]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/dma/ste_dma40.c
Merge branch 'readdir' (readdir speedup and sanity checking)
[mirror_ubuntu-hirsute-kernel.git] / drivers / dma / ste_dma40.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Ericsson AB 2007-2008
4 * Copyright (C) ST-Ericsson SA 2008-2010
5 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
61
62 #define D40_MEMCPY_MAX_CHANS 8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
71
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
85
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
99
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
122 };
123
124 /*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
138 };
139
140 /*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145 static __maybe_unused u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static __maybe_unused u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
271 };
272
273 /**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
287
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
305
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
367
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
372
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
375
376 bool is_in_client_list;
377 bool cyclic;
378 };
379
380 /**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
390 */
391 struct d40_lcla_pool {
392 void *base;
393 dma_addr_t dma_addr;
394 void *base_unaligned;
395 int pages;
396 spinlock_t lock;
397 struct d40_desc **alloc_map;
398 };
399
400 /**
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
403 *
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 */
414 struct d40_phy_res {
415 spinlock_t lock;
416 bool reserved;
417 int num;
418 u32 allocated_src;
419 u32 allocated_dst;
420 bool use_soft_lli;
421 };
422
423 struct d40_base;
424
425 /**
426 * struct d40_chan - Struct that describes a channel.
427 *
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @slave_config: DMA slave configuration.
446 * @configured: whether the dma_cfg configuration is valid
447 * @base: Pointer to the device instance struct.
448 * @src_def_cfg: Default cfg register setting for src.
449 * @dst_def_cfg: Default cfg register setting for dst.
450 * @log_def: Default logical channel settings.
451 * @lcpa: Pointer to dst and src lcpa settings.
452 * @runtime_addr: runtime configured address.
453 * @runtime_direction: runtime configured direction.
454 *
455 * This struct can either "be" a logical or a physical channel.
456 */
457 struct d40_chan {
458 spinlock_t lock;
459 int log_num;
460 int pending_tx;
461 bool busy;
462 struct d40_phy_res *phy_chan;
463 struct dma_chan chan;
464 struct tasklet_struct tasklet;
465 struct list_head client;
466 struct list_head pending_queue;
467 struct list_head active;
468 struct list_head done;
469 struct list_head queue;
470 struct list_head prepare_queue;
471 struct stedma40_chan_cfg dma_cfg;
472 struct dma_slave_config slave_config;
473 bool configured;
474 struct d40_base *base;
475 /* Default register configurations */
476 u32 src_def_cfg;
477 u32 dst_def_cfg;
478 struct d40_def_lcsp log_def;
479 struct d40_log_lli_full *lcpa;
480 /* Runtime reconfiguration */
481 dma_addr_t runtime_addr;
482 enum dma_transfer_direction runtime_direction;
483 };
484
485 /**
486 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
487 * controller
488 *
489 * @backup: the pointer to the registers address array for backup
490 * @backup_size: the size of the registers address array for backup
491 * @realtime_en: the realtime enable register
492 * @realtime_clear: the realtime clear register
493 * @high_prio_en: the high priority enable register
494 * @high_prio_clear: the high priority clear register
495 * @interrupt_en: the interrupt enable register
496 * @interrupt_clear: the interrupt clear register
497 * @il: the pointer to struct d40_interrupt_lookup
498 * @il_size: the size of d40_interrupt_lookup array
499 * @init_reg: the pointer to the struct d40_reg_val
500 * @init_reg_size: the size of d40_reg_val array
501 */
502 struct d40_gen_dmac {
503 u32 *backup;
504 u32 backup_size;
505 u32 realtime_en;
506 u32 realtime_clear;
507 u32 high_prio_en;
508 u32 high_prio_clear;
509 u32 interrupt_en;
510 u32 interrupt_clear;
511 struct d40_interrupt_lookup *il;
512 u32 il_size;
513 struct d40_reg_val *init_reg;
514 u32 init_reg_size;
515 };
516
517 /**
518 * struct d40_base - The big global struct, one for each probe'd instance.
519 *
520 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
521 * @execmd_lock: Lock for execute command usage since several channels share
522 * the same physical register.
523 * @dev: The device structure.
524 * @virtbase: The virtual base address of the DMA's register.
525 * @rev: silicon revision detected.
526 * @clk: Pointer to the DMA clock structure.
527 * @phy_start: Physical memory start of the DMA registers.
528 * @phy_size: Size of the DMA register map.
