]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/dma/sprd-dma.c
Merge branch 'readdir' (readdir speedup and sanity checking)
[mirror_ubuntu-hirsute-kernel.git] / drivers / dma / sprd-dma.c
1 /*
2 * Copyright (C) 2017 Spreadtrum Communications Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7 #include <linux/clk.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/dma/sprd-dma.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_dma.h>
18 #include <linux/of_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21
22 #include "virt-dma.h"
23
24 #define SPRD_DMA_CHN_REG_OFFSET 0x1000
25 #define SPRD_DMA_CHN_REG_LENGTH 0x40
26 #define SPRD_DMA_MEMCPY_MIN_SIZE 64
27
28 /* DMA global registers definition */
29 #define SPRD_DMA_GLB_PAUSE 0x0
30 #define SPRD_DMA_GLB_FRAG_WAIT 0x4
31 #define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
32 #define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
33 #define SPRD_DMA_GLB_INT_RAW_STS 0x10
34 #define SPRD_DMA_GLB_INT_MSK_STS 0x14
35 #define SPRD_DMA_GLB_REQ_STS 0x18
36 #define SPRD_DMA_GLB_CHN_EN_STS 0x1c
37 #define SPRD_DMA_GLB_DEBUG_STS 0x20
38 #define SPRD_DMA_GLB_ARB_SEL_STS 0x24
39 #define SPRD_DMA_GLB_2STAGE_GRP1 0x28
40 #define SPRD_DMA_GLB_2STAGE_GRP2 0x2c
41 #define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
42 #define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
43
44 /* DMA channel registers definition */
45 #define SPRD_DMA_CHN_PAUSE 0x0
46 #define SPRD_DMA_CHN_REQ 0x4
47 #define SPRD_DMA_CHN_CFG 0x8
48 #define SPRD_DMA_CHN_INTC 0xc
49 #define SPRD_DMA_CHN_SRC_ADDR 0x10
50 #define SPRD_DMA_CHN_DES_ADDR 0x14
51 #define SPRD_DMA_CHN_FRG_LEN 0x18
52 #define SPRD_DMA_CHN_BLK_LEN 0x1c
53 #define SPRD_DMA_CHN_TRSC_LEN 0x20
54 #define SPRD_DMA_CHN_TRSF_STEP 0x24
55 #define SPRD_DMA_CHN_WARP_PTR 0x28
56 #define SPRD_DMA_CHN_WARP_TO 0x2c
57 #define SPRD_DMA_CHN_LLIST_PTR 0x30
58 #define SPRD_DMA_CHN_FRAG_STEP 0x34
59 #define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
60 #define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
61
62 /* SPRD_DMA_GLB_2STAGE_GRP register definition */
63 #define SPRD_DMA_GLB_2STAGE_EN BIT(24)
64 #define SPRD_DMA_GLB_CHN_INT_MASK GENMASK(23, 20)
65 #define SPRD_DMA_GLB_DEST_INT BIT(22)
66 #define SPRD_DMA_GLB_SRC_INT BIT(20)
67 #define SPRD_DMA_GLB_LIST_DONE_TRG BIT(19)
68 #define SPRD_DMA_GLB_TRANS_DONE_TRG BIT(18)
69 #define SPRD_DMA_GLB_BLOCK_DONE_TRG BIT(17)
70 #define SPRD_DMA_GLB_FRAG_DONE_TRG BIT(16)
71 #define SPRD_DMA_GLB_TRG_OFFSET 16
72 #define SPRD_DMA_GLB_DEST_CHN_MASK GENMASK(13, 8)
73 #define SPRD_DMA_GLB_DEST_CHN_OFFSET 8
74 #define SPRD_DMA_GLB_SRC_CHN_MASK GENMASK(5, 0)
75
76 /* SPRD_DMA_CHN_INTC register definition */
77 #define SPRD_DMA_INT_MASK GENMASK(4, 0)
78 #define SPRD_DMA_INT_CLR_OFFSET 24
79 #define SPRD_DMA_FRAG_INT_EN BIT(0)
80 #define SPRD_DMA_BLK_INT_EN BIT(1)
81 #define SPRD_DMA_TRANS_INT_EN BIT(2)
82 #define SPRD_DMA_LIST_INT_EN BIT(3)
83 #define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
84
85 /* SPRD_DMA_CHN_CFG register definition */
86 #define SPRD_DMA_CHN_EN BIT(0)
87 #define SPRD_DMA_LINKLIST_EN BIT(4)
88 #define SPRD_DMA_WAIT_BDONE_OFFSET 24
89 #define SPRD_DMA_DONOT_WAIT_BDONE 1
90
91 /* SPRD_DMA_CHN_REQ register definition */
92 #define SPRD_DMA_REQ_EN BIT(0)
93
94 /* SPRD_DMA_CHN_PAUSE register definition */
95 #define SPRD_DMA_PAUSE_EN BIT(0)
96 #define SPRD_DMA_PAUSE_STS BIT(2)
97 #define SPRD_DMA_PAUSE_CNT 0x2000
98
99 /* DMA_CHN_WARP_* register definition */
100 #define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
101 #define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
102 #define SPRD_DMA_HIGH_ADDR_OFFSET 4
103
104 /* SPRD_DMA_CHN_INTC register definition */
105 #define SPRD_DMA_FRAG_INT_STS BIT(16)
106 #define SPRD_DMA_BLK_INT_STS BIT(17)
107 #define SPRD_DMA_TRSC_INT_STS BIT(18)
108 #define SPRD_DMA_LIST_INT_STS BIT(19)
109 #define SPRD_DMA_CFGERR_INT_STS BIT(20)
110 #define SPRD_DMA_CHN_INT_STS \
111 (SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
112 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
113 SPRD_DMA_CFGERR_INT_STS)
114
115 /* SPRD_DMA_CHN_FRG_LEN register definition */
