;
632 default:
633 BUG();
634 }
635 }
636
637 /**
638 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
639 */
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
641 struct ppc440spe_adma_chan *chan,
642 dma_addr_t addrh, dma_addr_t addrl,
643 u32 dst_idx)
644 {
645 struct dma_cdb *dma_hw_desc;
646 struct xor_cb *xor_hw_desc;
647 phys_addr_t addr64, tmphi, tmplow;
648 u32 *psgu, *psgl;
649
650 switch (chan->device->id) {
651 case PPC440SPE_DMA0_ID:
652 case PPC440SPE_DMA1_ID:
653 if (!addrh) {
654 addr64 = addrl;
655 tmphi = (addr64 >> 32);
656 tmplow = (addr64 & 0xFFFFFFFF);
657 } else {
658 tmphi = addrh;
659 tmplow = addrl;
660 }
661 dma_hw_desc = desc->hw_desc;
662
663 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
664 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
665
666 *psgl = cpu_to_le32((u32)tmplow);
667 *psgu |= cpu_to_le32((u32)tmphi);
668 break;
669 case PPC440SPE_XOR_ID:
670 xor_hw_desc = desc->hw_desc;
671 xor_hw_desc->cbtal = addrl;
672 xor_hw_desc->cbtah |= addrh;
673 break;
674 }
675 }
676
677 /**
678 * ppc440spe_desc_set_byte_count - set number of data bytes involved
679 * into the operation
680 */
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
682 struct ppc440spe_adma_chan *chan,
683 u32 byte_count)
684 {
685 struct dma_cdb *dma_hw_desc;
686 struct xor_cb *xor_hw_desc;
687
688 switch (chan->device->id) {
689 case PPC440SPE_DMA0_ID:
690 case PPC440SPE_DMA1_ID:
691 dma_hw_desc = desc->hw_desc;
692 dma_hw_desc->cnt = cpu_to_le32(byte_count);
693 break;
694 case PPC440SPE_XOR_ID:
695 xor_hw_desc = desc->hw_desc;
696 xor_hw_desc->cbbc = byte_count;
697 break;
698 }
699 }
700
701 /**
702 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
703 */
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
705 {
706 /* assume that byte_count is aligned on the 512-boundary;
707 * thus write it directly to the register (bits 23:31 are
708 * reserved there).
709 */
710 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
711 }
712
713 /**
714 * ppc440spe_desc_set_dcheck - set CHECK pattern
715 */
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
717 struct ppc440spe_adma_chan *chan, u8 *qword)
718 {
719 struct dma_cdb *dma_hw_desc;
720
721 switch (chan->device->id) {
722 case PPC440SPE_DMA0_ID:
723 case PPC440SPE_DMA1_ID:
724 dma_hw_desc = desc->hw_desc;
725 iowrite32(qword[0], &dma_hw_desc->sg3l);
726 iowrite32(qword[4], &dma_hw_desc->sg3u);
727 iowrite32(qword[8], &dma_hw_desc->sg2l);
728 iowrite32(qword[12], &dma_hw_desc->sg2u);
729 break;
730 default:
731 BUG();
732 }
733 }
734
735 /**
736 * ppc440spe_xor_set_link - set link address in xor CB
737 */
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
739 struct ppc440spe_adma_desc_slot *next_desc)
740 {
741 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
742
743 if (unlikely(!next_desc || !(next_desc->phys))) {
744 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
745 __func__, next_desc,
746 next_desc ? next_desc->phys : 0);
747 BUG();
748 }
749
750 xor_hw_desc->cbs = 0;
751 xor_hw_desc->cblal = next_desc->phys;
752 xor_hw_desc->cblah = 0;
753 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
754 }
755
756 /**
757 * ppc440spe_desc_set_link - set the address of descriptor following this
758 * descriptor in chain
759 */
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
761 struct ppc440spe_adma_desc_slot *prev_desc,
762 struct ppc440spe_adma_desc_slot *next_desc)
763 {
764 unsigned long flags;
765 struct ppc440spe_adma_desc_slot *tail = next_desc;
766
767 if (unlikely(!prev_desc || !next_desc ||
768 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
769 /* If previous next is overwritten something is wrong.
770 * though we may refetch from append to initiate list
771 * processing; in this case - it's ok.
772 */
773 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
774 "prev->hw_next=0x%p\n", __func__, prev_desc,
775 next_desc, prev_desc ? prev_desc->hw_next : 0);
776 BUG();
777 }
778
779 local_irq_save(flags);
780
781 /* do s/w chaining both for DMA and XOR descriptors */
782 prev_desc->hw_next = next_desc;
783
784 switch (chan->device->id) {
785 case PPC440SPE_DMA0_ID:
786 case PPC440SPE_DMA1_ID:
787 break;
788 case PPC440SPE_XOR_ID:
789 /* bind descriptor to the chain */
790 while (tail->hw_next)
791 tail = tail->hw_next;
792 xor_last_linked = tail;
793
794 if (prev_desc == xor_last_submit)
795 /* do not link to the last submitted CB */
796 break;
797 ppc440spe_xor_set_link(prev_desc, next_desc);
798 break;
799 }
800
801 local_irq_restore(flags);
802 }
803
804 /**
805 * ppc440spe_desc_get_link - get the address of the descriptor that
806 * follows this one
807 */
808 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
809 struct ppc440spe_adma_chan *chan)
810 {
811 if (!desc->hw_next)
812 return 0;
813
814 return desc->hw_next->phys;
815 }
816
817 /**
818 * ppc440spe_desc_is_aligned - check alignment
819 */
820 static inline int ppc440spe_desc_is_aligned(
821 struct ppc440spe_adma_desc_slot *desc, int num_slots)
822 {
823 return (desc->idx & (num_slots - 1)) ? 0 : 1;
824 }
825
826 /**
827 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
828 * XOR operation
829 */
830 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
831 int *slots_per_op)
832 {
833 int slot_cnt;
834
835 /* each XOR descriptor provides up to 16 source operands */
836 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
837
838 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
839 return slot_cnt;
840
841 printk(KERN_ERR "%s: len %d > max %d !!\n",
842 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
843 BUG();
844 return slot_cnt;
845 }
846
847 /**
848 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
849 * DMA2 PQ operation
850 */
851 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
852 int src_cnt, size_t len)
853 {
854 signed long long order = 0;
855 int state = 0;
856 int addr_count = 0;
857 int i;
858 for (i = 1; i < src_cnt; i++) {
859 dma_addr_t cur_addr = srcs[i];
860 dma_addr_t old_addr = srcs[i-1];
861 switch (state) {
862 case 0:
863 if (cur_addr == old_addr + len) {
864 /* direct RXOR */
865 order = 1;
866 state = 1;
867 if (i == src_cnt-1)
868 addr_count++;
869 } else if (old_addr == cur_addr + len) {
870 /* reverse RXOR */
871 order = -1;
872 state = 1;
873 if (i == src_cnt-1)
874 addr_count++;
875 } else {
876 state = 3;
877 }
878 break;
879 case 1:
880 if (i == src_cnt-2 || (order == -1
881 && cur_addr != old_addr - len)) {
882 order = 0;
883 state = 0;
884 addr_count++;
885 } else if (cur_addr == old_addr + len*order) {
886 state = 2;
887 if (i == src_cnt-1)
888 addr_count++;
889 } else if (cur_addr == old_addr + 2*len) {
890 state = 2;
891 if (i == src_cnt-1)
892 addr_count++;
893 } else if (cur_addr == old_addr + 3*len) {
894 state = 2;
895 if (i == src_cnt-1)
896 addr_count++;
897 } else {
898 order = 0;
899 state = 0;
900 addr_count++;
901 }
902 break;
903 case 2:
904 order = 0;
905 state = 0;
906 addr_count++;
907 break;
908 }
909 if (state == 3)
910 break;
911 }
912 if (src_cnt <= 1 || (state != 1 && state != 2)) {
913 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
914 __func__, src_cnt, state, addr_count, order);
915 for (i = 0; i < src_cnt; i++)
916 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
917 BUG();
918 }
919
920 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
921 }
922
923
924 /******************************************************************************
925 * ADMA channel low-level routines
926 ******************************************************************************/
927
928 static u32
929 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
930 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
931
932 /**
933 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
934 */
935 static void ppc440spe_adma_device_clear_eot_status(
936 struct ppc440spe_adma_chan *chan)
937 {
938 struct dma_regs *dma_reg;
939 struct xor_regs *xor_reg;
940 u8 *p = chan->device->dma_desc_pool_virt;
941 struct dma_cdb *cdb;
942 u32 rv, i;
943
944 switch (chan->device->id) {
945 case PPC440SPE_DMA0_ID:
946 case PPC440SPE_DMA1_ID:
947 /* read FIFO to ack */
948 dma_reg = chan->device->dma_reg;
949 while ((rv = ioread32(&dma_reg->csfpl))) {
950 i = rv & DMA_CDB_ADDR_MSK;
951 cdb = (struct dma_cdb *)&p[i -
952 (u32)chan->device->dma_desc_pool];
953
954 /* Clear opcode to ack. This is necessary for
955 * ZeroSum operations only
956 */
957 cdb->opc = 0;
958
959 if (test_bit(PPC440SPE_RXOR_RUN,
960 &ppc440spe_rxor_state)) {
961 /* probably this is a completed RXOR op,
962 * get pointer to CDB using the fact that
963 * physical and virtual addresses of CDB
964 * in pools have the same offsets
965 */
966 if (le32_to_cpu(cdb->sg1u) &
967 DMA_CUED_XOR_BASE) {
968 /* this is a RXOR */
969 clear_bit(PPC440SPE_RXOR_RUN,
970 &ppc440spe_rxor_state);
971 }
972 }
973
974 if (rv & DMA_CDB_STATUS_MSK) {
975 /* ZeroSum check failed
976 */
977 struct ppc440spe_adma_desc_slot *iter;
978 dma_addr_t phys = rv & ~DMA_CDB_MSK;
979
980 /*
981 * Update the status of corresponding
982 * descriptor.
983 */
984 list_for_each_entry(iter, &chan->chain,
985 chain_node) {
986 if (iter->phys == phys)
987 break;
988 }
989 /*
990 * if cannot find the corresponding
991 * slot it's a bug
992 */
993 BUG_ON(&iter->chain_node == &chan->chain);
994
995 if (iter->xor_check_result) {
996 if (test_bit(PPC440SPE_DESC_PCHECK,
997 &iter->flags)) {
998 *iter->xor_check_result |=
999 SUM_CHECK_P_RESULT;
1000 } else
1001 if (test_bit(PPC440SPE_DESC_QCHECK,
1002 &iter->flags)) {
1003 *iter->xor_check_result |=
1004 SUM_CHECK_Q_RESULT;
1005 } else
1006 BUG();
1007 }
1008 }
1009 }
1010
1011 rv = ioread32(&dma_reg->dsts);
1012 if (rv) {
1013 pr_err("DMA%d err status: 0x%x\n",
1014 chan->device->id, rv);
1015 /* write back to clear */
1016 iowrite32(rv, &dma_reg->dsts);
1017 }
1018 break;
1019 case PPC440SPE_XOR_ID:
1020 /* reset status bits to ack */
1021 xor_reg = chan->device->xor_reg;
1022 rv = ioread32be(&xor_reg->sr);
1023 iowrite32be(rv, &xor_reg->sr);
1024
1025 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1026 if (rv & XOR_IE_RPTIE_BIT) {
1027 /* Read PLB Timeout Error.