529 * @irq: The IRQ number.
530 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
531 * transfers).
532 * @num_phy_chans: The number of physical channels. Read from HW. This
533 * is the number of available channels for this driver, not counting "Secure
534 * mode" allocated physical channels.
535 * @num_log_chans: The number of logical channels. Calculated from
536 * num_phy_chans.
537 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
538 * @dma_slave: dma_device channels that can do only do slave transfers.
539 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
540 * @phy_chans: Room for all possible physical channels in system.
541 * @log_chans: Room for all possible logical channels in system.
542 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
543 * to log_chans entries.
544 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
545 * to phy_chans entries.
546 * @plat_data: Pointer to provided platform_data which is the driver
547 * configuration.
548 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
549 * @phy_res: Vector containing all physical channels.
550 * @lcla_pool: lcla pool settings and data.
551 * @lcpa_base: The virtual mapped address of LCPA.
552 * @phy_lcpa: The physical address of the LCPA.
553 * @lcpa_size: The size of the LCPA area.
554 * @desc_slab: cache for descriptors.
555 * @reg_val_backup: Here the values of some hardware registers are stored
556 * before the DMA is powered off. They are restored when the power is back on.
557 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
558 * later
559 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
560 * @regs_interrupt: Scratch space for registers during interrupt.
561 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
562 * @gen_dmac: the struct for generic registers values to represent u8500/8540
563 * DMA controller
564 */
565 struct d40_base {
566 spinlock_t interrupt_lock;
567 spinlock_t execmd_lock;
568 struct device *dev;
569 void __iomem *virtbase;
570 u8 rev:4;
571 struct clk *clk;
572 phys_addr_t phy_start;
573 resource_size_t phy_size;
574 int irq;
575 int num_memcpy_chans;
576 int num_phy_chans;
577 int num_log_chans;
578 struct device_dma_parameters dma_parms;
579 struct dma_device dma_both;
580 struct dma_device dma_slave;
581 struct dma_device dma_memcpy;
582 struct d40_chan *phy_chans;
583 struct d40_chan *log_chans;
584 struct d40_chan **lookup_log_chans;
585 struct d40_chan **lookup_phy_chans;
586 struct stedma40_platform_data *plat_data;
587 struct regulator *lcpa_regulator;
588 /* Physical half channels */
589 struct d40_phy_res *phy_res;
590 struct d40_lcla_pool lcla_pool;
591 void *lcpa_base;
592 dma_addr_t phy_lcpa;
593 resource_size_t lcpa_size;
594 struct kmem_cache *desc_slab;
595 u32 reg_val_backup[BACKUP_REGS_SZ];
596 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
597 u32 *reg_val_backup_chan;
598 u32 *regs_interrupt;
599 u16 gcc_pwr_off_mask;
600 struct d40_gen_dmac gen_dmac;
601 };
602
603 static struct device *chan2dev(struct d40_chan *d40c)
604 {
605 return &d40c->chan.dev->device;
606 }
607
608 static bool chan_is_physical(struct d40_chan *chan)
609 {
610 return chan->log_num == D40_PHY_CHAN;
611 }
612
613 static bool chan_is_logical(struct d40_chan *chan)
614 {
615 return !chan_is_physical(chan);
616 }
617
618 static void __iomem *chan_base(struct d40_chan *chan)
619 {
620 return chan->base->virtbase + D40_DREG_PCBASE +
621 chan->phy_chan->num * D40_DREG_PCDELTA;
622 }
623
624 #define d40_err(dev, format, arg...) \
625 dev_err(dev, "[%s] " format, __func__, ## arg)
626
627 #define chan_err(d40c, format, arg...) \
628 d40_err(chan2dev(d40c), format, ## arg)
629
630 static int d40_set_runtime_config_write(struct dma_chan *chan,
631 struct dma_slave_config *config,
632 enum dma_transfer_direction direction);
633
634 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
635 int lli_len)
636 {
637 bool is_log = chan_is_logical(d40c);
638 u32 align;
639 void *base;
640
641 if (is_log)
642 align = sizeof(struct d40_log_lli);
643 else
644 align = sizeof(struct d40_phy_lli);
645
646 if (lli_len == 1) {
647 base = d40d->lli_pool.pre_alloc_lli;
648 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
649 d40d->lli_pool.base = NULL;
650 } else {
651 d40d->lli_pool.size = lli_len * 2 * align;
652
653 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
654 d40d->lli_pool.base = base;
655
656 if (d40d->lli_pool.base == NULL)
657 return -ENOMEM;
658 }
659
660 if (is_log) {
661 d40d->lli_log.src = PTR_ALIGN(base, align);
662 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
663
664 d40d->lli_pool.dma_addr = 0;
665 } else {