116 #define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
117 #define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
118 #define SPRD_DMA_SWT_MODE_OFFSET 26
119 #define SPRD_DMA_REQ_MODE_OFFSET 24
120 #define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
121 #define SPRD_DMA_FIX_SEL_OFFSET 21
122 #define SPRD_DMA_FIX_EN_OFFSET 20
123 #define SPRD_DMA_LLIST_END BIT(19)
124 #define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
125
126 /* SPRD_DMA_CHN_BLK_LEN register definition */
127 #define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
128
129 /* SPRD_DMA_CHN_TRSC_LEN register definition */
130 #define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
131
132 /* SPRD_DMA_CHN_TRSF_STEP register definition */
133 #define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
134 #define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
135 #define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
136
137 /* define DMA channel mode & trigger mode mask */
138 #define SPRD_DMA_CHN_MODE_MASK GENMASK(7, 0)
139 #define SPRD_DMA_TRG_MODE_MASK GENMASK(7, 0)
140 #define SPRD_DMA_INT_TYPE_MASK GENMASK(7, 0)
141
142 /* define the DMA transfer step type */
143 #define SPRD_DMA_NONE_STEP 0
144 #define SPRD_DMA_BYTE_STEP 1
145 #define SPRD_DMA_SHORT_STEP 2
146 #define SPRD_DMA_WORD_STEP 4
147 #define SPRD_DMA_DWORD_STEP 8
148
149 #define SPRD_DMA_SOFTWARE_UID 0
150
151 /* dma data width values */
152 enum sprd_dma_datawidth {
153 SPRD_DMA_DATAWIDTH_1_BYTE,
154 SPRD_DMA_DATAWIDTH_2_BYTES,
155 SPRD_DMA_DATAWIDTH_4_BYTES,
156 SPRD_DMA_DATAWIDTH_8_BYTES,
157 };
158
159 /* dma channel hardware configuration */
160 struct sprd_dma_chn_hw {
161 u32 pause;
162 u32 req;
163 u32 cfg;
164 u32 intc;
165 u32 src_addr;
166 u32 des_addr;
167 u32 frg_len;
168 u32 blk_len;
169 u32 trsc_len;
170 u32 trsf_step;
171 u32 wrap_ptr;
172 u32 wrap_to;
173 u32 llist_ptr;
174 u32 frg_step;
175 u32 src_blk_step;
176 u32 des_blk_step;
177 };
178
179 /* dma request description */
180 struct sprd_dma_desc {
181 struct virt_dma_desc vd;
182 struct sprd_dma_chn_hw chn_hw;
183 enum dma_transfer_direction dir;
184 };
185
186 /* dma channel description */
187 struct sprd_dma_chn {
188 struct virt_dma_chan vc;
189 void __iomem *chn_base;
190 struct sprd_dma_linklist linklist;
191 struct dma_slave_config slave_cfg;
192 u32 chn_num;
193 u32 dev_id;
194 enum sprd_dma_chn_mode chn_mode;
195 enum sprd_dma_trg_mode trg_mode;
196 enum sprd_dma_int_type int_type;
197 struct sprd_dma_desc *cur_desc;
198 };
199
200 /* SPRD dma device */
201 struct sprd_dma_dev {
202 struct dma_device dma_dev;
203 void __iomem *glb_base;
204 struct clk *clk;
205 struct clk *ashb_clk;
206 int irq;
207 u32 total_chns;
208 struct sprd_dma_chn channels[0];
209 };
210
211 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
212 static struct of_dma_filter_info sprd_dma_info = {
213 .filter_fn = sprd_dma_filter_fn,
214 };
215
216 static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
217 {
218 return container_of(c, struct sprd_dma_chn, vc.chan);
219 }
220
221 static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
222 {
223 struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
224
225 return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
226 }
227
228 static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
229 {
230 return container_of(vd, struct sprd_dma_desc, vd);
231 }
232
233 static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
234 u32 mask, u32 val)
235 {
236 u32 orig = readl(sdev->glb_base + reg);
237 u32 tmp;
238
239 tmp = (orig & ~mask) | val;
240 writel(tmp, sdev->glb_base + reg);
241 }
242
243 static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
244 u32 mask, u32 val)
245 {
246 u32 orig = readl(schan->chn_base + reg);
247 u32 tmp;
248
249 tmp = (orig & ~mask) | val;
250 writel(tmp, schan->chn_base + reg);
251 }
252
253 static int sprd_dma_enable(struct sprd_dma_dev *sdev)
254 {
255 int ret;
256
257 ret = clk_prepare_enable(sdev->clk);
258 if (ret)
259 return ret;
260
261 /*
262 * The ashb_clk is optional and only for AGCP DMA controller, so we
263 * need add one condition to check if the ashb_clk need enable.
