]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/dma/ste_dma40.c
dma40: pass the info pointer all the way to reduce argument count
[mirror_ubuntu-artful-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan) (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE (1 << 31)
44 #define D40_ALLOC_PHY (1 << 30)
45 #define D40_ALLOC_LOG_FREE 0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51 * enum 40_command - The different commands and/or statuses.
52 *
53 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57 */
58 enum d40_command {
59 D40_DMA_STOP = 0,
60 D40_DMA_RUN = 1,
61 D40_DMA_SUSPEND_REQ = 2,
62 D40_DMA_SUSPENDED = 3
63 };
64
65 /**
66 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 *
68 * @base: Pointer to memory area when the pre_alloc_lli's are not large
69 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70 * pre_alloc_lli is used.
71 * @dma_addr: DMA address, if mapped
72 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74 * one buffer to one buffer.
75 */
76 struct d40_lli_pool {
77 void *base;
78 int size;
79 dma_addr_t dma_addr;
80 /* Space for dst and src, plus an extra for padding */
81 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83
84 /**
85 * struct d40_desc - A descriptor is one DMA job.
86 *
87 * @lli_phy: LLI settings for physical channel. Both src and dst=
88 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89 * lli_len equals one.
90 * @lli_log: Same as above but for logical channels.
91 * @lli_pool: The pool with two entries pre-allocated.
92 * @lli_len: Number of llis of current descriptor.
93 * @lli_current: Number of transfered llis.
94 * @lcla_alloc: Number of LCLA entries allocated.
95 * @txd: DMA engine struct. Used for among other things for communication
96 * during a transfer.
97 * @node: List entry.
98 * @is_in_client_list: true if the client owns this descriptor.
99 * the previous one.
100 *
101 * This descriptor is used for both logical and physical transfers.
102 */
103 struct d40_desc {
104 /* LLI physical */
105 struct d40_phy_lli_bidir lli_phy;
106 /* LLI logical */
107 struct d40_log_lli_bidir lli_log;
108
109 struct d40_lli_pool lli_pool;
110 int lli_len;
111 int lli_current;
112 int lcla_alloc;
113
114 struct dma_async_tx_descriptor txd;
115 struct list_head node;
116
117 bool is_in_client_list;
118 };
119
120 /**
121 * struct d40_lcla_pool - LCLA pool settings and data.
122 *
123 * @base: The virtual address of LCLA. 18 bit aligned.
124 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125 * This pointer is only there for clean-up on error.
126 * @pages: The number of pages needed for all physical channels.
127 * Only used later for clean-up on error
128 * @lock: Lock to protect the content in this struct.
129 * @alloc_map: big map over which LCLA entry is own by which job.
130 */
131 struct d40_lcla_pool {
132 void *base;
133 dma_addr_t dma_addr;
134 void *base_unaligned;
135 int pages;
136 spinlock_t lock;
137 struct d40_desc **alloc_map;
138 };
139
140 /**
141 * struct d40_phy_res - struct for handling eventlines mapped to physical
142 * channels.
143 *
144 * @lock: A lock protection this entity.
145 * @num: The physical channel number of this entity.
146 * @allocated_src: Bit mapped to show which src event line's are mapped to
147 * this physical channel. Can also be free or physically allocated.
148 * @allocated_dst: Same as for src but is dst.
149 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150 * event line number.
151 */
152 struct d40_phy_res {
153 spinlock_t lock;
154 int num;
155 u32 allocated_src;
156 u32 allocated_dst;
157 };
158
159 struct d40_base;
160
161 /**
162 * struct d40_chan - Struct that describes a channel.
163 *
164 * @lock: A spinlock to protect this struct.
165 * @log_num: The logical number, if any of this channel.
166 * @completed: Starts with 1, after first interrupt it is set to dma engine's
167 * current cookie.
168 * @pending_tx: The number of pending transfers. Used between interrupt handler
169 * and tasklet.
170 * @busy: Set to true when transfer is ongoing on this channel.
171 * @phy_chan: Pointer to physical channel which this instance runs on. If this
172 * point is NULL, then the channel is not allocated.
173 * @chan: DMA engine handle.
174 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175 * transfer and call client callback.
176 * @client: Cliented owned descriptor list.
177 * @active: Active descriptor.
178 * @queue: Queued jobs.
179 * @dma_cfg: The client configuration of this dma channel.
180 * @configured: whether the dma_cfg configuration is valid
181 * @base: Pointer to the device instance struct.
182 * @src_def_cfg: Default cfg register setting for src.
183 * @dst_def_cfg: Default cfg register setting for dst.
184 * @log_def: Default logical channel settings.
185 * @lcla: Space for one dst src pair for logical channel transfers.
186 * @lcpa: Pointer to dst and src lcpa settings.
187 *
188 * This struct can either "be" a logical or a physical channel.
189 */
190 struct d40_chan {
191 spinlock_t lock;
192 int log_num;
193 /* ID of the most recent completed transfer */
194 int completed;
195 int pending_tx;
196 bool busy;
197 struct d40_phy_res *phy_chan;
198 struct dma_chan chan;
199 struct tasklet_struct tasklet;
200 struct list_head client;
201 struct list_head active;
202 struct list_head queue;
203 struct stedma40_chan_cfg dma_cfg;
204 bool configured;
205 struct d40_base *base;
206 /* Default register configurations */
207 u32 src_def_cfg;
208 u32 dst_def_cfg;
209 struct d40_def_lcsp log_def;
210 struct d40_log_lli_full *lcpa;
211 /* Runtime reconfiguration */
212 dma_addr_t runtime_addr;
213 enum dma_data_direction runtime_direction;
214 };
215
216 /**
217 * struct d40_base - The big global struct, one for each probe'd instance.
218 *
219 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220 * @execmd_lock: Lock for execute command usage since several channels share
221 * the same physical register.
222 * @dev: The device structure.
223 * @virtbase: The virtual base address of the DMA's register.
224 * @rev: silicon revision detected.
225 * @clk: Pointer to the DMA clock structure.
226 * @phy_start: Physical memory start of the DMA registers.
227 * @phy_size: Size of the DMA register map.
228 * @irq: The IRQ number.
229 * @num_phy_chans: The number of physical channels. Read from HW. This
230 * is the number of available channels for this driver, not counting "Secure
231 * mode" allocated physical channels.
232 * @num_log_chans: The number of logical channels. Calculated from
233 * num_phy_chans.
234 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235 * @dma_slave: dma_device channels that can do only do slave transfers.
236 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237 * @log_chans: Room for all possible logical channels in system.
238 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
239 * to log_chans entries.
240 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
241 * to phy_chans entries.
242 * @plat_data: Pointer to provided platform_data which is the driver
243 * configuration.
244 * @phy_res: Vector containing all physical channels.
245 * @lcla_pool: lcla pool settings and data.
246 * @lcpa_base: The virtual mapped address of LCPA.
247 * @phy_lcpa: The physical address of the LCPA.
248 * @lcpa_size: The size of the LCPA area.
249 * @desc_slab: cache for descriptors.
250 */
251 struct d40_base {
252 spinlock_t interrupt_lock;
253 spinlock_t execmd_lock;
254 struct device *dev;
255 void __iomem *virtbase;
256 u8 rev:4;
257 struct clk *clk;
258 phys_addr_t phy_start;
259 resource_size_t phy_size;
260 int irq;
261 int num_phy_chans;
262 int num_log_chans;
263 struct dma_device dma_both;
264 struct dma_device dma_slave;
265 struct dma_device dma_memcpy;
266 struct d40_chan *phy_chans;
267 struct d40_chan *log_chans;
268 struct d40_chan **lookup_log_chans;
269 struct d40_chan **lookup_phy_chans;
270 struct stedma40_platform_data *plat_data;
271 /* Physical half channels */
272 struct d40_phy_res *phy_res;
273 struct d40_lcla_pool lcla_pool;
274 void *lcpa_base;
275 dma_addr_t phy_lcpa;
276 resource_size_t lcpa_size;
277 struct kmem_cache *desc_slab;
278 };
279
280 /**
281 * struct d40_interrupt_lookup - lookup table for interrupt handler
282 *
283 * @src: Interrupt mask register.
284 * @clr: Interrupt clear register.
285 * @is_error: true if this is an error interrupt.
286 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
287 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
288 */
289 struct d40_interrupt_lookup {
290 u32 src;
291 u32 clr;
292 bool is_error;
293 int offset;
294 };
295
296 /**
297 * struct d40_reg_val - simple lookup struct
298 *
299 * @reg: The register.
300 * @val: The value that belongs to the register in reg.