666 d40d->lli_phy.src = PTR_ALIGN(base, align);
667 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
668
669 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
670 d40d->lli_phy.src,
671 d40d->lli_pool.size,
672 DMA_TO_DEVICE);
673
674 if (dma_mapping_error(d40c->base->dev,
675 d40d->lli_pool.dma_addr)) {
676 kfree(d40d->lli_pool.base);
677 d40d->lli_pool.base = NULL;
678 d40d->lli_pool.dma_addr = 0;
679 return -ENOMEM;
680 }
681 }
682
683 return 0;
684 }
685
686 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
687 {
688 if (d40d->lli_pool.dma_addr)
689 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
690 d40d->lli_pool.size, DMA_TO_DEVICE);
691
692 kfree(d40d->lli_pool.base);
693 d40d->lli_pool.base = NULL;
694 d40d->lli_pool.size = 0;
695 d40d->lli_log.src = NULL;
696 d40d->lli_log.dst = NULL;
697 d40d->lli_phy.src = NULL;
698 d40d->lli_phy.dst = NULL;
699 }
700
701 static int d40_lcla_alloc_one(struct d40_chan *d40c,
702 struct d40_desc *d40d)
703 {
704 unsigned long flags;
705 int i;
706 int ret = -EINVAL;
707
708 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
709
710 /*
711 * Allocate both src and dst at the same time, therefore the half
712 * start on 1 since 0 can't be used since zero is used as end marker.
713 */
714 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
715 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
716
717 if (!d40c->base->lcla_pool.alloc_map[idx]) {
718 d40c->base->lcla_pool.alloc_map[idx] = d40d;
719 d40d->lcla_alloc++;
720 ret = i;
721 break;
722 }
723 }
724
725 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
726
727 return ret;
728 }
729
730 static int d40_lcla_free_all(struct d40_chan *d40c,
731 struct d40_desc *d40d)
732 {
733 unsigned long flags;
734 int i;
735 int ret = -EINVAL;
736
737 if (chan_is_physical(d40c))
738 return 0;
739
740 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
741
742 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
743 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
744
745 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
746 d40c->base->lcla_pool.alloc_map[idx] = NULL;
747 d40d->lcla_alloc--;
748 if (d40d->lcla_alloc == 0) {
749 ret = 0;
750 break;
751 }
752 }
753 }
754
755 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
756
757 return ret;
758
759 }
760
761 static void d40_desc_remove(struct d40_desc *d40d)
762 {
763 list_del(&d40d->node);
764 }
765
766 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
767 {
768 struct d40_desc *desc = NULL;
769
770 if (!list_empty(&d40c->client)) {
771 struct d40_desc *d;
772 struct d40_desc *_d;
773
774 list_for_each_entry_safe(d, _d, &d40c->client, node) {
775 if (async_tx_test_ack(&d->txd)) {
776 d40_desc_remove(d);
777 desc = d;
778 memset(desc, 0, sizeof(*desc));
779 break;
780 }
781 }
782 }
783
784 if (!desc)
785 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
786
787 if (desc)
788 INIT_LIST_HEAD(&desc->node);
789
790 return desc;
791 }
792
793 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
794 {
795
796 d40_pool_lli_free(d40c, d40d);
797 d40_lcla_free_all(d40c, d40d);
798 kmem_cache_free(d40c->base->desc_slab, d40d);
799 }
800
801 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
802 {
803 list_add_tail(&desc->node, &d40c->active);
804 }
805
806 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
807 {
808 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
809 struct d40_phy_lli *lli_src = desc->lli_phy.src;
810 void __iomem *base = chan_base(chan);
811
812 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
813 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
814 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
815 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
816
817 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
818 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
819 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
820 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
821 }
822
823 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
824 {
825 list_add_tail(&desc->node, &d40c->done);
826 }
827
828 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
829 {
830 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
831 struct d40_log_lli_bidir *lli = &desc->lli_log;
832 int lli_current = desc->lli_current;
833 int lli_len = desc->lli_len;
834 bool cyclic = desc->cyclic;
835 int curr_lcla = -EINVAL;
836 int first_lcla = 0;
837 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
838 bool linkback;
839
840 /*
841 * We may have partially running cyclic transfers, in case we did't get
842 * enough LCLA entries.