264 */
265 if (!IS_ERR(sdev->ashb_clk))
266 ret = clk_prepare_enable(sdev->ashb_clk);
267
268 return ret;
269 }
270
271 static void sprd_dma_disable(struct sprd_dma_dev *sdev)
272 {
273 clk_disable_unprepare(sdev->clk);
274
275 /*
276 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
277 */
278 if (!IS_ERR(sdev->ashb_clk))
279 clk_disable_unprepare(sdev->ashb_clk);
280 }
281
282 static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
283 {
284 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
285 u32 dev_id = schan->dev_id;
286
287 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
288 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
289 SPRD_DMA_GLB_REQ_UID(dev_id);
290
291 writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
292 }
293 }
294
295 static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
296 {
297 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
298 u32 dev_id = schan->dev_id;
299
300 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
301 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
302 SPRD_DMA_GLB_REQ_UID(dev_id);
303
304 writel(0, sdev->glb_base + uid_offset);
305 }
306 }
307
308 static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
309 {
310 sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
311 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
312 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
313 }
314
315 static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
316 {
317 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
318 SPRD_DMA_CHN_EN);
319 }
320
321 static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
322 {
323 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
324 }
325
326 static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
327 {
328 sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
329 SPRD_DMA_REQ_EN);
330 }
331
332 static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
333 {
334 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
335 u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
336
337 if (enable) {
338 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
339 SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
340
341 do {
342 pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
343 if (pause & SPRD_DMA_PAUSE_STS)
344 break;
345
346 cpu_relax();
347 } while (--timeout > 0);
348
349 if (!timeout)
350 dev_warn(sdev->dma_dev.dev,
351 "pause dma controller timeout\n");
352 } else {
353 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
354 SPRD_DMA_PAUSE_EN, 0);
355 }
356 }
357
358 static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
359 {
360 u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
361
362 if (!(cfg & SPRD_DMA_CHN_EN))
363 return;
364
365 sprd_dma_pause_resume(schan, true);
366 sprd_dma_disable_chn(schan);
367 }
368
369 static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
370 {
371 unsigned long addr, addr_high;
372
373 addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
374 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
375 SPRD_DMA_HIGH_ADDR_MASK;
376
377 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
378 }
379
380 static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
381 {
382 unsigned long addr, addr_high;
383
384 addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
385 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
386 SPRD_DMA_HIGH_ADDR_MASK;
387
388 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
389 }
390
391 static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
392 {
393 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
394 u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
395 SPRD_DMA_CHN_INT_STS;
396
397 switch (intc_sts) {
398 case SPRD_DMA_CFGERR_INT_STS:
399 return SPRD_DMA_CFGERR_INT;
400
401 case SPRD_DMA_LIST_INT_STS:
402 return SPRD_DMA_LIST_INT;
403
404 case SPRD_DMA_TRSC_INT_STS:
405 return SPRD_DMA_TRANS_INT;
406
407 case SPRD_DMA_BLK_INT_STS:
408 return SPRD_DMA_BLK_INT;
409
410 case SPRD_DMA_FRAG_INT_STS:
411 return SPRD_DMA_FRAG_INT;
412
413 default:
414 dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
415 return SPRD_DMA_NO_INT;
416 }
417 }
418
419 static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
420 {
421 u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
422
423 return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
424 }
425
426 static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
427 {
428 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
429 u32 val, chn = schan->chn_num + 1;
430
431 switch (schan->chn_mode) {
432 case SPRD_DMA_SRC_CHN0:
433 val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
434 val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
435 val |= SPRD_DMA_GLB_2STAGE_EN;
436 if (schan->int_type != SPRD_DMA_NO_INT)