1028 * Try to resubmit the CB
1029 */
1030 u32 val = ioread32be(&xor_reg->ccbalr);
1031
1032 iowrite32be(val, &xor_reg->cblalr);
1033
1034 val = ioread32be(&xor_reg->crsr);
1035 iowrite32be(val | XOR_CRSR_XAE_BIT,
1036 &xor_reg->crsr);
1037 } else
1038 pr_err("XOR ERR 0x%x status\n", rv);
1039 break;
1040 }
1041
1042 /* if the XORcore is idle, but there are unprocessed CBs
1043 * then refetch the s/w chain here
1044 */
1045 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1046 do_xor_refetch)
1047 ppc440spe_chan_append(chan);
1048 break;
1049 }
1050 }
1051
1052 /**
1053 * ppc440spe_chan_is_busy - get the channel status
1054 */
1055 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1056 {
1057 struct dma_regs *dma_reg;
1058 struct xor_regs *xor_reg;
1059 int busy = 0;
1060
1061 switch (chan->device->id) {
1062 case PPC440SPE_DMA0_ID:
1063 case PPC440SPE_DMA1_ID:
1064 dma_reg = chan->device->dma_reg;
1065 /* if command FIFO's head and tail pointers are equal and
1066 * status tail is the same as command, then channel is free
1067 */
1068 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1069 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1070 busy = 1;
1071 break;
1072 case PPC440SPE_XOR_ID:
1073 /* use the special status bit for the XORcore
1074 */
1075 xor_reg = chan->device->xor_reg;
1076 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1077 break;
1078 }
1079
1080 return busy;
1081 }
1082
1083 /**
1084 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1085 */
1086 static void ppc440spe_chan_set_first_xor_descriptor(
1087 struct ppc440spe_adma_chan *chan,
1088 struct ppc440spe_adma_desc_slot *next_desc)
1089 {
1090 struct xor_regs *xor_reg = chan->device->xor_reg;
1091
1092 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1093 printk(KERN_INFO "%s: Warn: XORcore is running "
1094 "when try to set the first CDB!\n",
1095 __func__);
1096
1097 xor_last_submit = xor_last_linked = next_desc;
1098
1099 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1100
1101 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1102 iowrite32be(0, &xor_reg->cblahr);
1103 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1104 &xor_reg->cbcr);
1105
1106 chan->hw_chain_inited = 1;
1107 }
1108
1109 /**
1110 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1111 * called with irqs disabled
1112 */
1113 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1114 struct ppc440spe_adma_desc_slot *desc)
1115 {
1116 u32 pcdb;
1117 struct dma_regs *dma_reg = chan->device->dma_reg;
1118
1119 pcdb = desc->phys;
1120 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1121 pcdb |= DMA_CDB_NO_INT;
1122
1123 chan_last_sub[chan->device->id] = desc;
1124
1125 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1126
1127 iowrite32(pcdb, &dma_reg->cpfpl);
1128 }
1129
1130 /**
1131 * ppc440spe_chan_append - update the h/w chain in the channel
1132 */
1133 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1134 {
1135 struct xor_regs *xor_reg;
1136 struct ppc440spe_adma_desc_slot *iter;
1137 struct xor_cb *xcb;
1138 u32 cur_desc;
1139 unsigned long flags;
1140
1141 local_irq_save(flags);
1142
1143 switch (chan->device->id) {
1144 case PPC440SPE_DMA0_ID:
1145 case PPC440SPE_DMA1_ID:
1146 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1147
1148 if (likely(cur_desc)) {
1149 iter = chan_last_sub[chan->device->id];
1150 BUG_ON(!iter);
1151 } else {
1152 /* first peer */
1153 iter = chan_first_cdb[chan->device->id];
1154 BUG_ON(!iter);
1155 ppc440spe_dma_put_desc(chan, iter);
1156 chan->hw_chain_inited = 1;
1157 }
1158
1159 /* is there something new to append */
1160 if (!iter->hw_next)
1161 break;
1162
1163 /* flush descriptors from the s/w queue to fifo */
1164 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1165 ppc440spe_dma_put_desc(chan, iter);
1166 if (!iter->hw_next)
1167 break;
1168 }
1169 break;
1170 case PPC440SPE_XOR_ID:
1171 /* update h/w links and refetch */
1172 if (!xor_last_submit->hw_next)
1173 break;
1174
1175 xor_reg = chan->device->xor_reg;
1176 /* the last linked CDB has to generate an interrupt
1177 * that we'd be able to append the next lists to h/w
1178 * regardless of the XOR engine state at the moment of
1179 * appending of these next lists
1180 */
1181 xcb = xor_last_linked->hw_desc;
1182 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1183
1184 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1185 /* XORcore is idle. Refetch now */
1186 do_xor_refetch = 0;
1187 ppc440spe_xor_set_link(xor_last_submit,
1188 xor_last_submit->hw_next);
1189
1190 ADMA_LL_DBG(print_cb_list(chan,
1191 xor_last_submit->hw_next));
1192
1193 xor_last_submit = xor_last_linked;
1194 iowrite32be(ioread32be(&xor_reg->crsr) |
1195 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1196 &xor_reg->crsr);
1197 } else {
1198 /* XORcore is running. Refetch later in the handler */
1199 do_xor_refetch = 1;
1200 }
1201
1202 break;
1203 }
1204
1205 local_irq_restore(flags);
1206 }
1207
1208 /**
1209 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1210 */
1211 static u32
1212 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1213 {
1214 struct dma_regs *dma_reg;
1215 struct xor_regs *xor_reg;
1216
1217 if (unlikely(!chan->hw_chain_inited))
1218 /* h/w descriptor chain is not initialized yet */
1219 return 0;
1220
1221 switch (chan->device->id) {
1222 case PPC440SPE_DMA0_ID:
1223 case PPC440SPE_DMA1_ID:
1224 dma_reg = chan->device->dma_reg;
1225 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1226 case PPC440SPE_XOR_ID:
1227 xor_reg = chan->device->xor_reg;
1228 return ioread32be(&xor_reg->ccbalr);
1229 }
1230 return 0;
1231 }
1232
1233 /**
1234 * ppc440spe_chan_run - enable the channel
1235 */
1236 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1237 {
1238 struct xor_regs *xor_reg;
1239
1240 switch (chan->device->id) {
1241 case PPC440SPE_DMA0_ID:
1242 case PPC440SPE_DMA1_ID:
1243 /* DMAs are always enabled, do nothing */
1244 break;
1245 case PPC440SPE_XOR_ID:
1246 /* drain write buffer */
1247 xor_reg = chan->device->xor_reg;
1248
1249 /* fetch descriptor pointed to in <link> */
1250 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1251 &xor_reg->crsr);
1252 break;
1253 }
1254 }
1255
1256 /******************************************************************************
1257 * ADMA device level
1258 ******************************************************************************/
1259
1260 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1261 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1262
1263 static dma_cookie_t
1264 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1265
1266 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1267 dma_addr_t addr, int index);
1268 static void
1269 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1270 dma_addr_t addr, int index);
1271
1272 static void
1273 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1274 dma_addr_t *paddr, unsigned long flags);
1275 static void
1276 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1277 dma_addr_t addr, int index);
1278 static void
1279 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1280 unsigned char mult, int index, int dst_pos);
1281 static void
1282 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1283 dma_addr_t paddr, dma_addr_t qaddr);
1284
1285 static struct page *ppc440spe_rxor_srcs[32];
1286
1287 /**
1288 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1289 */
1290 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1291 {
1292 int i, order = 0, state = 0;
1293 int idx = 0;
1294
1295 if (unlikely(!(src_cnt > 1)))
1296 return 0;
1297
1298 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1299
1300 /* Skip holes in the source list before checking */
1301 for (i = 0; i < src_cnt; i++) {
1302 if (!srcs[i])
1303 continue;
1304 ppc440spe_rxor_srcs[idx++] = srcs[i];
1305 }
1306 src_cnt = idx;
1307
1308 for (i = 1; i < src_cnt; i++) {
1309 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1310 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1311
1312 switch (state) {
1313 case 0:
1314 if (cur_addr == old_addr + len) {
1315 /* direct RXOR */
1316 order = 1;
1317 state = 1;
1318 } else if (old_addr == cur_addr + len) {
1319 /* reverse RXOR */
1320 order = -1;
1321 state = 1;
1322 } else
1323 goto out;
1324 break;
1325 case 1:
1326 if ((i == src_cnt - 2) ||
1327 (order == -1 && cur_addr != old_addr - len)) {
1328 order = 0;
1329 state = 0;
1330 } else if ((cur_addr == old_addr + len * order) ||
1331 (cur_addr == old_addr + 2 * len) ||
1332 (cur_addr == old_addr + 3 * len)) {
1333 state = 2;
1334 } else {
1335 order = 0;
1336 state = 0;
1337 }
1338 break;
1339 case 2:
1340 order = 0;
1341 state = 0;
1342 break;
1343 }
1344 }
1345
1346 out:
1347 if (state == 1 || state == 2)
1348 return 1;
1349
1350 return 0;
1351 }
1352
1353 /**
1354 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1355 * the operation given on this channel. It's assumed that 'chan' is
1356 * capable to process 'cap' type of operation.
1357 * @chan: channel to use
1358 * @cap: type of transaction
1359 * @dst_lst: array of destination pointers
1360 * @dst_cnt: number of destination operands
1361 * @src_lst: array of source pointers
1362 * @src_cnt: number of source operands
1363 * @src_sz: size of each source operand
1364 */
1365 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1366 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1367 struct page **src_lst, int src_cnt, size_t src_sz)
1368 {
1369 int ef = 1;
1370
1371 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1372 /* If RAID-6 capabilities were not activated don't try
1373 * to use them
1374 */
1375 if (unlikely(!ppc440spe_r6_enabled))
1376 return -1;
1377 }
1378 /* In the current implementation of ppc440spe ADMA driver it
1379 * makes sense to pick out only pq case, because it may be
1380 * processed:
1381 * (1) either using Biskup method on DMA2;
1382 * (2) or on DMA0/1.
1383 * Thus we give a favour to (1) if the sources are suitable;
1384 * else let it be processed on one of the DMA0/1 engines.
1385 * In the sum_product case where destination is also the
1386 * source process it on DMA0/1 only.
1387 */
1388 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1389
1390 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1391 ef = 0; /* sum_product case, process on DMA0/1 */
1392 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1393 ef = 3; /* override (DMA0/1 + idle) */
1394 else
1395 ef = 0; /* can't process on DMA2 if !rxor */
1396 }
1397
1398 /* channel idleness increases the priority */
1399 if (likely(ef) &&
1400 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1401 ef++;
1402
1403 return ef;
1404 }
1405
1406 struct dma_chan *
1407 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1408 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1409 int src_cnt, size_t src_sz)
1410 {
1411 struct dma_chan *best_chan = NULL;
1412 struct ppc_dma_chan_ref *ref;
1413 int best_rank = -1;
1414
1415 if (unlikely(!src_sz))
1416 return NULL;
1417 if (src_sz > PAGE_SIZE) {
1418 /*
1419 * should a user of the api ever pass > PAGE_SIZE requests
1420 * we sort out cases where temporary page-sized buffers
1421 * are used.
1422 */
1423 switch (cap) {
1424 case DMA_PQ:
1425 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1426 return NULL;
1427 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1428 return NULL;
1429 break;
1430 case DMA_PQ_VAL:
1431 case DMA_XOR_VAL:
1432 return NULL;
1433 default:
1434 break;
1435 }
1436 }
1437
1438 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1439 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1440 int rank;
1441
1442 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1443 dst_cnt, src_lst, src_cnt, src_sz);
1444 if (rank > best_rank) {
1445 best_rank = rank;
1446 best_chan = ref->chan;
1447 }
1448 }
1449 }
1450
1451 return best_chan;
1452 }
1453 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1454
1455 /**
1456 * ppc440spe_get_group_entry - get group entry with index idx
1457 * @tdesc: is the last allocated slot in the group.
1458 */
1459 static struct ppc440spe_adma_desc_slot *
1460 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1461 {
1462 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1463 int i = 0;
1464
1465 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1466 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1467 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1468 BUG();
1469 }
1470
1471 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1472 if (i++ == entry_idx)
1473 break;
1474 }
1475 return iter;
1476 }
1477
1478 /**
1479 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1480 * @slot: Slot to free
1481 * Caller must hold &ppc440spe_chan->lock while calling this function
1482 */
1483 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1484 struct ppc440spe_adma_chan *chan)
1485 {
1486 int stride = slot->slots_per_op;
1487
1488 while (stride--) {
1489 slot->slots_per_op = 0;
1490 slot = list_entry(slot->slot_node.next,
1491 struct ppc440spe_adma_desc_slot,
1492 slot_node);
1493 }
1494 }
1495
1496 /**
1497 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1498 * upon completion
1499 */
1500 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1501 struct ppc440spe_adma_desc_slot *desc,
1502 struct ppc440spe_adma_chan *chan,
1503 dma_cookie_t cookie)
1504 {
1505 int i;
1506
1507 BUG_ON(desc->async_tx.cookie < 0);
1508 if (desc->async_tx.cookie > 0) {
1509 cookie = desc->async_tx.cookie;
1510 desc->async_tx.cookie = 0;
1511
1512 /* call the callback (must not sleep or submit new
1513 * operations to this channel)
1514 */
1515 if (desc->async_tx.callback)
1516 desc->async_tx.callback(
1517 desc->async_tx.callback_param);
1518
1519 dma_descriptor_unmap(&desc->async_tx);
1520 }
1521
1522 /* run dependent operations */
1523 dma_run_dependencies(&desc->async_tx);
1524
1525 return cookie;
1526 }
1527
1528 /**
1529 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1530 */
1531 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1532 struct ppc440spe_adma_chan *chan)
1533 {
1534 /* the client is allowed to attach dependent operations
1535 * until 'ack' is set
1536 */
1537 if (!async_tx_test_ack(&desc->async_tx))
1538 return 0;
1539
1540 /* leave the last descriptor in the chain
1541 * so we can append to it
1542 */
1543 if (list_is_last(&desc->chain_node, &chan->chain) ||
1544 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1545 return 1;
1546
1547 if (chan->device->id != PPC440SPE_XOR_ID) {
1548 /* our DMA interrupt handler clears opc field of
1549 * each processed descriptor. For all types of
1550 * operations except for ZeroSum we do not actually
1551 * need ack from the interrupt handler. ZeroSum is a
1552 * special case since the result of this operation
1553 * is available from the handler only, so if we see
1554 * such type of descriptor (which is unprocessed yet)
1555 * then leave it in chain.
1556 */
1557 struct dma_cdb *cdb = desc->hw_desc;
1558 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1559 return 1;
1560 }
1561
1562 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1563 desc->phys, desc->idx, desc->slots_per_op);
1564
1565 list_del(&desc->chain_node);
1566 ppc440spe_adma_free_slots(desc, chan);
1567 return 0;
1568 }
1569
1570 /**
1571 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1572 * which runs through the channel CDBs list until reach the descriptor
1573 * currently processed. When routine determines that all CDBs of group
1574 * are completed then corresponding callbacks (if any) are called and slots
1575 * are freed.
1576 */
1577 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1578 {
1579 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1580 dma_cookie_t cookie = 0;
1581 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1582 int busy = ppc440spe_chan_is_busy(chan);
1583 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1584
1585 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1586 chan->device->id, __func__);
1587
1588 if (!current_desc) {
1589 /* There were no transactions yet, so
1590 * nothing to clean
1591 */
1592 return;
1593 }
1594
1595 /* free completed slots from the chain starting with
1596 * the oldest descriptor
1597 */
1598 list_for_each_entry_safe(iter, _iter, &chan->chain,
1599 chain_node) {
1600 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1601 "busy: %d this_desc: %#llx next_desc: %#x "
1602 "cur: %#x ack: %d\n",
1603 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1604 ppc440spe_desc_get_link(iter, chan), current_desc,
1605 async_tx_test_ack(&iter->async_tx));
1606 prefetch(_iter);
1607 prefetch(&_iter->async_tx);
1608
1609 /* do not advance past the current descriptor loaded into the
1610 * hardware channel,subsequent descriptors are either in process
1611 * or have not been submitted
1612 */
1613 if (seen_current)
1614 break;
1615
1616 /* stop the search if we reach the current descriptor and the
1617 * channel is busy, or if it appears that the current descriptor
1618 * needs to be re-read (i.e. has been appended to)
1619 */
1620 if (iter->phys == current_desc) {
1621 BUG_ON(seen_current++);
1622 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1623 /* not all descriptors of the group have
1624 * been completed; exit.