843 */
844 linkback = cyclic && lli_current == 0;
845
846 /*
847 * For linkback, we need one LCLA even with only one link, because we
848 * can't link back to the one in LCPA space
849 */
850 if (linkback || (lli_len - lli_current > 1)) {
851 /*
852 * If the channel is expected to use only soft_lli don't
853 * allocate a lcla. This is to avoid a HW issue that exists
854 * in some controller during a peripheral to memory transfer
855 * that uses linked lists.
856 */
857 if (!(chan->phy_chan->use_soft_lli &&
858 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
859 curr_lcla = d40_lcla_alloc_one(chan, desc);
860
861 first_lcla = curr_lcla;
862 }
863
864 /*
865 * For linkback, we normally load the LCPA in the loop since we need to
866 * link it to the second LCLA and not the first. However, if we
867 * couldn't even get a first LCLA, then we have to run in LCPA and
868 * reload manually.
869 */
870 if (!linkback || curr_lcla == -EINVAL) {
871 unsigned int flags = 0;
872
873 if (curr_lcla == -EINVAL)
874 flags |= LLI_TERM_INT;
875
876 d40_log_lli_lcpa_write(chan->lcpa,
877 &lli->dst[lli_current],
878 &lli->src[lli_current],
879 curr_lcla,
880 flags);
881 lli_current++;
882 }
883
884 if (curr_lcla < 0)
885 goto set_current;
886
887 for (; lli_current < lli_len; lli_current++) {
888 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
889 8 * curr_lcla * 2;
890 struct d40_log_lli *lcla = pool->base + lcla_offset;
891 unsigned int flags = 0;
892 int next_lcla;
893
894 if (lli_current + 1 < lli_len)
895 next_lcla = d40_lcla_alloc_one(chan, desc);
896 else
897 next_lcla = linkback ? first_lcla : -EINVAL;
898
899 if (cyclic || next_lcla == -EINVAL)
900 flags |= LLI_TERM_INT;
901
902 if (linkback && curr_lcla == first_lcla) {
903 /* First link goes in both LCPA and LCLA */
904 d40_log_lli_lcpa_write(chan->lcpa,
905 &lli->dst[lli_current],
906 &lli->src[lli_current],
907 next_lcla, flags);
908 }
909
910 /*
911 * One unused LCLA in the cyclic case if the very first
912 * next_lcla fails...
913 */
914 d40_log_lli_lcla_write(lcla,
915 &lli->dst[lli_current],
916 &lli->src[lli_current],
917 next_lcla, flags);
918
919 /*
920 * Cache maintenance is not needed if lcla is
921 * mapped in esram
922 */
923 if (!use_esram_lcla) {
924 dma_sync_single_range_for_device(chan->base->dev,
925 pool->dma_addr, lcla_offset,
926 2 * sizeof(struct d40_log_lli),
927 DMA_TO_DEVICE);
928 }
929 curr_lcla = next_lcla;
930
931 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
932 lli_current++;
933 break;
934 }
935 }
936 set_current:
937 desc->lli_current = lli_current;
938 }
939
940 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
941 {
942 if (chan_is_physical(d40c)) {
943 d40_phy_lli_load(d40c, d40d);
944 d40d->lli_current = d40d->lli_len;
945 } else
946 d40_log_lli_to_lcxa(d40c, d40d);
947 }
948
949 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
950 {
951 return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
952 }
953
954 /* remove desc from current queue and add it to the pending_queue */
955 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
956 {
957 d40_desc_remove(desc);
958 desc->is_in_client_list = false;
959 list_add_tail(&desc->node, &d40c->pending_queue);
960 }
961
962 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
963 {
964 return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
965 node);
966 }
967
968 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
969 {
970 return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
971 }
972
973 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
974 {
975 return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
976 }
977
978 static int d40_psize_2_burst_size(bool is_log, int psize)
979 {
980 if (is_log) {
981 if (psize == STEDMA40_PSIZE_LOG_1)
982 return 1;
983 } else {
984 if (psize == STEDMA40_PSIZE_PHY_1)
985 return 1;
986 }
987
988 return 2 << psize;
989 }
990
991 /*
992 * The dma only supports transmitting packages up to
993 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
994 *
995 * Calculate the total number of dma elements required to send the entire sg list.
