]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/sh/rcar-dmac.c
HID: usbhid: Add HID_QUIRK_NOGET for Aten CS-1758 KVM switch
[mirror_ubuntu-artful-kernel.git] / drivers / dma / sh / rcar-dmac.c
1 /*
2 * Renesas R-Car Gen2 DMA Controller Driver
3 *
4 * Copyright (C) 2014 Renesas Electronics Inc.
5 *
6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
7 *
8 * This is free software; you can redistribute it and/or modify
9 * it under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/interrupt.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26
27 #include "../dmaengine.h"
28
29 /*
30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
31 * @node: entry in the parent's chunks list
32 * @src_addr: device source address
33 * @dst_addr: device destination address
34 * @size: transfer size in bytes
35 */
36 struct rcar_dmac_xfer_chunk {
37 struct list_head node;
38
39 dma_addr_t src_addr;
40 dma_addr_t dst_addr;
41 u32 size;
42 };
43
44 /*
45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
46 * @sar: value of the SAR register (source address)
47 * @dar: value of the DAR register (destination address)
48 * @tcr: value of the TCR register (transfer count)
49 */
50 struct rcar_dmac_hw_desc {
51 u32 sar;
52 u32 dar;
53 u32 tcr;
54 u32 reserved;
55 } __attribute__((__packed__));
56
57 /*
58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
59 * @async_tx: base DMA asynchronous transaction descriptor
60 * @direction: direction of the DMA transfer
61 * @xfer_shift: log2 of the transfer size
62 * @chcr: value of the channel configuration register for this transfer
63 * @node: entry in the channel's descriptors lists
64 * @chunks: list of transfer chunks for this transfer
65 * @running: the transfer chunk being currently processed
66 * @nchunks: number of transfer chunks for this transfer
67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
68 * @hwdescs.mem: hardware descriptors memory for the transfer
69 * @hwdescs.dma: device address of the hardware descriptors memory
70 * @hwdescs.size: size of the hardware descriptors in bytes
71 * @size: transfer size in bytes
72 * @cyclic: when set indicates that the DMA transfer is cyclic
73 */
74 struct rcar_dmac_desc {
75 struct dma_async_tx_descriptor async_tx;
76 enum dma_transfer_direction direction;
77 unsigned int xfer_shift;
78 u32 chcr;
79
80 struct list_head node;
81 struct list_head chunks;
82 struct rcar_dmac_xfer_chunk *running;
83 unsigned int nchunks;
84
85 struct {
86 bool use;
87 struct rcar_dmac_hw_desc *mem;
88 dma_addr_t dma;
89 size_t size;
90 } hwdescs;
91
92 unsigned int size;
93 bool cyclic;
94 };
95
96 #define to_rcar_dmac_desc(d) container_of(d, struct rcar_dmac_desc, async_tx)
97
98 /*
99 * struct rcar_dmac_desc_page - One page worth of descriptors
100 * @node: entry in the channel's pages list
101 * @descs: array of DMA descriptors
102 * @chunks: array of transfer chunk descriptors
103 */
104 struct rcar_dmac_desc_page {
105 struct list_head node;
106
107 union {
108 struct rcar_dmac_desc descs[0];
109 struct rcar_dmac_xfer_chunk chunks[0];
110 };
111 };
112
113 #define RCAR_DMAC_DESCS_PER_PAGE \
114 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) / \
115 sizeof(struct rcar_dmac_desc))
116 #define RCAR_DMAC_XFER_CHUNKS_PER_PAGE \
117 ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) / \
118 sizeof(struct rcar_dmac_xfer_chunk))
119
120 /*
121 * struct rcar_dmac_chan_slave - Slave configuration
122 * @slave_addr: slave memory address
123 * @xfer_size: size (in bytes) of hardware transfers
124 */
125 struct rcar_dmac_chan_slave {
126 phys_addr_t slave_addr;
127 unsigned int xfer_size;
128 };
129
130 /*
131 * struct rcar_dmac_chan_map - Map of slave device phys to dma address
132 * @addr: slave dma address
133 * @dir: direction of mapping
134 * @slave: slave configuration that is mapped
135 */
136 struct rcar_dmac_chan_map {
137 dma_addr_t addr;
138 enum dma_data_direction dir;
139 struct rcar_dmac_chan_slave slave;
140 };
141
142 /*
143 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
144 * @chan: base DMA channel object
145 * @iomem: channel I/O memory base
146 * @index: index of this channel in the controller
147 * @src: slave memory address and size on the source side
148 * @dst: slave memory address and size on the destination side
149 * @mid_rid: hardware MID/RID for the DMA client using this channel
150 * @lock: protects the channel CHCR register and the desc members
151 * @desc.free: list of free descriptors
152 * @desc.pending: list of pending descriptors (submitted with tx_submit)
153 * @desc.active: list of active descriptors (activated with issue_pending)
154 * @desc.done: list of completed descriptors
155 * @desc.wait: list of descriptors waiting for an ack
156 * @desc.running: the descriptor being processed (a member of the active list)
157 * @desc.chunks_free: list of free transfer chunk descriptors
158 * @desc.pages: list of pages used by allocated descriptors
159 */
160 struct rcar_dmac_chan {
161 struct dma_chan chan;
162 void __iomem *iomem;
163 unsigned int index;
164
165 struct rcar_dmac_chan_slave src;
166 struct rcar_dmac_chan_slave dst;
167 struct rcar_dmac_chan_map map;
168 int mid_rid;
169
170 spinlock_t lock;
171
172 struct {
173 struct list_head free;
174 struct list_head pending;
175 struct list_head active;
176 struct list_head done;
177 struct list_head wait;
178 struct rcar_dmac_desc *running;
179
180 struct list_head chunks_free;
181
182 struct list_head pages;
183 } desc;
184 };
185
186 #define to_rcar_dmac_chan(c) container_of(c, struct rcar_dmac_chan, chan)
187
188 /*
189 * struct rcar_dmac - R-Car Gen2 DMA Controller
190 * @engine: base DMA engine object
191 * @dev: the hardware device
192 * @iomem: remapped I/O memory base
193 * @n_channels: number of available channels
194 * @channels: array of DMAC channels
195 * @modules: bitmask of client modules in use
196 */
197 struct rcar_dmac {
198 struct dma_device engine;
199 struct device *dev;
200 void __iomem *iomem;
201
202 unsigned int n_channels;
203 struct rcar_dmac_chan *channels;
204
205 DECLARE_BITMAP(modules, 256);
206 };
207
208 #define to_rcar_dmac(d) container_of(d, struct rcar_dmac, engine)
209
210 /* -----------------------------------------------------------------------------
211 * Registers
212 */
213
214 #define RCAR_DMAC_CHAN_OFFSET(i) (0x8000 + 0x80 * (i))
