]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/ste_dma40.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
61
62 #define D40_MEMCPY_MAX_CHANS 8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
71
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
85
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
99
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
122 };
123
124 /*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
138 };
139
140 /*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145 static u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
271 };
272
273 /**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
287
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
305
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
367
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
372
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
375
376 bool is_in_client_list;
377 bool cyclic;
378 };
379
380 /**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
390 */
391 struct d40_lcla_pool {
392 void *base;
393 dma_addr_t dma_addr;
394 void *base_unaligned;
395 int pages;
396 spinlock_t lock;
397 struct d40_desc **alloc_map;
398 };
399
400 /**
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
403 *
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 */
414 struct d40_phy_res {
415 spinlock_t lock;
416 bool reserved;
417 int num;
418 u32 allocated_src;
419 u32 allocated_dst;
420 bool use_soft_lli;
421 };
422
423 struct d40_base;
424
425 /**
426 * struct d40_chan - Struct that describes a channel.
427 *
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
453 *
454 * This struct can either "be" a logical or a physical channel.
455 */
456 struct d40_chan {
457 spinlock_t lock;
458 int log_num;
459 int pending_tx;
460 bool busy;
461 struct d40_phy_res *phy_chan;
462 struct dma_chan chan;
463 struct tasklet_struct tasklet;
464 struct list_head client;
465 struct list_head pending_queue;
466 struct list_head active;
467 struct list_head done;
468 struct list_head queue;
469 struct list_head prepare_queue;
470 struct stedma40_chan_cfg dma_cfg;
471 bool configured;
472 struct d40_base *base;
473 /* Default register configurations */
474 u32 src_def_cfg;
475 u32 dst_def_cfg;
476 struct d40_def_lcsp log_def;
477 struct d40_log_lli_full *lcpa;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr;
480 enum dma_transfer_direction runtime_direction;
481 };
482
483 /**
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485 * controller
486 *
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
499 */
500 struct d40_gen_dmac {
501 u32 *backup;
502 u32 backup_size;
503 u32 realtime_en;
504 u32 realtime_clear;
505 u32 high_prio_en;
506 u32 high_prio_clear;
507 u32 interrupt_en;
508 u32 interrupt_clear;
509 struct d40_interrupt_lookup *il;
510 u32 il_size;
511 struct d40_reg_val *init_reg;
512 u32 init_reg_size;
513 };
514
515 /**
516 * struct d40_base - The big global struct, one for each probe'd instance.
517 *
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529 * transfers).
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
534 * num_phy_chans.
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
545 * configuration.
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556 * later
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
560 * DMA controller
561 */
562 struct d40_base {
563 spinlock_t interrupt_lock;
564 spinlock_t execmd_lock;
565 struct device *dev;
566 void __iomem *virtbase;
567 u8 rev:4;
568 struct clk *clk;
569 phys_addr_t phy_start;
570 resource_size_t phy_size;
571 int irq;
572 int num_memcpy_chans;
573 int num_phy_chans;
574 int num_log_chans;
575 struct device_dma_parameters dma_parms;
576 struct dma_device dma_both;
577 struct dma_device dma_slave;
578 struct dma_device dma_memcpy;
579 struct d40_chan *phy_chans;
580 struct d40_chan *log_chans;
581 struct d40_chan **lookup_log_chans;
582 struct d40_chan **lookup_phy_chans;
583 struct stedma40_platform_data *plat_data;
584 struct regulator *lcpa_regulator;
585 /* Physical half channels */
586 struct d40_phy_res *phy_res;
587 struct d40_lcla_pool lcla_pool;
588 void *lcpa_base;
589 dma_addr_t phy_lcpa;
590 resource_size_t lcpa_size;
591 struct kmem_cache *desc_slab;
592 u32 reg_val_backup[BACKUP_REGS_SZ];
593 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 u32 *reg_val_backup_chan;
595 u16 gcc_pwr_off_mask;
596 struct d40_gen_dmac gen_dmac;
597 };
598
599 static struct device *chan2dev(struct d40_chan *d40c)
600 {
601 return &d40c->chan.dev->device;
602 }
603
604 static bool chan_is_physical(struct d40_chan *chan)
605 {
606 return chan->log_num == D40_PHY_CHAN;
607 }
608
609 static bool chan_is_logical(struct d40_chan *chan)
610 {
611 return !chan_is_physical(chan);
612 }
613
614 static void __iomem *chan_base(struct d40_chan *chan)
615 {
616 return chan->base->virtbase + D40_DREG_PCBASE +
617 chan->phy_chan->num * D40_DREG_PCDELTA;
618 }
619
620 #define d40_err(dev, format, arg...) \
621 dev_err(dev, "[%s] " format, __func__, ## arg)
622
623 #define chan_err(d40c, format, arg...) \
624 d40_err(chan2dev(d40c), format, ## arg)
625
626 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627 int lli_len)
628 {
629 bool is_log = chan_is_logical(d40c);
630 u32 align;
631 void *base;
632
633 if (is_log)
634 align = sizeof(struct d40_log_lli);
635 else
636 align = sizeof(struct d40_phy_lli);
637
638 if (lli_len == 1) {
639 base = d40d->lli_pool.pre_alloc_lli;
640 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641 d40d->lli_pool.base = NULL;
642 } else {
643 d40d->lli_pool.size = lli_len * 2 * align;
644
645 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646 d40d->lli_pool.base = base;
647
648 if (d40d->lli_pool.base == NULL)
649 return -ENOMEM;
650 }
651
652 if (is_log) {
653 d40d->lli_log.src = PTR_ALIGN(base, align);
654 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655
656 d40d->lli_pool.dma_addr = 0;
657 } else {
658 d40d->lli_phy.src = PTR_ALIGN(base, align);
659 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660
661 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662 d40d->lli_phy.src,
663 d40d->lli_pool.size,
664 DMA_TO_DEVICE);
665
666 if (dma_mapping_error(d40c->base->dev,
667 d40d->lli_pool.dma_addr)) {
668 kfree(d40d->lli_pool.base);
669 d40d->lli_pool.base = NULL;
670 d40d->lli_pool.dma_addr = 0;
671 return -ENOMEM;
672 }
673 }
674
675 return 0;
676 }
677
678 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679 {
680 if (d40d->lli_pool.dma_addr)
681 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682 d40d->lli_pool.size, DMA_TO_DEVICE);
683
684 kfree(d40d->lli_pool.base);
685 d40d->lli_pool.base = NULL;
686 d40d->lli_pool.size = 0;
687 d40d->lli_log.src = NULL;
688 d40d->lli_log.dst = NULL;
689 d40d->lli_phy.src = NULL;
690 d40d->lli_phy.dst = NULL;
691 }
692
693 static int d40_lcla_alloc_one(struct d40_chan *d40c,
694 struct d40_desc *d40d)
695 {
696 unsigned long flags;
697 int i;
698 int ret = -EINVAL;
699
700 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701
702 /*
703 * Allocate both src and dst at the same time, therefore the half
704 * start on 1 since 0 can't be used since zero is used as end marker.
705 */
706 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708
709 if (!d40c->base->lcla_pool.alloc_map[idx]) {
710 d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 d40d->lcla_alloc++;
712 ret = i;
713 break;
714 }
715 }
716
717 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718
719 return ret;
720 }
721
722 static int d40_lcla_free_all(struct d40_chan *d40c,
723 struct d40_desc *d40d)
724 {
725 unsigned long flags;
726 int i;
727 int ret = -EINVAL;
728
729 if (chan_is_physical(d40c))
730 return 0;
731
732 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733
734 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736
737 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738 d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 d40d->lcla_alloc--;
740 if (d40d->lcla_alloc == 0) {
741 ret = 0;
742 break;
743 }
744 }
745 }
746
747 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748
749 return ret;
750
751 }
752
753 static void d40_desc_remove(struct d40_desc *d40d)
754 {
755 list_del(&d40d->node);
756 }
757
758 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759 {
760 struct d40_desc *desc = NULL;
761
762 if (!list_empty(&d40c->client)) {
763 struct d40_desc *d;
764 struct d40_desc *_d;
765
766 list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 if (async_tx_test_ack(&d->txd)) {
768 d40_desc_remove(d);
769 desc = d;
770 memset(desc, 0, sizeof(*desc));
771 break;
772 }
773 }
774 }
775
776 if (!desc)
777 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778
779 if (desc)
780 INIT_LIST_HEAD(&desc->node);
781
782 return desc;
783 }
784
785 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786 {
787
788 d40_pool_lli_free(d40c, d40d);
789 d40_lcla_free_all(d40c, d40d);
790 kmem_cache_free(d40c->base->desc_slab, d40d);
791 }
792
793 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794 {
795 list_add_tail(&desc->node, &d40c->active);
796 }
797
798 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799 {
800 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801 struct d40_phy_lli *lli_src = desc->lli_phy.src;
802 void __iomem *base = chan_base(chan);
803
804 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808
809 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813 }
814
815 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816 {
817 list_add_tail(&desc->node, &d40c->done);
818 }
819
820 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821 {
822 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823 struct d40_log_lli_bidir *lli = &desc->lli_log;
824 int lli_current = desc->lli_current;
825 int lli_len = desc->lli_len;
826 bool cyclic = desc->cyclic;
827 int curr_lcla = -EINVAL;
828 int first_lcla = 0;
829 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830 bool linkback;
831
832 /*
833 * We may have partially running cyclic transfers, in case we did't get
834 * enough LCLA entries.
835 */
836 linkback = cyclic && lli_current == 0;
837
838 /*
839 * For linkback, we need one LCLA even with only one link, because we
840 * can't link back to the one in LCPA space
841 */
842 if (linkback || (lli_len - lli_current > 1)) {
843 /*
844 * If the channel is expected to use only soft_lli don't
845 * allocate a lcla. This is to avoid a HW issue that exists
846 * in some controller during a peripheral to memory transfer
847 * that uses linked lists.
848 */
849 if (!(chan->phy_chan->use_soft_lli &&
850 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 curr_lcla = d40_lcla_alloc_one(chan, desc);
852
853 first_lcla = curr_lcla;
854 }
855
856 /*
857 * For linkback, we normally load the LCPA in the loop since we need to
858 * link it to the second LCLA and not the first. However, if we
859 * couldn't even get a first LCLA, then we have to run in LCPA and
860 * reload manually.
861 */
862 if (!linkback || curr_lcla == -EINVAL) {
863 unsigned int flags = 0;
864
865 if (curr_lcla == -EINVAL)
866 flags |= LLI_TERM_INT;
867
868 d40_log_lli_lcpa_write(chan->lcpa,
869 &lli->dst[lli_current],
870 &lli->src[lli_current],
871 curr_lcla,
872 flags);
873 lli_current++;
874 }
875
876 if (curr_lcla < 0)
877 goto set_current;
878
879 for (; lli_current < lli_len; lli_current++) {
880 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881 8 * curr_lcla * 2;
882 struct d40_log_lli *lcla = pool->base + lcla_offset;
883 unsigned int flags = 0;
884 int next_lcla;
885
886 if (lli_current + 1 < lli_len)
887 next_lcla = d40_lcla_alloc_one(chan, desc);
888 else
889 next_lcla = linkback ? first_lcla : -EINVAL;
890
891 if (cyclic || next_lcla == -EINVAL)
892 flags |= LLI_TERM_INT;
893
894 if (linkback && curr_lcla == first_lcla) {
895 /* First link goes in both LCPA and LCLA */
896 d40_log_lli_lcpa_write(chan->lcpa,
897 &lli->dst[lli_current],
898 &lli->src[lli_current],
899 next_lcla, flags);
900 }
901
902 /*
903 * One unused LCLA in the cyclic case if the very first
904 * next_lcla fails...