996 */
997 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
998 {
999 int dmalen;
1000 u32 max_w = max(data_width1, data_width2);
1001 u32 min_w = min(data_width1, data_width2);
1002 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1003
1004 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1005 seg_max -= max_w;
1006
1007 if (!IS_ALIGNED(size, max_w))
1008 return -EINVAL;
1009
1010 if (size <= seg_max)
1011 dmalen = 1;
1012 else {
1013 dmalen = size / seg_max;
1014 if (dmalen * seg_max < size)
1015 dmalen++;
1016 }
1017 return dmalen;
1018 }
1019
1020 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1021 u32 data_width1, u32 data_width2)
1022 {
1023 struct scatterlist *sg;
1024 int i;
1025 int len = 0;
1026 int ret;
1027
1028 for_each_sg(sgl, sg, sg_len, i) {
1029 ret = d40_size_2_dmalen(sg_dma_len(sg),
1030 data_width1, data_width2);
1031 if (ret < 0)
1032 return ret;
1033 len += ret;
1034 }
1035 return len;
1036 }
1037
1038 static int __d40_execute_command_phy(struct d40_chan *d40c,
1039 enum d40_command command)
1040 {
1041 u32 status;
1042 int i;
1043 void __iomem *active_reg;
1044 int ret = 0;
1045 unsigned long flags;
1046 u32 wmask;
1047
1048 if (command == D40_DMA_STOP) {
1049 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1050 if (ret)
1051 return ret;
1052 }
1053
1054 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1055
1056 if (d40c->phy_chan->num % 2 == 0)
1057 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1058 else
1059 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1060
1061 if (command == D40_DMA_SUSPEND_REQ) {
1062 status = (readl(active_reg) &
1063 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1064 D40_CHAN_POS(d40c->phy_chan->num);
1065
1066 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1067 goto unlock;
1068 }
1069
1070 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1071 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1072 active_reg);
1073
1074 if (command == D40_DMA_SUSPEND_REQ) {
1075
1076 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1077 status = (readl(active_reg) &
1078 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1079 D40_CHAN_POS(d40c->phy_chan->num);
1080
1081 cpu_relax();
1082 /*
1083 * Reduce the number of bus accesses while
1084 * waiting for the DMA to suspend.
1085 */
1086 udelay(3);
1087
1088 if (status == D40_DMA_STOP ||
1089 status == D40_DMA_SUSPENDED)
1090 break;
1091 }
1092
1093 if (i == D40_SUSPEND_MAX_IT) {
1094 chan_err(d40c,
1095 "unable to suspend the chl %d (log: %d) status %x\n",
1096 d40c->phy_chan->num, d40c->log_num,
1097 status);
1098 dump_stack();
1099 ret = -EBUSY;
1100 }
1101
1102 }
1103 unlock:
1104 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1105 return ret;
1106 }
1107
1108 static void d40_term_all(struct d40_chan *d40c)
1109 {
1110 struct d40_desc *d40d;
1111 struct d40_desc *_d;
1112
1113 /* Release completed descriptors */
1114 while ((d40d = d40_first_done(d40c))) {
1115 d40_desc_remove(d40d);
1116 d40_desc_free(d40c, d40d);
1117 }
1118
1119 /* Release active descriptors */
1120 while ((d40d = d40_first_active_get(d40c))) {
1121 d40_desc_remove(d40d);
1122 d40_desc_free(d40c, d40d);
1123 }
1124
1125 /* Release queued descriptors waiting for transfer */
1126 while ((d40d = d40_first_queued(d40c))) {
1127 d40_desc_remove(d40d);
1128 d40_desc_free(d40c, d40d);
1129 }
1130
1131 /* Release pending descriptors */
1132 while ((d40d = d40_first_pending(d40c))) {
1133 d40_desc_remove(d40d);
1134 d40_desc_free(d40c, d40d);
1135 }
1136
1137 /* Release client owned descriptors */
1138 if (!list_empty(&d40c->client))
1139 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1142 }
1143
1144 /* Release descriptors in prepare queue */
1145 if (!list_empty(&d40c->prepare_queue))
1146 list_for_each_entry_safe(d40d, _d,
1147 &d40c->prepare_queue, node) {
1148 d40_desc_remove(d40d);
1149 d40_desc_free(d40c, d40d);
1150 }
1151
1152 d40c->pending_tx = 0;
1153 }
1154
1155 static void __d40_config_set_event(struct d40_chan *d40c,
1156 enum d40_events event_type, u32 event,
1157 int reg)
1158 {
1159 void __iomem *addr = chan_base(d40c) + reg;
1160 int tries;
1161 u32 status;
1162
1163 switch (event_type) {
1164
1165 case D40_DEACTIVATE_EVENTLINE:
1166
1167 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1168 | ~D40_EVENTLINE_MASK(event), addr);
1169 break;
1170
1171 case D40_SUSPEND_REQ_EVENTLINE:
1172 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1173 D40_EVENTLINE_POS(event);
1174
1175 if (status == D40_DEACTIVATE_EVENTLINE ||
1176 status == D40_SUSPEND_REQ_EVENTLINE)
1177 break;
1178
1179 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1180 | ~D40_EVENTLINE_MASK(event), addr);
1181
1182 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1183
1184 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1185 D40_EVENTLINE_POS(event);
1186
1187 cpu_relax();
1188 /*
1189 * Reduce the number of bus accesses while
1190 * waiting for the DMA to suspend.