301 */
302 struct d40_reg_val {
303 unsigned int reg;
304 unsigned int val;
305 };
306
307 static struct device *chan2dev(struct d40_chan *d40c)
308 {
309 return &d40c->chan.dev->device;
310 }
311
312 static bool chan_is_physical(struct d40_chan *chan)
313 {
314 return chan->log_num == D40_PHY_CHAN;
315 }
316
317 static bool chan_is_logical(struct d40_chan *chan)
318 {
319 return !chan_is_physical(chan);
320 }
321
322 static void __iomem *chan_base(struct d40_chan *chan)
323 {
324 return chan->base->virtbase + D40_DREG_PCBASE +
325 chan->phy_chan->num * D40_DREG_PCDELTA;
326 }
327
328 #define d40_err(dev, format, arg...) \
329 dev_err(dev, "[%s] " format, __func__, ## arg)
330
331 #define chan_err(d40c, format, arg...) \
332 d40_err(chan2dev(d40c), format, ## arg)
333
334 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
335 int lli_len)
336 {
337 bool is_log = chan_is_logical(d40c);
338 u32 align;
339 void *base;
340
341 if (is_log)
342 align = sizeof(struct d40_log_lli);
343 else
344 align = sizeof(struct d40_phy_lli);
345
346 if (lli_len == 1) {
347 base = d40d->lli_pool.pre_alloc_lli;
348 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
349 d40d->lli_pool.base = NULL;
350 } else {
351 d40d->lli_pool.size = lli_len * 2 * align;
352
353 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
354 d40d->lli_pool.base = base;
355
356 if (d40d->lli_pool.base == NULL)
357 return -ENOMEM;
358 }
359
360 if (is_log) {
361 d40d->lli_log.src = PTR_ALIGN(base, align);
362 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
363
364 d40d->lli_pool.dma_addr = 0;
365 } else {
366 d40d->lli_phy.src = PTR_ALIGN(base, align);
367 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
368
369 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
370 d40d->lli_phy.src,
371 d40d->lli_pool.size,
372 DMA_TO_DEVICE);
373
374 if (dma_mapping_error(d40c->base->dev,
375 d40d->lli_pool.dma_addr)) {
376 kfree(d40d->lli_pool.base);
377 d40d->lli_pool.base = NULL;
378 d40d->lli_pool.dma_addr = 0;
379 return -ENOMEM;
380 }
381 }
382
383 return 0;
384 }
385
386 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
387 {
388 if (d40d->lli_pool.dma_addr)
389 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
390 d40d->lli_pool.size, DMA_TO_DEVICE);
391
392 kfree(d40d->lli_pool.base);
393 d40d->lli_pool.base = NULL;
394 d40d->lli_pool.size = 0;
395 d40d->lli_log.src = NULL;
396 d40d->lli_log.dst = NULL;
397 d40d->lli_phy.src = NULL;
398 d40d->lli_phy.dst = NULL;
399 }
400
401 static int d40_lcla_alloc_one(struct d40_chan *d40c,
402 struct d40_desc *d40d)
403 {
404 unsigned long flags;
405 int i;
406 int ret = -EINVAL;
407 int p;
408
409 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
410
411 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
412
413 /*
414 * Allocate both src and dst at the same time, therefore the half
415 * start on 1 since 0 can't be used since zero is used as end marker.
416 */
417 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
418 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
419 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
420 d40d->lcla_alloc++;
421 ret = i;
422 break;
423 }
424 }
425
426 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
427
428 return ret;
429 }
430
431 static int d40_lcla_free_all(struct d40_chan *d40c,
432 struct d40_desc *d40d)
433 {
434 unsigned long flags;
435 int i;
436 int ret = -EINVAL;
437
438 if (chan_is_physical(d40c))
439 return 0;
440
441 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
442
443 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
444 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
445 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
446 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
447 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
448 d40d->lcla_alloc--;
449 if (d40d->lcla_alloc == 0) {
450 ret = 0;
451 break;
452 }
453 }
454 }
455
456 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
457
458 return ret;
459
460 }
461
462 static void d40_desc_remove(struct d40_desc *d40d)
463 {
464 list_del(&d40d->node);
465 }
466
467 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
468 {
469 struct d40_desc *desc = NULL;
470
471 if (!list_empty(&d40c->client)) {
472 struct d40_desc *d;
473 struct d40_desc *_d;
474
475 list_for_each_entry_safe(d, _d, &d40c->client, node)
476 if (async_tx_test_ack(&d->txd)) {
477 d40_pool_lli_free(d40c, d);
478 d40_desc_remove(d);
479 desc = d;
480 memset(desc, 0, sizeof(*desc));
481 break;
482 }
483 }
484
485 if (!desc)
486 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
487
488 if (desc)
489 INIT_LIST_HEAD(&desc->node);
490
491 return desc;
492 }
493
494 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
495 {
496
497 d40_pool_lli_free(d40c, d40d);
498 d40_lcla_free_all(d40c, d40d);
499 kmem_cache_free(d40c->base->desc_slab, d40d);
500 }
501
502 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
503 {
504 list_add_tail(&desc->node, &d40c->active);
505 }
506
507 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
508 {
509 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
510 struct d40_phy_lli *lli_src = desc->lli_phy.src;
511 void __iomem *base = chan_base(chan);
512
513 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
514 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
515 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
516 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
517
518 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
519 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
520 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
521 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
522 }
523
524 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
525 {
526 int curr_lcla = -EINVAL, next_lcla;
527
528 if (chan_is_physical(d40c)) {
529 d40_phy_lli_load(d40c, d40d);
530 d40d->lli_current = d40d->lli_len;
531 } else {
532
533 if ((d40d->lli_len - d40d->lli_current) > 1)
534 curr_lcla = d40_lcla_alloc_one(d40c, d40d);
535
536 d40_log_lli_lcpa_write(d40c->lcpa,
537 &d40d->lli_log.dst[d40d->lli_current],
538 &d40d->lli_log.src[d40d->lli_current],
539 curr_lcla);
540
541 d40d->lli_current++;
542 for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
543 unsigned int lcla_offset = d40c->phy_chan->num * 1024 +
544 8 * curr_lcla * 2;
545 struct d40_lcla_pool *pool = &d40c->base->lcla_pool;
546 struct d40_log_lli *lcla = pool->base + lcla_offset;
547
548 if (d40d->lli_current + 1 < d40d->lli_len)
549 next_lcla = d40_lcla_alloc_one(d40c, d40d);
550 else
551 next_lcla = -EINVAL;
552
553 d40_log_lli_lcla_write(lcla,
554 &d40d->lli_log.dst[d40d->lli_current],
555 &d40d->lli_log.src[d40d->lli_current],
556 next_lcla);
557
558 dma_sync_single_range_for_device(d40c->base->dev,
559 pool->dma_addr, lcla_offset,
560 2 * sizeof(struct d40_log_lli),
561 DMA_TO_DEVICE);
562
563 curr_lcla = next_lcla;
564
565 if (curr_lcla == -EINVAL) {
566 d40d->lli_current++;
567 break;
568 }
569
570 }
571 }
572 }
573
574 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
575 {
576 struct d40_desc *d;
577
578 if (list_empty(&d40c->active))
579 return NULL;
580
581 d = list_first_entry(&d40c->active,
582 struct d40_desc,
583 node);
584 return d;
585 }
586
587 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
588 {
589 list_add_tail(&desc->node, &d40c->queue);
590 }
591
592 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
593 {
594 struct d40_desc *d;
595
596 if (list_empty(&d40c->queue))
597 return NULL;
598
599 d = list_first_entry(&d40c->queue,
600 struct d40_desc,
601 node);
602 return d;
603 }
604
605 static int d40_psize_2_burst_size(bool is_log, int psize)
606 {
607 if (is_log) {
608 if (psize == STEDMA40_PSIZE_LOG_1)
609 return 1;
610 } else {
611 if (psize == STEDMA40_PSIZE_PHY_1)
612 return 1;
613 }
614
615 return 2 << psize;
616 }
617
618 /*
619 * The dma only supports transmitting packages up to
620 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
621 * dma elements required to send the entire sg list
622 */
623 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
624 {
625 int dmalen;
626 u32 max_w = max(data_width1, data_width2);
627 u32 min_w = min(data_width1, data_width2);
628 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
629
630 if (seg_max > STEDMA40_MAX_SEG_SIZE)
631 seg_max -= (1 << max_w);
632
633 if (!IS_ALIGNED(size, 1 << max_w))
634 return -EINVAL;
635
636 if (size <= seg_max)
637 dmalen = 1;
638 else {
639 dmalen = size / seg_max;
640 if (dmalen * seg_max < size)
641 dmalen++;
642 }
643 return dmalen;
644 }
645
646 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
647 u32 data_width1, u32 data_width2)
648 {
649 struct scatterlist *sg;
650 int i;
651 int len = 0;
652 int ret;
653
654 for_each_sg(sgl, sg, sg_len, i) {
655 ret = d40_size_2_dmalen(sg_dma_len(sg),
656 data_width1, data_width2);
657 if (ret < 0)
658 return ret;
659 len += ret;
660 }
661 return len;
662 }
663
664 /* Support functions for logical channels */
665
666 static int d40_channel_execute_command(struct d40_chan *d40c,
667 enum d40_command command)
668 {
669 u32 status;
670 int i;
671 void __iomem *active_reg;
672 int ret = 0;
673 unsigned long flags;
674 u32 wmask;
675
676 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
677
678 if (d40c->phy_chan->num % 2 == 0)
679 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
680 else
681 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
682
683 if (command == D40_DMA_SUSPEND_REQ) {
684 status = (readl(active_reg) &
685 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
686 D40_CHAN_POS(d40c->phy_chan->num);
687
688 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
689 goto done;
690 }
691
692 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
693 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
694 active_reg);
695
696 if (command == D40_DMA_SUSPEND_REQ) {
697
698 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
699 status = (readl(active_reg) &
700 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
701 D40_CHAN_POS(d40c->phy_chan->num);
702
703 cpu_relax();
704 /*
705 * Reduce the number of bus accesses while
706 * waiting for the DMA to suspend.
707 */
708 udelay(3);
709
710 if (status == D40_DMA_STOP ||
711 status == D40_DMA_SUSPENDED)
712 break;
713 }
714
715 if (i == D40_SUSPEND_MAX_IT) {
716 chan_err(d40c,
717 "unable to suspend the chl %d (log: %d) status %x\n",
718 d40c->phy_chan->num, d40c->log_num,
719 status);
720 dump_stack();
721 ret = -EBUSY;
722 }
723
724 }
725 done:
726 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
727 return ret;
728 }
729
730 static void d40_term_all(struct d40_chan *d40c)
731 {
732 struct d40_desc *d40d;
733
734 /* Release active descriptors */
735 while ((d40d = d40_first_active_get(d40c))) {
736 d40_desc_remove(d40d);
737 d40_desc_free(d40c, d40d);
738 }
739
740 /* Release queued descriptors waiting for transfer */
741 while ((d40d = d40_first_queued(d40c))) {
742 d40_desc_remove(d40d);
743 d40_desc_free(d40c, d40d);
744 }
745
746
747 d40c->pending_tx = 0;
748 d40c->busy = false;
749 }
750
751 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
752 u32 event, int reg)
753 {
754 void __iomem *addr = chan_base(d40c) + reg;
755 int tries;
756
757 if (!enable) {
758 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
759 | ~D40_EVENTLINE_MASK(event), addr);
760 return;
761 }
762
763 /*
764 * The hardware sometimes doesn't register the enable when src and dst
765 * event lines are active on the same logical channel. Retry to ensure
766 * it does. Usually only one retry is sufficient.