437 val |= SPRD_DMA_GLB_SRC_INT;
438
439 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
440 break;
441
442 case SPRD_DMA_SRC_CHN1:
443 val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
444 val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
445 val |= SPRD_DMA_GLB_2STAGE_EN;
446 if (schan->int_type != SPRD_DMA_NO_INT)
447 val |= SPRD_DMA_GLB_SRC_INT;
448
449 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
450 break;
451
452 case SPRD_DMA_DST_CHN0:
453 val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
454 SPRD_DMA_GLB_DEST_CHN_MASK;
455 val |= SPRD_DMA_GLB_2STAGE_EN;
456 if (schan->int_type != SPRD_DMA_NO_INT)
457 val |= SPRD_DMA_GLB_DEST_INT;
458
459 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
460 break;
461
462 case SPRD_DMA_DST_CHN1:
463 val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
464 SPRD_DMA_GLB_DEST_CHN_MASK;
465 val |= SPRD_DMA_GLB_2STAGE_EN;
466 if (schan->int_type != SPRD_DMA_NO_INT)
467 val |= SPRD_DMA_GLB_DEST_INT;
468
469 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
470 break;
471
472 default:
473 dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
474 schan->chn_mode);
475 return -EINVAL;
476 }
477
478 return 0;
479 }
480
481 static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
482 struct sprd_dma_desc *sdesc)
483 {
484 struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
485
486 writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
487 writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
488 writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
489 writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
490 writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
491 writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
492 writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
493 writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
494 writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
495 writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
496 writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
497 writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
498 writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
499 writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
500 writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
501 writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
502 }
503
504 static void sprd_dma_start(struct sprd_dma_chn *schan)
505 {
506 struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
507
508 if (!vd)
509 return;
510
511 list_del(&vd->node);
512 schan->cur_desc = to_sprd_dma_desc(vd);
513
514 /*
515 * Set 2-stage configuration if the channel starts one 2-stage
516 * transfer.
517 */
518 if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
519 return;
520
521 /*
522 * Copy the DMA configuration from DMA descriptor to this hardware
523 * channel.
524 */
525 sprd_dma_set_chn_config(schan, schan->cur_desc);
526 sprd_dma_set_uid(schan);
527 sprd_dma_enable_chn(schan);
528
529 if (schan->dev_id == SPRD_DMA_SOFTWARE_UID &&
530 schan->chn_mode != SPRD_DMA_DST_CHN0 &&
531 schan->chn_mode != SPRD_DMA_DST_CHN1)
532 sprd_dma_soft_request(schan);
533 }
534
535 static void sprd_dma_stop(struct sprd_dma_chn *schan)
536 {
537 sprd_dma_stop_and_disable(schan);
538 sprd_dma_unset_uid(schan);
539 sprd_dma_clear_int(schan);
540 schan->cur_desc = NULL;
541 }
542
543 static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
544 enum sprd_dma_int_type int_type,
545 enum sprd_dma_req_mode req_mode)
546 {
547 if (int_type == SPRD_DMA_NO_INT)
548 return false;
549
550 if (int_type >= req_mode + 1)
551 return true;
552 else
553 return false;
554 }
555
556 static irqreturn_t dma_irq_handle(int irq, void *dev_id)
557 {
558 struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
559 u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
560 struct sprd_dma_chn *schan;
561 struct sprd_dma_desc *sdesc;
562 enum sprd_dma_req_mode req_type;
563 enum sprd_dma_int_type int_type;
564 bool trans_done = false, cyclic = false;
565 u32 i;
566
567 while (irq_status) {
568 i = __ffs(irq_status);
569 irq_status &= (irq_status - 1);
570 schan = &sdev->channels[i];
571
572 spin_lock(&schan->vc.lock);
573
574 sdesc = schan->cur_desc;
575 if (!sdesc) {
576 spin_unlock(&schan->vc.lock);
577 return IRQ_HANDLED;
578 }
579
580 int_type = sprd_dma_get_int_type(schan);
581 req_type = sprd_dma_get_req_type(schan);
582 sprd_dma_clear_int(schan);
583
584 /* cyclic mode schedule callback */
585 cyclic = schan->linklist.phy_addr ? true : false;
586 if (cyclic == true) {
587 vchan_cyclic_callback(&sdesc->vd);
588 } else {
589 /* Check if the dma request descriptor is done. */
590 trans_done = sprd_dma_check_trans_done(sdesc, int_type,
591 req_type);
592 if (trans_done == true) {
593 vchan_cookie_complete(&sdesc->vd);