905 */
906 d40_log_lli_lcla_write(lcla,
907 &lli->dst[lli_current],
908 &lli->src[lli_current],
909 next_lcla, flags);
910
911 /*
912 * Cache maintenance is not needed if lcla is
913 * mapped in esram
914 */
915 if (!use_esram_lcla) {
916 dma_sync_single_range_for_device(chan->base->dev,
917 pool->dma_addr, lcla_offset,
918 2 * sizeof(struct d40_log_lli),
919 DMA_TO_DEVICE);
920 }
921 curr_lcla = next_lcla;
922
923 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 lli_current++;
925 break;
926 }
927 }
928 set_current:
929 desc->lli_current = lli_current;
930 }
931
932 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
933 {
934 if (chan_is_physical(d40c)) {
935 d40_phy_lli_load(d40c, d40d);
936 d40d->lli_current = d40d->lli_len;
937 } else
938 d40_log_lli_to_lcxa(d40c, d40d);
939 }
940
941 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
942 {
943 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
944 }
945
946 /* remove desc from current queue and add it to the pending_queue */
947 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
948 {
949 d40_desc_remove(desc);
950 desc->is_in_client_list = false;
951 list_add_tail(&desc->node, &d40c->pending_queue);
952 }
953
954 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
955 {
956 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
957 node);
958 }
959
960 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
961 {
962 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
963 }
964
965 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
966 {
967 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
968 }
969
970 static int d40_psize_2_burst_size(bool is_log, int psize)
971 {
972 if (is_log) {
973 if (psize == STEDMA40_PSIZE_LOG_1)
974 return 1;
975 } else {
976 if (psize == STEDMA40_PSIZE_PHY_1)
977 return 1;
978 }
979
980 return 2 << psize;
981 }
982
983 /*
984 * The dma only supports transmitting packages up to
985 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
986 *
987 * Calculate the total number of dma elements required to send the entire sg list.
988 */
989 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
990 {
991 int dmalen;
992 u32 max_w = max(data_width1, data_width2);
993 u32 min_w = min(data_width1, data_width2);
994 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
995
996 if (seg_max > STEDMA40_MAX_SEG_SIZE)
997 seg_max -= max_w;
998
999 if (!IS_ALIGNED(size, max_w))
1000 return -EINVAL;
1001
1002 if (size <= seg_max)
1003 dmalen = 1;
1004 else {
1005 dmalen = size / seg_max;
1006 if (dmalen * seg_max < size)
1007 dmalen++;
1008 }
1009 return dmalen;
1010 }
1011
1012 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1013 u32 data_width1, u32 data_width2)
1014 {
1015 struct scatterlist *sg;
1016 int i;
1017 int len = 0;
1018 int ret;
1019
1020 for_each_sg(sgl, sg, sg_len, i) {
1021 ret = d40_size_2_dmalen(sg_dma_len(sg),
1022 data_width1, data_width2);
1023 if (ret < 0)
1024 return ret;
1025 len += ret;
1026 }
1027 return len;
1028 }
1029
1030 static int __d40_execute_command_phy(struct d40_chan *d40c,
1031 enum d40_command command)
1032 {
1033 u32 status;
1034 int i;
1035 void __iomem *active_reg;
1036 int ret = 0;
1037 unsigned long flags;
1038 u32 wmask;
1039
1040 if (command == D40_DMA_STOP) {
1041 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1042 if (ret)
1043 return ret;
1044 }
1045
1046 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1047
1048 if (d40c->phy_chan->num % 2 == 0)
1049 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1050 else
1051 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1052
1053 if (command == D40_DMA_SUSPEND_REQ) {
1054 status = (readl(active_reg) &
1055 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1056 D40_CHAN_POS(d40c->phy_chan->num);
1057
1058 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1059 goto unlock;
1060 }
1061
1062 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1063 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1064 active_reg);
1065
1066 if (command == D40_DMA_SUSPEND_REQ) {
1067
1068 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1069 status = (readl(active_reg) &
1070 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1071 D40_CHAN_POS(d40c->phy_chan->num);
1072
1073 cpu_relax();
1074 /*
1075 * Reduce the number of bus accesses while
1076 * waiting for the DMA to suspend.
1077 */
1078 udelay(3);
1079
1080 if (status == D40_DMA_STOP ||
1081 status == D40_DMA_SUSPENDED)
1082 break;
1083 }
1084
1085 if (i == D40_SUSPEND_MAX_IT) {
1086 chan_err(d40c,
1087 "unable to suspend the chl %d (log: %d) status %x\n",
1088 d40c->phy_chan->num, d40c->log_num,
1089 status);
1090 dump_stack();
1091 ret = -EBUSY;
1092 }
1093
1094 }
1095 unlock:
1096 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1097 return ret;
1098 }
1099
1100 static void d40_term_all(struct d40_chan *d40c)
1101 {
1102 struct d40_desc *d40d;
1103 struct d40_desc *_d;
1104
1105 /* Release completed descriptors */
1106 while ((d40d = d40_first_done(d40c))) {
1107 d40_desc_remove(d40d);
1108 d40_desc_free(d40c, d40d);
1109 }
1110
1111 /* Release active descriptors */
1112 while ((d40d = d40_first_active_get(d40c))) {
1113 d40_desc_remove(d40d);
1114 d40_desc_free(d40c, d40d);
1115 }
1116
1117 /* Release queued descriptors waiting for transfer */
1118 while ((d40d = d40_first_queued(d40c))) {
1119 d40_desc_remove(d40d);
1120 d40_desc_free(d40c, d40d);
1121 }
1122
1123 /* Release pending descriptors */
1124 while ((d40d = d40_first_pending(d40c))) {
1125 d40_desc_remove(d40d);
1126 d40_desc_free(d40c, d40d);
1127 }
1128
1129 /* Release client owned descriptors */
1130 if (!list_empty(&d40c->client))
1131 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1132 d40_desc_remove(d40d);
1133 d40_desc_free(d40c, d40d);
1134 }
1135
1136 /* Release descriptors in prepare queue */
1137 if (!list_empty(&d40c->prepare_queue))
1138 list_for_each_entry_safe(d40d, _d,
1139 &d40c->prepare_queue, node) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1142 }
1143
1144 d40c->pending_tx = 0;
1145 }
1146
1147 static void __d40_config_set_event(struct d40_chan *d40c,
1148 enum d40_events event_type, u32 event,
1149 int reg)
1150 {
1151 void __iomem *addr = chan_base(d40c) + reg;
1152 int tries;
1153 u32 status;
1154
1155 switch (event_type) {
1156
1157 case D40_DEACTIVATE_EVENTLINE:
1158
1159 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1160 | ~D40_EVENTLINE_MASK(event), addr);
1161 break;
1162
1163 case D40_SUSPEND_REQ_EVENTLINE:
1164 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1165 D40_EVENTLINE_POS(event);
1166
1167 if (status == D40_DEACTIVATE_EVENTLINE ||
1168 status == D40_SUSPEND_REQ_EVENTLINE)
1169 break;
1170
1171 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1172 | ~D40_EVENTLINE_MASK(event), addr);
1173
1174 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1175
1176 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1177 D40_EVENTLINE_POS(event);
1178
1179 cpu_relax();
1180 /*
1181 * Reduce the number of bus accesses while
1182 * waiting for the DMA to suspend.
1183 */
1184 udelay(3);
1185
1186 if (status == D40_DEACTIVATE_EVENTLINE)
1187 break;
1188 }
1189
1190 if (tries == D40_SUSPEND_MAX_IT) {
1191 chan_err(d40c,
1192 "unable to stop the event_line chl %d (log: %d)"
1193 "status %x\n", d40c->phy_chan->num,
1194 d40c->log_num, status);
1195 }
1196 break;
1197
1198 case D40_ACTIVATE_EVENTLINE:
1199 /*
1200 * The hardware sometimes doesn't register the enable when src and dst
1201 * event lines are active on the same logical channel. Retry to ensure
1202 * it does. Usually only one retry is sufficient.
1203 */
1204 tries = 100;
1205 while (--tries) {
1206 writel((D40_ACTIVATE_EVENTLINE <<
1207 D40_EVENTLINE_POS(event)) |
1208 ~D40_EVENTLINE_MASK(event), addr);
1209
1210 if (readl(addr) & D40_EVENTLINE_MASK(event))
1211 break;
1212 }
1213
1214 if (tries != 99)
1215 dev_dbg(chan2dev(d40c),
1216 "[%s] workaround enable S%cLNK (%d tries)\n",
1217 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1218 100 - tries);
1219
1220 WARN_ON(!tries);
1221 break;
1222
1223 case D40_ROUND_EVENTLINE:
1224 BUG();
1225 break;
1226
1227 }
1228 }
1229
1230 static void d40_config_set_event(struct d40_chan *d40c,
1231 enum d40_events event_type)
1232 {
1233 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1234
1235 /* Enable event line connected to device (or memcpy) */
1236 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1237 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1238 __d40_config_set_event(d40c, event_type, event,
1239 D40_CHAN_REG_SSLNK);
1240
1241 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1242 __d40_config_set_event(d40c, event_type, event,
1243 D40_CHAN_REG_SDLNK);
1244 }
1245
1246 static u32 d40_chan_has_events(struct d40_chan *d40c)
1247 {
1248 void __iomem *chanbase = chan_base(d40c);
1249 u32 val;
1250
1251 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1252 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1253
1254 return val;
1255 }
1256
1257 static int
1258 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1259 {
1260 unsigned long flags;
1261 int ret = 0;
1262 u32 active_status;
1263 void __iomem *active_reg;
1264
1265 if (d40c->phy_chan->num % 2 == 0)
1266 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1267 else
1268 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1269
1270
1271 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1272
1273 switch (command) {
1274 case D40_DMA_STOP:
1275 case D40_DMA_SUSPEND_REQ:
1276
1277 active_status = (readl(active_reg) &
1278 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1279 D40_CHAN_POS(d40c->phy_chan->num);
1280
1281 if (active_status == D40_DMA_RUN)
1282 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1283 else
1284 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1285
1286 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1287 ret = __d40_execute_command_phy(d40c, command);
1288
1289 break;
1290
1291 case D40_DMA_RUN:
1292
1293 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1294 ret = __d40_execute_command_phy(d40c, command);
1295 break;
1296
1297 case D40_DMA_SUSPENDED:
1298 BUG();
1299 break;
1300 }
1301
1302 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1303 return ret;
1304 }
1305
1306 static int d40_channel_execute_command(struct d40_chan *d40c,
1307 enum d40_command command)
1308 {
1309 if (chan_is_logical(d40c))
1310 return __d40_execute_command_log(d40c, command);
1311 else
1312 return __d40_execute_command_phy(d40c, command);
1313 }
1314
1315 static u32 d40_get_prmo(struct d40_chan *d40c)
1316 {
1317 static const unsigned int phy_map[] = {
1318 [STEDMA40_PCHAN_BASIC_MODE]
1319 = D40_DREG_PRMO_PCHAN_BASIC,
1320 [STEDMA40_PCHAN_MODULO_MODE]
1321 = D40_DREG_PRMO_PCHAN_MODULO,