767 */
768 tries = 100;
769 while (--tries) {
770 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
771 | ~D40_EVENTLINE_MASK(event), addr);
772
773 if (readl(addr) & D40_EVENTLINE_MASK(event))
774 break;
775 }
776
777 if (tries != 99)
778 dev_dbg(chan2dev(d40c),
779 "[%s] workaround enable S%cLNK (%d tries)\n",
780 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
781 100 - tries);
782
783 WARN_ON(!tries);
784 }
785
786 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
787 {
788 unsigned long flags;
789
790 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
791
792 /* Enable event line connected to device (or memcpy) */
793 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
794 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
795 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
796
797 __d40_config_set_event(d40c, do_enable, event,
798 D40_CHAN_REG_SSLNK);
799 }
800
801 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
802 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
803
804 __d40_config_set_event(d40c, do_enable, event,
805 D40_CHAN_REG_SDLNK);
806 }
807
808 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
809 }
810
811 static u32 d40_chan_has_events(struct d40_chan *d40c)
812 {
813 void __iomem *chanbase = chan_base(d40c);
814 u32 val;
815
816 val = readl(chanbase + D40_CHAN_REG_SSLNK);
817 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
818
819 return val;
820 }
821
822 static u32 d40_get_prmo(struct d40_chan *d40c)
823 {
824 static const unsigned int phy_map[] = {
825 [STEDMA40_PCHAN_BASIC_MODE]
826 = D40_DREG_PRMO_PCHAN_BASIC,
827 [STEDMA40_PCHAN_MODULO_MODE]
828 = D40_DREG_PRMO_PCHAN_MODULO,
829 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
830 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
831 };
832 static const unsigned int log_map[] = {
833 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
834 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
835 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
836 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
837 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
838 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
839 };
840
841 if (chan_is_physical(d40c))
842 return phy_map[d40c->dma_cfg.mode_opt];
843 else
844 return log_map[d40c->dma_cfg.mode_opt];
845 }
846
847 static void d40_config_write(struct d40_chan *d40c)
848 {
849 u32 addr_base;
850 u32 var;
851
852 /* Odd addresses are even addresses + 4 */
853 addr_base = (d40c->phy_chan->num % 2) * 4;
854 /* Setup channel mode to logical or physical */
855 var = ((u32)(chan_is_logical(d40c)) + 1) <<
856 D40_CHAN_POS(d40c->phy_chan->num);
857 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
858
859 /* Setup operational mode option register */
860 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
861
862 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
863
864 if (chan_is_logical(d40c)) {
865 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
866 & D40_SREG_ELEM_LOG_LIDX_MASK;
867 void __iomem *chanbase = chan_base(d40c);
868
869 /* Set default config for CFG reg */
870 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
871 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
872
873 /* Set LIDX for lcla */
874 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
875 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
876 }
877 }
878
879 static u32 d40_residue(struct d40_chan *d40c)
880 {
881 u32 num_elt;
882
883 if (chan_is_logical(d40c))
884 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
885 >> D40_MEM_LCSP2_ECNT_POS;
886 else {
887 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
888 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
889 >> D40_SREG_ELEM_PHY_ECNT_POS;
890 }
891
892 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
893 }
894
895 static bool d40_tx_is_linked(struct d40_chan *d40c)
896 {
897 bool is_link;
898
899 if (chan_is_logical(d40c))
900 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
901 else
902 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
903 & D40_SREG_LNK_PHYS_LNK_MASK;
904
905 return is_link;
906 }
907
908 static int d40_pause(struct dma_chan *chan)
909 {
910 struct d40_chan *d40c =
911 container_of(chan, struct d40_chan, chan);
912 int res = 0;
913 unsigned long flags;
914
915 if (!d40c->busy)
916 return 0;
917
918 spin_lock_irqsave(&d40c->lock, flags);
919
920 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
921 if (res == 0) {
922 if (chan_is_logical(d40c)) {
923 d40_config_set_event(d40c, false);
924 /* Resume the other logical channels if any */
925 if (d40_chan_has_events(d40c))
926 res = d40_channel_execute_command(d40c,
927 D40_DMA_RUN);
928 }
929 }
930
931 spin_unlock_irqrestore(&d40c->lock, flags);
932 return res;
933 }
934
935 static int d40_resume(struct dma_chan *chan)
936 {
937 struct d40_chan *d40c =
938 container_of(chan, struct d40_chan, chan);
939 int res = 0;
940 unsigned long flags;
941
942 if (!d40c->busy)
943 return 0;
944
945 spin_lock_irqsave(&d40c->lock, flags);
946
947 if (d40c->base->rev == 0)
948 if (chan_is_logical(d40c)) {
949 res = d40_channel_execute_command(d40c,
950 D40_DMA_SUSPEND_REQ);
951 goto no_suspend;
952 }
953
954 /* If bytes left to transfer or linked tx resume job */
955 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
956
957 if (chan_is_logical(d40c))
958 d40_config_set_event(d40c, true);
959
960 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
961 }
962
963 no_suspend:
964 spin_unlock_irqrestore(&d40c->lock, flags);
965 return res;
966 }
967
968 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
969 {
970 struct d40_chan *d40c = container_of(tx->chan,
971 struct d40_chan,
972 chan);
973 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
974 unsigned long flags;
975
976 spin_lock_irqsave(&d40c->lock, flags);
977
978 d40c->chan.cookie++;
979
980 if (d40c->chan.cookie < 0)
981 d40c->chan.cookie = 1;
982
983 d40d->txd.cookie = d40c->chan.cookie;
984
985 d40_desc_queue(d40c, d40d);
986
987 spin_unlock_irqrestore(&d40c->lock, flags);
988
989 return tx->cookie;
990 }
991
992 static int d40_start(struct d40_chan *d40c)
993 {
994 if (d40c->base->rev == 0) {
995 int err;
996
997 if (chan_is_logical(d40c)) {
998 err = d40_channel_execute_command(d40c,
999 D40_DMA_SUSPEND_REQ);
1000 if (err)
1001 return err;
1002 }
1003 }
1004
1005 if (chan_is_logical(d40c))
1006 d40_config_set_event(d40c, true);
1007
1008 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1009 }
1010
1011 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1012 {
1013 struct d40_desc *d40d;
1014 int err;
1015
1016 /* Start queued jobs, if any */
1017 d40d = d40_first_queued(d40c);
1018
1019 if (d40d != NULL) {
1020 d40c->busy = true;
1021
1022 /* Remove from queue */
1023 d40_desc_remove(d40d);
1024
1025 /* Add to active queue */
1026 d40_desc_submit(d40c, d40d);
1027
1028 /* Initiate DMA job */
1029 d40_desc_load(d40c, d40d);
1030
1031 /* Start dma job */
1032 err = d40_start(d40c);
1033
1034 if (err)
1035 return NULL;
1036 }
1037
1038 return d40d;
1039 }
1040
1041 /* called from interrupt context */
1042 static void dma_tc_handle(struct d40_chan *d40c)
1043 {
1044 struct d40_desc *d40d;
1045
1046 /* Get first active entry from list */
1047 d40d = d40_first_active_get(d40c);
1048
1049 if (d40d == NULL)
1050 return;
1051
1052 d40_lcla_free_all(d40c, d40d);
1053
1054 if (d40d->lli_current < d40d->lli_len) {
1055 d40_desc_load(d40c, d40d);
1056 /* Start dma job */
1057 (void) d40_start(d40c);
1058 return;
1059 }
1060
1061 if (d40_queue_start(d40c) == NULL)
1062 d40c->busy = false;
1063
1064 d40c->pending_tx++;
1065 tasklet_schedule(&d40c->tasklet);
1066
1067 }
1068
1069 static void dma_tasklet(unsigned long data)
1070 {
1071 struct d40_chan *d40c = (struct d40_chan *) data;
1072 struct d40_desc *d40d;
1073 unsigned long flags;
1074 dma_async_tx_callback callback;
1075 void *callback_param;
1076
1077 spin_lock_irqsave(&d40c->lock, flags);
1078
1079 /* Get first active entry from list */
1080 d40d = d40_first_active_get(d40c);
1081
1082 if (d40d == NULL)
1083 goto err;
1084
1085 d40c->completed = d40d->txd.cookie;
1086
1087 /*
1088 * If terminating a channel pending_tx is set to zero.
1089 * This prevents any finished active jobs to return to the client.