594 schan->cur_desc = NULL;
595 sprd_dma_start(schan);
596 }
597 }
598 spin_unlock(&schan->vc.lock);
599 }
600
601 return IRQ_HANDLED;
602 }
603
604 static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
605 {
606 return pm_runtime_get_sync(chan->device->dev);
607 }
608
609 static void sprd_dma_free_chan_resources(struct dma_chan *chan)
610 {
611 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
612 unsigned long flags;
613
614 spin_lock_irqsave(&schan->vc.lock, flags);
615 sprd_dma_stop(schan);
616 spin_unlock_irqrestore(&schan->vc.lock, flags);
617
618 vchan_free_chan_resources(&schan->vc);
619 pm_runtime_put(chan->device->dev);
620 }
621
622 static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
623 dma_cookie_t cookie,
624 struct dma_tx_state *txstate)
625 {
626 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
627 struct virt_dma_desc *vd;
628 unsigned long flags;
629 enum dma_status ret;
630 u32 pos;
631
632 ret = dma_cookie_status(chan, cookie, txstate);
633 if (ret == DMA_COMPLETE || !txstate)
634 return ret;
635
636 spin_lock_irqsave(&schan->vc.lock, flags);
637 vd = vchan_find_desc(&schan->vc, cookie);
638 if (vd) {
639 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
640 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
641
642 if (hw->trsc_len > 0)
643 pos = hw->trsc_len;
644 else if (hw->blk_len > 0)
645 pos = hw->blk_len;
646 else if (hw->frg_len > 0)
647 pos = hw->frg_len;
648 else
649 pos = 0;
650 } else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
651 struct sprd_dma_desc *sdesc = schan->cur_desc;
652
653 if (sdesc->dir == DMA_DEV_TO_MEM)
654 pos = sprd_dma_get_dst_addr(schan);
655 else
656 pos = sprd_dma_get_src_addr(schan);
657 } else {
658 pos = 0;
659 }
660 spin_unlock_irqrestore(&schan->vc.lock, flags);
661
662 dma_set_residue(txstate, pos);
663 return ret;
664 }
665
666 static void sprd_dma_issue_pending(struct dma_chan *chan)
667 {
668 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
669 unsigned long flags;
670
671 spin_lock_irqsave(&schan->vc.lock, flags);
672 if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
673 sprd_dma_start(schan);
674 spin_unlock_irqrestore(&schan->vc.lock, flags);
675 }
676
677 static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
678 {
679 switch (buswidth) {
680 case DMA_SLAVE_BUSWIDTH_1_BYTE:
681 case DMA_SLAVE_BUSWIDTH_2_BYTES:
682 case DMA_SLAVE_BUSWIDTH_4_BYTES:
683 case DMA_SLAVE_BUSWIDTH_8_BYTES:
684 return ffs(buswidth) - 1;
685
686 default:
687 return -EINVAL;
688 }
689 }
690
691 static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
692 {
693 switch (buswidth) {
694 case DMA_SLAVE_BUSWIDTH_1_BYTE:
695 case DMA_SLAVE_BUSWIDTH_2_BYTES:
696 case DMA_SLAVE_BUSWIDTH_4_BYTES:
697 case DMA_SLAVE_BUSWIDTH_8_BYTES:
698 return buswidth;
699
700 default:
701 return -EINVAL;
702 }
703 }
704
705 static int sprd_dma_fill_desc(struct dma_chan *chan,
706 struct sprd_dma_chn_hw *hw,
707 unsigned int sglen, int sg_index,
708 dma_addr_t src, dma_addr_t dst, u32 len,
709 enum dma_transfer_direction dir,
710 unsigned long flags,
711 struct dma_slave_config *slave_cfg)
712 {
713 struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
714 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
715 enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
716 u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
717 u32 int_mode = flags & SPRD_DMA_INT_MASK;
718 int src_datawidth, dst_datawidth, src_step, dst_step;
719 u32 temp, fix_mode = 0, fix_en = 0;
720
721 if (dir == DMA_MEM_TO_DEV) {
722 src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
723 if (src_step < 0) {
724 dev_err(sdev->dma_dev.dev, "invalid source step\n");
725 return src_step;
726 }
727
728 /*
729 * For 2-stage transfer, destination channel step can not be 0,
730 * since destination device is AON IRAM.
731 */
732 if (chn_mode == SPRD_DMA_DST_CHN0 ||
733 chn_mode == SPRD_DMA_DST_CHN1)
734 dst_step = src_step;
735 else
736 dst_step = SPRD_DMA_NONE_STEP;
737 } else {
738 dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
739 if (dst_step < 0) {
740 dev_err(sdev->dma_dev.dev, "invalid destination step\n");
741 return dst_step;
742 }
743 src_step = SPRD_DMA_NONE_STEP;
744 }
745
746 src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
747 if (src_datawidth < 0) {
748 dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
749 return src_datawidth;
750 }
751
752 dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
753 if (dst_datawidth < 0) {
754 dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
755 return dst_datawidth;
756 }
757
758 if (slave_cfg->slave_id)
759 schan->dev_id = slave_cfg->slave_id;
760
761 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
762
763 /*
764 * wrap_ptr and wrap_to will save the high 4 bits source address and
765 * destination address.