1322 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1323 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1324 };
1325 static const unsigned int log_map[] = {
1326 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1327 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1328 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1329 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1330 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1331 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1332 };
1333
1334 if (chan_is_physical(d40c))
1335 return phy_map[d40c->dma_cfg.mode_opt];
1336 else
1337 return log_map[d40c->dma_cfg.mode_opt];
1338 }
1339
1340 static void d40_config_write(struct d40_chan *d40c)
1341 {
1342 u32 addr_base;
1343 u32 var;
1344
1345 /* Odd addresses are even addresses + 4 */
1346 addr_base = (d40c->phy_chan->num % 2) * 4;
1347 /* Setup channel mode to logical or physical */
1348 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1349 D40_CHAN_POS(d40c->phy_chan->num);
1350 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1351
1352 /* Setup operational mode option register */
1353 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1354
1355 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1356
1357 if (chan_is_logical(d40c)) {
1358 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1359 & D40_SREG_ELEM_LOG_LIDX_MASK;
1360 void __iomem *chanbase = chan_base(d40c);
1361
1362 /* Set default config for CFG reg */
1363 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1364 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1365
1366 /* Set LIDX for lcla */
1367 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1368 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1369
1370 /* Clear LNK which will be used by d40_chan_has_events() */
1371 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1372 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1373 }
1374 }
1375
1376 static u32 d40_residue(struct d40_chan *d40c)
1377 {
1378 u32 num_elt;
1379
1380 if (chan_is_logical(d40c))
1381 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1382 >> D40_MEM_LCSP2_ECNT_POS;
1383 else {
1384 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1385 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1386 >> D40_SREG_ELEM_PHY_ECNT_POS;
1387 }
1388
1389 return num_elt * d40c->dma_cfg.dst_info.data_width;
1390 }
1391
1392 static bool d40_tx_is_linked(struct d40_chan *d40c)
1393 {
1394 bool is_link;
1395
1396 if (chan_is_logical(d40c))
1397 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1398 else
1399 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1400 & D40_SREG_LNK_PHYS_LNK_MASK;
1401
1402 return is_link;
1403 }
1404
1405 static int d40_pause(struct dma_chan *chan)
1406 {
1407 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1408 int res = 0;
1409 unsigned long flags;
1410
1411 if (d40c->phy_chan == NULL) {
1412 chan_err(d40c, "Channel is not allocated!\n");
1413 return -EINVAL;
1414 }
1415
1416 if (!d40c->busy)
1417 return 0;
1418
1419 spin_lock_irqsave(&d40c->lock, flags);
1420 pm_runtime_get_sync(d40c->base->dev);
1421
1422 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1423
1424 pm_runtime_mark_last_busy(d40c->base->dev);
1425 pm_runtime_put_autosuspend(d40c->base->dev);
1426 spin_unlock_irqrestore(&d40c->lock, flags);
1427 return res;
1428 }
1429
1430 static int d40_resume(struct dma_chan *chan)
1431 {
1432 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1433 int res = 0;
1434 unsigned long flags;
1435
1436 if (d40c->phy_chan == NULL) {
1437 chan_err(d40c, "Channel is not allocated!\n");
1438 return -EINVAL;
1439 }
1440
1441 if (!d40c->busy)
1442 return 0;
1443
1444 spin_lock_irqsave(&d40c->lock, flags);
1445 pm_runtime_get_sync(d40c->base->dev);
1446
1447 /* If bytes left to transfer or linked tx resume job */
1448 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1449 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1450
1451 pm_runtime_mark_last_busy(d40c->base->dev);
1452 pm_runtime_put_autosuspend(d40c->base->dev);
1453 spin_unlock_irqrestore(&d40c->lock, flags);
1454 return res;
1455 }
1456
1457 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1458 {
1459 struct d40_chan *d40c = container_of(tx->chan,
1460 struct d40_chan,
1461 chan);
1462 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1463 unsigned long flags;
1464 dma_cookie_t cookie;
1465
1466 spin_lock_irqsave(&d40c->lock, flags);
1467 cookie = dma_cookie_assign(tx);
1468 d40_desc_queue(d40c, d40d);
1469 spin_unlock_irqrestore(&d40c->lock, flags);
1470
1471 return cookie;
1472 }
1473
1474 static int d40_start(struct d40_chan *d40c)
1475 {
1476 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1477 }
1478
1479 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1480 {
1481 struct d40_desc *d40d;
1482 int err;
1483
1484 /* Start queued jobs, if any */
1485 d40d = d40_first_queued(d40c);
1486
1487 if (d40d != NULL) {
1488 if (!d40c->busy) {
1489 d40c->busy = true;
1490 pm_runtime_get_sync(d40c->base->dev);
1491 }
1492
1493 /* Remove from queue */
1494 d40_desc_remove(d40d);
1495
1496 /* Add to active queue */
1497 d40_desc_submit(d40c, d40d);
1498
1499 /* Initiate DMA job */
1500 d40_desc_load(d40c, d40d);
1501
1502 /* Start dma job */
1503 err = d40_start(d40c);
1504
1505 if (err)
1506 return NULL;
1507 }
1508
1509 return d40d;
1510 }
1511
1512 /* called from interrupt context */
1513 static void dma_tc_handle(struct d40_chan *d40c)
1514 {
1515 struct d40_desc *d40d;
1516
1517 /* Get first active entry from list */
1518 d40d = d40_first_active_get(d40c);
1519
1520 if (d40d == NULL)
1521 return;
1522
1523 if (d40d->cyclic) {
1524 /*
1525 * If this was a paritially loaded list, we need to reloaded
1526 * it, and only when the list is completed. We need to check
1527 * for done because the interrupt will hit for every link, and
1528 * not just the last one.
1529 */
1530 if (d40d->lli_current < d40d->lli_len
1531 && !d40_tx_is_linked(d40c)
1532 && !d40_residue(d40c)) {
1533 d40_lcla_free_all(d40c, d40d);
1534 d40_desc_load(d40c, d40d);
1535 (void) d40_start(d40c);
1536
1537 if (d40d->lli_current == d40d->lli_len)
1538 d40d->lli_current = 0;
1539 }
1540 } else {
1541 d40_lcla_free_all(d40c, d40d);
1542
1543 if (d40d->lli_current < d40d->lli_len) {
1544 d40_desc_load(d40c, d40d);
1545 /* Start dma job */
1546 (void) d40_start(d40c);
1547 return;
1548 }
1549
1550 if (d40_queue_start(d40c) == NULL) {
1551 d40c->busy = false;
1552
1553 pm_runtime_mark_last_busy(d40c->base->dev);
1554 pm_runtime_put_autosuspend(d40c->base->dev);
1555 }
1556
1557 d40_desc_remove(d40d);
1558 d40_desc_done(d40c, d40d);
1559 }
1560
1561 d40c->pending_tx++;
1562 tasklet_schedule(&d40c->tasklet);
1563
1564 }
1565
1566 static void dma_tasklet(unsigned long data)
1567 {
1568 struct d40_chan *d40c = (struct d40_chan *) data;
1569 struct d40_desc *d40d;
1570 unsigned long flags;
1571 bool callback_active;
1572 struct dmaengine_desc_callback cb;
1573
1574 spin_lock_irqsave(&d40c->lock, flags);
1575
1576 /* Get first entry from the done list */
1577 d40d = d40_first_done(d40c);
1578 if (d40d == NULL) {
1579 /* Check if we have reached here for cyclic job */
1580 d40d = d40_first_active_get(d40c);
1581 if (d40d == NULL || !d40d->cyclic)
1582 goto check_pending_tx;
1583 }
1584
1585 if (!d40d->cyclic)
1586 dma_cookie_complete(&d40d->txd);
1587
1588 /*
1589 * If terminating a channel pending_tx is set to zero.
1590 * This prevents any finished active jobs to return to the client.
1591 */
1592 if (d40c->pending_tx == 0) {
1593 spin_unlock_irqrestore(&d40c->lock, flags);
1594 return;
1595 }
1596
1597 /* Callback to client */
1598 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1599 dmaengine_desc_get_callback(&d40d->txd, &cb);
1600
1601 if (!d40d->cyclic) {
1602 if (async_tx_test_ack(&d40d->txd)) {
1603 d40_desc_remove(d40d);
1604 d40_desc_free(d40c, d40d);
1605 } else if (!d40d->is_in_client_list) {
1606 d40_desc_remove(d40d);
1607 d40_lcla_free_all(d40c, d40d);
1608 list_add_tail(&d40d->node, &d40c->client);
1609 d40d->is_in_client_list = true;
1610 }
1611 }
1612
1613 d40c->pending_tx--;
1614
1615 if (d40c->pending_tx)
1616 tasklet_schedule(&d40c->tasklet);
1617
1618 spin_unlock_irqrestore(&d40c->lock, flags);
1619
1620 if (callback_active)
1621 dmaengine_desc_callback_invoke(&cb, NULL);
1622
1623 return;
1624 check_pending_tx:
1625 /* Rescue manouver if receiving double interrupts */
1626 if (d40c->pending_tx > 0)
1627 d40c->pending_tx--;
1628 spin_unlock_irqrestore(&d40c->lock, flags);
1629 }
1630
1631 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1632 {
1633 int i;
1634 u32 idx;
1635 u32 row;
1636 long chan = -1;
1637 struct d40_chan *d40c;
1638 unsigned long flags;
1639 struct d40_base *base = data;
1640 u32 regs[base->gen_dmac.il_size];
1641 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1642 u32 il_size = base->gen_dmac.il_size;
1643
1644 spin_lock_irqsave(&base->interrupt_lock, flags);
1645
1646 /* Read interrupt status of both logical and physical channels */
1647 for (i = 0; i < il_size; i++)
1648 regs[i] = readl(base->virtbase + il[i].src);
1649
1650 for (;;) {
1651
1652 chan = find_next_bit((unsigned long *)regs,
1653 BITS_PER_LONG * il_size, chan + 1);
1654
1655 /* No more set bits found? */
1656 if (chan == BITS_PER_LONG * il_size)
1657 break;
1658
1659 row = chan / BITS_PER_LONG;
1660 idx = chan & (BITS_PER_LONG - 1);
1661
1662 if (il[row].offset == D40_PHY_CHAN)
1663 d40c = base->lookup_phy_chans[idx];
1664 else
1665 d40c = base->lookup_log_chans[il[row].offset + idx];
1666
1667 if (!d40c) {
1668 /*
1669 * No error because this can happen if something else
1670 * in the system is using the channel.
1671 */
1672 continue;
1673 }
1674
1675 /* ACK interrupt */
1676 writel(BIT(idx), base->virtbase + il[row].clr);
1677
1678 spin_lock(&d40c->lock);
1679
1680 if (!il[row].is_error)
1681 dma_tc_handle(d40c);
1682 else
1683 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1684 chan, il[row].offset, idx);
1685
1686 spin_unlock(&d40c->lock);
1687 }
1688
1689 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1690
1691 return IRQ_HANDLED;
1692 }
1693
1694 static int d40_validate_conf(struct d40_chan *d40c,
1695 struct stedma40_chan_cfg *conf)
1696 {
1697 int res = 0;
1698 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1699
1700 if (!conf->dir) {
1701 chan_err(d40c, "Invalid direction.\n");
1702 res = -EINVAL;
1703 }
1704
1705 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1706 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1707 (conf->dev_type < 0)) {
1708 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1709 res = -EINVAL;
1710 }
1711
1712 if (conf->dir == DMA_DEV_TO_DEV) {
1713 /*
1714 * DMAC HW supports it. Will be added to this driver,
1715 * in case any dma client requires it.