1625 */
1626 break;
1627 }
1628 }
1629
1630 /* detect the start of a group transaction */
1631 if (!slot_cnt && !slots_per_op) {
1632 slot_cnt = iter->slot_cnt;
1633 slots_per_op = iter->slots_per_op;
1634 if (slot_cnt <= slots_per_op) {
1635 slot_cnt = 0;
1636 slots_per_op = 0;
1637 }
1638 }
1639
1640 if (slot_cnt) {
1641 if (!group_start)
1642 group_start = iter;
1643 slot_cnt -= slots_per_op;
1644 }
1645
1646 /* all the members of a group are complete */
1647 if (slots_per_op != 0 && slot_cnt == 0) {
1648 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1649 int end_of_chain = 0;
1650
1651 /* clean up the group */
1652 slot_cnt = group_start->slot_cnt;
1653 grp_iter = group_start;
1654 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1655 &chan->chain, chain_node) {
1656
1657 cookie = ppc440spe_adma_run_tx_complete_actions(
1658 grp_iter, chan, cookie);
1659
1660 slot_cnt -= slots_per_op;
1661 end_of_chain = ppc440spe_adma_clean_slot(
1662 grp_iter, chan);
1663 if (end_of_chain && slot_cnt) {
1664 /* Should wait for ZeroSum completion */
1665 if (cookie > 0)
1666 chan->common.completed_cookie = cookie;
1667 return;
1668 }
1669
1670 if (slot_cnt == 0 || end_of_chain)
1671 break;
1672 }
1673
1674 /* the group should be complete at this point */
1675 BUG_ON(slot_cnt);
1676
1677 slots_per_op = 0;
1678 group_start = NULL;
1679 if (end_of_chain)
1680 break;
1681 else
1682 continue;
1683 } else if (slots_per_op) /* wait for group completion */
1684 continue;
1685
1686 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1687 cookie);
1688
1689 if (ppc440spe_adma_clean_slot(iter, chan))
1690 break;
1691 }
1692
1693 BUG_ON(!seen_current);
1694
1695 if (cookie > 0) {
1696 chan->common.completed_cookie = cookie;
1697 pr_debug("\tcompleted cookie %d\n", cookie);
1698 }
1699
1700 }
1701
1702 /**
1703 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1704 */
1705 static void ppc440spe_adma_tasklet(unsigned long data)
1706 {
1707 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1708
1709 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1710 __ppc440spe_adma_slot_cleanup(chan);
1711 spin_unlock(&chan->lock);
1712 }
1713
1714 /**
1715 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1716 */
1717 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1718 {
1719 spin_lock_bh(&chan->lock);
1720 __ppc440spe_adma_slot_cleanup(chan);
1721 spin_unlock_bh(&chan->lock);
1722 }
1723
1724 /**
1725 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1726 */
1727 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1728 struct ppc440spe_adma_chan *chan, int num_slots,
1729 int slots_per_op)
1730 {
1731 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1732 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1733 struct list_head chain = LIST_HEAD_INIT(chain);
1734 int slots_found, retry = 0;
1735
1736
1737 BUG_ON(!num_slots || !slots_per_op);
1738 /* start search from the last allocated descrtiptor
1739 * if a contiguous allocation can not be found start searching
1740 * from the beginning of the list
1741 */
1742 retry:
1743 slots_found = 0;
1744 if (retry == 0)
1745 iter = chan->last_used;
1746 else
1747 iter = list_entry(&chan->all_slots,
1748 struct ppc440spe_adma_desc_slot,
1749 slot_node);
1750 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1751 slot_node) {
1752 prefetch(_iter);
1753 prefetch(&_iter->async_tx);
1754 if (iter->slots_per_op) {
1755 slots_found = 0;
1756 continue;
1757 }
1758
1759 /* start the allocation if the slot is correctly aligned */
1760 if (!slots_found++)
1761 alloc_start = iter;
1762
1763 if (slots_found == num_slots) {
1764 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1765 struct ppc440spe_adma_desc_slot *last_used = NULL;
1766
1767 iter = alloc_start;
1768 while (num_slots) {
1769 int i;
1770 /* pre-ack all but the last descriptor */
1771 if (num_slots != slots_per_op)
1772 async_tx_ack(&iter->async_tx);
1773
1774 list_add_tail(&iter->chain_node, &chain);
1775 alloc_tail = iter;
1776 iter->async_tx.cookie = 0;
1777 iter->hw_next = NULL;
1778 iter->flags = 0;
1779 iter->slot_cnt = num_slots;
1780 iter->xor_check_result = NULL;
1781 for (i = 0; i < slots_per_op; i++) {
1782 iter->slots_per_op = slots_per_op - i;
1783 last_used = iter;
1784 iter = list_entry(iter->slot_node.next,
1785 struct ppc440spe_adma_desc_slot,
1786 slot_node);
1787 }
1788 num_slots -= slots_per_op;
1789 }
1790 alloc_tail->group_head = alloc_start;
1791 alloc_tail->async_tx.cookie = -EBUSY;
1792 list_splice(&chain, &alloc_tail->group_list);
1793 chan->last_used = last_used;
1794 return alloc_tail;
1795 }
1796 }
1797 if (!retry++)
1798 goto retry;
1799
1800 /* try to free some slots if the allocation fails */
1801 tasklet_schedule(&chan->irq_tasklet);
1802 return NULL;
1803 }
1804
1805 /**
1806 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
1807 */
1808 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1809 {
1810 struct ppc440spe_adma_chan *ppc440spe_chan;
1811 struct ppc440spe_adma_desc_slot *slot = NULL;
1812 char *hw_desc;
1813 int i, db_sz;
1814 int init;
1815
1816 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1817 init = ppc440spe_chan->slots_allocated ? 0 : 1;
1818 chan->chan_id = ppc440spe_chan->device->id;
1819
1820 /* Allocate descriptor slots */
1821 i = ppc440spe_chan->slots_allocated;
1822 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1823 db_sz = sizeof(struct dma_cdb);
1824 else
1825 db_sz = sizeof(struct xor_cb);
1826
1827 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1828 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1829 GFP_KERNEL);
1830 if (!slot) {
1831 printk(KERN_INFO "SPE ADMA Channel only initialized"
1832 " %d descriptor slots", i--);
1833 break;
1834 }
1835
1836 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1837 slot->hw_desc = (void *) &hw_desc[i * db_sz];
1838 dma_async_tx_descriptor_init(&slot->async_tx, chan);
1839 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1840 INIT_LIST_HEAD(&slot->chain_node);
1841 INIT_LIST_HEAD(&slot->slot_node);
1842 INIT_LIST_HEAD(&slot->group_list);
1843 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1844 slot->idx = i;
1845
1846 spin_lock_bh(&ppc440spe_chan->lock);
1847 ppc440spe_chan->slots_allocated++;
1848 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1849 spin_unlock_bh(&ppc440spe_chan->lock);
1850 }
1851
1852 if (i && !ppc440spe_chan->last_used) {
1853 ppc440spe_chan->last_used =
1854 list_entry(ppc440spe_chan->all_slots.next,
1855 struct ppc440spe_adma_desc_slot,
1856 slot_node);
1857 }
1858
1859 dev_dbg(ppc440spe_chan->device->common.dev,
1860 "ppc440spe adma%d: allocated %d descriptor slots\n",
1861 ppc440spe_chan->device->id, i);
1862
1863 /* initialize the channel and the chain with a null operation */
1864 if (init) {
1865 switch (ppc440spe_chan->device->id) {
1866 case PPC440SPE_DMA0_ID:
1867 case PPC440SPE_DMA1_ID:
1868 ppc440spe_chan->hw_chain_inited = 0;
1869 /* Use WXOR for self-testing */
1870 if (!ppc440spe_r6_tchan)
1871 ppc440spe_r6_tchan = ppc440spe_chan;
1872 break;
1873 case PPC440SPE_XOR_ID:
1874 ppc440spe_chan_start_null_xor(ppc440spe_chan);
1875 break;
1876 default:
1877 BUG();
1878 }
1879 ppc440spe_chan->needs_unmap = 1;
1880 }
1881
1882 return (i > 0) ? i : -ENOMEM;
1883 }
1884
1885 /**
1886 * ppc440spe_rxor_set_region_data -
1887 */
1888 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1889 u8 xor_arg_no, u32 mask)
1890 {
1891 struct xor_cb *xcb = desc->hw_desc;
1892
1893 xcb->ops[xor_arg_no].h |= mask;
1894 }
1895
1896 /**
1897 * ppc440spe_rxor_set_src -
1898 */
1899 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1900 u8 xor_arg_no, dma_addr_t addr)
1901 {
1902 struct xor_cb *xcb = desc->hw_desc;
1903
1904 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1905 xcb->ops[xor_arg_no].l = addr;
1906 }
1907
1908 /**
1909 * ppc440spe_rxor_set_mult -
1910 */
1911 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1912 u8 xor_arg_no, u8 idx, u8 mult)
1913 {
1914 struct xor_cb *xcb = desc->hw_desc;
1915
1916 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1917 }
1918
1919 /**
1920 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1921 * has been achieved
1922 */
1923 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1924 {
1925 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1926 chan->device->id, chan->pending);
1927
1928 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1929 chan->pending = 0;
1930 ppc440spe_chan_append(chan);
1931 }
1932 }
1933
1934 /**
1935 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1936 * (it's not necessary that descriptors will be submitted to the h/w
1937 * chains too right now)
1938 */
1939 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1940 {
1941 struct ppc440spe_adma_desc_slot *sw_desc;
1942 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1943 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1944 int slot_cnt;
1945 int slots_per_op;
1946 dma_cookie_t cookie;
1947
1948 sw_desc = tx_to_ppc440spe_adma_slot(tx);
1949
1950 group_start = sw_desc->group_head;
1951 slot_cnt = group_start->slot_cnt;
1952 slots_per_op = group_start->slots_per_op;
1953
1954 spin_lock_bh(&chan->lock);
1955 cookie = dma_cookie_assign(tx);
1956
1957 if (unlikely(list_empty(&chan->chain))) {
1958 /* first peer */
1959 list_splice_init(&sw_desc->group_list, &chan->chain);
1960 chan_first_cdb[chan->device->id] = group_start;
1961 } else {
1962 /* isn't first peer, bind CDBs to chain */
1963 old_chain_tail = list_entry(chan->chain.prev,
1964 struct ppc440spe_adma_desc_slot,
1965 chain_node);
1966 list_splice_init(&sw_desc->group_list,
1967 &old_chain_tail->chain_node);
1968 /* fix up the hardware chain */
1969 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1970 }
1971
1972 /* increment the pending count by the number of operations */
1973 chan->pending += slot_cnt / slots_per_op;
1974 ppc440spe_adma_check_threshold(chan);
1975 spin_unlock_bh(&chan->lock);
1976
1977 dev_dbg(chan->device->common.dev,
1978 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1979 chan->device->id, __func__,
1980 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1981
1982 return cookie;
1983 }
1984
1985 /**
1986 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1987 */
1988 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1989 struct dma_chan *chan, unsigned long flags)
1990 {
1991 struct ppc440spe_adma_chan *ppc440spe_chan;
1992 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1993 int slot_cnt, slots_per_op;
1994
1995 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1996
1997 dev_dbg(ppc440spe_chan->device->common.dev,
1998 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1999 __func__);
2000
2001 spin_lock_bh(&ppc440spe_chan->lock);
2002 slot_cnt = slots_per_op = 1;
2003 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2004 slots_per_op);
2005 if (sw_desc) {
2006 group_start = sw_desc->group_head;
2007 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2008 group_start->unmap_len = 0;
2009 sw_desc->async_tx.flags = flags;
2010 }
2011 spin_unlock_bh(&ppc440spe_chan->lock);
2012
2013 return sw_desc ? &sw_desc->async_tx : NULL;
2014 }
2015
2016 /**
2017 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2018 */
2019 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2020 struct dma_chan *chan, dma_addr_t dma_dest,
2021 dma_addr_t dma_src, size_t len, unsigned long flags)
2022 {
2023 struct ppc440spe_adma_chan *ppc440spe_chan;
2024 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2025 int slot_cnt, slots_per_op;
2026
2027 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2028
2029 if (unlikely(!len))
2030 return NULL;
2031
2032 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2033
2034 spin_lock_bh(&ppc440spe_chan->lock);
2035
2036 dev_dbg(ppc440spe_chan->device->common.dev,
2037 "ppc440spe adma%d: %s len: %u int_en %d\n",
2038 ppc440spe_chan->device->id, __func__, len,
2039 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2040 slot_cnt = slots_per_op = 1;
2041 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2042 slots_per_op);
2043 if (sw_desc) {
2044 group_start = sw_desc->group_head;
2045 ppc440spe_desc_init_memcpy(group_start, flags);
2046 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2047 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2048 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2049 sw_desc->unmap_len = len;
2050 sw_desc->async_tx.flags = flags;
2051 }
2052 spin_unlock_bh(&ppc440spe_chan->lock);
2053
2054 return sw_desc ? &sw_desc->async_tx : NULL;
2055 }
2056
2057 /**
2058 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2059 */
2060 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2061 struct dma_chan *chan, dma_addr_t dma_dest,
2062 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2063 unsigned long flags)
2064 {
2065 struct ppc440spe_adma_chan *ppc440spe_chan;
2066 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2067 int slot_cnt, slots_per_op;
2068
2069 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2070
2071 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2072 dma_dest, dma_src, src_cnt));
2073 if (unlikely(!len))
2074 return NULL;
2075 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2076
2077 dev_dbg(ppc440spe_chan->device->common.dev,
2078 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2079 ppc440spe_chan->device->id, __func__, src_cnt, len,
2080 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2081
2082 spin_lock_bh(&ppc440spe_chan->lock);
2083 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2084 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2085 slots_per_op);
2086 if (sw_desc) {
2087 group_start = sw_desc->group_head;
2088 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2089 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2090 while (src_cnt--)
2091 ppc440spe_adma_memcpy_xor_set_src(group_start,
2092 dma_src[src_cnt], src_cnt);
2093 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2094 sw_desc->unmap_len = len;
2095 sw_desc->async_tx.flags = flags;
2096 }
2097 spin_unlock_bh(&ppc440spe_chan->lock);
2098
2099 return sw_desc ? &sw_desc->async_tx : NULL;
2100 }
2101
2102 static inline void
2103 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2104 int src_cnt);
2105 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2106
2107 /**
2108 * ppc440spe_adma_init_dma2rxor_slot -
2109 */
2110 static void ppc440spe_adma_init_dma2rxor_slot(
2111 struct ppc440spe_adma_desc_slot *desc,
2112 dma_addr_t *src, int src_cnt)
2113 {
2114 int i;
2115
2116 /* initialize CDB */
2117 for (i = 0; i < src_cnt; i++) {
2118 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2119 desc->src_cnt, (u32)src[i]);
2120 }
2121 }
2122
2123 /**
2124 * ppc440spe_dma01_prep_mult -
2125 * for Q operation where destination is also the source
2126 */
2127 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2128 struct ppc440spe_adma_chan *ppc440spe_chan,
2129 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2130 const unsigned char *scf, size_t len, unsigned long flags)
2131 {
2132 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2133 unsigned long op = 0;
2134 int slot_cnt;
2135
2136 set_bit(PPC440SPE_DESC_WXOR, &op);
2137 slot_cnt = 2;
2138
2139 spin_lock_bh(&ppc440spe_chan->lock);
2140
2141 /* use WXOR, each descriptor occupies one slot */
2142 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2143 if (sw_desc) {
2144 struct ppc440spe_adma_chan *chan;
2145 struct ppc440spe_adma_desc_slot *iter;
2146 struct dma_cdb *hw_desc;
2147
2148 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2149 set_bits(op, &sw_desc->flags);
2150 sw_desc->src_cnt = src_cnt;
2151 sw_desc->dst_cnt = dst_cnt;
2152 /* First descriptor, zero data in the destination and copy it
2153 * to q page using MULTICAST transfer.
2154 */
2155 iter = list_first_entry(&sw_desc->group_list,
2156 struct ppc440spe_adma_desc_slot,
2157 chain_node);
2158 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2159 /* set 'next' pointer */
2160 iter->hw_next = list_entry(iter->chain_node.next,
2161 struct ppc440spe_adma_desc_slot,
2162 chain_node);
2163 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2164 hw_desc = iter->hw_desc;
2165 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2166
2167 ppc440spe_desc_set_dest_addr(iter, chan,
2168 DMA_CUED_XOR_BASE, dst[0], 0);
2169 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2170 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2171 src[0]);
2172 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2173 iter->unmap_len = len;
2174
2175 /*
2176 * Second descriptor, multiply data from the q page
2177 * and store the result in real destination.
2178 */
2179 iter = list_first_entry(&iter->chain_node,
2180 struct ppc440spe_adma_desc_slot,
2181 chain_node);
2182 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2183 iter->hw_next = NULL;
2184 if (flags & DMA_PREP_INTERRUPT)
2185 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2186 else
2187 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2188
2189 hw_desc = iter->hw_desc;
2190 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2191 ppc440spe_desc_set_src_addr(iter, chan, 0,
2192 DMA_CUED_XOR_HB, dst[1]);
2193 ppc440spe_desc_set_dest_addr(iter, chan,
2194 DMA_CUED_XOR_BASE, dst[0], 0);
2195
2196 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2197 DMA_CDB_SG_DST1, scf[0]);
2198 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2199 iter->unmap_len = len;
2200 sw_desc->async_tx.flags = flags;
2201 }
2202
2203 spin_unlock_bh(&ppc440spe_chan->lock);
2204
2205 return sw_desc;
2206 }
2207
2208 /**
2209 * ppc440spe_dma01_prep_sum_product -
2210 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2211 * the source.