766 */
767 hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
768 hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
769 hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
770 hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
771
772 /*
773 * If the src step and dst step both are 0 or both are not 0, that means
774 * we can not enable the fix mode. If one is 0 and another one is not,
775 * we can enable the fix mode.
776 */
777 if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
778 fix_en = 0;
779 } else {
780 fix_en = 1;
781 if (src_step)
782 fix_mode = 1;
783 else
784 fix_mode = 0;
785 }
786
787 hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
788
789 temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
790 temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
791 temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
792 temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
793 temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
794 temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
795 hw->frg_len = temp;
796
797 hw->blk_len = slave_cfg->src_maxburst & SPRD_DMA_BLK_LEN_MASK;
798 hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
799
800 temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
801 temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
802 hw->trsf_step = temp;
803
804 /* link-list configuration */
805 if (schan->linklist.phy_addr) {
806 hw->cfg |= SPRD_DMA_LINKLIST_EN;
807
808 /* link-list index */
809 temp = sglen ? (sg_index + 1) % sglen : 0;
810
811 /* Next link-list configuration's physical address offset */
812 temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
813 /*
814 * Set the link-list pointer point to next link-list
815 * configuration's physical address.
816 */
817 hw->llist_ptr = schan->linklist.phy_addr + temp;
818 } else {
819 hw->llist_ptr = 0;
820 }
821
822 hw->frg_step = 0;
823 hw->src_blk_step = 0;
824 hw->des_blk_step = 0;
825 return 0;
826 }
827
828 static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
829 unsigned int sglen, int sg_index,
830 dma_addr_t src, dma_addr_t dst, u32 len,
831 enum dma_transfer_direction dir,
832 unsigned long flags,
833 struct dma_slave_config *slave_cfg)
834 {
835 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
836 struct sprd_dma_chn_hw *hw;
837
838 if (!schan->linklist.virt_addr)
839 return -EINVAL;
840
841 hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
842 sg_index * sizeof(*hw));
843
844 return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
845 dir, flags, slave_cfg);
846 }
847
848 static struct dma_async_tx_descriptor *
849 sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
850 size_t len, unsigned long flags)
851 {
852 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
853 struct sprd_dma_desc *sdesc;
854 struct sprd_dma_chn_hw *hw;
855 enum sprd_dma_datawidth datawidth;
856 u32 step, temp;
857
858 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
859 if (!sdesc)
860 return NULL;
861
862 hw = &sdesc->chn_hw;
863
864 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
865 hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
866 hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
867 hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
868 hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
869 SPRD_DMA_HIGH_ADDR_MASK;
870 hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
871 SPRD_DMA_HIGH_ADDR_MASK;
872
873 if (IS_ALIGNED(len, 8)) {
874 datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
875 step = SPRD_DMA_DWORD_STEP;
876 } else if (IS_ALIGNED(len, 4)) {
877 datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
878 step = SPRD_DMA_WORD_STEP;
879 } else if (IS_ALIGNED(len, 2)) {
880 datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
881 step = SPRD_DMA_SHORT_STEP;
882 } else {
883 datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
884 step = SPRD_DMA_BYTE_STEP;
885 }
886
887 temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
888 temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
889 temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
890 temp |= len & SPRD_DMA_FRG_LEN_MASK;
891 hw->frg_len = temp;
892
893 hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
894 hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
895
896 temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
897 temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
898 hw->trsf_step = temp;
899
900 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
901 }
902
903 static struct dma_async_tx_descriptor *
904 sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
905 unsigned int sglen, enum dma_transfer_direction dir,
906 unsigned long flags, void *context)
907 {
908 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
909 struct dma_slave_config *slave_cfg = &schan->slave_cfg;
910 dma_addr_t src = 0, dst = 0;
911 dma_addr_t start_src = 0, start_dst = 0;
912 struct sprd_dma_desc *sdesc;
913 struct scatterlist *sg;
914 u32 len = 0;
915 int ret, i;
916
917 if (!is_slave_direction(dir))
918 return NULL;
919
920 if (context) {
921 struct sprd_dma_linklist *ll_cfg =
922 (struct sprd_dma_linklist *)context;
923
924 schan->linklist.phy_addr = ll_cfg->phy_addr;
925 schan->linklist.virt_addr = ll_cfg->virt_addr;
926 } else {
927 schan->linklist.phy_addr = 0;
928 schan->linklist.virt_addr = 0;
929 }
930
931 /*
932 * Set channel mode, interrupt mode and trigger mode for 2-stage
933 * transfer.