1716 */
1717 chan_err(d40c, "periph to periph not supported\n");
1718 res = -EINVAL;
1719 }
1720
1721 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1722 conf->src_info.data_width !=
1723 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1724 conf->dst_info.data_width) {
1725 /*
1726 * The DMAC hardware only supports
1727 * src (burst x width) == dst (burst x width)
1728 */
1729
1730 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1731 res = -EINVAL;
1732 }
1733
1734 return res;
1735 }
1736
1737 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1738 bool is_src, int log_event_line, bool is_log,
1739 bool *first_user)
1740 {
1741 unsigned long flags;
1742 spin_lock_irqsave(&phy->lock, flags);
1743
1744 *first_user = ((phy->allocated_src | phy->allocated_dst)
1745 == D40_ALLOC_FREE);
1746
1747 if (!is_log) {
1748 /* Physical interrupts are masked per physical full channel */
1749 if (phy->allocated_src == D40_ALLOC_FREE &&
1750 phy->allocated_dst == D40_ALLOC_FREE) {
1751 phy->allocated_dst = D40_ALLOC_PHY;
1752 phy->allocated_src = D40_ALLOC_PHY;
1753 goto found_unlock;
1754 } else
1755 goto not_found_unlock;
1756 }
1757
1758 /* Logical channel */
1759 if (is_src) {
1760 if (phy->allocated_src == D40_ALLOC_PHY)
1761 goto not_found_unlock;
1762
1763 if (phy->allocated_src == D40_ALLOC_FREE)
1764 phy->allocated_src = D40_ALLOC_LOG_FREE;
1765
1766 if (!(phy->allocated_src & BIT(log_event_line))) {
1767 phy->allocated_src |= BIT(log_event_line);
1768 goto found_unlock;
1769 } else
1770 goto not_found_unlock;
1771 } else {
1772 if (phy->allocated_dst == D40_ALLOC_PHY)
1773 goto not_found_unlock;
1774
1775 if (phy->allocated_dst == D40_ALLOC_FREE)
1776 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1777
1778 if (!(phy->allocated_dst & BIT(log_event_line))) {
1779 phy->allocated_dst |= BIT(log_event_line);
1780 goto found_unlock;
1781 }
1782 }
1783 not_found_unlock:
1784 spin_unlock_irqrestore(&phy->lock, flags);
1785 return false;
1786 found_unlock:
1787 spin_unlock_irqrestore(&phy->lock, flags);
1788 return true;
1789 }
1790
1791 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1792 int log_event_line)
1793 {
1794 unsigned long flags;
1795 bool is_free = false;
1796
1797 spin_lock_irqsave(&phy->lock, flags);
1798 if (!log_event_line) {
1799 phy->allocated_dst = D40_ALLOC_FREE;
1800 phy->allocated_src = D40_ALLOC_FREE;
1801 is_free = true;
1802 goto unlock;
1803 }
1804
1805 /* Logical channel */
1806 if (is_src) {
1807 phy->allocated_src &= ~BIT(log_event_line);
1808 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1809 phy->allocated_src = D40_ALLOC_FREE;
1810 } else {
1811 phy->allocated_dst &= ~BIT(log_event_line);
1812 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1813 phy->allocated_dst = D40_ALLOC_FREE;
1814 }
1815
1816 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1817 D40_ALLOC_FREE);
1818 unlock:
1819 spin_unlock_irqrestore(&phy->lock, flags);
1820
1821 return is_free;
1822 }
1823
1824 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1825 {
1826 int dev_type = d40c->dma_cfg.dev_type;
1827 int event_group;
1828 int event_line;
1829 struct d40_phy_res *phys;
1830 int i;
1831 int j;
1832 int log_num;
1833 int num_phy_chans;
1834 bool is_src;
1835 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1836
1837 phys = d40c->base->phy_res;
1838 num_phy_chans = d40c->base->num_phy_chans;
1839
1840 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1841 log_num = 2 * dev_type;
1842 is_src = true;
1843 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1844 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1845 /* dst event lines are used for logical memcpy */
1846 log_num = 2 * dev_type + 1;
1847 is_src = false;
1848 } else
1849 return -EINVAL;
1850
1851 event_group = D40_TYPE_TO_GROUP(dev_type);
1852 event_line = D40_TYPE_TO_EVENT(dev_type);
1853
1854 if (!is_log) {
1855 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1856 /* Find physical half channel */
1857 if (d40c->dma_cfg.use_fixed_channel) {
1858 i = d40c->dma_cfg.phy_channel;
1859 if (d40_alloc_mask_set(&phys[i], is_src,
1860 0, is_log,
1861 first_phy_user))
1862 goto found_phy;
1863 } else {
1864 for (i = 0; i < num_phy_chans; i++) {
1865 if (d40_alloc_mask_set(&phys[i], is_src,
1866 0, is_log,
1867 first_phy_user))
1868 goto found_phy;
1869 }
1870 }
1871 } else
1872 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1873 int phy_num = j + event_group * 2;
1874 for (i = phy_num; i < phy_num + 2; i++) {
1875 if (d40_alloc_mask_set(&phys[i],
1876 is_src,
1877 0,
1878 is_log,
1879 first_phy_user))
1880 goto found_phy;
1881 }
1882 }
1883 return -EINVAL;
1884 found_phy:
1885 d40c->phy_chan = &phys[i];
1886 d40c->log_num = D40_PHY_CHAN;
1887 goto out;
1888 }
1889 if (dev_type == -1)
1890 return -EINVAL;
1891
1892 /* Find logical channel */
1893 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1894 int phy_num = j + event_group * 2;
1895
1896 if (d40c->dma_cfg.use_fixed_channel) {
1897 i = d40c->dma_cfg.phy_channel;
1898
1899 if ((i != phy_num) && (i != phy_num + 1)) {
1900 dev_err(chan2dev(d40c),
1901 "invalid fixed phy channel %d\n", i);
1902 return -EINVAL;
1903 }
1904
1905 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1906 is_log, first_phy_user))
1907 goto found_log;
1908
1909 dev_err(chan2dev(d40c),
1910 "could not allocate fixed phy channel %d\n", i);
1911 return -EINVAL;
1912 }
1913
1914 /*
1915 * Spread logical channels across all available physical rather
1916 * than pack every logical channel at the first available phy
1917 * channels.
1918 */
1919 if (is_src) {
1920 for (i = phy_num; i < phy_num + 2; i++) {
1921 if (d40_alloc_mask_set(&phys[i], is_src,
1922 event_line, is_log,
1923 first_phy_user))
1924 goto found_log;
1925 }
1926 } else {
1927 for (i = phy_num + 1; i >= phy_num; i--) {
1928 if (d40_alloc_mask_set(&phys[i], is_src,
1929 event_line, is_log,
1930 first_phy_user))
1931 goto found_log;
1932 }
1933 }
1934 }
1935 return -EINVAL;
1936
1937 found_log:
1938 d40c->phy_chan = &phys[i];
1939 d40c->log_num = log_num;
1940 out:
1941
1942 if (is_log)
1943 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1944 else
1945 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1946
1947 return 0;
1948
1949 }
1950
1951 static int d40_config_memcpy(struct d40_chan *d40c)
1952 {
1953 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1954
1955 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1956 d40c->dma_cfg = dma40_memcpy_conf_log;
1957 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1958
1959 d40_log_cfg(&d40c->dma_cfg,
1960 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1961
1962 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1963 dma_has_cap(DMA_SLAVE, cap)) {
1964 d40c->dma_cfg = dma40_memcpy_conf_phy;
1965
1966 /* Generate interrrupt at end of transfer or relink. */
1967 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1968
1969 /* Generate interrupt on error. */
1970 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1971 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1972
1973 } else {
1974 chan_err(d40c, "No memcpy\n");
1975 return -EINVAL;
1976 }
1977
1978 return 0;
1979 }
1980
1981 static int d40_free_dma(struct d40_chan *d40c)
1982 {
1983
1984 int res = 0;
1985 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1986 struct d40_phy_res *phy = d40c->phy_chan;
1987 bool is_src;
1988
1989 /* Terminate all queued and active transfers */
1990 d40_term_all(d40c);
1991
1992 if (phy == NULL) {
1993 chan_err(d40c, "phy == null\n");
1994 return -EINVAL;
1995 }
1996
1997 if (phy->allocated_src == D40_ALLOC_FREE &&
1998 phy->allocated_dst == D40_ALLOC_FREE) {
1999 chan_err(d40c, "channel already free\n");
2000 return -EINVAL;
2001 }
2002
2003 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2004 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2005 is_src = false;
2006 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2007 is_src = true;
2008 else {
2009 chan_err(d40c, "Unknown direction\n");
2010 return -EINVAL;
2011 }
2012
2013 pm_runtime_get_sync(d40c->base->dev);
2014 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2015 if (res) {
2016 chan_err(d40c, "stop failed\n");
2017 goto mark_last_busy;
2018 }
2019
2020 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2021
2022 if (chan_is_logical(d40c))
2023 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2024 else
2025 d40c->base->lookup_phy_chans[phy->num] = NULL;
2026
2027 if (d40c->busy) {
2028 pm_runtime_mark_last_busy(d40c->base->dev);
2029 pm_runtime_put_autosuspend(d40c->base->dev);
2030 }
2031
2032 d40c->busy = false;
2033 d40c->phy_chan = NULL;
2034 d40c->configured = false;
2035 mark_last_busy:
2036 pm_runtime_mark_last_busy(d40c->base->dev);
2037 pm_runtime_put_autosuspend(d40c->base->dev);
2038 return res;
2039 }
2040
2041 static bool d40_is_paused(struct d40_chan *d40c)
2042 {
2043 void __iomem *chanbase = chan_base(d40c);
2044 bool is_paused = false;
2045 unsigned long flags;
2046 void __iomem *active_reg;
2047 u32 status;
2048 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2049
2050 spin_lock_irqsave(&d40c->lock, flags);
2051
2052 if (chan_is_physical(d40c)) {
2053 if (d40c->phy_chan->num % 2 == 0)
2054 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2055 else
2056 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2057
2058 status = (readl(active_reg) &
2059 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2060 D40_CHAN_POS(d40c->phy_chan->num);
2061 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2062 is_paused = true;
2063 goto unlock;
2064 }
2065
2066 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2067 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2068 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2069 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2070 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2071 } else {
2072 chan_err(d40c, "Unknown direction\n");
2073 goto unlock;
2074 }
2075
2076 status = (status & D40_EVENTLINE_MASK(event)) >>
2077 D40_EVENTLINE_POS(event);
2078
2079 if (status != D40_DMA_RUN)
2080 is_paused = true;
2081 unlock:
2082 spin_unlock_irqrestore(&d40c->lock, flags);
2083 return is_paused;
2084
2085 }
2086