215
216 #define RCAR_DMAISTA 0x0020
217 #define RCAR_DMASEC 0x0030
218 #define RCAR_DMAOR 0x0060
219 #define RCAR_DMAOR_PRI_FIXED (0 << 8)
220 #define RCAR_DMAOR_PRI_ROUND_ROBIN (3 << 8)
221 #define RCAR_DMAOR_AE (1 << 2)
222 #define RCAR_DMAOR_DME (1 << 0)
223 #define RCAR_DMACHCLR 0x0080
224 #define RCAR_DMADPSEC 0x00a0
225
226 #define RCAR_DMASAR 0x0000
227 #define RCAR_DMADAR 0x0004
228 #define RCAR_DMATCR 0x0008
229 #define RCAR_DMATCR_MASK 0x00ffffff
230 #define RCAR_DMATSR 0x0028
231 #define RCAR_DMACHCR 0x000c
232 #define RCAR_DMACHCR_CAE (1 << 31)
233 #define RCAR_DMACHCR_CAIE (1 << 30)
234 #define RCAR_DMACHCR_DPM_DISABLED (0 << 28)
235 #define RCAR_DMACHCR_DPM_ENABLED (1 << 28)
236 #define RCAR_DMACHCR_DPM_REPEAT (2 << 28)
237 #define RCAR_DMACHCR_DPM_INFINITE (3 << 28)
238 #define RCAR_DMACHCR_RPT_SAR (1 << 27)
239 #define RCAR_DMACHCR_RPT_DAR (1 << 26)
240 #define RCAR_DMACHCR_RPT_TCR (1 << 25)
241 #define RCAR_DMACHCR_DPB (1 << 22)
242 #define RCAR_DMACHCR_DSE (1 << 19)
243 #define RCAR_DMACHCR_DSIE (1 << 18)
244 #define RCAR_DMACHCR_TS_1B ((0 << 20) | (0 << 3))
245 #define RCAR_DMACHCR_TS_2B ((0 << 20) | (1 << 3))
246 #define RCAR_DMACHCR_TS_4B ((0 << 20) | (2 << 3))
247 #define RCAR_DMACHCR_TS_16B ((0 << 20) | (3 << 3))
248 #define RCAR_DMACHCR_TS_32B ((1 << 20) | (0 << 3))
249 #define RCAR_DMACHCR_TS_64B ((1 << 20) | (1 << 3))
250 #define RCAR_DMACHCR_TS_8B ((1 << 20) | (3 << 3))
251 #define RCAR_DMACHCR_DM_FIXED (0 << 14)
252 #define RCAR_DMACHCR_DM_INC (1 << 14)
253 #define RCAR_DMACHCR_DM_DEC (2 << 14)
254 #define RCAR_DMACHCR_SM_FIXED (0 << 12)
255 #define RCAR_DMACHCR_SM_INC (1 << 12)
256 #define RCAR_DMACHCR_SM_DEC (2 << 12)
257 #define RCAR_DMACHCR_RS_AUTO (4 << 8)
258 #define RCAR_DMACHCR_RS_DMARS (8 << 8)
259 #define RCAR_DMACHCR_IE (1 << 2)
260 #define RCAR_DMACHCR_TE (1 << 1)
261 #define RCAR_DMACHCR_DE (1 << 0)
262 #define RCAR_DMATCRB 0x0018
263 #define RCAR_DMATSRB 0x0038
264 #define RCAR_DMACHCRB 0x001c
265 #define RCAR_DMACHCRB_DCNT(n) ((n) << 24)
266 #define RCAR_DMACHCRB_DPTR_MASK (0xff << 16)
267 #define RCAR_DMACHCRB_DPTR_SHIFT 16
268 #define RCAR_DMACHCRB_DRST (1 << 15)
269 #define RCAR_DMACHCRB_DTS (1 << 8)
270 #define RCAR_DMACHCRB_SLM_NORMAL (0 << 4)
271 #define RCAR_DMACHCRB_SLM_CLK(n) ((8 | (n)) << 4)
272 #define RCAR_DMACHCRB_PRI(n) ((n) << 0)
273 #define RCAR_DMARS 0x0040
274 #define RCAR_DMABUFCR 0x0048
275 #define RCAR_DMABUFCR_MBU(n) ((n) << 16)
276 #define RCAR_DMABUFCR_ULB(n) ((n) << 0)
277 #define RCAR_DMADPBASE 0x0050
278 #define RCAR_DMADPBASE_MASK 0xfffffff0
279 #define RCAR_DMADPBASE_SEL (1 << 0)
280 #define RCAR_DMADPCR 0x0054
281 #define RCAR_DMADPCR_DIPT(n) ((n) << 24)
282 #define RCAR_DMAFIXSAR 0x0010
283 #define RCAR_DMAFIXDAR 0x0014
284 #define RCAR_DMAFIXDPBASE 0x0060
285
286 /* Hardcode the MEMCPY transfer size to 4 bytes. */
287 #define RCAR_DMAC_MEMCPY_XFER_SIZE 4
288
289 /* -----------------------------------------------------------------------------
290 * Device access
291 */
292
293 static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
294 {
295 if (reg == RCAR_DMAOR)
296 writew(data, dmac->iomem + reg);
297 else
298 writel(data, dmac->iomem + reg);
299 }
300
301 static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
302 {
303 if (reg == RCAR_DMAOR)
304 return readw(dmac->iomem + reg);
305 else
306 return readl(dmac->iomem + reg);
307 }
308
309 static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
310 {
311 if (reg == RCAR_DMARS)
312 return readw(chan->iomem + reg);
313 else
314 return readl(chan->iomem + reg);
315 }
316
317 static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
318 {
319 if (reg == RCAR_DMARS)
320 writew(data, chan->iomem + reg);
321 else
322 writel(data, chan->iomem + reg);
323 }
324
325 /* -----------------------------------------------------------------------------
326 * Initialization and configuration
327 */
328
329 static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
330 {
331 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
332
333 return !!(chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE));
334 }
335
336 static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
337 {
338 struct rcar_dmac_desc *desc = chan->desc.running;
339 u32 chcr = desc->chcr;
340
341 WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
342
343 if (chan->mid_rid >= 0)
344 rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
345
346 if (desc->hwdescs.use) {
347 struct rcar_dmac_xfer_chunk *chunk;
348
349 dev_dbg(chan->chan.device->dev,
350 "chan%u: queue desc %p: %u@%pad\n",
351 chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
352
353 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
354 rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
355 desc->hwdescs.dma >> 32);
356 #endif
357 rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
358 (desc->hwdescs.dma & 0xfffffff0) |
359 RCAR_DMADPBASE_SEL);
360 rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
361 RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
362 RCAR_DMACHCRB_DRST);
363
364 /*
365 * Errata: When descriptor memory is accessed through an IOMMU
366 * the DMADAR register isn't initialized automatically from the
367 * first descriptor at beginning of transfer by the DMAC like it
368 * should. Initialize it manually with the destination address
369 * of the first chunk.
370 */
371 chunk = list_first_entry(&desc->chunks,
372 struct rcar_dmac_xfer_chunk, node);
373 rcar_dmac_chan_write(chan, RCAR_DMADAR,
374 chunk->dst_addr & 0xffffffff);
375
376 /*
377 * Program the descriptor stage interrupt to occur after the end
378 * of the first stage.
379 */
380 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
381
382 chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
383 | RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
384
385 /*
386 * If the descriptor isn't cyclic enable normal descriptor mode
387 * and the transfer completion interrupt.
388 */
389 if (!desc->cyclic)
390 chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
391 /*
392 * If the descriptor is cyclic and has a callback enable the
393 * descriptor stage interrupt in infinite repeat mode.
394 */
395 else if (desc->async_tx.callback)
396 chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
397 /*
398 * Otherwise just select infinite repeat mode without any
399 * interrupt.