2212 */
2213 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2214 struct ppc440spe_adma_chan *ppc440spe_chan,
2215 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2216 const unsigned char *scf, size_t len, unsigned long flags)
2217 {
2218 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2219 unsigned long op = 0;
2220 int slot_cnt;
2221
2222 set_bit(PPC440SPE_DESC_WXOR, &op);
2223 slot_cnt = 3;
2224
2225 spin_lock_bh(&ppc440spe_chan->lock);
2226
2227 /* WXOR, each descriptor occupies one slot */
2228 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2229 if (sw_desc) {
2230 struct ppc440spe_adma_chan *chan;
2231 struct ppc440spe_adma_desc_slot *iter;
2232 struct dma_cdb *hw_desc;
2233
2234 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2235 set_bits(op, &sw_desc->flags);
2236 sw_desc->src_cnt = src_cnt;
2237 sw_desc->dst_cnt = 1;
2238 /* 1st descriptor, src[1] data to q page and zero destination */
2239 iter = list_first_entry(&sw_desc->group_list,
2240 struct ppc440spe_adma_desc_slot,
2241 chain_node);
2242 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2243 iter->hw_next = list_entry(iter->chain_node.next,
2244 struct ppc440spe_adma_desc_slot,
2245 chain_node);
2246 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2247 hw_desc = iter->hw_desc;
2248 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2249
2250 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2251 *dst, 0);
2252 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2253 ppc440spe_chan->qdest, 1);
2254 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2255 src[1]);
2256 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2257 iter->unmap_len = len;
2258
2259 /* 2nd descriptor, multiply src[1] data and store the
2260 * result in destination */
2261 iter = list_first_entry(&iter->chain_node,
2262 struct ppc440spe_adma_desc_slot,
2263 chain_node);
2264 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2265 /* set 'next' pointer */
2266 iter->hw_next = list_entry(iter->chain_node.next,
2267 struct ppc440spe_adma_desc_slot,
2268 chain_node);
2269 if (flags & DMA_PREP_INTERRUPT)
2270 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2271 else
2272 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2273
2274 hw_desc = iter->hw_desc;
2275 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2276 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2277 ppc440spe_chan->qdest);
2278 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2279 *dst, 0);
2280 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2281 DMA_CDB_SG_DST1, scf[1]);
2282 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2283 iter->unmap_len = len;
2284
2285 /*
2286 * 3rd descriptor, multiply src[0] data and xor it
2287 * with destination
2288 */
2289 iter = list_first_entry(&iter->chain_node,
2290 struct ppc440spe_adma_desc_slot,
2291 chain_node);
2292 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2293 iter->hw_next = NULL;
2294 if (flags & DMA_PREP_INTERRUPT)
2295 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2296 else
2297 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2298
2299 hw_desc = iter->hw_desc;
2300 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2301 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2302 src[0]);
2303 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2304 *dst, 0);
2305 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2306 DMA_CDB_SG_DST1, scf[0]);
2307 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2308 iter->unmap_len = len;
2309 sw_desc->async_tx.flags = flags;
2310 }
2311
2312 spin_unlock_bh(&ppc440spe_chan->lock);
2313
2314 return sw_desc;
2315 }
2316
2317 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2318 struct ppc440spe_adma_chan *ppc440spe_chan,
2319 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2320 const unsigned char *scf, size_t len, unsigned long flags)
2321 {
2322 int slot_cnt;
2323 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2324 unsigned long op = 0;
2325 unsigned char mult = 1;
2326
2327 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2328 __func__, dst_cnt, src_cnt, len);
2329 /* select operations WXOR/RXOR depending on the
2330 * source addresses of operators and the number
2331 * of destinations (RXOR support only Q-parity calculations)
2332 */
2333 set_bit(PPC440SPE_DESC_WXOR, &op);
2334 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2335 /* no active RXOR;
2336 * do RXOR if:
2337 * - there are more than 1 source,
2338 * - len is aligned on 512-byte boundary,
2339 * - source addresses fit to one of 4 possible regions.
2340 */
2341 if (src_cnt > 1 &&
2342 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2343 (src[0] + len) == src[1]) {
2344 /* may do RXOR R1 R2 */
2345 set_bit(PPC440SPE_DESC_RXOR, &op);
2346 if (src_cnt != 2) {
2347 /* may try to enhance region of RXOR */
2348 if ((src[1] + len) == src[2]) {
2349 /* do RXOR R1 R2 R3 */
2350 set_bit(PPC440SPE_DESC_RXOR123,
2351 &op);
2352 } else if ((src[1] + len * 2) == src[2]) {
2353 /* do RXOR R1 R2 R4 */
2354 set_bit(PPC440SPE_DESC_RXOR124, &op);
2355 } else if ((src[1] + len * 3) == src[2]) {
2356 /* do RXOR R1 R2 R5 */
2357 set_bit(PPC440SPE_DESC_RXOR125,
2358 &op);
2359 } else {
2360 /* do RXOR R1 R2 */
2361 set_bit(PPC440SPE_DESC_RXOR12,
2362 &op);
2363 }
2364 } else {
2365 /* do RXOR R1 R2 */
2366 set_bit(PPC440SPE_DESC_RXOR12, &op);
2367 }
2368 }
2369
2370 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2371 /* can not do this operation with RXOR */
2372 clear_bit(PPC440SPE_RXOR_RUN,
2373 &ppc440spe_rxor_state);
2374 } else {
2375 /* can do; set block size right now */
2376 ppc440spe_desc_set_rxor_block_size(len);
2377 }
2378 }
2379
2380 /* Number of necessary slots depends on operation type selected */
2381 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2382 /* This is a WXOR only chain. Need descriptors for each
2383 * source to GF-XOR them with WXOR, and need descriptors
2384 * for each destination to zero them with WXOR
2385 */
2386 slot_cnt = src_cnt;
2387
2388 if (flags & DMA_PREP_ZERO_P) {
2389 slot_cnt++;
2390 set_bit(PPC440SPE_ZERO_P, &op);
2391 }
2392 if (flags & DMA_PREP_ZERO_Q) {
2393 slot_cnt++;
2394 set_bit(PPC440SPE_ZERO_Q, &op);
2395 }
2396 } else {
2397 /* Need 1/2 descriptor for RXOR operation, and
2398 * need (src_cnt - (2 or 3)) for WXOR of sources
2399 * remained (if any)
2400 */
2401 slot_cnt = dst_cnt;
2402
2403 if (flags & DMA_PREP_ZERO_P)
2404 set_bit(PPC440SPE_ZERO_P, &op);
2405 if (flags & DMA_PREP_ZERO_Q)
2406 set_bit(PPC440SPE_ZERO_Q, &op);
2407
2408 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2409 slot_cnt += src_cnt - 2;
2410 else
2411 slot_cnt += src_cnt - 3;
2412
2413 /* Thus we have either RXOR only chain or
2414 * mixed RXOR/WXOR
2415 */
2416 if (slot_cnt == dst_cnt)
2417 /* RXOR only chain */
2418 clear_bit(PPC440SPE_DESC_WXOR, &op);
2419 }
2420
2421 spin_lock_bh(&ppc440spe_chan->lock);
2422 /* for both RXOR/WXOR each descriptor occupies one slot */
2423 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2424 if (sw_desc) {
2425 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2426 flags, op);
2427
2428 /* setup dst/src/mult */
2429 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2430 __func__, dst[0], dst[1]);
2431 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2432 while (src_cnt--) {
2433 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2434 src_cnt);
2435
2436 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2437 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2438 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2439 * leads to zeroing source data after RXOR.
2440 * So, for P case set-up mult=1 explicitly.
2441 */
2442 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2443 mult = scf[src_cnt];
2444 ppc440spe_adma_pq_set_src_mult(sw_desc,
2445 mult, src_cnt, dst_cnt - 1);
2446 }
2447
2448 /* Setup byte count foreach slot just allocated */
2449 sw_desc->async_tx.flags = flags;
2450 list_for_each_entry(iter, &sw_desc->group_list,
2451 chain_node) {
2452 ppc440spe_desc_set_byte_count(iter,
2453 ppc440spe_chan, len);
2454 iter->unmap_len = len;
2455 }
2456 }
2457 spin_unlock_bh(&ppc440spe_chan->lock);
2458
2459 return sw_desc;
2460 }
2461
2462 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2463 struct ppc440spe_adma_chan *ppc440spe_chan,
2464 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2465 const unsigned char *scf, size_t len, unsigned long flags)
2466 {
2467 int slot_cnt, descs_per_op;
2468 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2469 unsigned long op = 0;
2470 unsigned char mult = 1;
2471
2472 BUG_ON(!dst_cnt);
2473 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2474 __func__, dst_cnt, src_cnt, len);*/
2475
2476 spin_lock_bh(&ppc440spe_chan->lock);
2477 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2478 if (descs_per_op < 0) {
2479 spin_unlock_bh(&ppc440spe_chan->lock);
2480 return NULL;
2481 }
2482
2483 /* depending on number of sources we have 1 or 2 RXOR chains */
2484 slot_cnt = descs_per_op * dst_cnt;
2485
2486 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2487 if (sw_desc) {
2488 op = slot_cnt;
2489 sw_desc->async_tx.flags = flags;
2490 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2491 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2492 --op ? 0 : flags);
2493 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2494 len);
2495 iter->unmap_len = len;
2496
2497 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2498 iter->rxor_cursor.len = len;
2499 iter->descs_per_op = descs_per_op;
2500 }
2501 op = 0;
2502 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2503 op++;
2504 if (op % descs_per_op == 0)
2505 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2506 src_cnt);
2507 if (likely(!list_is_last(&iter->chain_node,
2508 &sw_desc->group_list))) {
2509 /* set 'next' pointer */
2510 iter->hw_next =
2511 list_entry(iter->chain_node.next,
2512 struct ppc440spe_adma_desc_slot,
2513 chain_node);
2514 ppc440spe_xor_set_link(iter, iter->hw_next);
2515 } else {
2516 /* this is the last descriptor. */
2517 iter->hw_next = NULL;
2518 }
2519 }
2520
2521 /* fixup head descriptor */
2522 sw_desc->dst_cnt = dst_cnt;
2523 if (flags & DMA_PREP_ZERO_P)
2524 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2525 if (flags & DMA_PREP_ZERO_Q)
2526 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2527
2528 /* setup dst/src/mult */
2529 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2530
2531 while (src_cnt--) {
2532 /* handle descriptors (if dst_cnt == 2) inside
2533 * the ppc440spe_adma_pq_set_srcxxx() functions
2534 */
2535 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2536 src_cnt);
2537 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2538 mult = scf[src_cnt];
2539 ppc440spe_adma_pq_set_src_mult(sw_desc,
2540 mult, src_cnt, dst_cnt - 1);
2541 }
2542 }
2543 spin_unlock_bh(&ppc440spe_chan->lock);
2544 ppc440spe_desc_set_rxor_block_size(len);
2545 return sw_desc;
2546 }
2547
2548 /**
2549 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2550 */
2551 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2552 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2553 unsigned int src_cnt, const unsigned char *scf,
2554 size_t len, unsigned long flags)
2555 {
2556 struct ppc440spe_adma_chan *ppc440spe_chan;
2557 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2558 int dst_cnt = 0;
2559
2560 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2561
2562 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2563 dst, src, src_cnt));
2564 BUG_ON(!len);
2565 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2566 BUG_ON(!src_cnt);
2567
2568 if (src_cnt == 1 && dst[1] == src[0]) {
2569 dma_addr_t dest[2];
2570
2571 /* dst[1] is real destination (Q) */
2572 dest[0] = dst[1];
2573 /* this is the page to multicast source data to */
2574 dest[1] = ppc440spe_chan->qdest;
2575 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2576 dest, 2, src, src_cnt, scf, len, flags);
2577 return sw_desc ? &sw_desc->async_tx : NULL;
2578 }
2579
2580 if (src_cnt == 2 && dst[1] == src[1]) {
2581 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2582 &dst[1], src, 2, scf, len, flags);
2583 return sw_desc ? &sw_desc->async_tx : NULL;
2584 }
2585
2586 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2587 BUG_ON(!dst[0]);
2588 dst_cnt++;
2589 flags |= DMA_PREP_ZERO_P;
2590 }
2591
2592 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2593 BUG_ON(!dst[1]);
2594 dst_cnt++;
2595 flags |= DMA_PREP_ZERO_Q;
2596 }
2597
2598 BUG_ON(!dst_cnt);
2599
2600 dev_dbg(ppc440spe_chan->device->common.dev,
2601 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2602 ppc440spe_chan->device->id, __func__, src_cnt, len,
2603 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2604
2605 switch (ppc440spe_chan->device->id) {
2606 case PPC440SPE_DMA0_ID:
2607 case PPC440SPE_DMA1_ID:
2608 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2609 dst, dst_cnt, src, src_cnt, scf,
2610 len, flags);
2611 break;
2612
2613 case PPC440SPE_XOR_ID:
2614 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2615 dst, dst_cnt, src, src_cnt, scf,
2616 len, flags);
2617 break;
2618 }
2619
2620 return sw_desc ? &sw_desc->async_tx : NULL;
2621 }
2622
2623 /**
2624 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2625 * a PQ_ZERO_SUM operation
2626 */
2627 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2628 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2629 unsigned int src_cnt, const unsigned char *scf, size_t len,
2630 enum sum_check_flags *pqres, unsigned long flags)
2631 {
2632 struct ppc440spe_adma_chan *ppc440spe_chan;
2633 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2634 dma_addr_t pdest, qdest;
2635 int slot_cnt, slots_per_op, idst, dst_cnt;
2636
2637 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2638
2639 if (flags & DMA_PREP_PQ_DISABLE_P)
2640 pdest = 0;
2641 else
2642 pdest = pq[0];
2643
2644 if (flags & DMA_PREP_PQ_DISABLE_Q)
2645 qdest = 0;
2646 else
2647 qdest = pq[1];
2648
2649 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2650 src, src_cnt, scf));
2651
2652 /* Always use WXOR for P/Q calculations (two destinations).
2653 * Need 1 or 2 extra slots to verify results are zero.
2654 */
2655 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2656
2657 /* One additional slot per destination to clone P/Q
2658 * before calculation (we have to preserve destinations).