1090 */
1091 if (d40c->pending_tx == 0) {
1092 spin_unlock_irqrestore(&d40c->lock, flags);
1093 return;
1094 }
1095
1096 /* Callback to client */
1097 callback = d40d->txd.callback;
1098 callback_param = d40d->txd.callback_param;
1099
1100 if (async_tx_test_ack(&d40d->txd)) {
1101 d40_pool_lli_free(d40c, d40d);
1102 d40_desc_remove(d40d);
1103 d40_desc_free(d40c, d40d);
1104 } else {
1105 if (!d40d->is_in_client_list) {
1106 d40_desc_remove(d40d);
1107 d40_lcla_free_all(d40c, d40d);
1108 list_add_tail(&d40d->node, &d40c->client);
1109 d40d->is_in_client_list = true;
1110 }
1111 }
1112
1113 d40c->pending_tx--;
1114
1115 if (d40c->pending_tx)
1116 tasklet_schedule(&d40c->tasklet);
1117
1118 spin_unlock_irqrestore(&d40c->lock, flags);
1119
1120 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1121 callback(callback_param);
1122
1123 return;
1124
1125 err:
1126 /* Rescue manouver if receiving double interrupts */
1127 if (d40c->pending_tx > 0)
1128 d40c->pending_tx--;
1129 spin_unlock_irqrestore(&d40c->lock, flags);
1130 }
1131
1132 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1133 {
1134 static const struct d40_interrupt_lookup il[] = {
1135 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1136 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1137 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1138 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1139 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1140 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1141 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1142 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1143 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1144 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1145 };
1146
1147 int i;
1148 u32 regs[ARRAY_SIZE(il)];
1149 u32 idx;
1150 u32 row;
1151 long chan = -1;
1152 struct d40_chan *d40c;
1153 unsigned long flags;
1154 struct d40_base *base = data;
1155
1156 spin_lock_irqsave(&base->interrupt_lock, flags);
1157
1158 /* Read interrupt status of both logical and physical channels */
1159 for (i = 0; i < ARRAY_SIZE(il); i++)
1160 regs[i] = readl(base->virtbase + il[i].src);
1161
1162 for (;;) {
1163
1164 chan = find_next_bit((unsigned long *)regs,
1165 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1166
1167 /* No more set bits found? */
1168 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1169 break;
1170
1171 row = chan / BITS_PER_LONG;
1172 idx = chan & (BITS_PER_LONG - 1);
1173
1174 /* ACK interrupt */
1175 writel(1 << idx, base->virtbase + il[row].clr);
1176
1177 if (il[row].offset == D40_PHY_CHAN)
1178 d40c = base->lookup_phy_chans[idx];
1179 else
1180 d40c = base->lookup_log_chans[il[row].offset + idx];
1181 spin_lock(&d40c->lock);
1182
1183 if (!il[row].is_error)
1184 dma_tc_handle(d40c);
1185 else
1186 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1187 chan, il[row].offset, idx);
1188
1189 spin_unlock(&d40c->lock);
1190 }
1191
1192 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1193
1194 return IRQ_HANDLED;
1195 }
1196
1197 static int d40_validate_conf(struct d40_chan *d40c,
1198 struct stedma40_chan_cfg *conf)
1199 {
1200 int res = 0;
1201 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1202 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1203 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1204
1205 if (!conf->dir) {
1206 chan_err(d40c, "Invalid direction.\n");
1207 res = -EINVAL;
1208 }
1209
1210 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1211 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1212 d40c->runtime_addr == 0) {
1213
1214 chan_err(d40c, "Invalid TX channel address (%d)\n",
1215 conf->dst_dev_type);
1216 res = -EINVAL;
1217 }
1218
1219 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1220 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1221 d40c->runtime_addr == 0) {
1222 chan_err(d40c, "Invalid RX channel address (%d)\n",
1223 conf->src_dev_type);
1224 res = -EINVAL;
1225 }
1226
1227 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1228 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1229 chan_err(d40c, "Invalid dst\n");
1230 res = -EINVAL;
1231 }
1232
1233 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1234 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1235 chan_err(d40c, "Invalid src\n");
1236 res = -EINVAL;
1237 }
1238
1239 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1240 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1241 chan_err(d40c, "No event line\n");
1242 res = -EINVAL;
1243 }
1244
1245 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1246 (src_event_group != dst_event_group)) {
1247 chan_err(d40c, "Invalid event group\n");
1248 res = -EINVAL;
1249 }
1250
1251 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1252 /*
1253 * DMAC HW supports it. Will be added to this driver,
1254 * in case any dma client requires it.
1255 */
1256 chan_err(d40c, "periph to periph not supported\n");
1257 res = -EINVAL;
1258 }
1259
1260 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1261 (1 << conf->src_info.data_width) !=
1262 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1263 (1 << conf->dst_info.data_width)) {
1264 /*
1265 * The DMAC hardware only supports
1266 * src (burst x width) == dst (burst x width)
1267 */
1268
1269 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1270 res = -EINVAL;
1271 }
1272
1273 return res;
1274 }
1275
1276 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1277 int log_event_line, bool is_log)
1278 {
1279 unsigned long flags;
1280 spin_lock_irqsave(&phy->lock, flags);
1281 if (!is_log) {
1282 /* Physical interrupts are masked per physical full channel */
1283 if (phy->allocated_src == D40_ALLOC_FREE &&
1284 phy->allocated_dst == D40_ALLOC_FREE) {
1285 phy->allocated_dst = D40_ALLOC_PHY;
1286 phy->allocated_src = D40_ALLOC_PHY;
1287 goto found;
1288 } else
1289 goto not_found;
1290 }
1291
1292 /* Logical channel */
1293 if (is_src) {
1294 if (phy->allocated_src == D40_ALLOC_PHY)
1295 goto not_found;
1296
1297 if (phy->allocated_src == D40_ALLOC_FREE)
1298 phy->allocated_src = D40_ALLOC_LOG_FREE;
1299
1300 if (!(phy->allocated_src & (1 << log_event_line))) {
1301 phy->allocated_src |= 1 << log_event_line;
1302 goto found;
1303 } else
1304 goto not_found;
1305 } else {
1306 if (phy->allocated_dst == D40_ALLOC_PHY)
1307 goto not_found;
1308
1309 if (phy->allocated_dst == D40_ALLOC_FREE)
1310 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1311
1312 if (!(phy->allocated_dst & (1 << log_event_line))) {
1313 phy->allocated_dst |= 1 << log_event_line;
1314 goto found;
1315 } else
1316 goto not_found;
1317 }
1318
1319 not_found:
1320 spin_unlock_irqrestore(&phy->lock, flags);
1321 return false;
1322 found:
1323 spin_unlock_irqrestore(&phy->lock, flags);
1324 return true;
1325 }
1326
1327 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1328 int log_event_line)
1329 {
1330 unsigned long flags;
1331 bool is_free = false;
1332
1333 spin_lock_irqsave(&phy->lock, flags);
1334 if (!log_event_line) {
1335 phy->allocated_dst = D40_ALLOC_FREE;
1336 phy->allocated_src = D40_ALLOC_FREE;
1337 is_free = true;
1338 goto out;
1339 }
1340
1341 /* Logical channel */
1342 if (is_src) {
1343 phy->allocated_src &= ~(1 << log_event_line);
1344 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1345 phy->allocated_src = D40_ALLOC_FREE;
1346 } else {
1347 phy->allocated_dst &= ~(1 << log_event_line);
1348 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1349 phy->allocated_dst = D40_ALLOC_FREE;
1350 }
1351
1352 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1353 D40_ALLOC_FREE);
1354
1355 out:
1356 spin_unlock_irqrestore(&phy->lock, flags);
1357
1358 return is_free;
1359 }
1360
1361 static int d40_allocate_channel(struct d40_chan *d40c)
1362 {
1363 int dev_type;
1364 int event_group;
1365 int event_line;
1366 struct d40_phy_res *phys;
1367 int i;
1368 int j;
1369 int log_num;
1370 bool is_src;
1371 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1372
1373 phys = d40c->base->phy_res;
1374
1375 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1376 dev_type = d40c->dma_cfg.src_dev_type;
1377 log_num = 2 * dev_type;
1378 is_src = true;
1379 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1380 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1381 /* dst event lines are used for logical memcpy */
1382 dev_type = d40c->dma_cfg.dst_dev_type;
1383 log_num = 2 * dev_type + 1;
1384 is_src = false;
1385 } else
1386 return -EINVAL;
1387
1388 event_group = D40_TYPE_TO_GROUP(dev_type);
1389 event_line = D40_TYPE_TO_EVENT(dev_type);
1390
1391 if (!is_log) {
1392 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1393 /* Find physical half channel */
1394 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1395
1396 if (d40_alloc_mask_set(&phys[i], is_src,
1397 0, is_log))
1398 goto found_phy;
1399 }
1400 } else
1401 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1402 int phy_num = j + event_group * 2;
1403 for (i = phy_num; i < phy_num + 2; i++) {
1404 if (d40_alloc_mask_set(&phys[i],
1405 is_src,
1406 0,
1407 is_log))
1408 goto found_phy;
1409 }
1410 }
1411 return -EINVAL;
1412 found_phy:
1413 d40c->phy_chan = &phys[i];
1414 d40c->log_num = D40_PHY_CHAN;
1415 goto out;
1416 }
1417 if (dev_type == -1)
1418 return -EINVAL;
1419
1420 /* Find logical channel */
1421 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1422 int phy_num = j + event_group * 2;
1423 /*
1424 * Spread logical channels across all available physical rather
1425 * than pack every logical channel at the first available phy
1426 * channels.
1427 */
1428 if (is_src) {
1429 for (i = phy_num; i < phy_num + 2; i++) {
1430 if (d40_alloc_mask_set(&phys[i], is_src,
1431 event_line, is_log))
1432 goto found_log;
1433 }
1434 } else {
1435 for (i = phy_num + 1; i >= phy_num; i--) {
1436 if (d40_alloc_mask_set(&phys[i], is_src,
1437 event_line, is_log))
1438 goto found_log;
1439 }
1440 }
1441 }
1442 return -EINVAL;
1443
1444 found_log:
1445 d40c->phy_chan = &phys[i];
1446 d40c->log_num = log_num;
1447 out:
1448
1449 if (is_log)
1450 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1451 else
1452 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1453
1454 return 0;
1455
1456 }
1457
1458 static int d40_config_memcpy(struct d40_chan *d40c)
1459 {
1460 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1461
1462 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1463 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1464 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1465 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1466 memcpy[d40c->chan.chan_id];
1467
1468 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1469 dma_has_cap(DMA_SLAVE, cap)) {
1470 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1471 } else {
1472 chan_err(d40c, "No memcpy\n");
1473 return -EINVAL;
1474 }
1475
1476 return 0;
1477 }
1478
1479
1480 static int d40_free_dma(struct d40_chan *d40c)
1481 {
1482
1483 int res = 0;
1484 u32 event;
1485 struct d40_phy_res *phy = d40c->phy_chan;
1486 bool is_src;
1487 struct d40_desc *d;
1488 struct d40_desc *_d;
1489
1490
1491 /* Terminate all queued and active transfers */
1492 d40_term_all(d40c);
1493
1494 /* Release client owned descriptors */
1495 if (!list_empty(&d40c->client))
1496 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1497 d40_pool_lli_free(d40c, d);
1498 d40_desc_remove(d);
1499 d40_desc_free(d40c, d);
1500 }
1501
1502 if (phy == NULL) {
1503 chan_err(d40c, "phy == null\n");
1504 return -EINVAL;
1505 }
1506
1507 if (phy->allocated_src == D40_ALLOC_FREE &&
1508 phy->allocated_dst == D40_ALLOC_FREE) {
1509 chan_err(d40c, "channel already free\n");
1510 return -EINVAL;
1511 }
1512
1513 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1514 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1515 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1516 is_src = false;
1517 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1518 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1519 is_src = true;
1520 } else {
1521 chan_err(d40c, "Unknown direction\n");
1522 return -EINVAL;
1523 }
1524
1525 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1526 if (res) {
1527 chan_err(d40c, "suspend failed\n");
1528 return res;
1529 }
1530
1531 if (chan_is_logical(d40c)) {
1532 /* Release logical channel, deactivate the event line */
1533
1534 d40_config_set_event(d40c, false);
1535 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1536
1537 /*
1538 * Check if there are more logical allocation
1539 * on this phy channel.