934 */
935 schan->chn_mode =
936 (flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
937 schan->trg_mode =
938 (flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
939 schan->int_type = flags & SPRD_DMA_INT_TYPE_MASK;
940
941 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
942 if (!sdesc)
943 return NULL;
944
945 sdesc->dir = dir;
946
947 for_each_sg(sgl, sg, sglen, i) {
948 len = sg_dma_len(sg);
949
950 if (dir == DMA_MEM_TO_DEV) {
951 src = sg_dma_address(sg);
952 dst = slave_cfg->dst_addr;
953 } else {
954 src = slave_cfg->src_addr;
955 dst = sg_dma_address(sg);
956 }
957
958 if (!i) {
959 start_src = src;
960 start_dst = dst;
961 }
962
963 /*
964 * The link-list mode needs at least 2 link-list
965 * configurations. If there is only one sg, it doesn't
966 * need to fill the link-list configuration.
967 */
968 if (sglen < 2)
969 break;
970
971 ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
972 dir, flags, slave_cfg);
973 if (ret) {
974 kfree(sdesc);
975 return NULL;
976 }
977 }
978
979 ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, start_src,
980 start_dst, len, dir, flags, slave_cfg);
981 if (ret) {
982 kfree(sdesc);
983 return NULL;
984 }
985
986 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
987 }
988
989 static int sprd_dma_slave_config(struct dma_chan *chan,
990 struct dma_slave_config *config)
991 {
992 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
993 struct dma_slave_config *slave_cfg = &schan->slave_cfg;
994
995 memcpy(slave_cfg, config, sizeof(*config));
996 return 0;
997 }
998
999 static int sprd_dma_pause(struct dma_chan *chan)
1000 {
1001 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1002 unsigned long flags;
1003
1004 spin_lock_irqsave(&schan->vc.lock, flags);
1005 sprd_dma_pause_resume(schan, true);
1006 spin_unlock_irqrestore(&schan->vc.lock, flags);
1007
1008 return 0;
1009 }
1010
1011 static int sprd_dma_resume(struct dma_chan *chan)
1012 {
1013 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1014 unsigned long flags;
1015
1016 spin_lock_irqsave(&schan->vc.lock, flags);
1017 sprd_dma_pause_resume(schan, false);
1018 spin_unlock_irqrestore(&schan->vc.lock, flags);
1019
1020 return 0;
1021 }
1022
1023 static int sprd_dma_terminate_all(struct dma_chan *chan)
1024 {
1025 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1026 unsigned long flags;
1027 LIST_HEAD(head);
1028
1029 spin_lock_irqsave(&schan->vc.lock, flags);
1030 sprd_dma_stop(schan);
1031
1032 vchan_get_all_descriptors(&schan->vc, &head);
1033 spin_unlock_irqrestore(&schan->vc.lock, flags);
1034
1035 vchan_dma_desc_free_list(&schan->vc, &head);
1036 return 0;
1037 }
1038
1039 static void sprd_dma_free_desc(struct virt_dma_desc *vd)
1040 {
1041 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
1042
1043 kfree(sdesc);
1044 }
1045
1046 static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
1047 {
1048 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1049 u32 slave_id = *(u32 *)param;
1050
1051 schan->dev_id = slave_id;
1052 return true;
1053 }
1054
1055 static int sprd_dma_probe(struct platform_device *pdev)
1056 {
1057 struct device_node *np = pdev->dev.of_node;
1058 struct sprd_dma_dev *sdev;
1059 struct sprd_dma_chn *dma_chn;
1060 struct resource *res;
1061 u32 chn_count;
1062 int ret, i;
1063
1064 ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
1065 if (ret) {
1066 dev_err(&pdev->dev, "get dma channels count failed\n");
1067 return ret;
1068 }
1069
1070 sdev = devm_kzalloc(&pdev->dev,
1071 struct_size(sdev, channels, chn_count),
1072 GFP_KERNEL);
1073 if (!sdev)
1074 return -ENOMEM;
1075
1076 sdev->clk = devm_clk_get(&pdev->dev, "enable");
1077 if (IS_ERR(sdev->clk)) {
1078 dev_err(&pdev->dev, "get enable clock failed\n");
1079 return PTR_ERR(sdev->clk);
1080 }
1081
1082 /* ashb clock is optional for AGCP DMA */
1083 sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
1084 if (IS_ERR(sdev->ashb_clk))
1085 dev_warn(&pdev->dev, "no optional ashb eb clock\n");
1086
1087 /*
1088 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
1089 * DMA controller, it can or do not request the irq, which will save
1090 * system power without resuming system by DMA interrupts if AGCP DMA
1091 * does not request the irq. Thus the DMA interrupts property should
1092 * be optional.