400 */
401 else
402 chcr |= RCAR_DMACHCR_DPM_INFINITE;
403 } else {
404 struct rcar_dmac_xfer_chunk *chunk = desc->running;
405
406 dev_dbg(chan->chan.device->dev,
407 "chan%u: queue chunk %p: %u@%pad -> %pad\n",
408 chan->index, chunk, chunk->size, &chunk->src_addr,
409 &chunk->dst_addr);
410
411 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
412 rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
413 chunk->src_addr >> 32);
414 rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
415 chunk->dst_addr >> 32);
416 #endif
417 rcar_dmac_chan_write(chan, RCAR_DMASAR,
418 chunk->src_addr & 0xffffffff);
419 rcar_dmac_chan_write(chan, RCAR_DMADAR,
420 chunk->dst_addr & 0xffffffff);
421 rcar_dmac_chan_write(chan, RCAR_DMATCR,
422 chunk->size >> desc->xfer_shift);
423
424 chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
425 }
426
427 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
428 }
429
430 static int rcar_dmac_init(struct rcar_dmac *dmac)
431 {
432 u16 dmaor;
433
434 /* Clear all channels and enable the DMAC globally. */
435 rcar_dmac_write(dmac, RCAR_DMACHCLR, GENMASK(dmac->n_channels - 1, 0));
436 rcar_dmac_write(dmac, RCAR_DMAOR,
437 RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
438
439 dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
440 if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
441 dev_warn(dmac->dev, "DMAOR initialization failed.\n");
442 return -EIO;
443 }
444
445 return 0;
446 }
447
448 /* -----------------------------------------------------------------------------
449 * Descriptors submission
450 */
451
452 static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
453 {
454 struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
455 struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
456 unsigned long flags;
457 dma_cookie_t cookie;
458
459 spin_lock_irqsave(&chan->lock, flags);
460
461 cookie = dma_cookie_assign(tx);
462
463 dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
464 chan->index, tx->cookie, desc);
465
466 list_add_tail(&desc->node, &chan->desc.pending);
467 desc->running = list_first_entry(&desc->chunks,
468 struct rcar_dmac_xfer_chunk, node);
469
470 spin_unlock_irqrestore(&chan->lock, flags);
471
472 return cookie;
473 }
474
475 /* -----------------------------------------------------------------------------
476 * Descriptors allocation and free
477 */
478
479 /*
480 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
481 * @chan: the DMA channel
482 * @gfp: allocation flags
483 */
484 static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
485 {
486 struct rcar_dmac_desc_page *page;
487 unsigned long flags;
488 LIST_HEAD(list);
489 unsigned int i;
490
491 page = (void *)get_zeroed_page(gfp);
492 if (!page)
493 return -ENOMEM;
494
495 for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
496 struct rcar_dmac_desc *desc = &page->descs[i];
497
498 dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
499 desc->async_tx.tx_submit = rcar_dmac_tx_submit;
500 INIT_LIST_HEAD(&desc->chunks);
501
502 list_add_tail(&desc->node, &list);
503 }
504
505 spin_lock_irqsave(&chan->lock, flags);
506 list_splice_tail(&list, &chan->desc.free);
507 list_add_tail(&page->node, &chan->desc.pages);
508 spin_unlock_irqrestore(&chan->lock, flags);
509
510 return 0;
511 }
512
513 /*
514 * rcar_dmac_desc_put - Release a DMA transfer descriptor
515 * @chan: the DMA channel
516 * @desc: the descriptor
517 *
518 * Put the descriptor and its transfer chunk descriptors back in the channel's
519 * free descriptors lists. The descriptor's chunks list will be reinitialized to
520 * an empty list as a result.
521 *
522 * The descriptor must have been removed from the channel's lists before calling
523 * this function.
524 */
525 static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
526 struct rcar_dmac_desc *desc)
527 {
528 unsigned long flags;
529
530 spin_lock_irqsave(&chan->lock, flags);
531 list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
532 list_add(&desc->node, &chan->desc.free);
533 spin_unlock_irqrestore(&chan->lock, flags);
534 }
535
536 static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
537 {
538 struct rcar_dmac_desc *desc, *_desc;
539 unsigned long flags;
540 LIST_HEAD(list);
541
542 /*
543 * We have to temporarily move all descriptors from the wait list to a
544 * local list as iterating over the wait list, even with
545 * list_for_each_entry_safe, isn't safe if we release the channel lock
546 * around the rcar_dmac_desc_put() call.
547 */
548 spin_lock_irqsave(&chan->lock, flags);
549 list_splice_init(&chan->desc.wait, &list);
550 spin_unlock_irqrestore(&chan->lock, flags);
551
552 list_for_each_entry_safe(desc, _desc, &list, node) {
553 if (async_tx_test_ack(&desc->async_tx)) {
554 list_del(&desc->node);
555 rcar_dmac_desc_put(chan, desc);
556 }
557 }
558
559 if (list_empty(&list))
560 return;
561
562 /* Put the remaining descriptors back in the wait list. */
563 spin_lock_irqsave(&chan->lock, flags);
564 list_splice(&list, &chan->desc.wait);
565 spin_unlock_irqrestore(&chan->lock, flags);
566 }
567
568 /*
569 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
570 * @chan: the DMA channel
571 *
572 * Locking: This function must be called in a non-atomic context.
573 *
574 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
575 * be allocated.
576 */
577 static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
578 {
579 struct rcar_dmac_desc *desc;
580 unsigned long flags;
581 int ret;
582
583 /* Recycle acked descriptors before attempting allocation. */
584 rcar_dmac_desc_recycle_acked(chan);
585
586 spin_lock_irqsave(&chan->lock, flags);
587
588 while (list_empty(&chan->desc.free)) {
589 /*
590 * No free descriptors, allocate a page worth of them and try
591 * again, as someone else could race us to get the newly
592 * allocated descriptors. If the allocation fails return an
593 * error.
594 */
595 spin_unlock_irqrestore(&chan->lock, flags);
596 ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
597 if (ret < 0)
598 return NULL;
599 spin_lock_irqsave(&chan->lock, flags);
600 }
601
602 desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
603 list_del(&desc->node);
604
605 spin_unlock_irqrestore(&chan->lock, flags);
606
607 return desc;
608 }
609
610 /*
611 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
612 * @chan: the DMA channel
613 * @gfp: allocation flags
614 */
615 static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
616 {
617 struct rcar_dmac_desc_page *page;
618 unsigned long flags;
619 LIST_HEAD(list);
620 unsigned int i;
621
622 page = (void *)get_zeroed_page(gfp);
623 if (!page)
624 return -ENOMEM;
625
626 for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
627 struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
628
629 list_add_tail(&chunk->node, &list);
630 }
631
632 spin_lock_irqsave(&chan->lock, flags);
633 list_splice_tail(&list, &chan->desc.chunks_free);
634 list_add_tail(&page->node, &chan->desc.pages);
635 spin_unlock_irqrestore(&chan->lock, flags);
636
637 return 0;
638 }
639
640 /*
641 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
642 * @chan: the DMA channel
643 *
644 * Locking: This function must be called in a non-atomic context.
645 *
646 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
647 * descriptor can be allocated.
648 */
649 static struct rcar_dmac_xfer_chunk *
650 rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
651 {
652 struct rcar_dmac_xfer_chunk *chunk;
653 unsigned long flags;
654 int ret;
655
656 spin_lock_irqsave(&chan->lock, flags);
657
658 while (list_empty(&chan->desc.chunks_free)) {
659 /*
660 * No free descriptors, allocate a page worth of them and try
661 * again, as someone else could race us to get the newly
662 * allocated descriptors. If the allocation fails return an
663 * error.