1540 */
1541 if (!d40_alloc_mask_free(phy, is_src, event)) {
1542 /* Resume the other logical channels if any */
1543 if (d40_chan_has_events(d40c)) {
1544 res = d40_channel_execute_command(d40c,
1545 D40_DMA_RUN);
1546 if (res) {
1547 chan_err(d40c,
1548 "Executing RUN command\n");
1549 return res;
1550 }
1551 }
1552 return 0;
1553 }
1554 } else {
1555 (void) d40_alloc_mask_free(phy, is_src, 0);
1556 }
1557
1558 /* Release physical channel */
1559 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1560 if (res) {
1561 chan_err(d40c, "Failed to stop channel\n");
1562 return res;
1563 }
1564 d40c->phy_chan = NULL;
1565 d40c->configured = false;
1566 d40c->base->lookup_phy_chans[phy->num] = NULL;
1567
1568 return 0;
1569 }
1570
1571 static bool d40_is_paused(struct d40_chan *d40c)
1572 {
1573 void __iomem *chanbase = chan_base(d40c);
1574 bool is_paused = false;
1575 unsigned long flags;
1576 void __iomem *active_reg;
1577 u32 status;
1578 u32 event;
1579
1580 spin_lock_irqsave(&d40c->lock, flags);
1581
1582 if (chan_is_physical(d40c)) {
1583 if (d40c->phy_chan->num % 2 == 0)
1584 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1585 else
1586 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1587
1588 status = (readl(active_reg) &
1589 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1590 D40_CHAN_POS(d40c->phy_chan->num);
1591 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1592 is_paused = true;
1593
1594 goto _exit;
1595 }
1596
1597 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1598 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1599 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1600 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1601 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1602 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1603 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1604 } else {
1605 chan_err(d40c, "Unknown direction\n");
1606 goto _exit;
1607 }
1608
1609 status = (status & D40_EVENTLINE_MASK(event)) >>
1610 D40_EVENTLINE_POS(event);
1611
1612 if (status != D40_DMA_RUN)
1613 is_paused = true;
1614 _exit:
1615 spin_unlock_irqrestore(&d40c->lock, flags);
1616 return is_paused;
1617
1618 }
1619
1620
1621 static u32 stedma40_residue(struct dma_chan *chan)
1622 {
1623 struct d40_chan *d40c =
1624 container_of(chan, struct d40_chan, chan);
1625 u32 bytes_left;
1626 unsigned long flags;
1627
1628 spin_lock_irqsave(&d40c->lock, flags);
1629 bytes_left = d40_residue(d40c);
1630 spin_unlock_irqrestore(&d40c->lock, flags);
1631
1632 return bytes_left;
1633 }
1634
1635 static int
1636 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1637 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1638 unsigned int sg_len, enum dma_data_direction direction,
1639 dma_addr_t dev_addr)
1640 {
1641 dma_addr_t src_dev_addr = direction == DMA_FROM_DEVICE ? dev_addr : 0;
1642 dma_addr_t dst_dev_addr = direction == DMA_TO_DEVICE ? dev_addr : 0;
1643 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1644 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1645 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1646 int ret;
1647
1648 ret = d40_log_sg_to_lli(sg_src, sg_len,
1649 src_dev_addr,
1650 desc->lli_log.src,
1651 chan->log_def.lcsp1,
1652 src_info->data_width,
1653 dst_info->data_width);
1654
1655 ret = d40_log_sg_to_lli(sg_dst, sg_len,
1656 dst_dev_addr,
1657 desc->lli_log.dst,
1658 chan->log_def.lcsp3,
1659 dst_info->data_width,
1660 src_info->data_width);
1661
1662 return ret < 0 ? ret : 0;
1663 }
1664
1665 static int
1666 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1667 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1668 unsigned int sg_len, enum dma_data_direction direction,
1669 dma_addr_t dev_addr)
1670 {
1671 dma_addr_t src_dev_addr = direction == DMA_FROM_DEVICE ? dev_addr : 0;
1672 dma_addr_t dst_dev_addr = direction == DMA_TO_DEVICE ? dev_addr : 0;
1673 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1674 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1675 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1676 int ret;
1677
1678 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1679 desc->lli_phy.src,
1680 virt_to_phys(desc->lli_phy.src),
1681 chan->src_def_cfg,
1682 src_info, dst_info);
1683
1684 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1685 desc->lli_phy.dst,
1686 virt_to_phys(desc->lli_phy.dst),
1687 chan->dst_def_cfg,
1688 dst_info, src_info);
1689
1690 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1691 desc->lli_pool.size, DMA_TO_DEVICE);
1692
1693 return ret < 0 ? ret : 0;
1694 }
1695
1696
1697 static struct d40_desc *
1698 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1699 unsigned int sg_len, unsigned long dma_flags)
1700 {
1701 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1702 struct d40_desc *desc;
1703 int ret;
1704
1705 desc = d40_desc_get(chan);
1706 if (!desc)
1707 return NULL;
1708
1709 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1710 cfg->dst_info.data_width);
1711 if (desc->lli_len < 0) {
1712 chan_err(chan, "Unaligned size\n");
1713 goto err;
1714 }
1715
1716 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1717 if (ret < 0) {
1718 chan_err(chan, "Could not allocate lli\n");
1719 goto err;
1720 }
1721
1722
1723 desc->lli_current = 0;
1724 desc->txd.flags = dma_flags;
1725 desc->txd.tx_submit = d40_tx_submit;
1726
1727 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1728
1729 return desc;
1730
1731 err:
1732 d40_desc_free(chan, desc);
1733 return NULL;
1734 }
1735
1736 static dma_addr_t
1737 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1738 {
1739 struct stedma40_platform_data *plat = chan->base->plat_data;
1740 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1741 dma_addr_t addr;
1742
1743 if (chan->runtime_addr)
1744 return chan->runtime_addr;
1745
1746 if (direction == DMA_FROM_DEVICE)
1747 addr = plat->dev_rx[cfg->src_dev_type];
1748 else if (direction == DMA_TO_DEVICE)
1749 addr = plat->dev_tx[cfg->dst_dev_type];
1750
1751 return addr;
1752 }
1753
1754 static struct dma_async_tx_descriptor *
1755 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1756 struct scatterlist *sg_dst, unsigned int sg_len,
1757 enum dma_data_direction direction, unsigned long dma_flags)
1758 {
1759 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1760 dma_addr_t dev_addr = 0;
1761 struct d40_desc *desc;
1762 unsigned long flags;
1763 int ret;
1764
1765 if (!chan->phy_chan) {
1766 chan_err(chan, "Cannot prepare unallocated channel\n");
1767 return NULL;
1768 }
1769
1770 spin_lock_irqsave(&chan->lock, flags);
1771
1772 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1773 if (desc == NULL)
1774 goto err;
1775
1776 if (direction != DMA_NONE)
1777 dev_addr = d40_get_dev_addr(chan, direction);
1778
1779 if (chan_is_logical(chan))
1780 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1781 sg_len, direction, dev_addr);
1782 else
1783 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1784 sg_len, direction, dev_addr);
1785
1786 if (ret) {
1787 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1788 chan_is_logical(chan) ? "log" : "phy", ret);
1789 goto err;
1790 }
1791
1792 spin_unlock_irqrestore(&chan->lock, flags);
1793
1794 return &desc->txd;
1795
1796 err:
1797 if (desc)
1798 d40_desc_free(chan, desc);
1799 spin_unlock_irqrestore(&chan->lock, flags);
1800 return NULL;
1801 }
1802
1803 bool stedma40_filter(struct dma_chan *chan, void *data)
1804 {
1805 struct stedma40_chan_cfg *info = data;
1806 struct d40_chan *d40c =
1807 container_of(chan, struct d40_chan, chan);
1808 int err;
1809
1810 if (data) {
1811 err = d40_validate_conf(d40c, info);
1812 if (!err)
1813 d40c->dma_cfg = *info;
1814 } else
1815 err = d40_config_memcpy(d40c);
1816
1817 if (!err)
1818 d40c->configured = true;
1819
1820 return err == 0;
1821 }
1822 EXPORT_SYMBOL(stedma40_filter);
1823
1824 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1825 {
1826 bool realtime = d40c->dma_cfg.realtime;
1827 bool highprio = d40c->dma_cfg.high_priority;
1828 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1829 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1830 u32 event = D40_TYPE_TO_EVENT(dev_type);
1831 u32 group = D40_TYPE_TO_GROUP(dev_type);
1832 u32 bit = 1 << event;
1833
1834 /* Destination event lines are stored in the upper halfword */
1835 if (!src)
1836 bit <<= 16;
1837
1838 writel(bit, d40c->base->virtbase + prioreg + group * 4);
1839 writel(bit, d40c->base->virtbase + rtreg + group * 4);
1840 }
1841
1842 static void d40_set_prio_realtime(struct d40_chan *d40c)
1843 {
1844 if (d40c->base->rev < 3)
1845 return;
1846
1847 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1848 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1849 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1850
1851 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1852 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1853 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1854 }
1855
1856 /* DMA ENGINE functions */
1857 static int d40_alloc_chan_resources(struct dma_chan *chan)
1858 {
1859 int err;
1860 unsigned long flags;
1861 struct d40_chan *d40c =
1862 container_of(chan, struct d40_chan, chan);
1863 bool is_free_phy;
1864 spin_lock_irqsave(&d40c->lock, flags);
1865
1866 d40c->completed = chan->cookie = 1;
1867
1868 /* If no dma configuration is set use default configuration (memcpy) */
1869 if (!d40c->configured) {
1870 err = d40_config_memcpy(d40c);
1871 if (err) {
1872 chan_err(d40c, "Failed to configure memcpy channel\n");
1873 goto fail;
1874 }
1875 }
1876 is_free_phy = (d40c->phy_chan == NULL);
1877
1878 err = d40_allocate_channel(d40c);
1879 if (err) {
1880 chan_err(d40c, "Failed to allocate channel\n");
1881 goto fail;
1882 }
1883
1884 /* Fill in basic CFG register values */
1885 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1886 &d40c->dst_def_cfg, chan_is_logical(d40c));
1887
1888 d40_set_prio_realtime(d40c);
1889
1890 if (chan_is_logical(d40c)) {
1891 d40_log_cfg(&d40c->dma_cfg,
1892 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1893
1894 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1895 d40c->lcpa = d40c->base->lcpa_base +
1896 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1897 else
1898 d40c->lcpa = d40c->base->lcpa_base +
1899 d40c->dma_cfg.dst_dev_type *
1900 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1901 }
1902
1903 /*
1904 * Only write channel configuration to the DMA if the physical
1905 * resource is free. In case of multiple logical channels
1906 * on the same physical resource, only the first write is necessary.