1093 */
1094 sdev->irq = platform_get_irq(pdev, 0);
1095 if (sdev->irq > 0) {
1096 ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
1097 0, "sprd_dma", (void *)sdev);
1098 if (ret < 0) {
1099 dev_err(&pdev->dev, "request dma irq failed\n");
1100 return ret;
1101 }
1102 } else {
1103 dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
1104 }
1105
1106 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1107 sdev->glb_base = devm_ioremap_resource(&pdev->dev, res);
1108 if (IS_ERR(sdev->glb_base))
1109 return PTR_ERR(sdev->glb_base);
1110
1111 dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
1112 sdev->total_chns = chn_count;
1113 sdev->dma_dev.chancnt = chn_count;
1114 INIT_LIST_HEAD(&sdev->dma_dev.channels);
1115 INIT_LIST_HEAD(&sdev->dma_dev.global_node);
1116 sdev->dma_dev.dev = &pdev->dev;
1117 sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
1118 sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
1119 sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
1120 sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
1121 sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
1122 sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
1123 sdev->dma_dev.device_config = sprd_dma_slave_config;
1124 sdev->dma_dev.device_pause = sprd_dma_pause;
1125 sdev->dma_dev.device_resume = sprd_dma_resume;
1126 sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
1127
1128 for (i = 0; i < chn_count; i++) {
1129 dma_chn = &sdev->channels[i];
1130 dma_chn->chn_num = i;
1131 dma_chn->cur_desc = NULL;
1132 /* get each channel's registers base address. */
1133 dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
1134 SPRD_DMA_CHN_REG_LENGTH * i;
1135
1136 dma_chn->vc.desc_free = sprd_dma_free_desc;
1137 vchan_init(&dma_chn->vc, &sdev->dma_dev);
1138 }
1139
1140 platform_set_drvdata(pdev, sdev);
1141 ret = sprd_dma_enable(sdev);
1142 if (ret)
1143 return ret;
1144
1145 pm_runtime_set_active(&pdev->dev);
1146 pm_runtime_enable(&pdev->dev);
1147
1148 ret = pm_runtime_get_sync(&pdev->dev);
1149 if (ret < 0)
1150 goto err_rpm;
1151
1152 ret = dma_async_device_register(&sdev->dma_dev);
1153 if (ret < 0) {
1154 dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1155 goto err_register;
1156 }
1157
1158 sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1159 ret = of_dma_controller_register(np, of_dma_simple_xlate,
1160 &sprd_dma_info);
1161 if (ret)
1162 goto err_of_register;
1163
1164 pm_runtime_put(&pdev->dev);
1165 return 0;
1166
1167 err_of_register:
1168 dma_async_device_unregister(&sdev->dma_dev);
1169 err_register:
1170 pm_runtime_put_noidle(&pdev->dev);
1171 pm_runtime_disable(&pdev->dev);
1172 err_rpm:
1173 sprd_dma_disable(sdev);
1174 return ret;
1175 }
1176
1177 static int sprd_dma_remove(struct platform_device *pdev)
1178 {
1179 struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1180 struct sprd_dma_chn *c, *cn;
1181 int ret;
1182
1183 ret = pm_runtime_get_sync(&pdev->dev);
1184 if (ret < 0)
1185 return ret;
1186
1187 /* explicitly free the irq */
1188 if (sdev->irq > 0)
1189 devm_free_irq(&pdev->dev, sdev->irq, sdev);
1190
1191 list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1192 vc.chan.device_node) {
1193 list_del(&c->vc.chan.device_node);
1194 tasklet_kill(&c->vc.task);
1195 }
1196
1197 of_dma_controller_free(pdev->dev.of_node);
1198 dma_async_device_unregister(&sdev->dma_dev);
1199 sprd_dma_disable(sdev);
1200
1201 pm_runtime_put_noidle(&pdev->dev);
1202 pm_runtime_disable(&pdev->dev);
1203 return 0;
1204 }
1205
1206 static const struct of_device_id sprd_dma_match[] = {
1207 { .compatible = "sprd,sc9860-dma", },
1208 {},
1209 };
1210
1211 static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1212 {
1213 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1214
1215 sprd_dma_disable(sdev);
1216 return 0;
1217 }
1218
1219 static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1220 {
1221 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1222 int ret;
1223
1224 ret = sprd_dma_enable(sdev);
1225 if (ret)
1226 dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1227
1228 return ret;
1229 }
1230
1231 static const struct dev_pm_ops sprd_dma_pm_ops = {
1232 SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1233 sprd_dma_runtime_resume,
1234 NULL)
1235 };
1236
1237 static struct platform_driver sprd_dma_driver = {
1238 .probe = sprd_dma_probe,
1239 .remove = sprd_dma_remove,
1240 .driver = {
1241 .name = "sprd-dma",
1242 .of_match_table = sprd_dma_match,
1243 .pm = &sprd_dma_pm_ops,
1244 },
1245 };
1246 module_platform_driver(sprd_dma_driver);
1247
1248 MODULE_LICENSE("GPL v2");
1249 MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1250 MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1251 MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
1252 MODULE_ALIAS("platform:sprd-dma");