2087 static u32 stedma40_residue(struct dma_chan *chan)
2088 {
2089 struct d40_chan *d40c =
2090 container_of(chan, struct d40_chan, chan);
2091 u32 bytes_left;
2092 unsigned long flags;
2093
2094 spin_lock_irqsave(&d40c->lock, flags);
2095 bytes_left = d40_residue(d40c);
2096 spin_unlock_irqrestore(&d40c->lock, flags);
2097
2098 return bytes_left;
2099 }
2100
2101 static int
2102 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2103 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2104 unsigned int sg_len, dma_addr_t src_dev_addr,
2105 dma_addr_t dst_dev_addr)
2106 {
2107 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2108 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2109 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2110 int ret;
2111
2112 ret = d40_log_sg_to_lli(sg_src, sg_len,
2113 src_dev_addr,
2114 desc->lli_log.src,
2115 chan->log_def.lcsp1,
2116 src_info->data_width,
2117 dst_info->data_width);
2118
2119 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2120 dst_dev_addr,
2121 desc->lli_log.dst,
2122 chan->log_def.lcsp3,
2123 dst_info->data_width,
2124 src_info->data_width);
2125
2126 return ret < 0 ? ret : 0;
2127 }
2128
2129 static int
2130 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2131 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2132 unsigned int sg_len, dma_addr_t src_dev_addr,
2133 dma_addr_t dst_dev_addr)
2134 {
2135 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2136 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2137 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2138 unsigned long flags = 0;
2139 int ret;
2140
2141 if (desc->cyclic)
2142 flags |= LLI_CYCLIC | LLI_TERM_INT;
2143
2144 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2145 desc->lli_phy.src,
2146 virt_to_phys(desc->lli_phy.src),
2147 chan->src_def_cfg,
2148 src_info, dst_info, flags);
2149
2150 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2151 desc->lli_phy.dst,
2152 virt_to_phys(desc->lli_phy.dst),
2153 chan->dst_def_cfg,
2154 dst_info, src_info, flags);
2155
2156 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2157 desc->lli_pool.size, DMA_TO_DEVICE);
2158
2159 return ret < 0 ? ret : 0;
2160 }
2161
2162 static struct d40_desc *
2163 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2164 unsigned int sg_len, unsigned long dma_flags)
2165 {
2166 struct stedma40_chan_cfg *cfg;
2167 struct d40_desc *desc;
2168 int ret;
2169
2170 desc = d40_desc_get(chan);
2171 if (!desc)
2172 return NULL;
2173
2174 cfg = &chan->dma_cfg;
2175 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2176 cfg->dst_info.data_width);
2177 if (desc->lli_len < 0) {
2178 chan_err(chan, "Unaligned size\n");
2179 goto free_desc;
2180 }
2181
2182 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2183 if (ret < 0) {
2184 chan_err(chan, "Could not allocate lli\n");
2185 goto free_desc;
2186 }
2187
2188 desc->lli_current = 0;
2189 desc->txd.flags = dma_flags;
2190 desc->txd.tx_submit = d40_tx_submit;
2191
2192 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2193
2194 return desc;
2195 free_desc:
2196 d40_desc_free(chan, desc);
2197 return NULL;
2198 }
2199
2200 static struct dma_async_tx_descriptor *
2201 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2202 struct scatterlist *sg_dst, unsigned int sg_len,
2203 enum dma_transfer_direction direction, unsigned long dma_flags)
2204 {
2205 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2206 dma_addr_t src_dev_addr;
2207 dma_addr_t dst_dev_addr;
2208 struct d40_desc *desc;
2209 unsigned long flags;
2210 int ret;
2211
2212 if (!chan->phy_chan) {
2213 chan_err(chan, "Cannot prepare unallocated channel\n");
2214 return NULL;
2215 }
2216
2217 spin_lock_irqsave(&chan->lock, flags);
2218
2219 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2220 if (desc == NULL)
2221 goto unlock;
2222
2223 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2224 desc->cyclic = true;
2225
2226 src_dev_addr = 0;
2227 dst_dev_addr = 0;
2228 if (direction == DMA_DEV_TO_MEM)
2229 src_dev_addr = chan->runtime_addr;
2230 else if (direction == DMA_MEM_TO_DEV)
2231 dst_dev_addr = chan->runtime_addr;
2232
2233 if (chan_is_logical(chan))
2234 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2235 sg_len, src_dev_addr, dst_dev_addr);
2236 else
2237 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2238 sg_len, src_dev_addr, dst_dev_addr);
2239
2240 if (ret) {
2241 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2242 chan_is_logical(chan) ? "log" : "phy", ret);
2243 goto free_desc;
2244 }
2245
2246 /*
2247 * add descriptor to the prepare queue in order to be able
2248 * to free them later in terminate_all
2249 */
2250 list_add_tail(&desc->node, &chan->prepare_queue);
2251
2252 spin_unlock_irqrestore(&chan->lock, flags);
2253
2254 return &desc->txd;
2255 free_desc:
2256 d40_desc_free(chan, desc);
2257 unlock:
2258 spin_unlock_irqrestore(&chan->lock, flags);
2259 return NULL;
2260 }
2261
2262 bool stedma40_filter(struct dma_chan *chan, void *data)
2263 {
2264 struct stedma40_chan_cfg *info = data;
2265 struct d40_chan *d40c =
2266 container_of(chan, struct d40_chan, chan);
2267 int err;
2268
2269 if (data) {
2270 err = d40_validate_conf(d40c, info);
2271 if (!err)
2272 d40c->dma_cfg = *info;
2273 } else
2274 err = d40_config_memcpy(d40c);
2275
2276 if (!err)
2277 d40c->configured = true;
2278
2279 return err == 0;
2280 }
2281 EXPORT_SYMBOL(stedma40_filter);
2282
2283 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2284 {
2285 bool realtime = d40c->dma_cfg.realtime;
2286 bool highprio = d40c->dma_cfg.high_priority;
2287 u32 rtreg;
2288 u32 event = D40_TYPE_TO_EVENT(dev_type);
2289 u32 group = D40_TYPE_TO_GROUP(dev_type);
2290 u32 bit = BIT(event);
2291 u32 prioreg;
2292 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2293
2294 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2295 /*
2296 * Due to a hardware bug, in some cases a logical channel triggered by
2297 * a high priority destination event line can generate extra packet
2298 * transactions.
2299 *
2300 * The workaround is to not set the high priority level for the
2301 * destination event lines that trigger logical channels.
2302 */
2303 if (!src && chan_is_logical(d40c))
2304 highprio = false;
2305
2306 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2307
2308 /* Destination event lines are stored in the upper halfword */
2309 if (!src)
2310 bit <<= 16;
2311
2312 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2313 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2314 }
2315
2316 static void d40_set_prio_realtime(struct d40_chan *d40c)
2317 {
2318 if (d40c->base->rev < 3)
2319 return;
2320
2321 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2322 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2323 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2324
2325 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2326 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2327 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2328 }
2329
2330 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2331 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2332 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2333 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2334 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2335
2336 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2337 struct of_dma *ofdma)
2338 {
2339 struct stedma40_chan_cfg cfg;
2340 dma_cap_mask_t cap;
2341 u32 flags;
2342
2343 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2344
2345 dma_cap_zero(cap);
2346 dma_cap_set(DMA_SLAVE, cap);
2347
2348 cfg.dev_type = dma_spec->args[0];
2349 flags = dma_spec->args[2];
2350
2351 switch (D40_DT_FLAGS_MODE(flags)) {
2352 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2353 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2354 }
2355
2356 switch (D40_DT_FLAGS_DIR(flags)) {
2357 case 0:
2358 cfg.dir = DMA_MEM_TO_DEV;
2359 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2360 break;
2361 case 1:
2362 cfg.dir = DMA_DEV_TO_MEM;
2363 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2364 break;
2365 }
2366
2367 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2368 cfg.phy_channel = dma_spec->args[1];
2369 cfg.use_fixed_channel = true;
2370 }
2371
2372 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2373 cfg.high_priority = true;
2374
2375 return dma_request_channel(cap, stedma40_filter, &cfg);
2376 }
2377
2378 /* DMA ENGINE functions */
2379 static int d40_alloc_chan_resources(struct dma_chan *chan)
2380 {
2381 int err;
2382 unsigned long flags;
2383 struct d40_chan *d40c =
2384 container_of(chan, struct d40_chan, chan);
2385 bool is_free_phy;
2386 spin_lock_irqsave(&d40c->lock, flags);
2387
2388 dma_cookie_init(chan);
2389
2390 /* If no dma configuration is set use default configuration (memcpy) */
2391 if (!d40c->configured) {
2392 err = d40_config_memcpy(d40c);
2393 if (err) {
2394 chan_err(d40c, "Failed to configure memcpy channel\n");
2395 goto mark_last_busy;
2396 }
2397 }
2398
2399 err = d40_allocate_channel(d40c, &is_free_phy);
2400 if (err) {
2401 chan_err(d40c, "Failed to allocate channel\n");
2402 d40c->configured = false;
2403 goto mark_last_busy;
2404 }
2405
2406 pm_runtime_get_sync(d40c->base->dev);
2407
2408 d40_set_prio_realtime(d40c);
2409
2410 if (chan_is_logical(d40c)) {
2411 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2412 d40c->lcpa = d40c->base->lcpa_base +
2413 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2414 else
2415 d40c->lcpa = d40c->base->lcpa_base +
2416 d40c->dma_cfg.dev_type *
2417 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2418
2419 /* Unmask the Global Interrupt Mask. */
2420 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2421 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2422 }
2423
2424 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2425 chan_is_logical(d40c) ? "logical" : "physical",
2426 d40c->phy_chan->num,
2427 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2428
2429
2430 /*
2431 * Only write channel configuration to the DMA if the physical
2432 * resource is free. In case of multiple logical channels
2433 * on the same physical resource, only the first write is necessary.