1907 */
1908 if (is_free_phy)
1909 d40_config_write(d40c);
1910 fail:
1911 spin_unlock_irqrestore(&d40c->lock, flags);
1912 return err;
1913 }
1914
1915 static void d40_free_chan_resources(struct dma_chan *chan)
1916 {
1917 struct d40_chan *d40c =
1918 container_of(chan, struct d40_chan, chan);
1919 int err;
1920 unsigned long flags;
1921
1922 if (d40c->phy_chan == NULL) {
1923 chan_err(d40c, "Cannot free unallocated channel\n");
1924 return;
1925 }
1926
1927
1928 spin_lock_irqsave(&d40c->lock, flags);
1929
1930 err = d40_free_dma(d40c);
1931
1932 if (err)
1933 chan_err(d40c, "Failed to free channel\n");
1934 spin_unlock_irqrestore(&d40c->lock, flags);
1935 }
1936
1937 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1938 dma_addr_t dst,
1939 dma_addr_t src,
1940 size_t size,
1941 unsigned long dma_flags)
1942 {
1943 struct scatterlist dst_sg;
1944 struct scatterlist src_sg;
1945
1946 sg_init_table(&dst_sg, 1);
1947 sg_init_table(&src_sg, 1);
1948
1949 sg_dma_address(&dst_sg) = dst;
1950 sg_dma_address(&src_sg) = src;
1951
1952 sg_dma_len(&dst_sg) = size;
1953 sg_dma_len(&src_sg) = size;
1954
1955 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
1956 }
1957
1958 static struct dma_async_tx_descriptor *
1959 d40_prep_memcpy_sg(struct dma_chan *chan,
1960 struct scatterlist *dst_sg, unsigned int dst_nents,
1961 struct scatterlist *src_sg, unsigned int src_nents,
1962 unsigned long dma_flags)
1963 {
1964 if (dst_nents != src_nents)
1965 return NULL;
1966
1967 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
1968 }
1969
1970 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1971 struct scatterlist *sgl,
1972 unsigned int sg_len,
1973 enum dma_data_direction direction,
1974 unsigned long dma_flags)
1975 {
1976 if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
1977 return NULL;
1978
1979 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
1980 }
1981
1982 static enum dma_status d40_tx_status(struct dma_chan *chan,
1983 dma_cookie_t cookie,
1984 struct dma_tx_state *txstate)
1985 {
1986 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1987 dma_cookie_t last_used;
1988 dma_cookie_t last_complete;
1989 int ret;
1990
1991 if (d40c->phy_chan == NULL) {
1992 chan_err(d40c, "Cannot read status of unallocated channel\n");
1993 return -EINVAL;
1994 }
1995
1996 last_complete = d40c->completed;
1997 last_used = chan->cookie;
1998
1999 if (d40_is_paused(d40c))
2000 ret = DMA_PAUSED;
2001 else
2002 ret = dma_async_is_complete(cookie, last_complete, last_used);
2003
2004 dma_set_tx_state(txstate, last_complete, last_used,
2005 stedma40_residue(chan));
2006
2007 return ret;
2008 }
2009
2010 static void d40_issue_pending(struct dma_chan *chan)
2011 {
2012 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2013 unsigned long flags;
2014
2015 if (d40c->phy_chan == NULL) {
2016 chan_err(d40c, "Channel is not allocated!\n");
2017 return;
2018 }
2019
2020 spin_lock_irqsave(&d40c->lock, flags);
2021
2022 /* Busy means that pending jobs are already being processed */
2023 if (!d40c->busy)
2024 (void) d40_queue_start(d40c);
2025
2026 spin_unlock_irqrestore(&d40c->lock, flags);
2027 }
2028
2029 /* Runtime reconfiguration extension */
2030 static void d40_set_runtime_config(struct dma_chan *chan,
2031 struct dma_slave_config *config)
2032 {
2033 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2034 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2035 enum dma_slave_buswidth config_addr_width;
2036 dma_addr_t config_addr;
2037 u32 config_maxburst;
2038 enum stedma40_periph_data_width addr_width;
2039 int psize;
2040
2041 if (config->direction == DMA_FROM_DEVICE) {
2042 dma_addr_t dev_addr_rx =
2043 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2044
2045 config_addr = config->src_addr;
2046 if (dev_addr_rx)
2047 dev_dbg(d40c->base->dev,
2048 "channel has a pre-wired RX address %08x "
2049 "overriding with %08x\n",
2050 dev_addr_rx, config_addr);
2051 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2052 dev_dbg(d40c->base->dev,
2053 "channel was not configured for peripheral "
2054 "to memory transfer (%d) overriding\n",
2055 cfg->dir);
2056 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2057
2058 config_addr_width = config->src_addr_width;
2059 config_maxburst = config->src_maxburst;
2060
2061 } else if (config->direction == DMA_TO_DEVICE) {
2062 dma_addr_t dev_addr_tx =
2063 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2064
2065 config_addr = config->dst_addr;
2066 if (dev_addr_tx)
2067 dev_dbg(d40c->base->dev,
2068 "channel has a pre-wired TX address %08x "
2069 "overriding with %08x\n",
2070 dev_addr_tx, config_addr);
2071 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2072 dev_dbg(d40c->base->dev,
2073 "channel was not configured for memory "
2074 "to peripheral transfer (%d) overriding\n",
2075 cfg->dir);
2076 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2077
2078 config_addr_width = config->dst_addr_width;
2079 config_maxburst = config->dst_maxburst;
2080
2081 } else {
2082 dev_err(d40c->base->dev,
2083 "unrecognized channel direction %d\n",
2084 config->direction);
2085 return;
2086 }
2087
2088 switch (config_addr_width) {
2089 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2090 addr_width = STEDMA40_BYTE_WIDTH;
2091 break;
2092 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2093 addr_width = STEDMA40_HALFWORD_WIDTH;
2094 break;
2095 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2096 addr_width = STEDMA40_WORD_WIDTH;
2097 break;
2098 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2099 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2100 break;
2101 default:
2102 dev_err(d40c->base->dev,
2103 "illegal peripheral address width "
2104 "requested (%d)\n",
2105 config->src_addr_width);
2106 return;
2107 }
2108
2109 if (chan_is_logical(d40c)) {
2110 if (config_maxburst >= 16)
2111 psize = STEDMA40_PSIZE_LOG_16;
2112 else if (config_maxburst >= 8)
2113 psize = STEDMA40_PSIZE_LOG_8;
2114 else if (config_maxburst >= 4)
2115 psize = STEDMA40_PSIZE_LOG_4;
2116 else
2117 psize = STEDMA40_PSIZE_LOG_1;
2118 } else {
2119 if (config_maxburst >= 16)
2120 psize = STEDMA40_PSIZE_PHY_16;
2121 else if (config_maxburst >= 8)
2122 psize = STEDMA40_PSIZE_PHY_8;
2123 else if (config_maxburst >= 4)
2124 psize = STEDMA40_PSIZE_PHY_4;
2125 else if (config_maxburst >= 2)
2126 psize = STEDMA40_PSIZE_PHY_2;
2127 else
2128 psize = STEDMA40_PSIZE_PHY_1;
2129 }
2130
2131 /* Set up all the endpoint configs */
2132 cfg->src_info.data_width = addr_width;
2133 cfg->src_info.psize = psize;
2134 cfg->src_info.big_endian = false;
2135 cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2136 cfg->dst_info.data_width = addr_width;
2137 cfg->dst_info.psize = psize;
2138 cfg->dst_info.big_endian = false;
2139 cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2140
2141 /* Fill in register values */
2142 if (chan_is_logical(d40c))
2143 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2144 else
2145 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2146 &d40c->dst_def_cfg, false);
2147
2148 /* These settings will take precedence later */
2149 d40c->runtime_addr = config_addr;
2150 d40c->runtime_direction = config->direction;
2151 dev_dbg(d40c->base->dev,
2152 "configured channel %s for %s, data width %d, "
2153 "maxburst %d bytes, LE, no flow control\n",
2154 dma_chan_name(chan),
2155 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2156 config_addr_width,
2157 config_maxburst);
2158 }
2159
2160 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2161 unsigned long arg)
2162 {
2163 unsigned long flags;
2164 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2165
2166 if (d40c->phy_chan == NULL) {
2167 chan_err(d40c, "Channel is not allocated!\n");
2168 return -EINVAL;
2169 }
2170
2171 switch (cmd) {
2172 case DMA_TERMINATE_ALL:
2173 spin_lock_irqsave(&d40c->lock, flags);
2174 d40_term_all(d40c);
2175 spin_unlock_irqrestore(&d40c->lock, flags);
2176 return 0;
2177 case DMA_PAUSE:
2178 return d40_pause(chan);
2179 case DMA_RESUME:
2180 return d40_resume(chan);
2181 case DMA_SLAVE_CONFIG:
2182 d40_set_runtime_config(chan,
2183 (struct dma_slave_config *) arg);
2184 return 0;
2185 default:
2186 break;
2187 }
2188
2189 /* Other commands are unimplemented */
2190 return -ENXIO;
2191 }
2192
2193 /* Initialization functions */
2194
2195 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2196 struct d40_chan *chans, int offset,
2197 int num_chans)
2198 {
2199 int i = 0;
2200 struct d40_chan *d40c;
2201
2202 INIT_LIST_HEAD(&dma->channels);
2203
2204 for (i = offset; i < offset + num_chans; i++) {
2205 d40c = &chans[i];
2206 d40c->base = base;
2207 d40c->chan.device = dma;
2208
2209 spin_lock_init(&d40c->lock);
2210
2211 d40c->log_num = D40_PHY_CHAN;
2212
2213 INIT_LIST_HEAD(&d40c->active);
2214 INIT_LIST_HEAD(&d40c->queue);
2215 INIT_LIST_HEAD(&d40c->client);
2216
2217 tasklet_init(&d40c->tasklet, dma_tasklet,
2218 (unsigned long) d40c);
2219
2220 list_add_tail(&d40c->chan.device_node,
2221 &dma->channels);
2222 }
2223 }
2224
2225 static int __init d40_dmaengine_init(struct d40_base *base,
2226 int num_reserved_chans)