2659 */
2660 slot_cnt = src_cnt + dst_cnt * 2;
2661 slots_per_op = 1;
2662
2663 spin_lock_bh(&ppc440spe_chan->lock);
2664 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2665 slots_per_op);
2666 if (sw_desc) {
2667 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2668
2669 /* Setup byte count for each slot just allocated */
2670 sw_desc->async_tx.flags = flags;
2671 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2672 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2673 len);
2674 iter->unmap_len = len;
2675 }
2676
2677 if (pdest) {
2678 struct dma_cdb *hw_desc;
2679 struct ppc440spe_adma_chan *chan;
2680
2681 iter = sw_desc->group_head;
2682 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2683 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2684 iter->hw_next = list_entry(iter->chain_node.next,
2685 struct ppc440spe_adma_desc_slot,
2686 chain_node);
2687 hw_desc = iter->hw_desc;
2688 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2689 iter->src_cnt = 0;
2690 iter->dst_cnt = 0;
2691 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2692 ppc440spe_chan->pdest, 0);
2693 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2694 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2695 len);
2696 iter->unmap_len = 0;
2697 /* override pdest to preserve original P */
2698 pdest = ppc440spe_chan->pdest;
2699 }
2700 if (qdest) {
2701 struct dma_cdb *hw_desc;
2702 struct ppc440spe_adma_chan *chan;
2703
2704 iter = list_first_entry(&sw_desc->group_list,
2705 struct ppc440spe_adma_desc_slot,
2706 chain_node);
2707 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2708
2709 if (pdest) {
2710 iter = list_entry(iter->chain_node.next,
2711 struct ppc440spe_adma_desc_slot,
2712 chain_node);
2713 }
2714
2715 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2716 iter->hw_next = list_entry(iter->chain_node.next,
2717 struct ppc440spe_adma_desc_slot,
2718 chain_node);
2719 hw_desc = iter->hw_desc;
2720 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2721 iter->src_cnt = 0;
2722 iter->dst_cnt = 0;
2723 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2724 ppc440spe_chan->qdest, 0);
2725 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2726 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2727 len);
2728 iter->unmap_len = 0;
2729 /* override qdest to preserve original Q */
2730 qdest = ppc440spe_chan->qdest;
2731 }
2732
2733 /* Setup destinations for P/Q ops */
2734 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2735
2736 /* Setup zero QWORDs into DCHECK CDBs */
2737 idst = dst_cnt;
2738 list_for_each_entry_reverse(iter, &sw_desc->group_list,
2739 chain_node) {
2740 /*
2741 * The last CDB corresponds to Q-parity check,
2742 * the one before last CDB corresponds
2743 * P-parity check
2744 */
2745 if (idst == DMA_DEST_MAX_NUM) {
2746 if (idst == dst_cnt) {
2747 set_bit(PPC440SPE_DESC_QCHECK,
2748 &iter->flags);
2749 } else {
2750 set_bit(PPC440SPE_DESC_PCHECK,
2751 &iter->flags);
2752 }
2753 } else {
2754 if (qdest) {
2755 set_bit(PPC440SPE_DESC_QCHECK,
2756 &iter->flags);
2757 } else {
2758 set_bit(PPC440SPE_DESC_PCHECK,
2759 &iter->flags);
2760 }
2761 }
2762 iter->xor_check_result = pqres;
2763
2764 /*
2765 * set it to zero, if check fail then result will
2766 * be updated
2767 */
2768 *iter->xor_check_result = 0;
2769 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2770 ppc440spe_qword);
2771
2772 if (!(--dst_cnt))
2773 break;
2774 }
2775
2776 /* Setup sources and mults for P/Q ops */
2777 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2778 chain_node) {
2779 struct ppc440spe_adma_chan *chan;
2780 u32 mult_dst;
2781
2782 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2783 ppc440spe_desc_set_src_addr(iter, chan, 0,
2784 DMA_CUED_XOR_HB,
2785 src[src_cnt - 1]);
2786 if (qdest) {
2787 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2788 DMA_CDB_SG_DST1;
2789 ppc440spe_desc_set_src_mult(iter, chan,
2790 DMA_CUED_MULT1_OFF,
2791 mult_dst,
2792 scf[src_cnt - 1]);
2793 }
2794 if (!(--src_cnt))
2795 break;
2796 }
2797 }
2798 spin_unlock_bh(&ppc440spe_chan->lock);
2799 return sw_desc ? &sw_desc->async_tx : NULL;
2800 }
2801
2802 /**
2803 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2804 * XOR ZERO_SUM operation
2805 */
2806 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2807 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2808 size_t len, enum sum_check_flags *result, unsigned long flags)
2809 {
2810 struct dma_async_tx_descriptor *tx;
2811 dma_addr_t pq[2];
2812
2813 /* validate P, disable Q */
2814 pq[0] = src[0];
2815 pq[1] = 0;
2816 flags |= DMA_PREP_PQ_DISABLE_Q;
2817
2818 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2819 src_cnt - 1, 0, len,
2820 result, flags);
2821 return tx;
2822 }
2823
2824 /**
2825 * ppc440spe_adma_set_dest - set destination address into descriptor
2826 */
2827 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2828 dma_addr_t addr, int index)
2829 {
2830 struct ppc440spe_adma_chan *chan;
2831
2832 BUG_ON(index >= sw_desc->dst_cnt);
2833
2834 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2835
2836 switch (chan->device->id) {
2837 case PPC440SPE_DMA0_ID:
2838 case PPC440SPE_DMA1_ID:
2839 /* to do: support transfers lengths >
2840 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2841 */
2842 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2843 chan, 0, addr, index);
2844 break;
2845 case PPC440SPE_XOR_ID:
2846 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2847 ppc440spe_desc_set_dest_addr(sw_desc,
2848 chan, 0, addr, index);
2849 break;
2850 }
2851 }
2852
2853 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2854 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2855 {
2856 /* To clear destinations update the descriptor
2857 * (P or Q depending on index) as follows:
2858 * addr is destination (0 corresponds to SG2):
2859 */
2860 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2861
2862 /* ... and the addr is source: */
2863 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2864
2865 /* addr is always SG2 then the mult is always DST1 */
2866 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2867 DMA_CDB_SG_DST1, 1);
2868 }
2869
2870 /**
2871 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2872 * for the PQXOR operation
2873 */
2874 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2875 dma_addr_t *addrs, unsigned long flags)
2876 {
2877 struct ppc440spe_adma_desc_slot *iter;
2878 struct ppc440spe_adma_chan *chan;
2879 dma_addr_t paddr, qaddr;
2880 dma_addr_t addr = 0, ppath, qpath;
2881 int index = 0, i;
2882
2883 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2884
2885 if (flags & DMA_PREP_PQ_DISABLE_P)
2886 paddr = 0;
2887 else
2888 paddr = addrs[0];
2889
2890 if (flags & DMA_PREP_PQ_DISABLE_Q)
2891 qaddr = 0;
2892 else
2893 qaddr = addrs[1];
2894
2895 if (!paddr || !qaddr)
2896 addr = paddr ? paddr : qaddr;
2897
2898 switch (chan->device->id) {
2899 case PPC440SPE_DMA0_ID:
2900 case PPC440SPE_DMA1_ID:
2901 /* walk through the WXOR source list and set P/Q-destinations
2902 * for each slot:
2903 */
2904 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2905 /* This is WXOR-only chain; may have 1/2 zero descs */
2906 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2907 index++;
2908 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2909 index++;
2910
2911 iter = ppc440spe_get_group_entry(sw_desc, index);
2912 if (addr) {
2913 /* one destination */
2914 list_for_each_entry_from(iter,
2915 &sw_desc->group_list, chain_node)
2916 ppc440spe_desc_set_dest_addr(iter, chan,
2917 DMA_CUED_XOR_BASE, addr, 0);
2918 } else {
2919 /* two destinations */
2920 list_for_each_entry_from(iter,
2921 &sw_desc->group_list, chain_node) {
2922 ppc440spe_desc_set_dest_addr(iter, chan,
2923 DMA_CUED_XOR_BASE, paddr, 0);
2924 ppc440spe_desc_set_dest_addr(iter, chan,
2925 DMA_CUED_XOR_BASE, qaddr, 1);
2926 }
2927 }
2928
2929 if (index) {
2930 /* To clear destinations update the descriptor
2931 * (1st,2nd, or both depending on flags)
2932 */
2933 index = 0;
2934 if (test_bit(PPC440SPE_ZERO_P,
2935 &sw_desc->flags)) {
2936 iter = ppc440spe_get_group_entry(
2937 sw_desc, index++);
2938 ppc440spe_adma_pq_zero_op(iter, chan,
2939 paddr);
2940 }
2941
2942 if (test_bit(PPC440SPE_ZERO_Q,
2943 &sw_desc->flags)) {
2944 iter = ppc440spe_get_group_entry(
2945 sw_desc, index++);
2946 ppc440spe_adma_pq_zero_op(iter, chan,
2947 qaddr);
2948 }
2949
2950 return;
2951 }
2952 } else {
2953 /* This is RXOR-only or RXOR/WXOR mixed chain */
2954
2955 /* If we want to include destination into calculations,
2956 * then make dest addresses cued with mult=1 (XOR).
2957 */
2958 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2959 DMA_CUED_XOR_HB :
2960 DMA_CUED_XOR_BASE |
2961 (1 << DMA_CUED_MULT1_OFF);
2962 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2963 DMA_CUED_XOR_HB :
2964 DMA_CUED_XOR_BASE |
2965 (1 << DMA_CUED_MULT1_OFF);
2966
2967 /* Setup destination(s) in RXOR slot(s) */
2968 iter = ppc440spe_get_group_entry(sw_desc, index++);
2969 ppc440spe_desc_set_dest_addr(iter, chan,
2970 paddr ? ppath : qpath,
2971 paddr ? paddr : qaddr, 0);
2972 if (!addr) {
2973 /* two destinations */
2974 iter = ppc440spe_get_group_entry(sw_desc,
2975 index++);
2976 ppc440spe_desc_set_dest_addr(iter, chan,
2977 qpath, qaddr, 0);
2978 }
2979
2980 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2981 /* Setup destination(s) in remaining WXOR
2982 * slots
2983 */
2984 iter = ppc440spe_get_group_entry(sw_desc,
2985 index);
2986 if (addr) {
2987 /* one destination */
2988 list_for_each_entry_from(iter,
2989 &sw_desc->group_list,
2990 chain_node)
2991 ppc440spe_desc_set_dest_addr(
2992 iter, chan,
2993 DMA_CUED_XOR_BASE,
2994 addr, 0);
2995
2996 } else {
2997 /* two destinations */
2998 list_for_each_entry_from(iter,
2999 &sw_desc->group_list,
3000 chain_node) {
3001 ppc440spe_desc_set_dest_addr(
3002 iter, chan,
3003 DMA_CUED_XOR_BASE,
3004 paddr, 0);
3005 ppc440spe_desc_set_dest_addr(
3006 iter, chan,
3007 DMA_CUED_XOR_BASE,
3008 qaddr, 1);
3009 }
3010 }
3011 }
3012
3013 }
3014 break;
3015
3016 case PPC440SPE_XOR_ID:
3017 /* DMA2 descriptors have only 1 destination, so there are
3018 * two chains - one for each dest.
3019 * If we want to include destination into calculations,
3020 * then make dest addresses cued with mult=1 (XOR).
3021 */
3022 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3023 DMA_CUED_XOR_HB :
3024 DMA_CUED_XOR_BASE |
3025 (1 << DMA_CUED_MULT1_OFF);
3026
3027 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3028 DMA_CUED_XOR_HB :
3029 DMA_CUED_XOR_BASE |
3030 (1 << DMA_CUED_MULT1_OFF);
3031
3032 iter = ppc440spe_get_group_entry(sw_desc, 0);
3033 for (i = 0; i < sw_desc->descs_per_op; i++) {
3034 ppc440spe_desc_set_dest_addr(iter, chan,
3035 paddr ? ppath : qpath,
3036 paddr ? paddr : qaddr, 0);
3037 iter = list_entry(iter->chain_node.next,
3038 struct ppc440spe_adma_desc_slot,
3039 chain_node);
3040 }
3041
3042 if (!addr) {
3043 /* Two destinations; setup Q here */
3044 iter = ppc440spe_get_group_entry(sw_desc,
3045 sw_desc->descs_per_op);
3046 for (i = 0; i < sw_desc->descs_per_op; i++) {
3047 ppc440spe_desc_set_dest_addr(iter,
3048 chan, qpath, qaddr, 0);
3049 iter = list_entry(iter->chain_node.next,
3050 struct ppc440spe_adma_desc_slot,
3051 chain_node);
3052 }
3053 }
3054
3055 break;
3056 }
3057 }
3058
3059 /**
3060 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3061 * for the PQ_ZERO_SUM operation
3062 */
3063 static void ppc440spe_adma_pqzero_sum_set_dest(
3064 struct ppc440spe_adma_desc_slot *sw_desc,
3065 dma_addr_t paddr, dma_addr_t qaddr)
3066 {
3067 struct ppc440spe_adma_desc_slot *iter, *end;
3068 struct ppc440spe_adma_chan *chan;
3069 dma_addr_t addr = 0;
3070 int idx;
3071
3072 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3073
3074 /* walk through the WXOR source list and set P/Q-destinations
3075 * for each slot
3076 */
3077 idx = (paddr && qaddr) ? 2 : 1;
3078 /* set end */
3079 list_for_each_entry_reverse(end, &sw_desc->group_list,
3080 chain_node) {
3081 if (!(--idx))
3082 break;
3083 }
3084 /* set start */
3085 idx = (paddr && qaddr) ? 2 : 1;
3086 iter = ppc440spe_get_group_entry(sw_desc, idx);
3087
3088 if (paddr && qaddr) {
3089 /* two destinations */
3090 list_for_each_entry_from(iter, &sw_desc->group_list,
3091 chain_node) {
3092 if (unlikely(iter == end))
3093 break;
3094 ppc440spe_desc_set_dest_addr(iter, chan,
3095 DMA_CUED_XOR_BASE, paddr, 0);
3096 ppc440spe_desc_set_dest_addr(iter, chan,
3097 DMA_CUED_XOR_BASE, qaddr, 1);
3098 }
3099 } else {
3100 /* one destination */
3101 addr = paddr ? paddr : qaddr;
3102 list_for_each_entry_from(iter, &sw_desc->group_list,
3103 chain_node) {
3104 if (unlikely(iter == end))
3105 break;
3106 ppc440spe_desc_set_dest_addr(iter, chan,
3107 DMA_CUED_XOR_BASE, addr, 0);
3108 }
3109 }
3110
3111 /* The remaining descriptors are DATACHECK. These have no need in
3112 * destination. Actually, these destinations are used there
3113 * as sources for check operation. So, set addr as source.