2434 */
2435 if (is_free_phy)
2436 d40_config_write(d40c);
2437 mark_last_busy:
2438 pm_runtime_mark_last_busy(d40c->base->dev);
2439 pm_runtime_put_autosuspend(d40c->base->dev);
2440 spin_unlock_irqrestore(&d40c->lock, flags);
2441 return err;
2442 }
2443
2444 static void d40_free_chan_resources(struct dma_chan *chan)
2445 {
2446 struct d40_chan *d40c =
2447 container_of(chan, struct d40_chan, chan);
2448 int err;
2449 unsigned long flags;
2450
2451 if (d40c->phy_chan == NULL) {
2452 chan_err(d40c, "Cannot free unallocated channel\n");
2453 return;
2454 }
2455
2456 spin_lock_irqsave(&d40c->lock, flags);
2457
2458 err = d40_free_dma(d40c);
2459
2460 if (err)
2461 chan_err(d40c, "Failed to free channel\n");
2462 spin_unlock_irqrestore(&d40c->lock, flags);
2463 }
2464
2465 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2466 dma_addr_t dst,
2467 dma_addr_t src,
2468 size_t size,
2469 unsigned long dma_flags)
2470 {
2471 struct scatterlist dst_sg;
2472 struct scatterlist src_sg;
2473
2474 sg_init_table(&dst_sg, 1);
2475 sg_init_table(&src_sg, 1);
2476
2477 sg_dma_address(&dst_sg) = dst;
2478 sg_dma_address(&src_sg) = src;
2479
2480 sg_dma_len(&dst_sg) = size;
2481 sg_dma_len(&src_sg) = size;
2482
2483 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2484 DMA_MEM_TO_MEM, dma_flags);
2485 }
2486
2487 static struct dma_async_tx_descriptor *
2488 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2489 unsigned int sg_len, enum dma_transfer_direction direction,
2490 unsigned long dma_flags, void *context)
2491 {
2492 if (!is_slave_direction(direction))
2493 return NULL;
2494
2495 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2496 }
2497
2498 static struct dma_async_tx_descriptor *
2499 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2500 size_t buf_len, size_t period_len,
2501 enum dma_transfer_direction direction, unsigned long flags)
2502 {
2503 unsigned int periods = buf_len / period_len;
2504 struct dma_async_tx_descriptor *txd;
2505 struct scatterlist *sg;
2506 int i;
2507
2508 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2509 if (!sg)
2510 return NULL;
2511
2512 for (i = 0; i < periods; i++) {
2513 sg_dma_address(&sg[i]) = dma_addr;
2514 sg_dma_len(&sg[i]) = period_len;
2515 dma_addr += period_len;
2516 }
2517
2518 sg_chain(sg, periods + 1, sg);
2519
2520 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2521 DMA_PREP_INTERRUPT);
2522
2523 kfree(sg);
2524
2525 return txd;
2526 }
2527
2528 static enum dma_status d40_tx_status(struct dma_chan *chan,
2529 dma_cookie_t cookie,
2530 struct dma_tx_state *txstate)
2531 {
2532 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2533 enum dma_status ret;
2534
2535 if (d40c->phy_chan == NULL) {
2536 chan_err(d40c, "Cannot read status of unallocated channel\n");
2537 return -EINVAL;
2538 }
2539
2540 ret = dma_cookie_status(chan, cookie, txstate);
2541 if (ret != DMA_COMPLETE && txstate)
2542 dma_set_residue(txstate, stedma40_residue(chan));
2543
2544 if (d40_is_paused(d40c))
2545 ret = DMA_PAUSED;
2546
2547 return ret;
2548 }
2549
2550 static void d40_issue_pending(struct dma_chan *chan)
2551 {
2552 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2553 unsigned long flags;
2554
2555 if (d40c->phy_chan == NULL) {
2556 chan_err(d40c, "Channel is not allocated!\n");
2557 return;
2558 }
2559
2560 spin_lock_irqsave(&d40c->lock, flags);
2561
2562 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2563
2564 /* Busy means that queued jobs are already being processed */
2565 if (!d40c->busy)
2566 (void) d40_queue_start(d40c);
2567
2568 spin_unlock_irqrestore(&d40c->lock, flags);
2569 }
2570
2571 static int d40_terminate_all(struct dma_chan *chan)
2572 {
2573 unsigned long flags;
2574 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2575 int ret;
2576
2577 if (d40c->phy_chan == NULL) {
2578 chan_err(d40c, "Channel is not allocated!\n");
2579 return -EINVAL;
2580 }
2581
2582 spin_lock_irqsave(&d40c->lock, flags);
2583
2584 pm_runtime_get_sync(d40c->base->dev);
2585 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2586 if (ret)
2587 chan_err(d40c, "Failed to stop channel\n");
2588
2589 d40_term_all(d40c);
2590 pm_runtime_mark_last_busy(d40c->base->dev);
2591 pm_runtime_put_autosuspend(d40c->base->dev);
2592 if (d40c->busy) {
2593 pm_runtime_mark_last_busy(d40c->base->dev);
2594 pm_runtime_put_autosuspend(d40c->base->dev);
2595 }
2596 d40c->busy = false;
2597
2598 spin_unlock_irqrestore(&d40c->lock, flags);
2599 return 0;
2600 }
2601
2602 static int
2603 dma40_config_to_halfchannel(struct d40_chan *d40c,
2604 struct stedma40_half_channel_info *info,
2605 u32 maxburst)
2606 {
2607 int psize;
2608
2609 if (chan_is_logical(d40c)) {
2610 if (maxburst >= 16)
2611 psize = STEDMA40_PSIZE_LOG_16;
2612 else if (maxburst >= 8)
2613 psize = STEDMA40_PSIZE_LOG_8;
2614 else if (maxburst >= 4)
2615 psize = STEDMA40_PSIZE_LOG_4;
2616 else
2617 psize = STEDMA40_PSIZE_LOG_1;
2618 } else {
2619 if (maxburst >= 16)
2620 psize = STEDMA40_PSIZE_PHY_16;
2621 else if (maxburst >= 8)
2622 psize = STEDMA40_PSIZE_PHY_8;
2623 else if (maxburst >= 4)
2624 psize = STEDMA40_PSIZE_PHY_4;
2625 else
2626 psize = STEDMA40_PSIZE_PHY_1;
2627 }
2628
2629 info->psize = psize;
2630 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2631
2632 return 0;
2633 }
2634
2635 /* Runtime reconfiguration extension */
2636 static int d40_set_runtime_config(struct dma_chan *chan,
2637 struct dma_slave_config *config)
2638 {
2639 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2640 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2641 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2642 dma_addr_t config_addr;
2643 u32 src_maxburst, dst_maxburst;
2644 int ret;
2645
2646 if (d40c->phy_chan == NULL) {
2647 chan_err(d40c, "Channel is not allocated!\n");
2648 return -EINVAL;
2649 }
2650
2651 src_addr_width = config->src_addr_width;
2652 src_maxburst = config->src_maxburst;
2653 dst_addr_width = config->dst_addr_width;
2654 dst_maxburst = config->dst_maxburst;
2655
2656 if (config->direction == DMA_DEV_TO_MEM) {
2657 config_addr = config->src_addr;
2658
2659 if (cfg->dir != DMA_DEV_TO_MEM)
2660 dev_dbg(d40c->base->dev,
2661 "channel was not configured for peripheral "
2662 "to memory transfer (%d) overriding\n",
2663 cfg->dir);
2664 cfg->dir = DMA_DEV_TO_MEM;
2665
2666 /* Configure the memory side */
2667 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2668 dst_addr_width = src_addr_width;
2669 if (dst_maxburst == 0)
2670 dst_maxburst = src_maxburst;
2671
2672 } else if (config->direction == DMA_MEM_TO_DEV) {
2673 config_addr = config->dst_addr;
2674
2675 if (cfg->dir != DMA_MEM_TO_DEV)
2676 dev_dbg(d40c->base->dev,
2677 "channel was not configured for memory "
2678 "to peripheral transfer (%d) overriding\n",
2679 cfg->dir);
2680 cfg->dir = DMA_MEM_TO_DEV;
2681
2682 /* Configure the memory side */
2683 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2684 src_addr_width = dst_addr_width;
2685 if (src_maxburst == 0)
2686 src_maxburst = dst_maxburst;
2687 } else {
2688 dev_err(d40c->base->dev,
2689 "unrecognized channel direction %d\n",
2690 config->direction);
2691 return -EINVAL;
2692 }
2693
2694 if (config_addr <= 0) {
2695 dev_err(d40c->base->dev, "no address supplied\n");
2696 return -EINVAL;
2697 }
2698
2699 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2700 dev_err(d40c->base->dev,
2701 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2702 src_maxburst,
2703 src_addr_width,
2704 dst_maxburst,
2705 dst_addr_width);
2706 return -EINVAL;
2707 }
2708
2709 if (src_maxburst > 16) {
2710 src_maxburst = 16;
2711 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2712 } else if (dst_maxburst > 16) {
2713 dst_maxburst = 16;
2714 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2715 }
2716
2717 /* Only valid widths are; 1, 2, 4 and 8. */
2718 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2719 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2720 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2721 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2722 !is_power_of_2(src_addr_width) ||
2723 !is_power_of_2(dst_addr_width))
2724 return -EINVAL;
2725
2726 cfg->src_info.data_width = src_addr_width;
2727 cfg->dst_info.data_width = dst_addr_width;
2728
2729 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2730 src_maxburst);
2731 if (ret)
2732 return ret;
2733
2734 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2735 dst_maxburst);
2736 if (ret)
2737 return ret;
2738
2739 /* Fill in register values */
2740 if (chan_is_logical(d40c))
2741 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2742 else
2743 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2744
2745 /* These settings will take precedence later */
2746 d40c->runtime_addr = config_addr;
2747 d40c->runtime_direction = config->direction;
2748 dev_dbg(d40c->base->dev,
2749 "configured channel %s for %s, data width %d/%d, "
2750 "maxburst %d/%d elements, LE, no flow control\n",
2751 dma_chan_name(chan),
2752 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2753 src_addr_width, dst_addr_width,
2754 src_maxburst, dst_maxburst);
2755
2756 return 0;
2757 }
2758
2759 /* Initialization functions */
2760
2761 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2762 struct d40_chan *chans, int offset,
2763 int num_chans)
2764 {
2765 int i = 0;
2766 struct d40_chan *d40c;
2767
2768 INIT_LIST_HEAD(&dma->channels);
2769
2770 for (i = offset; i < offset + num_chans; i++) {
2771 d40c = &chans[i];
2772 d40c->base = base;
2773 d40c->chan.device = dma;
2774
2775 spin_lock_init(&d40c->lock);
2776
2777 d40c->log_num = D40_PHY_CHAN;
2778
2779 INIT_LIST_HEAD(&d40c->done);
2780 INIT_LIST_HEAD(&d40c->active);
2781 INIT_LIST_HEAD(&d40c->queue);
2782 INIT_LIST_HEAD(&d40c->pending_queue);
2783 INIT_LIST_HEAD(&d40c->client);
2784 INIT_LIST_HEAD(&d40c->prepare_queue);
2785
2786 tasklet_init(&d40c->tasklet, dma_tasklet,
2787 (unsigned long) d40c);
2788
2789 list_add_tail(&d40c->chan.device_node,
2790 &dma->channels);
2791 }
2792 }
2793
2794 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2795 {
2796 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2797 dev->device_prep_slave_sg = d40_prep_slave_sg;
2798 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2799 }
2800
2801 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2802 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2803 dev->directions = BIT(DMA_MEM_TO_MEM);
2804 /*
2805 * This controller can only access address at even
2806 * 32bit boundaries, i.e. 2^2
2807 */
2808 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2809 }
2810
2811 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2812 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2813
2814 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2815 dev->device_free_chan_resources = d40_free_chan_resources;
2816 dev->device_issue_pending = d40_issue_pending;
2817 dev->device_tx_status = d40_tx_status;
2818 dev->device_config = d40_set_runtime_config;
2819 dev->device_pause = d40_pause;
2820 dev->device_resume = d40_resume;
2821 dev->device_terminate_all = d40_terminate_all;
2822 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2823 dev->dev = base->dev;
2824 }
2825
2826 static int __init d40_dmaengine_init(struct d40_base *base,
2827 int num_reserved_chans)
2828 {
2829 int err ;
2830
2831 d40_chan_init(base, &base->dma_slave, base->log_chans,
2832 0, base->num_log_chans);
2833
2834 dma_cap_zero(base->dma_slave.cap_mask);
2835 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2836 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2837
2838 d40_ops_init(base, &base->dma_slave);
2839
2840 err = dma_async_device_register(&base->dma_slave);
2841
2842 if (err) {
2843 d40_err(base->dev, "Failed to register slave channels\n");
2844 goto exit;
2845 }
2846
2847 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2848 base->num_log_chans, base->num_memcpy_chans);
2849
2850 dma_cap_zero(base->dma_memcpy.cap_mask);
2851 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2852
2853 d40_ops_init(base, &base->dma_memcpy);
2854
2855 err = dma_async_device_register(&base->dma_memcpy);
2856
2857 if (err) {
2858 d40_err(base->dev,
2859 "Failed to register memcpy only channels\n");
2860 goto unregister_slave;
2861 }
2862
2863 d40_chan_init(base, &base->dma_both, base->phy_chans,
2864 0, num_reserved_chans);
2865
2866 dma_cap_zero(base->dma_both.cap_mask);
2867 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2868 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2869 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2870
2871 d40_ops_init(base, &base->dma_both);
2872 err = dma_async_device_register(&base->dma_both);
2873
2874 if (err) {
2875 d40_err(base->dev,
2876 "Failed to register logical and physical capable channels\n");
2877 goto unregister_memcpy;
2878 }
2879 return 0;
2880 unregister_memcpy:
2881 dma_async_device_unregister(&base->dma_memcpy);
2882 unregister_slave:
2883 dma_async_device_unregister(&base->dma_slave);
2884 exit:
2885 return err;
2886 }
2887
2888 /* Suspend resume functionality */
2889 #ifdef CONFIG_PM_SLEEP
2890 static int dma40_suspend(struct device *dev)
2891 {
2892 struct platform_device *pdev = to_platform_device(dev);
2893 struct d40_base *base = platform_get_drvdata(pdev);
2894 int ret;
2895
2896 ret = pm_runtime_force_suspend(dev);
2897 if (ret)
2898 return ret;
2899
2900 if (base->lcpa_regulator)
2901 ret = regulator_disable(base->lcpa_regulator);
2902 return ret;
2903 }
2904
2905 static int dma40_resume(struct device *dev)
2906 {
2907 struct platform_device *pdev = to_platform_device(dev);
2908 struct d40_base *base = platform_get_drvdata(pdev);
2909 int ret = 0;
2910
2911 if (base->lcpa_regulator) {