664 */
665 spin_unlock_irqrestore(&chan->lock, flags);
666 ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
667 if (ret < 0)
668 return NULL;
669 spin_lock_irqsave(&chan->lock, flags);
670 }
671
672 chunk = list_first_entry(&chan->desc.chunks_free,
673 struct rcar_dmac_xfer_chunk, node);
674 list_del(&chunk->node);
675
676 spin_unlock_irqrestore(&chan->lock, flags);
677
678 return chunk;
679 }
680
681 static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
682 struct rcar_dmac_desc *desc, size_t size)
683 {
684 /*
685 * dma_alloc_coherent() allocates memory in page size increments. To
686 * avoid reallocating the hardware descriptors when the allocated size
687 * wouldn't change align the requested size to a multiple of the page
688 * size.
689 */
690 size = PAGE_ALIGN(size);
691
692 if (desc->hwdescs.size == size)
693 return;
694
695 if (desc->hwdescs.mem) {
696 dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
697 desc->hwdescs.mem, desc->hwdescs.dma);
698 desc->hwdescs.mem = NULL;
699 desc->hwdescs.size = 0;
700 }
701
702 if (!size)
703 return;
704
705 desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
706 &desc->hwdescs.dma, GFP_NOWAIT);
707 if (!desc->hwdescs.mem)
708 return;
709
710 desc->hwdescs.size = size;
711 }
712
713 static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
714 struct rcar_dmac_desc *desc)
715 {
716 struct rcar_dmac_xfer_chunk *chunk;
717 struct rcar_dmac_hw_desc *hwdesc;
718
719 rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
720
721 hwdesc = desc->hwdescs.mem;
722 if (!hwdesc)
723 return -ENOMEM;
724
725 list_for_each_entry(chunk, &desc->chunks, node) {
726 hwdesc->sar = chunk->src_addr;
727 hwdesc->dar = chunk->dst_addr;
728 hwdesc->tcr = chunk->size >> desc->xfer_shift;
729 hwdesc++;
730 }
731
732 return 0;
733 }
734
735 /* -----------------------------------------------------------------------------
736 * Stop and reset
737 */
738
739 static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
740 {
741 u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
742
743 chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
744 RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
745 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
746 }
747
748 static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
749 {
750 struct rcar_dmac_desc *desc, *_desc;
751 unsigned long flags;
752 LIST_HEAD(descs);
753
754 spin_lock_irqsave(&chan->lock, flags);
755
756 /* Move all non-free descriptors to the local lists. */
757 list_splice_init(&chan->desc.pending, &descs);
758 list_splice_init(&chan->desc.active, &descs);
759 list_splice_init(&chan->desc.done, &descs);
760 list_splice_init(&chan->desc.wait, &descs);
761
762 chan->desc.running = NULL;
763
764 spin_unlock_irqrestore(&chan->lock, flags);
765
766 list_for_each_entry_safe(desc, _desc, &descs, node) {
767 list_del(&desc->node);
768 rcar_dmac_desc_put(chan, desc);
769 }
770 }
771
772 static void rcar_dmac_stop(struct rcar_dmac *dmac)
773 {
774 rcar_dmac_write(dmac, RCAR_DMAOR, 0);
775 }
776
777 static void rcar_dmac_abort(struct rcar_dmac *dmac)
778 {
779 unsigned int i;
780
781 /* Stop all channels. */
782 for (i = 0; i < dmac->n_channels; ++i) {
783 struct rcar_dmac_chan *chan = &dmac->channels[i];
784
785 /* Stop and reinitialize the channel. */
786 spin_lock(&chan->lock);
787 rcar_dmac_chan_halt(chan);
788 spin_unlock(&chan->lock);
789
790 rcar_dmac_chan_reinit(chan);
791 }
792 }
793
794 /* -----------------------------------------------------------------------------
795 * Descriptors preparation
796 */
797
798 static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
799 struct rcar_dmac_desc *desc)
800 {
801 static const u32 chcr_ts[] = {
802 RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
803 RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
804 RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
805 RCAR_DMACHCR_TS_64B,
806 };
807
808 unsigned int xfer_size;
809 u32 chcr;
810
811 switch (desc->direction) {
812 case DMA_DEV_TO_MEM:
813 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
814 | RCAR_DMACHCR_RS_DMARS;
815 xfer_size = chan->src.xfer_size;
816 break;
817
818 case DMA_MEM_TO_DEV:
819 chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
820 | RCAR_DMACHCR_RS_DMARS;
821 xfer_size = chan->dst.xfer_size;
822 break;
823
824 case DMA_MEM_TO_MEM:
825 default:
826 chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
827 | RCAR_DMACHCR_RS_AUTO;
828 xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
829 break;
830 }
831
832 desc->xfer_shift = ilog2(xfer_size);
833 desc->chcr = chcr | chcr_ts[desc->xfer_shift];
834 }
835
836 /*
837 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
838 *
839 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
840 * converted to scatter-gather to guarantee consistent locking and a correct
841 * list manipulation. For slave DMA direction carries the usual meaning, and,
842 * logically, the SG list is RAM and the addr variable contains slave address,
843 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
844 * and the SG list contains only one element and points at the source buffer.
845 */
846 static struct dma_async_tx_descriptor *
847 rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
848 unsigned int sg_len, dma_addr_t dev_addr,
849 enum dma_transfer_direction dir, unsigned long dma_flags,
850 bool cyclic)
851 {
852 struct rcar_dmac_xfer_chunk *chunk;
853 struct rcar_dmac_desc *desc;
854 struct scatterlist *sg;
855 unsigned int nchunks = 0;
856 unsigned int max_chunk_size;
857 unsigned int full_size = 0;
858 bool highmem = false;
859 unsigned int i;
860
861 desc = rcar_dmac_desc_get(chan);
862 if (!desc)
863 return NULL;
864
865 desc->async_tx.flags = dma_flags;
866 desc->async_tx.cookie = -EBUSY;
867
868 desc->cyclic = cyclic;
869 desc->direction = dir;
870
871 rcar_dmac_chan_configure_desc(chan, desc);
872
873 max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
874
875 /*
876 * Allocate and fill the transfer chunk descriptors. We own the only
877 * reference to the DMA descriptor, there's no need for locking.
878 */
879 for_each_sg(sgl, sg, sg_len, i) {
880 dma_addr_t mem_addr = sg_dma_address(sg);
881 unsigned int len = sg_dma_len(sg);
882
883 full_size += len;
884
885 while (len) {
886 unsigned int size = min(len, max_chunk_size);
887
888 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
889 /*
890 * Prevent individual transfers from crossing 4GB
891 * boundaries.
892 */
893 if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
894 size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
895 if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
896 size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
897
898 /*
899 * Check if either of the source or destination address
900 * can't be expressed in 32 bits. If so we can't use
901 * hardware descriptor lists.