3114 */
3115 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3116
3117 if (!addr) {
3118 end = list_entry(end->chain_node.next,
3119 struct ppc440spe_adma_desc_slot, chain_node);
3120 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3121 }
3122 }
3123
3124 /**
3125 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3126 */
3127 static inline void ppc440spe_desc_set_xor_src_cnt(
3128 struct ppc440spe_adma_desc_slot *desc,
3129 int src_cnt)
3130 {
3131 struct xor_cb *hw_desc = desc->hw_desc;
3132
3133 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3134 hw_desc->cbc |= src_cnt;
3135 }
3136
3137 /**
3138 * ppc440spe_adma_pq_set_src - set source address into descriptor
3139 */
3140 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3141 dma_addr_t addr, int index)
3142 {
3143 struct ppc440spe_adma_chan *chan;
3144 dma_addr_t haddr = 0;
3145 struct ppc440spe_adma_desc_slot *iter = NULL;
3146
3147 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3148
3149 switch (chan->device->id) {
3150 case PPC440SPE_DMA0_ID:
3151 case PPC440SPE_DMA1_ID:
3152 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3153 */
3154 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3155 /* RXOR-only or RXOR/WXOR operation */
3156 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3157 &sw_desc->flags) ? 2 : 3;
3158
3159 if (index == 0) {
3160 /* 1st slot (RXOR) */
3161 /* setup sources region (R1-2-3, R1-2-4,
3162 * or R1-2-5)
3163 */
3164 if (test_bit(PPC440SPE_DESC_RXOR12,
3165 &sw_desc->flags))
3166 haddr = DMA_RXOR12 <<
3167 DMA_CUED_REGION_OFF;
3168 else if (test_bit(PPC440SPE_DESC_RXOR123,
3169 &sw_desc->flags))
3170 haddr = DMA_RXOR123 <<
3171 DMA_CUED_REGION_OFF;
3172 else if (test_bit(PPC440SPE_DESC_RXOR124,
3173 &sw_desc->flags))
3174 haddr = DMA_RXOR124 <<
3175 DMA_CUED_REGION_OFF;
3176 else if (test_bit(PPC440SPE_DESC_RXOR125,
3177 &sw_desc->flags))
3178 haddr = DMA_RXOR125 <<
3179 DMA_CUED_REGION_OFF;
3180 else
3181 BUG();
3182 haddr |= DMA_CUED_XOR_BASE;
3183 iter = ppc440spe_get_group_entry(sw_desc, 0);
3184 } else if (index < iskip) {
3185 /* 1st slot (RXOR)
3186 * shall actually set source address only once
3187 * instead of first <iskip>
3188 */
3189 iter = NULL;
3190 } else {
3191 /* 2nd/3d and next slots (WXOR);
3192 * skip first slot with RXOR
3193 */
3194 haddr = DMA_CUED_XOR_HB;
3195 iter = ppc440spe_get_group_entry(sw_desc,
3196 index - iskip + sw_desc->dst_cnt);
3197 }
3198 } else {
3199 int znum = 0;
3200
3201 /* WXOR-only operation; skip first slots with
3202 * zeroing destinations
3203 */
3204 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3205 znum++;
3206 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3207 znum++;
3208
3209 haddr = DMA_CUED_XOR_HB;
3210 iter = ppc440spe_get_group_entry(sw_desc,
3211 index + znum);
3212 }
3213
3214 if (likely(iter)) {
3215 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3216
3217 if (!index &&
3218 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3219 sw_desc->dst_cnt == 2) {
3220 /* if we have two destinations for RXOR, then
3221 * setup source in the second descr too
3222 */
3223 iter = ppc440spe_get_group_entry(sw_desc, 1);
3224 ppc440spe_desc_set_src_addr(iter, chan, 0,
3225 haddr, addr);
3226 }
3227 }
3228 break;
3229
3230 case PPC440SPE_XOR_ID:
3231 /* DMA2 may do Biskup */
3232 iter = sw_desc->group_head;
3233 if (iter->dst_cnt == 2) {
3234 /* both P & Q calculations required; set P src here */
3235 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3236
3237 /* this is for Q */
3238 iter = ppc440spe_get_group_entry(sw_desc,
3239 sw_desc->descs_per_op);
3240 }
3241 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3242 break;
3243 }
3244 }
3245
3246 /**
3247 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3248 */
3249 static void ppc440spe_adma_memcpy_xor_set_src(
3250 struct ppc440spe_adma_desc_slot *sw_desc,
3251 dma_addr_t addr, int index)
3252 {
3253 struct ppc440spe_adma_chan *chan;
3254
3255 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3256 sw_desc = sw_desc->group_head;
3257
3258 if (likely(sw_desc))
3259 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3260 }
3261
3262 /**
3263 * ppc440spe_adma_dma2rxor_inc_addr -
3264 */
3265 static void ppc440spe_adma_dma2rxor_inc_addr(
3266 struct ppc440spe_adma_desc_slot *desc,
3267 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3268 {
3269 cursor->addr_count++;
3270 if (index == src_cnt - 1) {
3271 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3272 } else if (cursor->addr_count == XOR_MAX_OPS) {
3273 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3274 cursor->addr_count = 0;
3275 cursor->desc_count++;
3276 }
3277 }
3278
3279 /**
3280 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3281 */
3282 static int ppc440spe_adma_dma2rxor_prep_src(
3283 struct ppc440spe_adma_desc_slot *hdesc,
3284 struct ppc440spe_rxor *cursor, int index,
3285 int src_cnt, u32 addr)
3286 {
3287 int rval = 0;
3288 u32 sign;
3289 struct ppc440spe_adma_desc_slot *desc = hdesc;
3290 int i;
3291
3292 for (i = 0; i < cursor->desc_count; i++) {
3293 desc = list_entry(hdesc->chain_node.next,
3294 struct ppc440spe_adma_desc_slot,
3295 chain_node);
3296 }
3297
3298 switch (cursor->state) {
3299 case 0:
3300 if (addr == cursor->addrl + cursor->len) {
3301 /* direct RXOR */
3302 cursor->state = 1;
3303 cursor->xor_count++;
3304 if (index == src_cnt-1) {
3305 ppc440spe_rxor_set_region(desc,
3306 cursor->addr_count,
3307 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3308 ppc440spe_adma_dma2rxor_inc_addr(
3309 desc, cursor, index, src_cnt);
3310 }
3311 } else if (cursor->addrl == addr + cursor->len) {
3312 /* reverse RXOR */
3313 cursor->state = 1;
3314 cursor->xor_count++;
3315 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3316 if (index == src_cnt-1) {
3317 ppc440spe_rxor_set_region(desc,
3318 cursor->addr_count,
3319 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3320 ppc440spe_adma_dma2rxor_inc_addr(
3321 desc, cursor, index, src_cnt);
3322 }
3323 } else {
3324 printk(KERN_ERR "Cannot build "
3325 "DMA2 RXOR command block.\n");
3326 BUG();
3327 }
3328 break;
3329 case 1:
3330 sign = test_bit(cursor->addr_count,
3331 desc->reverse_flags)
3332 ? -1 : 1;
3333 if (index == src_cnt-2 || (sign == -1
3334 && addr != cursor->addrl - 2*cursor->len)) {
3335 cursor->state = 0;
3336 cursor->xor_count = 1;
3337 cursor->addrl = addr;
3338 ppc440spe_rxor_set_region(desc,
3339 cursor->addr_count,
3340 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3341 ppc440spe_adma_dma2rxor_inc_addr(
3342 desc, cursor, index, src_cnt);
3343 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3344 cursor->state = 2;
3345 cursor->xor_count = 0;
3346 ppc440spe_rxor_set_region(desc,
3347 cursor->addr_count,
3348 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3349 if (index == src_cnt-1) {
3350 ppc440spe_adma_dma2rxor_inc_addr(
3351 desc, cursor, index, src_cnt);
3352 }
3353 } else if (addr == cursor->addrl + 3*cursor->len) {
3354 cursor->state = 2;
3355 cursor->xor_count = 0;
3356 ppc440spe_rxor_set_region(desc,
3357 cursor->addr_count,
3358 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3359 if (index == src_cnt-1) {
3360 ppc440spe_adma_dma2rxor_inc_addr(
3361 desc, cursor, index, src_cnt);
3362 }
3363 } else if (addr == cursor->addrl + 4*cursor->len) {
3364 cursor->state = 2;
3365 cursor->xor_count = 0;
3366 ppc440spe_rxor_set_region(desc,
3367 cursor->addr_count,
3368 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3369 if (index == src_cnt-1) {
3370 ppc440spe_adma_dma2rxor_inc_addr(
3371 desc, cursor, index, src_cnt);
3372 }
3373 } else {
3374 cursor->state = 0;
3375 cursor->xor_count = 1;
3376 cursor->addrl = addr;
3377 ppc440spe_rxor_set_region(desc,
3378 cursor->addr_count,
3379 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3380 ppc440spe_adma_dma2rxor_inc_addr(
3381 desc, cursor, index, src_cnt);
3382 }
3383 break;
3384 case 2:
3385 cursor->state = 0;
3386 cursor->addrl = addr;
3387 cursor->xor_count++;
3388 if (index) {
3389 ppc440spe_adma_dma2rxor_inc_addr(
3390 desc, cursor, index, src_cnt);
3391 }
3392 break;
3393 }
3394
3395 return rval;
3396 }
3397
3398 /**
3399 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3400 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3401 */
3402 static void ppc440spe_adma_dma2rxor_set_src(
3403 struct ppc440spe_adma_desc_slot *desc,
3404 int index, dma_addr_t addr)
3405 {
3406 struct xor_cb *xcb = desc->hw_desc;
3407 int k = 0, op = 0, lop = 0;
3408
3409 /* get the RXOR operand which corresponds to index addr */
3410 while (op <= index) {
3411 lop = op;
3412 if (k == XOR_MAX_OPS) {
3413 k = 0;
3414 desc = list_entry(desc->chain_node.next,
3415 struct ppc440spe_adma_desc_slot, chain_node);
3416 xcb = desc->hw_desc;
3417
3418 }
3419 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3420 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3421 op += 2;
3422 else
3423 op += 3;
3424 }
3425
3426 BUG_ON(k < 1);
3427
3428 if (test_bit(k-1, desc->reverse_flags)) {
3429 /* reverse operand order; put last op in RXOR group */
3430 if (index == op - 1)
3431 ppc440spe_rxor_set_src(desc, k - 1, addr);
3432 } else {
3433 /* direct operand order; put first op in RXOR group */
3434 if (index == lop)
3435 ppc440spe_rxor_set_src(desc, k - 1, addr);
3436 }
3437 }
3438
3439 /**
3440 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3441 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3442 */
3443 static void ppc440spe_adma_dma2rxor_set_mult(
3444 struct ppc440spe_adma_desc_slot *desc,
3445 int index, u8 mult)
3446 {
3447 struct xor_cb *xcb = desc->hw_desc;
3448 int k = 0, op = 0, lop = 0;
3449
3450 /* get the RXOR operand which corresponds to index mult */
3451 while (op <= index) {
3452 lop = op;
3453 if (k == XOR_MAX_OPS) {
3454 k = 0;
3455 desc = list_entry(desc->chain_node.next,
3456 struct ppc440spe_adma_desc_slot,
3457 chain_node);
3458 xcb = desc->hw_desc;
3459
3460 }
3461 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3462 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3463 op += 2;
3464 else
3465 op += 3;
3466 }
3467
3468 BUG_ON(k < 1);
3469 if (test_bit(k-1, desc->reverse_flags)) {
3470 /* reverse order */
3471 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3472 } else {
3473 /* direct order */
3474 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3475 }
3476 }
3477
3478 /**
3479 * ppc440spe_init_rxor_cursor -
3480 */
3481 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3482 {
3483 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3484 cursor->state = 2;
3485 }
3486
3487 /**
3488 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3489 * descriptor for the PQXOR operation
3490 */
3491 static void ppc440spe_adma_pq_set_src_mult(
3492 struct ppc440spe_adma_desc_slot *sw_desc,
3493 unsigned char mult, int index, int dst_pos)
3494 {
3495 struct ppc440spe_adma_chan *chan;
3496 u32 mult_idx, mult_dst;
3497 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3498
3499 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3500
3501 switch (chan->device->id) {
3502 case PPC440SPE_DMA0_ID:
3503 case PPC440SPE_DMA1_ID:
3504 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3505 int region = test_bit(PPC440SPE_DESC_RXOR12,
3506 &sw_desc->flags) ? 2 : 3;
3507
3508 if (index < region) {
3509 /* RXOR multipliers */
3510 iter = ppc440spe_get_group_entry(sw_desc,
3511 sw_desc->dst_cnt - 1);
3512 if (sw_desc->dst_cnt == 2)
3513 iter1 = ppc440spe_get_group_entry(
3514 sw_desc, 0);
3515
3516 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3517 mult_dst = DMA_CDB_SG_SRC;
3518 } else {
3519 /* WXOR multiplier */
3520 iter = ppc440spe_get_group_entry(sw_desc,
3521 index - region +
3522 sw_desc->dst_cnt);
3523 mult_idx = DMA_CUED_MULT1_OFF;
3524 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3525 DMA_CDB_SG_DST1;
3526 }
3527 } else {
3528 int znum = 0;
3529
3530 /* WXOR-only;
3531 * skip first slots with destinations (if ZERO_DST has
3532 * place)
3533 */
3534 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3535 znum++;
3536 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3537 znum++;
3538
3539 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3540 mult_idx = DMA_CUED_MULT1_OFF;
3541 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3542 }
3543
3544 if (likely(iter)) {
3545 ppc440spe_desc_set_src_mult(iter, chan,
3546 mult_idx, mult_dst, mult);
3547
3548 if (unlikely(iter1)) {
3549 /* if we have two destinations for RXOR, then
3550 * we've just set Q mult. Set-up P now.
3551 */
3552 ppc440spe_desc_set_src_mult(iter1, chan,
3553 mult_idx, mult_dst, 1);
3554 }
3555
3556 }
3557 break;
3558
3559 case PPC440SPE_XOR_ID:
3560 iter = sw_desc->group_head;
3561 if (sw_desc->dst_cnt == 2) {
3562 /* both P & Q calculations required; set P mult here */
3563 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3564
3565 /* and then set Q mult */
3566 iter = ppc440spe_get_group_entry(sw_desc,
3567 sw_desc->descs_per_op);
3568 }
3569 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3570 break;
3571 }
3572 }
3573
3574 /**
3575 * ppc440spe_adma_free_chan_resources - free the resources allocated
3576 */
3577 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3578 {
3579 struct ppc440spe_adma_chan *ppc440spe_chan;
3580 struct ppc440spe_adma_desc_slot *iter, *_iter;
3581 int in_use_descs = 0;
3582
3583 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3584 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3585
3586 spin_lock_bh(&ppc440spe_chan->lock);
3587 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3588 chain_node) {
3589 in_use_descs++;
3590 list_del(&iter->chain_node);
3591 }
3592 list_for_each_entry_safe_reverse(iter, _iter,
3593 &ppc440spe_chan->all_slots, slot_node) {
3594 list_del(&iter->slot_node);
3595 kfree(iter);
3596 ppc440spe_chan->slots_allocated--;
3597 }
3598 ppc440spe_chan->last_used = NULL;
3599
3600 dev_dbg(ppc440spe_chan->device->common.dev,
3601 "ppc440spe adma%d %s slots_allocated %d\n",
3602 ppc440spe_chan->device->id,
3603 __func__, ppc440spe_chan->slots_allocated);
3604 spin_unlock_bh(&ppc440spe_chan->lock);
3605
3606 /* one is ok since we left it on there on purpose */
3607 if (in_use_descs > 1)
3608 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3609 in_use_descs - 1);
3610 }
3611
3612 /**
3613 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3614 * @chan: ADMA channel handle
3615 * @cookie: ADMA transaction identifier
3616 * @txstate: a holder for the current state of the channel
3617 */
3618 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3619 dma_cookie_t cookie, struct dma_tx_state *txstate)
3620 {
3621 struct ppc440spe_adma_chan *ppc440spe_chan;
3622 enum dma_status ret;
3623
3624 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3625 ret = dma_cookie_status(chan, cookie, txstate);
3626 if (ret == DMA_SUCCESS)
3627 return ret;
3628
3629 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3630
3631 return dma_cookie_status(chan, cookie, txstate);
3632 }
3633
3634 /**
3635 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3636 */
3637 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3638 {
3639 struct ppc440spe_adma_chan *chan = data;
3640
3641 dev_dbg(chan->device->common.dev,
3642 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3643
3644 tasklet_schedule(&chan->irq_tasklet);
3645 ppc440spe_adma_device_clear_eot_status(chan);
3646
3647 return IRQ_HANDLED;
3648 }
3649
3650 /**
3651 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3652 * do the same things as a eot handler
3653 */
3654 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3655 {
3656 struct ppc440spe_adma_chan *chan = data;
3657
3658 dev_dbg(chan->device->common.dev,
3659 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3660
3661 tasklet_schedule(&chan->irq_tasklet);
3662 ppc440spe_adma_device_clear_eot_status(chan);
3663
3664 return IRQ_HANDLED;
3665 }
3666
3667 /**
3668 * ppc440spe_test_callback - called when test operation has been done
3669 */
3670 static void ppc440spe_test_callback(void *unused)
3671 {
3672 complete(&ppc440spe_r6_test_comp);
3673 }
3674
3675 /**
3676 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3677 */
3678 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3679 {
3680 struct ppc440spe_adma_chan *ppc440spe_chan;
3681
3682 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3683 dev_dbg(ppc440spe_chan->device->common.dev,
3684 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3685 __func__, ppc440spe_chan->pending);
3686
3687 if (ppc440spe_chan->pending) {
3688 ppc440spe_chan->pending = 0;
3689 ppc440spe_chan_append(ppc440spe_chan);
3690 }
3691 }
3692
3693 /**
3694 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3695 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3696 * specific operation)
3697 */
3698 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3699 {
3700 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3701 dma_cookie_t cookie;
3702 int slot_cnt, slots_per_op;
3703
3704 dev_dbg(chan->device->common.dev,
3705 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3706
3707 spin_lock_bh(&chan->lock);
3708 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3709 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3710 if (sw_desc) {
3711 group_start = sw_desc->group_head;
3712 list_splice_init(&sw_desc->group_list, &chan->chain);
3713 async_tx_ack(&sw_desc->async_tx);
3714 ppc440spe_desc_init_null_xor(group_start);
3715
3716 cookie = dma_cookie_assign(&sw_desc->async_tx);
3717
3718 /* initialize the completed cookie to be less than
3719 * the most recently used cookie
3720 */
3721 chan->common.completed_cookie = cookie - 1;
3722
3723 /* channel should not be busy */
3724 BUG_ON(ppc440spe_chan_is_busy(chan));
3725
3726 /* set the descriptor address */
3727 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3728
3729 /* run the descriptor */
3730 ppc440spe_chan_run(chan);
3731 } else
3732 printk(KERN_ERR "ppc440spe adma%d"
3733 " failed to allocate null descriptor\n",
3734 chan->device->id);
3735 spin_unlock_bh(&chan->lock);
3736 }
3737
3738 /**
3739 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3740 * For this we just perform one WXOR operation with the same source
3741 * and destination addresses, the GF-multiplier is 1; so if RAID-6
3742 * capabilities are enabled then we'll get src/dst filled with zero.