2227 {
2228 int err ;
2229
2230 d40_chan_init(base, &base->dma_slave, base->log_chans,
2231 0, base->num_log_chans);
2232
2233 dma_cap_zero(base->dma_slave.cap_mask);
2234 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2235
2236 base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2237 base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2238 base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2239 base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2240 base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2241 base->dma_slave.device_tx_status = d40_tx_status;
2242 base->dma_slave.device_issue_pending = d40_issue_pending;
2243 base->dma_slave.device_control = d40_control;
2244 base->dma_slave.dev = base->dev;
2245
2246 err = dma_async_device_register(&base->dma_slave);
2247
2248 if (err) {
2249 d40_err(base->dev, "Failed to register slave channels\n");
2250 goto failure1;
2251 }
2252
2253 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2254 base->num_log_chans, base->plat_data->memcpy_len);
2255
2256 dma_cap_zero(base->dma_memcpy.cap_mask);
2257 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2258 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2259
2260 base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2261 base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2262 base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2263 base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2264 base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2265 base->dma_memcpy.device_tx_status = d40_tx_status;
2266 base->dma_memcpy.device_issue_pending = d40_issue_pending;
2267 base->dma_memcpy.device_control = d40_control;
2268 base->dma_memcpy.dev = base->dev;
2269 /*
2270 * This controller can only access address at even
2271 * 32bit boundaries, i.e. 2^2
2272 */
2273 base->dma_memcpy.copy_align = 2;
2274
2275 err = dma_async_device_register(&base->dma_memcpy);
2276
2277 if (err) {
2278 d40_err(base->dev,
2279 "Failed to regsiter memcpy only channels\n");
2280 goto failure2;
2281 }
2282
2283 d40_chan_init(base, &base->dma_both, base->phy_chans,
2284 0, num_reserved_chans);
2285
2286 dma_cap_zero(base->dma_both.cap_mask);
2287 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2288 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2289 dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2290
2291 base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2292 base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2293 base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2294 base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2295 base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2296 base->dma_both.device_tx_status = d40_tx_status;
2297 base->dma_both.device_issue_pending = d40_issue_pending;
2298 base->dma_both.device_control = d40_control;
2299 base->dma_both.dev = base->dev;
2300 base->dma_both.copy_align = 2;
2301 err = dma_async_device_register(&base->dma_both);
2302
2303 if (err) {
2304 d40_err(base->dev,
2305 "Failed to register logical and physical capable channels\n");
2306 goto failure3;
2307 }
2308 return 0;
2309 failure3:
2310 dma_async_device_unregister(&base->dma_memcpy);
2311 failure2:
2312 dma_async_device_unregister(&base->dma_slave);
2313 failure1:
2314 return err;
2315 }
2316
2317 /* Initialization functions. */
2318
2319 static int __init d40_phy_res_init(struct d40_base *base)
2320 {
2321 int i;
2322 int num_phy_chans_avail = 0;
2323 u32 val[2];
2324 int odd_even_bit = -2;
2325
2326 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2327 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2328
2329 for (i = 0; i < base->num_phy_chans; i++) {
2330 base->phy_res[i].num = i;
2331 odd_even_bit += 2 * ((i % 2) == 0);
2332 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2333 /* Mark security only channels as occupied */
2334 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2335 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2336 } else {
2337 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2338 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2339 num_phy_chans_avail++;
2340 }
2341 spin_lock_init(&base->phy_res[i].lock);
2342 }
2343
2344 /* Mark disabled channels as occupied */
2345 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2346 int chan = base->plat_data->disabled_channels[i];
2347
2348 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2349 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2350 num_phy_chans_avail--;
2351 }
2352
2353 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2354 num_phy_chans_avail, base->num_phy_chans);
2355
2356 /* Verify settings extended vs standard */
2357 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2358
2359 for (i = 0; i < base->num_phy_chans; i++) {
2360
2361 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2362 (val[0] & 0x3) != 1)
2363 dev_info(base->dev,
2364 "[%s] INFO: channel %d is misconfigured (%d)\n",
2365 __func__, i, val[0] & 0x3);
2366
2367 val[0] = val[0] >> 2;
2368 }
2369
2370 return num_phy_chans_avail;
2371 }
2372
2373 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2374 {
2375 static const struct d40_reg_val dma_id_regs[] = {
2376 /* Peripheral Id */
2377 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2378 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2379 /*
2380 * D40_DREG_PERIPHID2 Depends on HW revision:
2381 * DB8500ed has 0x0008,
2382 * ? has 0x0018,
2383 * DB8500v1 has 0x0028
2384 * DB8500v2 has 0x0038
2385 */
2386 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2387
2388 /* PCell Id */
2389 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2390 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2391 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2392 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2393 };
2394 struct stedma40_platform_data *plat_data;
2395 struct clk *clk = NULL;
2396 void __iomem *virtbase = NULL;
2397 struct resource *res = NULL;
2398 struct d40_base *base = NULL;
2399 int num_log_chans = 0;
2400 int num_phy_chans;
2401 int i;
2402 u32 val;
2403 u32 rev;
2404
2405 clk = clk_get(&pdev->dev, NULL);
2406
2407 if (IS_ERR(clk)) {
2408 d40_err(&pdev->dev, "No matching clock found\n");
2409 goto failure;
2410 }
2411
2412 clk_enable(clk);
2413
2414 /* Get IO for DMAC base address */
2415 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2416 if (!res)
2417 goto failure;
2418
2419 if (request_mem_region(res->start, resource_size(res),
2420 D40_NAME " I/O base") == NULL)
2421 goto failure;
2422
2423 virtbase = ioremap(res->start, resource_size(res));
2424 if (!virtbase)
2425 goto failure;
2426
2427 /* HW version check */
2428 for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2429 if (dma_id_regs[i].val !=
2430 readl(virtbase + dma_id_regs[i].reg)) {
2431 d40_err(&pdev->dev,
2432 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2433 dma_id_regs[i].val,
2434 dma_id_regs[i].reg,
2435 readl(virtbase + dma_id_regs[i].reg));
2436 goto failure;
2437 }
2438 }
2439
2440 /* Get silicon revision and designer */
2441 val = readl(virtbase + D40_DREG_PERIPHID2);
2442
2443 if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2444 D40_HW_DESIGNER) {
2445 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2446 val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2447 D40_HW_DESIGNER);
2448 goto failure;
2449 }
2450
2451 rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2452 D40_DREG_PERIPHID2_REV_POS;
2453
2454 /* The number of physical channels on this HW */
2455 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2456
2457 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2458 rev, res->start);
2459
2460 plat_data = pdev->dev.platform_data;
2461
2462 /* Count the number of logical channels in use */
2463 for (i = 0; i < plat_data->dev_len; i++)
2464 if (plat_data->dev_rx[i] != 0)
2465 num_log_chans++;
2466
2467 for (i = 0; i < plat_data->dev_len; i++)
2468 if (plat_data->dev_tx[i] != 0)
2469 num_log_chans++;
2470
2471 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2472 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2473 sizeof(struct d40_chan), GFP_KERNEL);
2474
2475 if (base == NULL) {
2476 d40_err(&pdev->dev, "Out of memory\n");
2477 goto failure;
2478 }
2479
2480 base->rev = rev;
2481 base->clk = clk;
2482 base->num_phy_chans = num_phy_chans;
2483 base->num_log_chans = num_log_chans;
2484 base->phy_start = res->start;
2485 base->phy_size = resource_size(res);
2486 base->virtbase = virtbase;
2487 base->plat_data = plat_data;
2488 base->dev = &pdev->dev;
2489 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2490 base->log_chans = &base->phy_chans[num_phy_chans];
2491
2492 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2493 GFP_KERNEL);
2494 if (!base->phy_res)
2495 goto failure;
2496
2497 base->lookup_phy_chans = kzalloc(num_phy_chans *
2498 sizeof(struct d40_chan *),
2499 GFP_KERNEL);
2500 if (!base->lookup_phy_chans)
2501 goto failure;
2502
2503 if (num_log_chans + plat_data->memcpy_len) {
2504 /*
2505 * The max number of logical channels are event lines for all