902 */
903 if (dev_addr >> 32 || mem_addr >> 32)
904 highmem = true;
905 #endif
906
907 chunk = rcar_dmac_xfer_chunk_get(chan);
908 if (!chunk) {
909 rcar_dmac_desc_put(chan, desc);
910 return NULL;
911 }
912
913 if (dir == DMA_DEV_TO_MEM) {
914 chunk->src_addr = dev_addr;
915 chunk->dst_addr = mem_addr;
916 } else {
917 chunk->src_addr = mem_addr;
918 chunk->dst_addr = dev_addr;
919 }
920
921 chunk->size = size;
922
923 dev_dbg(chan->chan.device->dev,
924 "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
925 chan->index, chunk, desc, i, sg, size, len,
926 &chunk->src_addr, &chunk->dst_addr);
927
928 mem_addr += size;
929 if (dir == DMA_MEM_TO_MEM)
930 dev_addr += size;
931
932 len -= size;
933
934 list_add_tail(&chunk->node, &desc->chunks);
935 nchunks++;
936 }
937 }
938
939 desc->nchunks = nchunks;
940 desc->size = full_size;
941
942 /*
943 * Use hardware descriptor lists if possible when more than one chunk
944 * needs to be transferred (otherwise they don't make much sense).
945 *
946 * The highmem check currently covers the whole transfer. As an
947 * optimization we could use descriptor lists for consecutive lowmem
948 * chunks and direct manual mode for highmem chunks. Whether the
949 * performance improvement would be significant enough compared to the
950 * additional complexity remains to be investigated.
951 */
952 desc->hwdescs.use = !highmem && nchunks > 1;
953 if (desc->hwdescs.use) {
954 if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
955 desc->hwdescs.use = false;
956 }
957
958 return &desc->async_tx;
959 }
960
961 /* -----------------------------------------------------------------------------
962 * DMA engine operations
963 */
964
965 static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
966 {
967 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
968 int ret;
969
970 INIT_LIST_HEAD(&rchan->desc.chunks_free);
971 INIT_LIST_HEAD(&rchan->desc.pages);
972
973 /* Preallocate descriptors. */
974 ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
975 if (ret < 0)
976 return -ENOMEM;
977
978 ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
979 if (ret < 0)
980 return -ENOMEM;
981
982 return pm_runtime_get_sync(chan->device->dev);
983 }
984
985 static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
986 {
987 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
988 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
989 struct rcar_dmac_chan_map *map = &rchan->map;
990 struct rcar_dmac_desc_page *page, *_page;
991 struct rcar_dmac_desc *desc;
992 LIST_HEAD(list);
993
994 /* Protect against ISR */
995 spin_lock_irq(&rchan->lock);
996 rcar_dmac_chan_halt(rchan);
997 spin_unlock_irq(&rchan->lock);
998
999 /* Now no new interrupts will occur */
1000
1001 if (rchan->mid_rid >= 0) {
1002 /* The caller is holding dma_list_mutex */
1003 clear_bit(rchan->mid_rid, dmac->modules);
1004 rchan->mid_rid = -EINVAL;
1005 }
1006
1007 list_splice_init(&rchan->desc.free, &list);
1008 list_splice_init(&rchan->desc.pending, &list);
1009 list_splice_init(&rchan->desc.active, &list);
1010 list_splice_init(&rchan->desc.done, &list);
1011 list_splice_init(&rchan->desc.wait, &list);
1012
1013 rchan->desc.running = NULL;
1014
1015 list_for_each_entry(desc, &list, node)
1016 rcar_dmac_realloc_hwdesc(rchan, desc, 0);
1017
1018 list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
1019 list_del(&page->node);
1020 free_page((unsigned long)page);
1021 }
1022
1023 /* Remove slave mapping if present. */
1024 if (map->slave.xfer_size) {
1025 dma_unmap_resource(chan->device->dev, map->addr,
1026 map->slave.xfer_size, map->dir, 0);
1027 map->slave.xfer_size = 0;
1028 }
1029
1030 pm_runtime_put(chan->device->dev);
1031 }
1032
1033 static struct dma_async_tx_descriptor *
1034 rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1035 dma_addr_t dma_src, size_t len, unsigned long flags)
1036 {
1037 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1038 struct scatterlist sgl;
1039
1040 if (!len)
1041 return NULL;
1042
1043 sg_init_table(&sgl, 1);
1044 sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1045 offset_in_page(dma_src));
1046 sg_dma_address(&sgl) = dma_src;
1047 sg_dma_len(&sgl) = len;
1048
1049 return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1050 DMA_MEM_TO_MEM, flags, false);
1051 }
1052
1053 static int rcar_dmac_map_slave_addr(struct dma_chan *chan,
1054 enum dma_transfer_direction dir)
1055 {
1056 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1057 struct rcar_dmac_chan_map *map = &rchan->map;
1058 phys_addr_t dev_addr;
1059 size_t dev_size;
1060 enum dma_data_direction dev_dir;
1061
1062 if (dir == DMA_DEV_TO_MEM) {
1063 dev_addr = rchan->src.slave_addr;
1064 dev_size = rchan->src.xfer_size;
1065 dev_dir = DMA_TO_DEVICE;
1066 } else {
1067 dev_addr = rchan->dst.slave_addr;
1068 dev_size = rchan->dst.xfer_size;
1069 dev_dir = DMA_FROM_DEVICE;
1070 }
1071
1072 /* Reuse current map if possible. */
1073 if (dev_addr == map->slave.slave_addr &&
1074 dev_size == map->slave.xfer_size &&
1075 dev_dir == map->dir)
1076 return 0;
1077
1078 /* Remove old mapping if present. */
1079 if (map->slave.xfer_size)
1080 dma_unmap_resource(chan->device->dev, map->addr,
1081 map->slave.xfer_size, map->dir, 0);
1082 map->slave.xfer_size = 0;
1083
1084 /* Create new slave address map. */
1085 map->addr = dma_map_resource(chan->device->dev, dev_addr, dev_size,
1086 dev_dir, 0);
1087
1088 if (dma_mapping_error(chan->device->dev, map->addr)) {
1089 dev_err(chan->device->dev,
1090 "chan%u: failed to map %zx@%pap", rchan->index,
1091 dev_size, &dev_addr);
1092 return -EIO;
1093 }
1094
1095 dev_dbg(chan->device->dev, "chan%u: map %zx@%pap to %pad dir: %s\n",
1096 rchan->index, dev_size, &dev_addr, &map->addr,
1097 dev_dir == DMA_TO_DEVICE ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE");
1098
1099 map->slave.slave_addr = dev_addr;
1100 map->slave.xfer_size = dev_size;
1101 map->dir = dev_dir;
1102
1103 return 0;
1104 }
1105
1106 static struct dma_async_tx_descriptor *
1107 rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1108 unsigned int sg_len, enum dma_transfer_direction dir,
1109 unsigned long flags, void *context)
1110 {
1111 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1112
1113 /* Someone calling slave DMA on a generic channel? */
1114 if (rchan->mid_rid < 0 || !sg_len) {
1115 dev_warn(chan->device->dev,
1116 "%s: bad parameter: len=%d, id=%d\n",
1117 __func__, sg_len, rchan->mid_rid);
1118 return NULL;
1119 }
1120
1121 if (rcar_dmac_map_slave_addr(chan, dir))
1122 return NULL;
1123
1124 return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1125 dir, flags, false);
1126 }
1127
1128 #define RCAR_DMAC_MAX_SG_LEN 32
1129
1130 static struct dma_async_tx_descriptor *
1131 rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1132 size_t buf_len, size_t period_len,
1133 enum dma_transfer_direction dir, unsigned long flags)
1134 {
1135 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1136 struct dma_async_tx_descriptor *desc;
1137 struct scatterlist *sgl;
1138 unsigned int sg_len;
1139 unsigned int i;
1140
1141 /* Someone calling slave DMA on a generic channel? */
1142 if (rchan->mid_rid < 0 || buf_len < period_len) {
1143 dev_warn(chan->device->dev,
1144 "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1145 __func__, buf_len, period_len, rchan->mid_rid);
1146 return NULL;
1147 }
1148
1149 if (rcar_dmac_map_slave_addr(chan, dir))
1150 return NULL;
1151
1152 sg_len = buf_len / period_len;
1153 if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1154 dev_err(chan->device->dev,
1155 "chan%u: sg length %d exceds limit %d",
1156 rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1157 return NULL;
1158 }
1159
1160 /*
1161 * Allocate the sg list dynamically as it would consume too much stack
1162 * space.