3743 */
3744 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3745 {
3746 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3747 struct page *pg;
3748 char *a;
3749 dma_addr_t dma_addr, addrs[2];
3750 unsigned long op = 0;
3751 int rval = 0;
3752
3753 set_bit(PPC440SPE_DESC_WXOR, &op);
3754
3755 pg = alloc_page(GFP_KERNEL);
3756 if (!pg)
3757 return -ENOMEM;
3758
3759 spin_lock_bh(&chan->lock);
3760 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3761 if (sw_desc) {
3762 /* 1 src, 1 dsr, int_ena, WXOR */
3763 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3764 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3765 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3766 iter->unmap_len = PAGE_SIZE;
3767 }
3768 } else {
3769 rval = -EFAULT;
3770 spin_unlock_bh(&chan->lock);
3771 goto exit;
3772 }
3773 spin_unlock_bh(&chan->lock);
3774
3775 /* Fill the test page with ones */
3776 memset(page_address(pg), 0xFF, PAGE_SIZE);
3777 dma_addr = dma_map_page(chan->device->dev, pg, 0,
3778 PAGE_SIZE, DMA_BIDIRECTIONAL);
3779
3780 /* Setup addresses */
3781 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3782 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3783 addrs[0] = dma_addr;
3784 addrs[1] = 0;
3785 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3786
3787 async_tx_ack(&sw_desc->async_tx);
3788 sw_desc->async_tx.callback = ppc440spe_test_callback;
3789 sw_desc->async_tx.callback_param = NULL;
3790
3791 init_completion(&ppc440spe_r6_test_comp);
3792
3793 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3794 ppc440spe_adma_issue_pending(&chan->common);
3795
3796 wait_for_completion(&ppc440spe_r6_test_comp);
3797
3798 /* Now check if the test page is zeroed */
3799 a = page_address(pg);
3800 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3801 /* page is zero - RAID-6 enabled */
3802 rval = 0;
3803 } else {
3804 /* RAID-6 was not enabled */
3805 rval = -EINVAL;
3806 }
3807 exit:
3808 __free_page(pg);
3809 return rval;
3810 }
3811
3812 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3813 {
3814 switch (adev->id) {
3815 case PPC440SPE_DMA0_ID:
3816 case PPC440SPE_DMA1_ID:
3817 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3818 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3819 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3820 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3821 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3822 break;
3823 case PPC440SPE_XOR_ID:
3824 dma_cap_set(DMA_XOR, adev->common.cap_mask);
3825 dma_cap_set(DMA_PQ, adev->common.cap_mask);
3826 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3827 adev->common.cap_mask = adev->common.cap_mask;
3828 break;
3829 }
3830
3831 /* Set base routines */
3832 adev->common.device_alloc_chan_resources =
3833 ppc440spe_adma_alloc_chan_resources;
3834 adev->common.device_free_chan_resources =
3835 ppc440spe_adma_free_chan_resources;
3836 adev->common.device_tx_status = ppc440spe_adma_tx_status;
3837 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3838
3839 /* Set prep routines based on capability */
3840 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3841 adev->common.device_prep_dma_memcpy =
3842 ppc440spe_adma_prep_dma_memcpy;
3843 }
3844 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3845 adev->common.max_xor = XOR_MAX_OPS;
3846 adev->common.device_prep_dma_xor =
3847 ppc440spe_adma_prep_dma_xor;
3848 }
3849 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3850 switch (adev->id) {
3851 case PPC440SPE_DMA0_ID:
3852 dma_set_maxpq(&adev->common,
3853 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3854 break;
3855 case PPC440SPE_DMA1_ID:
3856 dma_set_maxpq(&adev->common,
3857 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3858 break;
3859 case PPC440SPE_XOR_ID:
3860 adev->common.max_pq = XOR_MAX_OPS * 3;
3861 break;
3862 }
3863 adev->common.device_prep_dma_pq =
3864 ppc440spe_adma_prep_dma_pq;
3865 }
3866 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3867 switch (adev->id) {
3868 case PPC440SPE_DMA0_ID:
3869 adev->common.max_pq = DMA0_FIFO_SIZE /
3870 sizeof(struct dma_cdb);
3871 break;
3872 case PPC440SPE_DMA1_ID:
3873 adev->common.max_pq = DMA1_FIFO_SIZE /
3874 sizeof(struct dma_cdb);
3875 break;
3876 }
3877 adev->common.device_prep_dma_pq_val =
3878 ppc440spe_adma_prep_dma_pqzero_sum;
3879 }
3880 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3881 switch (adev->id) {
3882 case PPC440SPE_DMA0_ID:
3883 adev->common.max_xor = DMA0_FIFO_SIZE /
3884 sizeof(struct dma_cdb);
3885 break;
3886 case PPC440SPE_DMA1_ID:
3887 adev->common.max_xor = DMA1_FIFO_SIZE /
3888 sizeof(struct dma_cdb);
3889 break;
3890 }
3891 adev->common.device_prep_dma_xor_val =
3892 ppc440spe_adma_prep_dma_xor_zero_sum;
3893 }
3894 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3895 adev->common.device_prep_dma_interrupt =
3896 ppc440spe_adma_prep_dma_interrupt;
3897 }
3898 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3899 "( %s%s%s%s%s%s%s)\n",
3900 dev_name(adev->dev),
3901 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3902 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3903 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3904 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3905 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3906 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3907 }
3908
3909 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3910 struct ppc440spe_adma_chan *chan,
3911 int *initcode)
3912 {
3913 struct platform_device *ofdev;
3914 struct device_node *np;
3915 int ret;
3916
3917 ofdev = container_of(adev->dev, struct platform_device, dev);
3918 np = ofdev->dev.of_node;
3919 if (adev->id != PPC440SPE_XOR_ID) {
3920 adev->err_irq = irq_of_parse_and_map(np, 1);
3921 if (adev->err_irq == NO_IRQ) {
3922 dev_warn(adev->dev, "no err irq resource?\n");
3923 *initcode = PPC_ADMA_INIT_IRQ2;
3924 adev->err_irq = -ENXIO;
3925 } else
3926 atomic_inc(&ppc440spe_adma_err_irq_ref);
3927 } else {
3928 adev->err_irq = -ENXIO;
3929 }
3930
3931 adev->irq = irq_of_parse_and_map(np, 0);
3932 if (adev->irq == NO_IRQ) {
3933 dev_err(adev->dev, "no irq resource\n");
3934 *initcode = PPC_ADMA_INIT_IRQ1;
3935 ret = -ENXIO;
3936 goto err_irq_map;
3937 }
3938 dev_dbg(adev->dev, "irq %d, err irq %d\n",
3939 adev->irq, adev->err_irq);
3940
3941 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3942 0, dev_driver_string(adev->dev), chan);
3943 if (ret) {
3944 dev_err(adev->dev, "can't request irq %d\n",
3945 adev->irq);
3946 *initcode = PPC_ADMA_INIT_IRQ1;
3947 ret = -EIO;
3948 goto err_req1;
3949 }
3950
3951 /* only DMA engines have a separate error IRQ
3952 * so it's Ok if err_irq < 0 in XOR engine case.
3953 */
3954 if (adev->err_irq > 0) {
3955 /* both DMA engines share common error IRQ */
3956 ret = request_irq(adev->err_irq,
3957 ppc440spe_adma_err_handler,
3958 IRQF_SHARED,
3959 dev_driver_string(adev->dev),
3960 chan);
3961 if (ret) {
3962 dev_err(adev->dev, "can't request irq %d\n",
3963 adev->err_irq);
3964 *initcode = PPC_ADMA_INIT_IRQ2;
3965 ret = -EIO;
3966 goto err_req2;
3967 }
3968 }
3969
3970 if (adev->id == PPC440SPE_XOR_ID) {
3971 /* enable XOR engine interrupts */
3972 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3973 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3974 &adev->xor_reg->ier);
3975 } else {
3976 u32 mask, enable;
3977
3978 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3979 if (!np) {
3980 pr_err("%s: can't find I2O device tree node\n",
3981 __func__);
3982 ret = -ENODEV;
3983 goto err_req2;
3984 }
3985 adev->i2o_reg = of_iomap(np, 0);
3986 if (!adev->i2o_reg) {
3987 pr_err("%s: failed to map I2O registers\n", __func__);
3988 of_node_put(np);
3989 ret = -EINVAL;
3990 goto err_req2;
3991 }
3992 of_node_put(np);
3993 /* Unmask 'CS FIFO Attention' interrupts and
3994 * enable generating interrupts on errors
3995 */
3996 enable = (adev->id == PPC440SPE_DMA0_ID) ?
3997 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3998 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3999 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4000 iowrite32(mask, &adev->i2o_reg->iopim);
4001 }
4002 return 0;
4003
4004 err_req2:
4005 free_irq(adev->irq, chan);
4006 err_req1:
4007 irq_dispose_mapping(adev->irq);
4008 err_irq_map:
4009 if (adev->err_irq > 0) {
4010 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4011 irq_dispose_mapping(adev->err_irq);
4012 }
4013 return ret;
4014 }
4015
4016 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4017 struct ppc440spe_adma_chan *chan)
4018 {
4019 u32 mask, disable;
4020
4021 if (adev->id == PPC440SPE_XOR_ID) {
4022 /* disable XOR engine interrupts */
4023 mask = ioread32be(&adev->xor_reg->ier);
4024 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4025 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4026 iowrite32be(mask, &adev->xor_reg->ier);
4027 } else {
4028 /* disable DMAx engine interrupts */
4029 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4030 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4031 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4032 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4033 iowrite32(mask, &adev->i2o_reg->iopim);
4034 }
4035 free_irq(adev->irq, chan);
4036 irq_dispose_mapping(adev->irq);
4037 if (adev->err_irq > 0) {
4038 free_irq(adev->err_irq, chan);
4039 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4040 irq_dispose_mapping(adev->err_irq);
4041 iounmap(adev->i2o_reg);
4042 }
4043 }
4044 }
4045
4046 /**
4047 * ppc440spe_adma_probe - probe the asynch device
4048 */
4049 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4050 {
4051 struct device_node *np = ofdev->dev.of_node;
4052 struct resource res;
4053 struct ppc440spe_adma_device *adev;
4054 struct ppc440spe_adma_chan *chan;
4055 struct ppc_dma_chan_ref *ref, *_ref;
4056 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4057 const u32 *idx;
4058 int len;
4059 void *regs;
4060 u32 id, pool_size;
4061
4062 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4063 id = PPC440SPE_XOR_ID;
4064 /* As far as the XOR engine is concerned, it does not
4065 * use FIFOs but uses linked list. So there is no dependency
4066 * between pool size to allocate and the engine configuration.
4067 */
4068 pool_size = PAGE_SIZE << 1;
4069 } else {
4070 /* it is DMA0 or DMA1 */
4071 idx = of_get_property(np, "cell-index", &len);
4072 if (!idx || (len != sizeof(u32))) {
4073 dev_err(&ofdev->dev, "Device node %s has missing "
4074 "or invalid cell-index property\n",
4075 np->full_name);
4076 return -EINVAL;
4077 }
4078 id = *idx;
4079 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4080 * should allocate the pool accordingly to size of this
4081 * FIFO. Thus, the pool size depends on the FIFO depth:
4082 * how much CDBs pointers the FIFO may contain then so
4083 * much CDBs we should provide in the pool.
4084 * That is
4085 * CDB size = 32B;
4086 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4087 * Pool size = CDBs number * CDB size =
4088 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4089 */
4090 pool_size = (id == PPC440SPE_DMA0_ID) ?
4091 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4092 pool_size <<= 2;
4093 }
4094
4095 if (of_address_to_resource(np, 0, &res)) {
4096 dev_err(&ofdev->dev, "failed to get memory resource\n");
4097 initcode = PPC_ADMA_INIT_MEMRES;
4098 ret = -ENODEV;
4099 goto out;
4100 }
4101
4102 if (!request_mem_region(res.start, resource_size(&res),
4103 dev_driver_string(&ofdev->dev))) {
4104 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4105 &res);
4106 initcode = PPC_ADMA_INIT_MEMREG;
4107 ret = -EBUSY;
4108 goto out;
4109 }
4110
4111 /* create a device */
4112 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4113 if (!adev) {
4114 dev_err(&ofdev->dev, "failed to allocate device\n");
4115 initcode = PPC_ADMA_INIT_ALLOC;
4116 ret = -ENOMEM;
4117 goto err_adev_alloc;
4118 }
4119
4120 adev->id = id;
4121 adev->pool_size = pool_size;
4122 /* allocate coherent memory for hardware descriptors */
4123 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4124 adev->pool_size, &adev->dma_desc_pool,
4125 GFP_KERNEL);
4126 if (adev->dma_desc_pool_virt == NULL) {
4127 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4128 "memory for hardware descriptors\n",
4129 adev->pool_size);
4130 initcode = PPC_ADMA_INIT_COHERENT;
4131 ret = -ENOMEM;
4132 goto err_dma_alloc;
4133 }
4134 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4135 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4136
4137 regs = ioremap(res.start, resource_size(&res));
4138 if (!regs) {
4139 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4140 goto err_regs_alloc;
4141 }
4142
4143 if (adev->id == PPC440SPE_XOR_ID) {
4144 adev->xor_reg = regs;
4145 /* Reset XOR */
4146 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4147 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4148 } else {
4149 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4150 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4151 adev->dma_reg = regs;
4152 /* DMAx_FIFO_SIZE is defined in bytes,
4153 * <fsiz> - is defined in number of CDB pointers (8byte).
4154 * DMA FIFO Length = CSlength + CPlength, where
4155 * CSlength = CPlength = (fsiz + 1) * 8.