2912 ret = regulator_enable(base->lcpa_regulator);
2913 if (ret)
2914 return ret;
2915 }
2916
2917 return pm_runtime_force_resume(dev);
2918 }
2919 #endif
2920
2921 #ifdef CONFIG_PM
2922 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2923 u32 *regaddr, int num, bool save)
2924 {
2925 int i;
2926
2927 for (i = 0; i < num; i++) {
2928 void __iomem *addr = baseaddr + regaddr[i];
2929
2930 if (save)
2931 backup[i] = readl_relaxed(addr);
2932 else
2933 writel_relaxed(backup[i], addr);
2934 }
2935 }
2936
2937 static void d40_save_restore_registers(struct d40_base *base, bool save)
2938 {
2939 int i;
2940
2941 /* Save/Restore channel specific registers */
2942 for (i = 0; i < base->num_phy_chans; i++) {
2943 void __iomem *addr;
2944 int idx;
2945
2946 if (base->phy_res[i].reserved)
2947 continue;
2948
2949 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2950 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2951
2952 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2953 d40_backup_regs_chan,
2954 ARRAY_SIZE(d40_backup_regs_chan),
2955 save);
2956 }
2957
2958 /* Save/Restore global registers */
2959 dma40_backup(base->virtbase, base->reg_val_backup,
2960 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2961 save);
2962
2963 /* Save/Restore registers only existing on dma40 v3 and later */
2964 if (base->gen_dmac.backup)
2965 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2966 base->gen_dmac.backup,
2967 base->gen_dmac.backup_size,
2968 save);
2969 }
2970
2971 static int dma40_runtime_suspend(struct device *dev)
2972 {
2973 struct platform_device *pdev = to_platform_device(dev);
2974 struct d40_base *base = platform_get_drvdata(pdev);
2975
2976 d40_save_restore_registers(base, true);
2977
2978 /* Don't disable/enable clocks for v1 due to HW bugs */
2979 if (base->rev != 1)
2980 writel_relaxed(base->gcc_pwr_off_mask,
2981 base->virtbase + D40_DREG_GCC);
2982
2983 return 0;
2984 }
2985
2986 static int dma40_runtime_resume(struct device *dev)
2987 {
2988 struct platform_device *pdev = to_platform_device(dev);
2989 struct d40_base *base = platform_get_drvdata(pdev);
2990
2991 d40_save_restore_registers(base, false);
2992
2993 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
2994 base->virtbase + D40_DREG_GCC);
2995 return 0;
2996 }
2997 #endif
2998
2999 static const struct dev_pm_ops dma40_pm_ops = {
3000 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3001 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3002 dma40_runtime_resume,
3003 NULL)
3004 };
3005
3006 /* Initialization functions. */
3007
3008 static int __init d40_phy_res_init(struct d40_base *base)
3009 {
3010 int i;
3011 int num_phy_chans_avail = 0;
3012 u32 val[2];
3013 int odd_even_bit = -2;
3014 int gcc = D40_DREG_GCC_ENA;
3015
3016 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3017 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3018
3019 for (i = 0; i < base->num_phy_chans; i++) {
3020 base->phy_res[i].num = i;
3021 odd_even_bit += 2 * ((i % 2) == 0);
3022 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3023 /* Mark security only channels as occupied */
3024 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3025 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3026 base->phy_res[i].reserved = true;
3027 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3028 D40_DREG_GCC_SRC);
3029 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3030 D40_DREG_GCC_DST);
3031
3032
3033 } else {
3034 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3035 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3036 base->phy_res[i].reserved = false;
3037 num_phy_chans_avail++;
3038 }
3039 spin_lock_init(&base->phy_res[i].lock);
3040 }
3041
3042 /* Mark disabled channels as occupied */
3043 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3044 int chan = base->plat_data->disabled_channels[i];
3045
3046 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3047 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3048 base->phy_res[chan].reserved = true;
3049 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3050 D40_DREG_GCC_SRC);
3051 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3052 D40_DREG_GCC_DST);
3053 num_phy_chans_avail--;
3054 }
3055
3056 /* Mark soft_lli channels */
3057 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3058 int chan = base->plat_data->soft_lli_chans[i];
3059
3060 base->phy_res[chan].use_soft_lli = true;
3061 }
3062
3063 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3064 num_phy_chans_avail, base->num_phy_chans);
3065
3066 /* Verify settings extended vs standard */
3067 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3068
3069 for (i = 0; i < base->num_phy_chans; i++) {
3070
3071 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3072 (val[0] & 0x3) != 1)
3073 dev_info(base->dev,
3074 "[%s] INFO: channel %d is misconfigured (%d)\n",
3075 __func__, i, val[0] & 0x3);
3076
3077 val[0] = val[0] >> 2;
3078 }
3079
3080 /*
3081 * To keep things simple, Enable all clocks initially.
3082 * The clocks will get managed later post channel allocation.
3083 * The clocks for the event lines on which reserved channels exists
3084 * are not managed here.
3085 */
3086 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3087 base->gcc_pwr_off_mask = gcc;
3088
3089 return num_phy_chans_avail;
3090 }
3091
3092 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3093 {
3094 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3095 struct clk *clk;
3096 void __iomem *virtbase;
3097 struct resource *res;
3098 struct d40_base *base;
3099 int num_log_chans;
3100 int num_phy_chans;
3101 int num_memcpy_chans;
3102 int clk_ret = -EINVAL;
3103 int i;
3104 u32 pid;
3105 u32 cid;
3106 u8 rev;
3107
3108 clk = clk_get(&pdev->dev, NULL);
3109 if (IS_ERR(clk)) {
3110 d40_err(&pdev->dev, "No matching clock found\n");
3111 goto check_prepare_enabled;
3112 }
3113
3114 clk_ret = clk_prepare_enable(clk);
3115 if (clk_ret) {
3116 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3117 goto disable_unprepare;
3118 }
3119
3120 /* Get IO for DMAC base address */
3121 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3122 if (!res)
3123 goto disable_unprepare;
3124
3125 if (request_mem_region(res->start, resource_size(res),
3126 D40_NAME " I/O base") == NULL)
3127 goto release_region;
3128
3129 virtbase = ioremap(res->start, resource_size(res));
3130 if (!virtbase)
3131 goto release_region;
3132
3133 /* This is just a regular AMBA PrimeCell ID actually */
3134 for (pid = 0, i = 0; i < 4; i++)
3135 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3136 & 255) << (i * 8);
3137 for (cid = 0, i = 0; i < 4; i++)
3138 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3139 & 255) << (i * 8);
3140
3141 if (cid != AMBA_CID) {
3142 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3143 goto unmap_io;
3144 }
3145 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3146 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3147 AMBA_MANF_BITS(pid),
3148 AMBA_VENDOR_ST);
3149 goto unmap_io;
3150 }
3151 /*
3152 * HW revision:
3153 * DB8500ed has revision 0
3154 * ? has revision 1
3155 * DB8500v1 has revision 2
3156 * DB8500v2 has revision 3
3157 * AP9540v1 has revision 4
3158 * DB8540v1 has revision 4
3159 */
3160 rev = AMBA_REV_BITS(pid);
3161 if (rev < 2) {
3162 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3163 goto unmap_io;
3164 }
3165
3166 /* The number of physical channels on this HW */
3167 if (plat_data->num_of_phy_chans)
3168 num_phy_chans = plat_data->num_of_phy_chans;
3169 else
3170 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3171
3172 /* The number of channels used for memcpy */
3173 if (plat_data->num_of_memcpy_chans)
3174 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3175 else
3176 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3177
3178 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3179
3180 dev_info(&pdev->dev,
3181 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3182 rev, &res->start, num_phy_chans, num_log_chans);
3183
3184 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3185 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3186 sizeof(struct d40_chan), GFP_KERNEL);
3187
3188 if (base == NULL)
3189 goto unmap_io;
3190
3191 base->rev = rev;
3192 base->clk = clk;
3193 base->num_memcpy_chans = num_memcpy_chans;
3194 base->num_phy_chans = num_phy_chans;
3195 base->num_log_chans = num_log_chans;
3196 base->phy_start = res->start;
3197 base->phy_size = resource_size(res);
3198 base->virtbase = virtbase;
3199 base->plat_data = plat_data;
3200 base->dev = &pdev->dev;
3201 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3202 base->log_chans = &base->phy_chans[num_phy_chans];
3203
3204 if (base->plat_data->num_of_phy_chans == 14) {
3205 base->gen_dmac.backup = d40_backup_regs_v4b;
3206 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3207 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3208 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3209 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3210 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3211 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3212 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3213 base->gen_dmac.il = il_v4b;
3214 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3215 base->gen_dmac.init_reg = dma_init_reg_v4b;
3216 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3217 } else {
3218 if (base->rev >= 3) {
3219 base->gen_dmac.backup = d40_backup_regs_v4a;
3220 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3221 }
3222 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3223 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3224 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3225 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3226 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3227 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3228 base->gen_dmac.il = il_v4a;
3229 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3230 base->gen_dmac.init_reg = dma_init_reg_v4a;
3231 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3232 }
3233
3234 base->phy_res = kcalloc(num_phy_chans,
3235 sizeof(*base->phy_res),
3236 GFP_KERNEL);
3237 if (!base->phy_res)
3238 goto free_base;
3239
3240 base->lookup_phy_chans = kcalloc(num_phy_chans,
3241 sizeof(*base->lookup_phy_chans),
3242 GFP_KERNEL);
3243 if (!base->lookup_phy_chans)
3244 goto free_phy_res;
3245
3246 base->lookup_log_chans = kcalloc(num_log_chans,
3247 sizeof(*base->lookup_log_chans),
3248 GFP_KERNEL);
3249 if (!base->lookup_log_chans)
3250 goto free_phy_chans;
3251
3252 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3253 sizeof(d40_backup_regs_chan),
3254 GFP_KERNEL);
3255 if (!base->reg_val_backup_chan)
3256 goto free_log_chans;
3257
3258 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3259 * D40_LCLA_LINK_PER_EVENT_GRP,
3260 sizeof(*base->lcla_pool.alloc_map),
3261 GFP_KERNEL);
3262 if (!base->lcla_pool.alloc_map)
3263 goto free_backup_chan;
3264
3265 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3266 0, SLAB_HWCACHE_ALIGN,
3267 NULL);
3268 if (base->desc_slab == NULL)
3269 goto free_map;
3270
3271 return base;
3272 free_map:
3273 kfree(base->lcla_pool.alloc_map);
3274 free_backup_chan:
3275 kfree(base->reg_val_backup_chan);
3276 free_log_chans:
3277 kfree(base->lookup_log_chans);
3278 free_phy_chans:
3279 kfree(base->lookup_phy_chans);
3280 free_phy_res:
3281 kfree(base->phy_res);
3282 free_base:
3283 kfree(base);
3284 unmap_io:
3285 iounmap(virtbase);
3286 release_region:
3287 release_mem_region(res->start, resource_size(res));
3288 check_prepare_enabled:
3289 if (!clk_ret)
3290 disable_unprepare:
3291 clk_disable_unprepare(clk);
3292 if (!IS_ERR(clk))
3293 clk_put(clk);
3294 return NULL;
3295 }
3296
3297 static void __init d40_hw_init(struct d40_base *base)
3298 {
3299
3300 int i;
3301 u32 prmseo[2] = {0, 0};
3302 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3303 u32 pcmis = 0;
3304 u32 pcicr = 0;
3305 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3306 u32 reg_size = base->gen_dmac.init_reg_size;
3307
3308 for (i = 0; i < reg_size; i++)
3309 writel(dma_init_reg[i].val,
3310 base->virtbase + dma_init_reg[i].reg);
3311
3312 /* Configure all our dma channels to default settings */
3313 for (i = 0; i < base->num_phy_chans; i++) {
3314
3315 activeo[i % 2] = activeo[i % 2] << 2;
3316
3317 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3318 == D40_ALLOC_PHY) {
3319 activeo[i % 2] |= 3;
3320 continue;
3321 }
3322
3323 /* Enable interrupt # */
3324 pcmis = (pcmis << 1) | 1;
3325
3326 /* Clear interrupt # */
3327 pcicr = (pcicr << 1) | 1;
3328
3329 /* Set channel to physical mode */
3330 prmseo[i % 2] = prmseo[i % 2] << 2;
3331 prmseo[i % 2] |= 1;
3332
3333 }
3334
3335 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3336 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3337 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3338 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3339
3340 /* Write which interrupt to enable */
3341 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3342
3343 /* Write which interrupt to clear */
3344 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3345
3346 /* These are __initdata and cannot be accessed after init */
3347 base->gen_dmac.init_reg = NULL;
3348 base->gen_dmac.init_reg_size = 0;
3349 }
3350
3351 static int __init d40_lcla_allocate(struct d40_base *base)
3352 {
3353 struct d40_lcla_pool *pool = &base->lcla_pool;
3354 unsigned long *page_list;
3355 int i, j;
3356 int ret;
3357
3358 /*
3359 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3360 * To full fill this hardware requirement without wasting 256 kb
3361 * we allocate pages until we get an aligned one.