1163 */
1164 sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1165 if (!sgl)
1166 return NULL;
1167
1168 sg_init_table(sgl, sg_len);
1169
1170 for (i = 0; i < sg_len; ++i) {
1171 dma_addr_t src = buf_addr + (period_len * i);
1172
1173 sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1174 offset_in_page(src));
1175 sg_dma_address(&sgl[i]) = src;
1176 sg_dma_len(&sgl[i]) = period_len;
1177 }
1178
1179 desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, rchan->map.addr,
1180 dir, flags, true);
1181
1182 kfree(sgl);
1183 return desc;
1184 }
1185
1186 static int rcar_dmac_device_config(struct dma_chan *chan,
1187 struct dma_slave_config *cfg)
1188 {
1189 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1190
1191 /*
1192 * We could lock this, but you shouldn't be configuring the
1193 * channel, while using it...
1194 */
1195 rchan->src.slave_addr = cfg->src_addr;
1196 rchan->dst.slave_addr = cfg->dst_addr;
1197 rchan->src.xfer_size = cfg->src_addr_width;
1198 rchan->dst.xfer_size = cfg->dst_addr_width;
1199
1200 return 0;
1201 }
1202
1203 static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1204 {
1205 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1206 unsigned long flags;
1207
1208 spin_lock_irqsave(&rchan->lock, flags);
1209 rcar_dmac_chan_halt(rchan);
1210 spin_unlock_irqrestore(&rchan->lock, flags);
1211
1212 /*
1213 * FIXME: No new interrupt can occur now, but the IRQ thread might still
1214 * be running.
1215 */
1216
1217 rcar_dmac_chan_reinit(rchan);
1218
1219 return 0;
1220 }
1221
1222 static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1223 dma_cookie_t cookie)
1224 {
1225 struct rcar_dmac_desc *desc = chan->desc.running;
1226 struct rcar_dmac_xfer_chunk *running = NULL;
1227 struct rcar_dmac_xfer_chunk *chunk;
1228 enum dma_status status;
1229 unsigned int residue = 0;
1230 unsigned int dptr = 0;
1231
1232 if (!desc)
1233 return 0;
1234
1235 /*
1236 * If the cookie corresponds to a descriptor that has been completed
1237 * there is no residue. The same check has already been performed by the
1238 * caller but without holding the channel lock, so the descriptor could
1239 * now be complete.
1240 */
1241 status = dma_cookie_status(&chan->chan, cookie, NULL);
1242 if (status == DMA_COMPLETE)
1243 return 0;
1244
1245 /*
1246 * If the cookie doesn't correspond to the currently running transfer
1247 * then the descriptor hasn't been processed yet, and the residue is
1248 * equal to the full descriptor size.
1249 */
1250 if (cookie != desc->async_tx.cookie) {
1251 list_for_each_entry(desc, &chan->desc.pending, node) {
1252 if (cookie == desc->async_tx.cookie)
1253 return desc->size;
1254 }
1255 list_for_each_entry(desc, &chan->desc.active, node) {
1256 if (cookie == desc->async_tx.cookie)
1257 return desc->size;
1258 }
1259
1260 /*
1261 * No descriptor found for the cookie, there's thus no residue.
1262 * This shouldn't happen if the calling driver passes a correct
1263 * cookie value.
1264 */
1265 WARN(1, "No descriptor for cookie!");
1266 return 0;
1267 }
1268
1269 /*
1270 * In descriptor mode the descriptor running pointer is not maintained
1271 * by the interrupt handler, find the running descriptor from the
1272 * descriptor pointer field in the CHCRB register. In non-descriptor
1273 * mode just use the running descriptor pointer.
1274 */
1275 if (desc->hwdescs.use) {
1276 dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1277 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1278 WARN_ON(dptr >= desc->nchunks);
1279 } else {
1280 running = desc->running;
1281 }
1282
1283 /* Compute the size of all chunks still to be transferred. */
1284 list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1285 if (chunk == running || ++dptr == desc->nchunks)
1286 break;
1287
1288 residue += chunk->size;
1289 }
1290
1291 /* Add the residue for the current chunk. */
1292 residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1293
1294 return residue;
1295 }
1296
1297 static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1298 dma_cookie_t cookie,
1299 struct dma_tx_state *txstate)
1300 {
1301 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1302 enum dma_status status;
1303 unsigned long flags;
1304 unsigned int residue;
1305
1306 status = dma_cookie_status(chan, cookie, txstate);
1307 if (status == DMA_COMPLETE || !txstate)
1308 return status;
1309
1310 spin_lock_irqsave(&rchan->lock, flags);
1311 residue = rcar_dmac_chan_get_residue(rchan, cookie);
1312 spin_unlock_irqrestore(&rchan->lock, flags);
1313
1314 /* if there's no residue, the cookie is complete */
1315 if (!residue)
1316 return DMA_COMPLETE;
1317
1318 dma_set_residue(txstate, residue);
1319
1320 return status;
1321 }
1322
1323 static void rcar_dmac_issue_pending(struct dma_chan *chan)
1324 {
1325 struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1326 unsigned long flags;
1327
1328 spin_lock_irqsave(&rchan->lock, flags);
1329
1330 if (list_empty(&rchan->desc.pending))
1331 goto done;
1332
1333 /* Append the pending list to the active list. */
1334 list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1335
1336 /*
1337 * If no transfer is running pick the first descriptor from the active
1338 * list and start the transfer.
1339 */
1340 if (!rchan->desc.running) {
1341 struct rcar_dmac_desc *desc;
1342
1343 desc = list_first_entry(&rchan->desc.active,
1344 struct rcar_dmac_desc, node);
1345 rchan->desc.running = desc;
1346
1347 rcar_dmac_chan_start_xfer(rchan);
1348 }
1349
1350 done:
1351 spin_unlock_irqrestore(&rchan->lock, flags);
1352 }
1353
1354 /* -----------------------------------------------------------------------------
1355 * IRQ handling
1356 */
1357
1358 static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1359 {
1360 struct rcar_dmac_desc *desc = chan->desc.running;
1361 unsigned int stage;
1362
1363 if (WARN_ON(!desc || !desc->cyclic)) {
1364 /*
1365 * This should never happen, there should always be a running
1366 * cyclic descriptor when a descriptor stage end interrupt is
1367 * triggered. Warn and return.
1368 */
1369 return IRQ_NONE;
1370 }
1371
1372 /* Program the interrupt pointer to the next stage. */
1373 stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1374 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1375 rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1376
1377 return IRQ_WAKE_THREAD;
1378 }
1379
1380 static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1381 {
1382 struct rcar_dmac_desc *desc = chan->desc.running;
1383 irqreturn_t ret = IRQ_WAKE_THREAD;
1384
1385 if (WARN_ON_ONCE(!desc)) {
1386 /*
1387 * This should never happen, there should always be a running
1388 * descriptor when a transfer end interrupt is triggered. Warn
1389 * and return.