2506 * src devices and dst devices
2507 */
2508 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2509 sizeof(struct d40_chan *),
2510 GFP_KERNEL);
2511 if (!base->lookup_log_chans)
2512 goto failure;
2513 }
2514
2515 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2516 sizeof(struct d40_desc *) *
2517 D40_LCLA_LINK_PER_EVENT_GRP,
2518 GFP_KERNEL);
2519 if (!base->lcla_pool.alloc_map)
2520 goto failure;
2521
2522 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2523 0, SLAB_HWCACHE_ALIGN,
2524 NULL);
2525 if (base->desc_slab == NULL)
2526 goto failure;
2527
2528 return base;
2529
2530 failure:
2531 if (!IS_ERR(clk)) {
2532 clk_disable(clk);
2533 clk_put(clk);
2534 }
2535 if (virtbase)
2536 iounmap(virtbase);
2537 if (res)
2538 release_mem_region(res->start,
2539 resource_size(res));
2540 if (virtbase)
2541 iounmap(virtbase);
2542
2543 if (base) {
2544 kfree(base->lcla_pool.alloc_map);
2545 kfree(base->lookup_log_chans);
2546 kfree(base->lookup_phy_chans);
2547 kfree(base->phy_res);
2548 kfree(base);
2549 }
2550
2551 return NULL;
2552 }
2553
2554 static void __init d40_hw_init(struct d40_base *base)
2555 {
2556
2557 static const struct d40_reg_val dma_init_reg[] = {
2558 /* Clock every part of the DMA block from start */
2559 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2560
2561 /* Interrupts on all logical channels */
2562 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2563 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2564 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2565 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2566 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2567 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2568 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2569 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2570 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2571 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2572 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2573 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2574 };
2575 int i;
2576 u32 prmseo[2] = {0, 0};
2577 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2578 u32 pcmis = 0;
2579 u32 pcicr = 0;
2580
2581 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2582 writel(dma_init_reg[i].val,
2583 base->virtbase + dma_init_reg[i].reg);
2584
2585 /* Configure all our dma channels to default settings */
2586 for (i = 0; i < base->num_phy_chans; i++) {
2587
2588 activeo[i % 2] = activeo[i % 2] << 2;
2589
2590 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2591 == D40_ALLOC_PHY) {
2592 activeo[i % 2] |= 3;
2593 continue;
2594 }
2595
2596 /* Enable interrupt # */
2597 pcmis = (pcmis << 1) | 1;
2598
2599 /* Clear interrupt # */
2600 pcicr = (pcicr << 1) | 1;
2601
2602 /* Set channel to physical mode */
2603 prmseo[i % 2] = prmseo[i % 2] << 2;
2604 prmseo[i % 2] |= 1;
2605
2606 }
2607
2608 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2609 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2610 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2611 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2612
2613 /* Write which interrupt to enable */
2614 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2615
2616 /* Write which interrupt to clear */
2617 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2618
2619 }
2620
2621 static int __init d40_lcla_allocate(struct d40_base *base)
2622 {
2623 struct d40_lcla_pool *pool = &base->lcla_pool;
2624 unsigned long *page_list;
2625 int i, j;
2626 int ret = 0;
2627
2628 /*
2629 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2630 * To full fill this hardware requirement without wasting 256 kb
2631 * we allocate pages until we get an aligned one.
2632 */
2633 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2634 GFP_KERNEL);
2635
2636 if (!page_list) {
2637 ret = -ENOMEM;
2638 goto failure;
2639 }
2640
2641 /* Calculating how many pages that are required */
2642 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2643
2644 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2645 page_list[i] = __get_free_pages(GFP_KERNEL,
2646 base->lcla_pool.pages);
2647 if (!page_list[i]) {
2648
2649 d40_err(base->dev, "Failed to allocate %d pages.\n",
2650 base->lcla_pool.pages);
2651
2652 for (j = 0; j < i; j++)
2653 free_pages(page_list[j], base->lcla_pool.pages);
2654 goto failure;
2655 }
2656
2657 if ((virt_to_phys((void *)page_list[i]) &
2658 (LCLA_ALIGNMENT - 1)) == 0)
2659 break;
2660 }
2661
2662 for (j = 0; j < i; j++)
2663 free_pages(page_list[j], base->lcla_pool.pages);
2664
2665 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2666 base->lcla_pool.base = (void *)page_list[i];
2667 } else {
2668 /*
2669 * After many attempts and no succees with finding the correct
2670 * alignment, try with allocating a big buffer.
2671 */
2672 dev_warn(base->dev,
2673 "[%s] Failed to get %d pages @ 18 bit align.\n",
2674 __func__, base->lcla_pool.pages);
2675 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2676 base->num_phy_chans +
2677 LCLA_ALIGNMENT,
2678 GFP_KERNEL);
2679 if (!base->lcla_pool.base_unaligned) {
2680 ret = -ENOMEM;
2681 goto failure;
2682 }
2683
2684 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2685 LCLA_ALIGNMENT);
2686 }
2687
2688 pool->dma_addr = dma_map_single(base->dev, pool->base,
2689 SZ_1K * base->num_phy_chans,
2690 DMA_TO_DEVICE);
2691 if (dma_mapping_error(base->dev, pool->dma_addr)) {
2692 pool->dma_addr = 0;
2693 ret = -ENOMEM;
2694 goto failure;
2695 }
2696
2697 writel(virt_to_phys(base->lcla_pool.base),
2698 base->virtbase + D40_DREG_LCLA);
2699 failure:
2700 kfree(page_list);
2701 return ret;
2702 }
2703
2704 static int __init d40_probe(struct platform_device *pdev)
2705 {
2706 int err;
2707 int ret = -ENOENT;
2708 struct d40_base *base;
2709 struct resource *res = NULL;
2710 int num_reserved_chans;
2711 u32 val;
2712
2713 base = d40_hw_detect_init(pdev);
2714
2715 if (!base)
2716 goto failure;
2717
2718 num_reserved_chans = d40_phy_res_init(base);
2719
2720 platform_set_drvdata(pdev, base);
2721
2722 spin_lock_init(&base->interrupt_lock);
2723 spin_lock_init(&base->execmd_lock);
2724
2725 /* Get IO for logical channel parameter address */
2726 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2727 if (!res) {
2728 ret = -ENOENT;
2729 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2730 goto failure;
2731 }
2732 base->lcpa_size = resource_size(res);
2733 base->phy_lcpa = res->start;
2734
2735 if (request_mem_region(res->start, resource_size(res),
2736 D40_NAME " I/O lcpa") == NULL) {
2737 ret = -EBUSY;
2738 d40_err(&pdev->dev,
2739 "Failed to request LCPA region 0x%x-0x%x\n",
2740 res->start, res->end);
2741 goto failure;
2742 }
2743
2744 /* We make use of ESRAM memory for this. */
2745 val = readl(base->virtbase + D40_DREG_LCPA);
2746 if (res->start != val && val != 0) {
2747 dev_warn(&pdev->dev,
2748 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2749 __func__, val, res->start);
2750 } else
2751 writel(res->start, base->virtbase + D40_DREG_LCPA);
2752
2753 base->lcpa_base = ioremap(res->start, resource_size(res));
2754 if (!base->lcpa_base) {
2755 ret = -ENOMEM;
2756 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2757 goto failure;
2758 }
2759
2760 ret = d40_lcla_allocate(base);
2761 if (ret) {
2762 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2763 goto failure;
2764 }
2765
2766 spin_lock_init(&base->lcla_pool.lock);
2767
2768 base->irq = platform_get_irq(pdev, 0);
2769
2770 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2771 if (ret) {
2772 d40_err(&pdev->dev, "No IRQ defined\n");
2773 goto failure;
2774 }
2775
2776 err = d40_dmaengine_init(base, num_reserved_chans);
2777 if (err)
2778 goto failure;
2779
2780 d40_hw_init(base);
2781
2782 dev_info(base->dev, "initialized\n");
2783 return 0;
2784
2785 failure:
2786 if (base) {
2787 if (base->desc_slab)
2788 kmem_cache_destroy(base->desc_slab);
2789 if (base->virtbase)
2790 iounmap(base->virtbase);
2791
2792 if (base->lcla_pool.dma_addr)
2793 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2794 SZ_1K * base->num_phy_chans,
2795 DMA_TO_DEVICE);
2796
2797 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2798 free_pages((unsigned long)base->lcla_pool.base,
2799 base->lcla_pool.pages);
2800
2801 kfree(base->lcla_pool.base_unaligned);
2802
2803 if (base->phy_lcpa)
2804 release_mem_region(base->phy_lcpa,
2805 base->lcpa_size);
2806 if (base->phy_start)
2807 release_mem_region(base->phy_start,
2808 base->phy_size);
2809 if (base->clk) {
2810 clk_disable(base->clk);
2811 clk_put(base->clk);
2812 }
2813
2814 kfree(base->lcla_pool.alloc_map);
2815 kfree(base->lookup_log_chans);
2816 kfree(base->lookup_phy_chans);
2817 kfree(base->phy_res);
2818 kfree(base);
2819 }
2820
2821 d40_err(&pdev->dev, "probe failed\n");
2822 return ret;
2823 }
2824
2825 static struct platform_driver d40_driver = {
2826 .driver = {
2827 .owner = THIS_MODULE,
2828 .name = D40_NAME,
2829 },
2830 };
2831
2832 static int __init stedma40_init(void)
2833 {
2834 return platform_driver_probe(&d40_driver, d40_probe);
2835 }
2836 arch_initcall(stedma40_init);