3362 */
3363 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3364 sizeof(*page_list),
3365 GFP_KERNEL);
3366 if (!page_list)
3367 return -ENOMEM;
3368
3369 /* Calculating how many pages that are required */
3370 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3371
3372 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3373 page_list[i] = __get_free_pages(GFP_KERNEL,
3374 base->lcla_pool.pages);
3375 if (!page_list[i]) {
3376
3377 d40_err(base->dev, "Failed to allocate %d pages.\n",
3378 base->lcla_pool.pages);
3379 ret = -ENOMEM;
3380
3381 for (j = 0; j < i; j++)
3382 free_pages(page_list[j], base->lcla_pool.pages);
3383 goto free_page_list;
3384 }
3385
3386 if ((virt_to_phys((void *)page_list[i]) &
3387 (LCLA_ALIGNMENT - 1)) == 0)
3388 break;
3389 }
3390
3391 for (j = 0; j < i; j++)
3392 free_pages(page_list[j], base->lcla_pool.pages);
3393
3394 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3395 base->lcla_pool.base = (void *)page_list[i];
3396 } else {
3397 /*
3398 * After many attempts and no succees with finding the correct
3399 * alignment, try with allocating a big buffer.
3400 */
3401 dev_warn(base->dev,
3402 "[%s] Failed to get %d pages @ 18 bit align.\n",
3403 __func__, base->lcla_pool.pages);
3404 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3405 base->num_phy_chans +
3406 LCLA_ALIGNMENT,
3407 GFP_KERNEL);
3408 if (!base->lcla_pool.base_unaligned) {
3409 ret = -ENOMEM;
3410 goto free_page_list;
3411 }
3412
3413 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3414 LCLA_ALIGNMENT);
3415 }
3416
3417 pool->dma_addr = dma_map_single(base->dev, pool->base,
3418 SZ_1K * base->num_phy_chans,
3419 DMA_TO_DEVICE);
3420 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3421 pool->dma_addr = 0;
3422 ret = -ENOMEM;
3423 goto free_page_list;
3424 }
3425
3426 writel(virt_to_phys(base->lcla_pool.base),
3427 base->virtbase + D40_DREG_LCLA);
3428 ret = 0;
3429 free_page_list:
3430 kfree(page_list);
3431 return ret;
3432 }
3433
3434 static int __init d40_of_probe(struct platform_device *pdev,
3435 struct device_node *np)
3436 {
3437 struct stedma40_platform_data *pdata;
3438 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3439 const __be32 *list;
3440
3441 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3442 if (!pdata)
3443 return -ENOMEM;
3444
3445 /* If absent this value will be obtained from h/w. */
3446 of_property_read_u32(np, "dma-channels", &num_phy);
3447 if (num_phy > 0)
3448 pdata->num_of_phy_chans = num_phy;
3449
3450 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3451 num_memcpy /= sizeof(*list);
3452
3453 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3454 d40_err(&pdev->dev,
3455 "Invalid number of memcpy channels specified (%d)\n",
3456 num_memcpy);
3457 return -EINVAL;
3458 }
3459 pdata->num_of_memcpy_chans = num_memcpy;
3460
3461 of_property_read_u32_array(np, "memcpy-channels",
3462 dma40_memcpy_channels,
3463 num_memcpy);
3464
3465 list = of_get_property(np, "disabled-channels", &num_disabled);
3466 num_disabled /= sizeof(*list);
3467
3468 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3469 d40_err(&pdev->dev,
3470 "Invalid number of disabled channels specified (%d)\n",
3471 num_disabled);
3472 return -EINVAL;
3473 }
3474
3475 of_property_read_u32_array(np, "disabled-channels",
3476 pdata->disabled_channels,
3477 num_disabled);
3478 pdata->disabled_channels[num_disabled] = -1;
3479
3480 pdev->dev.platform_data = pdata;
3481
3482 return 0;
3483 }
3484
3485 static int __init d40_probe(struct platform_device *pdev)
3486 {
3487 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3488 struct device_node *np = pdev->dev.of_node;
3489 int ret = -ENOENT;
3490 struct d40_base *base;
3491 struct resource *res;
3492 int num_reserved_chans;
3493 u32 val;
3494
3495 if (!plat_data) {
3496 if (np) {
3497 if (d40_of_probe(pdev, np)) {
3498 ret = -ENOMEM;
3499 goto report_failure;
3500 }
3501 } else {
3502 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3503 goto report_failure;
3504 }
3505 }
3506
3507 base = d40_hw_detect_init(pdev);
3508 if (!base)
3509 goto report_failure;
3510
3511 num_reserved_chans = d40_phy_res_init(base);
3512
3513 platform_set_drvdata(pdev, base);
3514
3515 spin_lock_init(&base->interrupt_lock);
3516 spin_lock_init(&base->execmd_lock);
3517
3518 /* Get IO for logical channel parameter address */
3519 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3520 if (!res) {
3521 ret = -ENOENT;
3522 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3523 goto destroy_cache;
3524 }
3525 base->lcpa_size = resource_size(res);
3526 base->phy_lcpa = res->start;
3527
3528 if (request_mem_region(res->start, resource_size(res),
3529 D40_NAME " I/O lcpa") == NULL) {
3530 ret = -EBUSY;
3531 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3532 goto destroy_cache;
3533 }
3534
3535 /* We make use of ESRAM memory for this. */
3536 val = readl(base->virtbase + D40_DREG_LCPA);
3537 if (res->start != val && val != 0) {
3538 dev_warn(&pdev->dev,
3539 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3540 __func__, val, &res->start);
3541 } else
3542 writel(res->start, base->virtbase + D40_DREG_LCPA);
3543
3544 base->lcpa_base = ioremap(res->start, resource_size(res));
3545 if (!base->lcpa_base) {
3546 ret = -ENOMEM;
3547 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3548 goto destroy_cache;
3549 }
3550 /* If lcla has to be located in ESRAM we don't need to allocate */
3551 if (base->plat_data->use_esram_lcla) {
3552 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3553 "lcla_esram");
3554 if (!res) {
3555 ret = -ENOENT;
3556 d40_err(&pdev->dev,
3557 "No \"lcla_esram\" memory resource\n");
3558 goto destroy_cache;
3559 }
3560 base->lcla_pool.base = ioremap(res->start,
3561 resource_size(res));
3562 if (!base->lcla_pool.base) {
3563 ret = -ENOMEM;
3564 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3565 goto destroy_cache;
3566 }
3567 writel(res->start, base->virtbase + D40_DREG_LCLA);
3568
3569 } else {
3570 ret = d40_lcla_allocate(base);
3571 if (ret) {
3572 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3573 goto destroy_cache;
3574 }
3575 }
3576
3577 spin_lock_init(&base->lcla_pool.lock);
3578
3579 base->irq = platform_get_irq(pdev, 0);
3580
3581 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3582 if (ret) {
3583 d40_err(&pdev->dev, "No IRQ defined\n");
3584 goto destroy_cache;
3585 }
3586
3587 if (base->plat_data->use_esram_lcla) {
3588
3589 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3590 if (IS_ERR(base->lcpa_regulator)) {
3591 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3592 ret = PTR_ERR(base->lcpa_regulator);
3593 base->lcpa_regulator = NULL;
3594 goto destroy_cache;
3595 }
3596
3597 ret = regulator_enable(base->lcpa_regulator);
3598 if (ret) {
3599 d40_err(&pdev->dev,
3600 "Failed to enable lcpa_regulator\n");
3601 regulator_put(base->lcpa_regulator);
3602 base->lcpa_regulator = NULL;
3603 goto destroy_cache;
3604 }
3605 }
3606
3607 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3608
3609 pm_runtime_irq_safe(base->dev);
3610 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3611 pm_runtime_use_autosuspend(base->dev);
3612 pm_runtime_mark_last_busy(base->dev);
3613 pm_runtime_set_active(base->dev);
3614 pm_runtime_enable(base->dev);
3615
3616 ret = d40_dmaengine_init(base, num_reserved_chans);
3617 if (ret)
3618 goto destroy_cache;
3619
3620 base->dev->dma_parms = &base->dma_parms;
3621 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3622 if (ret) {
3623 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3624 goto destroy_cache;
3625 }
3626
3627 d40_hw_init(base);
3628
3629 if (np) {
3630 ret = of_dma_controller_register(np, d40_xlate, NULL);
3631 if (ret)
3632 dev_err(&pdev->dev,
3633 "could not register of_dma_controller\n");
3634 }
3635
3636 dev_info(base->dev, "initialized\n");
3637 return 0;
3638 destroy_cache:
3639 kmem_cache_destroy(base->desc_slab);
3640 if (base->virtbase)
3641 iounmap(base->virtbase);
3642
3643 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3644 iounmap(base->lcla_pool.base);
3645 base->lcla_pool.base = NULL;
3646 }
3647
3648 if (base->lcla_pool.dma_addr)
3649 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3650 SZ_1K * base->num_phy_chans,
3651 DMA_TO_DEVICE);
3652
3653 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3654 free_pages((unsigned long)base->lcla_pool.base,
3655 base->lcla_pool.pages);
3656
3657 kfree(base->lcla_pool.base_unaligned);
3658
3659 if (base->phy_lcpa)
3660 release_mem_region(base->phy_lcpa,
3661 base->lcpa_size);
3662 if (base->phy_start)
3663 release_mem_region(base->phy_start,
3664 base->phy_size);
3665 if (base->clk) {
3666 clk_disable_unprepare(base->clk);
3667 clk_put(base->clk);
3668 }
3669
3670 if (base->lcpa_regulator) {
3671 regulator_disable(base->lcpa_regulator);
3672 regulator_put(base->lcpa_regulator);
3673 }
3674
3675 kfree(base->lcla_pool.alloc_map);
3676 kfree(base->lookup_log_chans);
3677 kfree(base->lookup_phy_chans);
3678 kfree(base->phy_res);
3679 kfree(base);
3680 report_failure:
3681 d40_err(&pdev->dev, "probe failed\n");
3682 return ret;
3683 }
3684
3685 static const struct of_device_id d40_match[] = {
3686 { .compatible = "stericsson,dma40", },
3687 {}
3688 };
3689
3690 static struct platform_driver d40_driver = {
3691 .driver = {
3692 .name = D40_NAME,
3693 .pm = &dma40_pm_ops,
3694 .of_match_table = d40_match,
3695 },
3696 };
3697
3698 static int __init stedma40_init(void)
3699 {
3700 return platform_driver_probe(&d40_driver, d40_probe);
3701 }
3702 subsys_initcall(stedma40_init);