1390 */
1391 return IRQ_NONE;
1392 }
1393
1394 /*
1395 * The transfer end interrupt isn't generated for each chunk when using
1396 * descriptor mode. Only update the running chunk pointer in
1397 * non-descriptor mode.
1398 */
1399 if (!desc->hwdescs.use) {
1400 /*
1401 * If we haven't completed the last transfer chunk simply move
1402 * to the next one. Only wake the IRQ thread if the transfer is
1403 * cyclic.
1404 */
1405 if (!list_is_last(&desc->running->node, &desc->chunks)) {
1406 desc->running = list_next_entry(desc->running, node);
1407 if (!desc->cyclic)
1408 ret = IRQ_HANDLED;
1409 goto done;
1410 }
1411
1412 /*
1413 * We've completed the last transfer chunk. If the transfer is
1414 * cyclic, move back to the first one.
1415 */
1416 if (desc->cyclic) {
1417 desc->running =
1418 list_first_entry(&desc->chunks,
1419 struct rcar_dmac_xfer_chunk,
1420 node);
1421 goto done;
1422 }
1423 }
1424
1425 /* The descriptor is complete, move it to the done list. */
1426 list_move_tail(&desc->node, &chan->desc.done);
1427
1428 /* Queue the next descriptor, if any. */
1429 if (!list_empty(&chan->desc.active))
1430 chan->desc.running = list_first_entry(&chan->desc.active,
1431 struct rcar_dmac_desc,
1432 node);
1433 else
1434 chan->desc.running = NULL;
1435
1436 done:
1437 if (chan->desc.running)
1438 rcar_dmac_chan_start_xfer(chan);
1439
1440 return ret;
1441 }
1442
1443 static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1444 {
1445 u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1446 struct rcar_dmac_chan *chan = dev;
1447 irqreturn_t ret = IRQ_NONE;
1448 u32 chcr;
1449
1450 spin_lock(&chan->lock);
1451
1452 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1453 if (chcr & RCAR_DMACHCR_TE)
1454 mask |= RCAR_DMACHCR_DE;
1455 rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1456
1457 if (chcr & RCAR_DMACHCR_DSE)
1458 ret |= rcar_dmac_isr_desc_stage_end(chan);
1459
1460 if (chcr & RCAR_DMACHCR_TE)
1461 ret |= rcar_dmac_isr_transfer_end(chan);
1462
1463 spin_unlock(&chan->lock);
1464
1465 return ret;
1466 }
1467
1468 static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1469 {
1470 struct rcar_dmac_chan *chan = dev;
1471 struct rcar_dmac_desc *desc;
1472 struct dmaengine_desc_callback cb;
1473
1474 spin_lock_irq(&chan->lock);
1475
1476 /* For cyclic transfers notify the user after every chunk. */
1477 if (chan->desc.running && chan->desc.running->cyclic) {
1478 desc = chan->desc.running;
1479 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1480
1481 if (dmaengine_desc_callback_valid(&cb)) {
1482 spin_unlock_irq(&chan->lock);
1483 dmaengine_desc_callback_invoke(&cb, NULL);
1484 spin_lock_irq(&chan->lock);
1485 }
1486 }
1487
1488 /*
1489 * Call the callback function for all descriptors on the done list and
1490 * move them to the ack wait list.
1491 */
1492 while (!list_empty(&chan->desc.done)) {
1493 desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1494 node);
1495 dma_cookie_complete(&desc->async_tx);
1496 list_del(&desc->node);
1497
1498 dmaengine_desc_get_callback(&desc->async_tx, &cb);
1499 if (dmaengine_desc_callback_valid(&cb)) {
1500 spin_unlock_irq(&chan->lock);
1501 /*
1502 * We own the only reference to this descriptor, we can
1503 * safely dereference it without holding the channel
1504 * lock.
1505 */
1506 dmaengine_desc_callback_invoke(&cb, NULL);
1507 spin_lock_irq(&chan->lock);
1508 }
1509
1510 list_add_tail(&desc->node, &chan->desc.wait);
1511 }
1512
1513 spin_unlock_irq(&chan->lock);
1514
1515 /* Recycle all acked descriptors. */
1516 rcar_dmac_desc_recycle_acked(chan);
1517
1518 return IRQ_HANDLED;
1519 }
1520
1521 static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1522 {
1523 struct rcar_dmac *dmac = data;
1524
1525 if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1526 return IRQ_NONE;
1527
1528 /*
1529 * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1530 * abort transfers on all channels, and reinitialize the DMAC.
1531 */
1532 rcar_dmac_stop(dmac);
1533 rcar_dmac_abort(dmac);
1534 rcar_dmac_init(dmac);
1535
1536 return IRQ_HANDLED;
1537 }
1538
1539 /* -----------------------------------------------------------------------------
1540 * OF xlate and channel filter
1541 */
1542
1543 static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1544 {
1545 struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1546 struct of_phandle_args *dma_spec = arg;
1547
1548 /*
1549 * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1550 * function knows from which device it wants to allocate a channel from,
1551 * and would be perfectly capable of selecting the channel it wants.
1552 * Forcing it to call dma_request_channel() and iterate through all
1553 * channels from all controllers is just pointless.
1554 */
1555 if (chan->device->device_config != rcar_dmac_device_config ||
1556 dma_spec->np != chan->device->dev->of_node)
1557 return false;
1558
1559 return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1560 }
1561
1562 static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1563 struct of_dma *ofdma)
1564 {
1565 struct rcar_dmac_chan *rchan;
1566 struct dma_chan *chan;
1567 dma_cap_mask_t mask;
1568
1569 if (dma_spec->args_count != 1)
1570 return NULL;
1571
1572 /* Only slave DMA channels can be allocated via DT */
1573 dma_cap_zero(mask);
1574 dma_cap_set(DMA_SLAVE, mask);
1575
1576 chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1577 if (!chan)
1578 return NULL;
1579
1580 rchan = to_rcar_dmac_chan(chan);
1581 rchan->mid_rid = dma_spec->args[0];
1582
1583 return chan;
1584 }
1585
1586 /* -----------------------------------------------------------------------------
1587 * Power management
1588 */
1589
1590 #ifdef CONFIG_PM_SLEEP
1591 static int rcar_dmac_sleep_suspend(struct device *dev)
1592 {
1593 /*
1594 * TODO: Wait for the current transfer to complete and stop the device.