4156 */
4157 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4158 &adev->dma_reg->fsiz);
4159 /* Configure DMA engine */
4160 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4161 &adev->dma_reg->cfg);
4162 /* Clear Status */
4163 iowrite32(~0, &adev->dma_reg->dsts);
4164 }
4165
4166 adev->dev = &ofdev->dev;
4167 adev->common.dev = &ofdev->dev;
4168 INIT_LIST_HEAD(&adev->common.channels);
4169 platform_set_drvdata(ofdev, adev);
4170
4171 /* create a channel */
4172 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4173 if (!chan) {
4174 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4175 initcode = PPC_ADMA_INIT_CHANNEL;
4176 ret = -ENOMEM;
4177 goto err_chan_alloc;
4178 }
4179
4180 spin_lock_init(&chan->lock);
4181 INIT_LIST_HEAD(&chan->chain);
4182 INIT_LIST_HEAD(&chan->all_slots);
4183 chan->device = adev;
4184 chan->common.device = &adev->common;
4185 dma_cookie_init(&chan->common);
4186 list_add_tail(&chan->common.device_node, &adev->common.channels);
4187 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4188 (unsigned long)chan);
4189
4190 /* allocate and map helper pages for async validation or
4191 * async_mult/async_sum_product operations on DMA0/1.
4192 */
4193 if (adev->id != PPC440SPE_XOR_ID) {
4194 chan->pdest_page = alloc_page(GFP_KERNEL);
4195 chan->qdest_page = alloc_page(GFP_KERNEL);
4196 if (!chan->pdest_page ||
4197 !chan->qdest_page) {
4198 if (chan->pdest_page)
4199 __free_page(chan->pdest_page);
4200 if (chan->qdest_page)
4201 __free_page(chan->qdest_page);
4202 ret = -ENOMEM;
4203 goto err_page_alloc;
4204 }
4205 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4206 PAGE_SIZE, DMA_BIDIRECTIONAL);
4207 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4208 PAGE_SIZE, DMA_BIDIRECTIONAL);
4209 }
4210
4211 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4212 if (ref) {
4213 ref->chan = &chan->common;
4214 INIT_LIST_HEAD(&ref->node);
4215 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4216 } else {
4217 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4218 ret = -ENOMEM;
4219 goto err_ref_alloc;
4220 }
4221
4222 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4223 if (ret)
4224 goto err_irq;
4225
4226 ppc440spe_adma_init_capabilities(adev);
4227
4228 ret = dma_async_device_register(&adev->common);
4229 if (ret) {
4230 initcode = PPC_ADMA_INIT_REGISTER;
4231 dev_err(&ofdev->dev, "failed to register dma device\n");
4232 goto err_dev_reg;
4233 }
4234
4235 goto out;
4236
4237 err_dev_reg:
4238 ppc440spe_adma_release_irqs(adev, chan);
4239 err_irq:
4240 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4241 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4242 list_del(&ref->node);
4243 kfree(ref);
4244 }
4245 }
4246 err_ref_alloc:
4247 if (adev->id != PPC440SPE_XOR_ID) {
4248 dma_unmap_page(&ofdev->dev, chan->pdest,
4249 PAGE_SIZE, DMA_BIDIRECTIONAL);
4250 dma_unmap_page(&ofdev->dev, chan->qdest,
4251 PAGE_SIZE, DMA_BIDIRECTIONAL);
4252 __free_page(chan->pdest_page);
4253 __free_page(chan->qdest_page);
4254 }
4255 err_page_alloc:
4256 kfree(chan);
4257 err_chan_alloc:
4258 if (adev->id == PPC440SPE_XOR_ID)
4259 iounmap(adev->xor_reg);
4260 else
4261 iounmap(adev->dma_reg);
4262 err_regs_alloc:
4263 dma_free_coherent(adev->dev, adev->pool_size,
4264 adev->dma_desc_pool_virt,
4265 adev->dma_desc_pool);
4266 err_dma_alloc:
4267 kfree(adev);
4268 err_adev_alloc:
4269 release_mem_region(res.start, resource_size(&res));
4270 out:
4271 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4272 ppc440spe_adma_devices[id] = initcode;
4273
4274 return ret;
4275 }
4276
4277 /**
4278 * ppc440spe_adma_remove - remove the asynch device
4279 */
4280 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4281 {
4282 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4283 struct device_node *np = ofdev->dev.of_node;
4284 struct resource res;
4285 struct dma_chan *chan, *_chan;
4286 struct ppc_dma_chan_ref *ref, *_ref;
4287 struct ppc440spe_adma_chan *ppc440spe_chan;
4288
4289 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4290 ppc440spe_adma_devices[adev->id] = -1;
4291
4292 dma_async_device_unregister(&adev->common);
4293
4294 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4295 device_node) {
4296 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4297 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4298 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4299 if (adev->id != PPC440SPE_XOR_ID) {
4300 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4301 PAGE_SIZE, DMA_BIDIRECTIONAL);
4302 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4303 PAGE_SIZE, DMA_BIDIRECTIONAL);
4304 __free_page(ppc440spe_chan->pdest_page);
4305 __free_page(ppc440spe_chan->qdest_page);
4306 }
4307 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4308 node) {
4309 if (ppc440spe_chan ==
4310 to_ppc440spe_adma_chan(ref->chan)) {
4311 list_del(&ref->node);
4312 kfree(ref);
4313 }
4314 }
4315 list_del(&chan->device_node);
4316 kfree(ppc440spe_chan);
4317 }
4318
4319 dma_free_coherent(adev->dev, adev->pool_size,
4320 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4321 if (adev->id == PPC440SPE_XOR_ID)
4322 iounmap(adev->xor_reg);
4323 else
4324 iounmap(adev->dma_reg);
4325 of_address_to_resource(np, 0, &res);
4326 release_mem_region(res.start, resource_size(&res));
4327 kfree(adev);
4328 return 0;
4329 }
4330
4331 /*
4332 * /sys driver interface to enable h/w RAID-6 capabilities
4333 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4334 * directory are "devices", "enable" and "poly".
4335 * "devices" shows available engines.
4336 * "enable" is used to enable RAID-6 capabilities or to check
4337 * whether these has been activated.
4338 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4339 */
4340
4341 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4342 {
4343 ssize_t size = 0;
4344 int i;
4345
4346 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4347 if (ppc440spe_adma_devices[i] == -1)
4348 continue;
4349 size += snprintf(buf + size, PAGE_SIZE - size,
4350 "PPC440SP(E)-ADMA.%d: %s\n", i,
4351 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4352 }
4353 return size;
4354 }
4355
4356 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4357 {
4358 return snprintf(buf, PAGE_SIZE,
4359 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4360 ppc440spe_r6_enabled ? "EN" : "DIS");
4361 }
4362
4363 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4364 const char *buf, size_t count)
4365 {
4366 unsigned long val;
4367
4368 if (!count || count > 11)
4369 return -EINVAL;
4370
4371 if (!ppc440spe_r6_tchan)
4372 return -EFAULT;
4373
4374 /* Write a key */
4375 sscanf(buf, "%lx", &val);
4376 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4377 isync();
4378
4379 /* Verify whether it really works now */
4380 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4381 pr_info("PPC440SP(e) RAID-6 has been activated "
4382 "successfully\n");
4383 ppc440spe_r6_enabled = 1;
4384 } else {
4385 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4386 " Error key ?\n");
4387 ppc440spe_r6_enabled = 0;
4388 }
4389 return count;
4390 }
4391
4392 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4393 {
4394 ssize_t size = 0;
4395 u32 reg;
4396
4397 #ifdef CONFIG_440SP
4398 /* 440SP has fixed polynomial */
4399 reg = 0x4d;
4400 #else
4401 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4402 reg >>= MQ0_CFBHL_POLY;
4403 reg &= 0xFF;
4404 #endif
4405
4406 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4407 "uses 0x1%02x polynomial.\n", reg);
4408 return size;
4409 }
4410
4411 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4412 const char *buf, size_t count)
4413 {
4414 unsigned long reg, val;
4415
4416 #ifdef CONFIG_440SP
4417 /* 440SP uses default 0x14D polynomial only */
4418 return -EINVAL;
4419 #endif
4420
4421 if (!count || count > 6)
4422 return -EINVAL;
4423
4424 /* e.g., 0x14D or 0x11D */
4425 sscanf(buf, "%lx", &val);
4426
4427 if (val & ~0x1FF)
4428 return -EINVAL;
4429
4430 val &= 0xFF;
4431 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4432 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4433 reg |= val << MQ0_CFBHL_POLY;
4434 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4435
4436 return count;
4437 }
4438
4439 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4440 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4441 store_ppc440spe_r6enable);
4442 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4443 store_ppc440spe_r6poly);
4444
4445 /*
4446 * Common initialisation for RAID engines; allocate memory for
4447 * DMAx FIFOs, perform configuration common for all DMA engines.
4448 * Further DMA engine specific configuration is done at probe time.
4449 */
4450 static int ppc440spe_configure_raid_devices(void)
4451 {
4452 struct device_node *np;
4453 struct resource i2o_res;
4454 struct i2o_regs __iomem *i2o_reg;
4455 dcr_host_t i2o_dcr_host;
4456 unsigned int dcr_base, dcr_len;
4457 int i, ret;
4458
4459 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4460 if (!np) {
4461 pr_err("%s: can't find I2O device tree node\n",
4462 __func__);
4463 return -ENODEV;
4464 }
4465
4466 if (of_address_to_resource(np, 0, &i2o_res)) {
4467 of_node_put(np);
4468 return -EINVAL;
4469 }
4470
4471 i2o_reg = of_iomap(np, 0);
4472 if (!i2o_reg) {
4473 pr_err("%s: failed to map I2O registers\n", __func__);
4474 of_node_put(np);
4475 return -EINVAL;
4476 }
4477
4478 /* Get I2O DCRs base */
4479 dcr_base = dcr_resource_start(np, 0);
4480 dcr_len = dcr_resource_len(np, 0);
4481 if (!dcr_base && !dcr_len) {
4482 pr_err("%s: can't get DCR registers base/len!\n",
4483 np->full_name);
4484 of_node_put(np);
4485 iounmap(i2o_reg);
4486 return -ENODEV;
4487 }
4488
4489 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4490 if (!DCR_MAP_OK(i2o_dcr_host)) {
4491 pr_err("%s: failed to map DCRs!\n", np->full_name);
4492 of_node_put(np);
4493 iounmap(i2o_reg);
4494 return -ENODEV;
4495 }
4496 of_node_put(np);
4497
4498 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4499 * the base address of FIFO memory space.
4500 * Actually we need twice more physical memory than programmed in the
4501 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4502 */
4503 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4504 GFP_KERNEL);
4505 if (!ppc440spe_dma_fifo_buf) {
4506 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4507 iounmap(i2o_reg);
4508 dcr_unmap(i2o_dcr_host, dcr_len);
4509 return -ENOMEM;
4510 }
4511
4512 /*
4513 * Configure h/w
4514 */
4515 /* Reset I2O/DMA */
4516 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4517 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4518
4519 /* Setup the base address of mmaped registers */
4520 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4521 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4522 I2O_REG_ENABLE);
4523 dcr_unmap(i2o_dcr_host, dcr_len);
4524
4525 /* Setup FIFO memory space base address */
4526 iowrite32(0, &i2o_reg->ifbah);
4527 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4528
4529 /* set zero FIFO size for I2O, so the whole
4530 * ppc440spe_dma_fifo_buf is used by DMAs.
4531 * DMAx_FIFOs will be configured while probe.
4532 */
4533 iowrite32(0, &i2o_reg->ifsiz);
4534 iounmap(i2o_reg);
4535
4536 /* To prepare WXOR/RXOR functionality we need access to
4537 * Memory Queue Module DCRs (finally it will be enabled
4538 * via /sys interface of the ppc440spe ADMA driver).
4539 */
4540 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4541 if (!np) {
4542 pr_err("%s: can't find MQ device tree node\n",
4543 __func__);
4544 ret = -ENODEV;
4545 goto out_free;
4546 }
4547
4548 /* Get MQ DCRs base */
4549 dcr_base = dcr_resource_start(np, 0);
4550 dcr_len = dcr_resource_len(np, 0);
4551 if (!dcr_base && !dcr_len) {
4552 pr_err("%s: can't get DCR registers base/len!\n",
4553 np->full_name);
4554 ret = -ENODEV;
4555 goto out_mq;
4556 }
4557
4558 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4559 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4560 pr_err("%s: failed to map DCRs!\n", np->full_name);
4561 ret = -ENODEV;
4562 goto out_mq;
4563 }
4564 of_node_put(np);
4565 ppc440spe_mq_dcr_len = dcr_len;
4566
4567 /* Set HB alias */
4568 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4569
4570 /* Set:
4571 * - LL transaction passing limit to 1;
4572 * - Memory controller cycle limit to 1;
4573 * - Galois Polynomial to 0x14d (default)
4574 */
4575 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4576 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4577 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4578
4579 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4580 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4581 ppc440spe_adma_devices[i] = -1;
4582
4583 return 0;
4584
4585 out_mq:
4586 of_node_put(np);
4587 out_free:
4588 kfree(ppc440spe_dma_fifo_buf);
4589 return ret;
4590 }
4591
4592 static const struct of_device_id ppc440spe_adma_of_match[] = {
4593 { .compatible = "ibm,dma-440spe", },
4594 { .compatible = "amcc,xor-accelerator", },
4595 {},
4596 };
4597 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4598
4599 static struct platform_driver ppc440spe_adma_driver = {
4600 .probe = ppc440spe_adma_probe,
4601 .remove = ppc440spe_adma_remove,
4602 .driver = {
4603 .name = "PPC440SP(E)-ADMA",
4604 .owner = THIS_MODULE,
4605 .of_match_table = ppc440spe_adma_of_match,
4606 },
4607 };
4608
4609 static __init int ppc440spe_adma_init(void)
4610 {
4611 int ret;
4612
4613 ret = ppc440spe_configure_raid_devices();
4614 if (ret)
4615 return ret;
4616
4617 ret = platform_driver_register(&ppc440spe_adma_driver);
4618 if (ret) {
4619 pr_err("%s: failed to register platform driver\n",
4620 __func__);
4621 goto out_reg;
4622 }
4623
4624 /* Initialization status */
4625 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4626 &driver_attr_devices);
4627 if (ret)
4628 goto out_dev;
4629
4630 /* RAID-6 h/w enable entry */
4631 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4632 &driver_attr_enable);
4633 if (ret)
4634 goto out_en;
4635
4636 /* GF polynomial to use */
4637 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4638 &driver_attr_poly);
4639 if (!ret)
4640 return ret;
4641
4642 driver_remove_file(&ppc440spe_adma_driver.driver,
4643 &driver_attr_enable);
4644 out_en:
4645 driver_remove_file(&ppc440spe_adma_driver.driver,
4646 &driver_attr_devices);
4647 out_dev:
4648 /* User will not be able to enable h/w RAID-6 */
4649 pr_err("%s: failed to create RAID-6 driver interface\n",
4650 __func__);
4651 platform_driver_unregister(&ppc440spe_adma_driver);
4652 out_reg:
4653 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4654 kfree(ppc440spe_dma_fifo_buf);
4655 return ret;
4656 }
4657
4658 static void __exit ppc440spe_adma_exit(void)
4659 {
4660 driver_remove_file(&ppc440spe_adma_driver.driver,
4661 &driver_attr_poly);
4662 driver_remove_file(&ppc440spe_adma_driver.driver,
4663 &driver_attr_enable);
4664 driver_remove_file(&ppc440spe_adma_driver.driver,
4665 &driver_attr_devices);
4666 platform_driver_unregister(&ppc440spe_adma_driver);
4667 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4668 kfree(ppc440spe_dma_fifo_buf);
4669 }
4670
4671 arch_initcall(ppc440spe_adma_init);
4672 module_exit(ppc440spe_adma_exit);
4673
4674 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4675 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4676 MODULE_LICENSE("GPL");