1595 */
1596 return 0;
1597 }
1598
1599 static int rcar_dmac_sleep_resume(struct device *dev)
1600 {
1601 /* TODO: Resume transfers, if any. */
1602 return 0;
1603 }
1604 #endif
1605
1606 #ifdef CONFIG_PM
1607 static int rcar_dmac_runtime_suspend(struct device *dev)
1608 {
1609 return 0;
1610 }
1611
1612 static int rcar_dmac_runtime_resume(struct device *dev)
1613 {
1614 struct rcar_dmac *dmac = dev_get_drvdata(dev);
1615
1616 return rcar_dmac_init(dmac);
1617 }
1618 #endif
1619
1620 static const struct dev_pm_ops rcar_dmac_pm = {
1621 SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1622 SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1623 NULL)
1624 };
1625
1626 /* -----------------------------------------------------------------------------
1627 * Probe and remove
1628 */
1629
1630 static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1631 struct rcar_dmac_chan *rchan,
1632 unsigned int index)
1633 {
1634 struct platform_device *pdev = to_platform_device(dmac->dev);
1635 struct dma_chan *chan = &rchan->chan;
1636 char pdev_irqname[5];
1637 char *irqname;
1638 int irq;
1639 int ret;
1640
1641 rchan->index = index;
1642 rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1643 rchan->mid_rid = -EINVAL;
1644
1645 spin_lock_init(&rchan->lock);
1646
1647 INIT_LIST_HEAD(&rchan->desc.free);
1648 INIT_LIST_HEAD(&rchan->desc.pending);
1649 INIT_LIST_HEAD(&rchan->desc.active);
1650 INIT_LIST_HEAD(&rchan->desc.done);
1651 INIT_LIST_HEAD(&rchan->desc.wait);
1652
1653 /* Request the channel interrupt. */
1654 sprintf(pdev_irqname, "ch%u", index);
1655 irq = platform_get_irq_byname(pdev, pdev_irqname);
1656 if (irq < 0) {
1657 dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1658 return -ENODEV;
1659 }
1660
1661 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1662 dev_name(dmac->dev), index);
1663 if (!irqname)
1664 return -ENOMEM;
1665
1666 ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1667 rcar_dmac_isr_channel_thread, 0,
1668 irqname, rchan);
1669 if (ret) {
1670 dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1671 return ret;
1672 }
1673
1674 /*
1675 * Initialize the DMA engine channel and add it to the DMA engine
1676 * channels list.
1677 */
1678 chan->device = &dmac->engine;
1679 dma_cookie_init(chan);
1680
1681 list_add_tail(&chan->device_node, &dmac->engine.channels);
1682
1683 return 0;
1684 }
1685
1686 static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1687 {
1688 struct device_node *np = dev->of_node;
1689 int ret;
1690
1691 ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1692 if (ret < 0) {
1693 dev_err(dev, "unable to read dma-channels property\n");
1694 return ret;
1695 }
1696
1697 if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1698 dev_err(dev, "invalid number of channels %u\n",
1699 dmac->n_channels);
1700 return -EINVAL;
1701 }
1702
1703 return 0;
1704 }
1705
1706 static int rcar_dmac_probe(struct platform_device *pdev)
1707 {
1708 const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1709 DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1710 DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1711 DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1712 unsigned int channels_offset = 0;
1713 struct dma_device *engine;
1714 struct rcar_dmac *dmac;
1715 struct resource *mem;
1716 unsigned int i;
1717 char *irqname;
1718 int irq;
1719 int ret;
1720
1721 dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1722 if (!dmac)
1723 return -ENOMEM;
1724
1725 dmac->dev = &pdev->dev;
1726 platform_set_drvdata(pdev, dmac);
1727
1728 ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1729 if (ret < 0)
1730 return ret;
1731
1732 /*
1733 * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1734 * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1735 * is connected to microTLB 0 on currently supported platforms, so we
1736 * can't use it with the IPMMU. As the IOMMU API operates at the device
1737 * level we can't disable it selectively, so ignore channel 0 for now if
1738 * the device is part of an IOMMU group.
1739 */
1740 if (pdev->dev.iommu_group) {
1741 dmac->n_channels--;
1742 channels_offset = 1;
1743 }
1744
1745 dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1746 sizeof(*dmac->channels), GFP_KERNEL);
1747 if (!dmac->channels)
1748 return -ENOMEM;
1749
1750 /* Request resources. */
1751 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1752 dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1753 if (IS_ERR(dmac->iomem))
1754 return PTR_ERR(dmac->iomem);
1755
1756 irq = platform_get_irq_byname(pdev, "error");
1757 if (irq < 0) {
1758 dev_err(&pdev->dev, "no error IRQ specified\n");
1759 return -ENODEV;
1760 }
1761
1762 irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1763 dev_name(dmac->dev));
1764 if (!irqname)
1765 return -ENOMEM;
1766
1767 ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1768 irqname, dmac);
1769 if (ret) {
1770 dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1771 irq, ret);
1772 return ret;
1773 }
1774
1775 /* Enable runtime PM and initialize the device. */
1776 pm_runtime_enable(&pdev->dev);
1777 ret = pm_runtime_get_sync(&pdev->dev);
1778 if (ret < 0) {
1779 dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1780 return ret;
1781 }
1782
1783 ret = rcar_dmac_init(dmac);
1784 pm_runtime_put(&pdev->dev);
1785
1786 if (ret) {
1787 dev_err(&pdev->dev, "failed to reset device\n");
1788 goto error;
1789 }
1790
1791 /* Initialize the channels. */
1792 INIT_LIST_HEAD(&dmac->engine.channels);
1793
1794 for (i = 0; i < dmac->n_channels; ++i) {
1795 ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1796 i + channels_offset);
1797 if (ret < 0)
1798 goto error;
1799 }
1800
1801 /* Register the DMAC as a DMA provider for DT. */
1802 ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1803 NULL);
1804 if (ret < 0)
1805 goto error;
1806
1807 /*
1808 * Register the DMA engine device.
1809 *
1810 * Default transfer size of 32 bytes requires 32-byte alignment.
1811 */
1812 engine = &dmac->engine;
1813 dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1814 dma_cap_set(DMA_SLAVE, engine->cap_mask);
1815
1816 engine->dev = &pdev->dev;
1817 engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1818
1819 engine->src_addr_widths = widths;
1820 engine->dst_addr_widths = widths;
1821 engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1822 engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1823
1824 engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1825 engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1826 engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1827 engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1828 engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1829 engine->device_config = rcar_dmac_device_config;
1830 engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1831 engine->device_tx_status = rcar_dmac_tx_status;
1832 engine->device_issue_pending = rcar_dmac_issue_pending;
1833
1834 ret = dma_async_device_register(engine);
1835 if (ret < 0)
1836 goto error;
1837
1838 return 0;
1839
1840 error:
1841 of_dma_controller_free(pdev->dev.of_node);
1842 pm_runtime_disable(&pdev->dev);
1843 return ret;
1844 }
1845
1846 static int rcar_dmac_remove(struct platform_device *pdev)
1847 {
1848 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1849
1850 of_dma_controller_free(pdev->dev.of_node);
1851 dma_async_device_unregister(&dmac->engine);
1852
1853 pm_runtime_disable(&pdev->dev);
1854
1855 return 0;
1856 }
1857
1858 static void rcar_dmac_shutdown(struct platform_device *pdev)
1859 {
1860 struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1861
1862 rcar_dmac_stop(dmac);
1863 }
1864
1865 static const struct of_device_id rcar_dmac_of_ids[] = {
1866 { .compatible = "renesas,rcar-dmac", },
1867 { /* Sentinel */ }
1868 };
1869 MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1870
1871 static struct platform_driver rcar_dmac_driver = {
1872 .driver = {
1873 .pm = &rcar_dmac_pm,
1874 .name = "rcar-dmac",
1875 .of_match_table = rcar_dmac_of_ids,
1876 },
1877 .probe = rcar_dmac_probe,
1878 .remove = rcar_dmac_remove,
1879 .shutdown = rcar_dmac_shutdown,
1880 };
1881
1882 module_platform_driver(rcar_dmac_driver);
1883
1884 MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1885 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1886 MODULE_LICENSE("GPL v2");