1191 */
1192 udelay(3);
1193
1194 if (status == D40_DEACTIVATE_EVENTLINE)
1195 break;
1196 }
1197
1198 if (tries == D40_SUSPEND_MAX_IT) {
1199 chan_err(d40c,
1200 "unable to stop the event_line chl %d (log: %d)"
1201 "status %x\n", d40c->phy_chan->num,
1202 d40c->log_num, status);
1203 }
1204 break;
1205
1206 case D40_ACTIVATE_EVENTLINE:
1207 /*
1208 * The hardware sometimes doesn't register the enable when src and dst
1209 * event lines are active on the same logical channel. Retry to ensure
1210 * it does. Usually only one retry is sufficient.
1211 */
1212 tries = 100;
1213 while (--tries) {
1214 writel((D40_ACTIVATE_EVENTLINE <<
1215 D40_EVENTLINE_POS(event)) |
1216 ~D40_EVENTLINE_MASK(event), addr);
1217
1218 if (readl(addr) & D40_EVENTLINE_MASK(event))
1219 break;
1220 }
1221
1222 if (tries != 99)
1223 dev_dbg(chan2dev(d40c),
1224 "[%s] workaround enable S%cLNK (%d tries)\n",
1225 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1226 100 - tries);
1227
1228 WARN_ON(!tries);
1229 break;
1230
1231 case D40_ROUND_EVENTLINE:
1232 BUG();
1233 break;
1234
1235 }
1236 }
1237
1238 static void d40_config_set_event(struct d40_chan *d40c,
1239 enum d40_events event_type)
1240 {
1241 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1242
1243 /* Enable event line connected to device (or memcpy) */
1244 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1245 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1246 __d40_config_set_event(d40c, event_type, event,
1247 D40_CHAN_REG_SSLNK);
1248
1249 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1250 __d40_config_set_event(d40c, event_type, event,
1251 D40_CHAN_REG_SDLNK);
1252 }
1253
1254 static u32 d40_chan_has_events(struct d40_chan *d40c)
1255 {
1256 void __iomem *chanbase = chan_base(d40c);
1257 u32 val;
1258
1259 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1260 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1261
1262 return val;
1263 }
1264
1265 static int
1266 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1267 {
1268 unsigned long flags;
1269 int ret = 0;
1270 u32 active_status;
1271 void __iomem *active_reg;
1272
1273 if (d40c->phy_chan->num % 2 == 0)
1274 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1275 else
1276 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1277
1278
1279 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1280
1281 switch (command) {
1282 case D40_DMA_STOP:
1283 case D40_DMA_SUSPEND_REQ:
1284
1285 active_status = (readl(active_reg) &
1286 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1287 D40_CHAN_POS(d40c->phy_chan->num);
1288
1289 if (active_status == D40_DMA_RUN)
1290 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1291 else
1292 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1293
1294 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1295 ret = __d40_execute_command_phy(d40c, command);
1296
1297 break;
1298
1299 case D40_DMA_RUN:
1300
1301 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1302 ret = __d40_execute_command_phy(d40c, command);
1303 break;
1304
1305 case D40_DMA_SUSPENDED:
1306 BUG();
1307 break;
1308 }
1309
1310 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1311 return ret;
1312 }
1313
1314 static int d40_channel_execute_command(struct d40_chan *d40c,
1315 enum d40_command command)
1316 {
1317 if (chan_is_logical(d40c))
1318 return __d40_execute_command_log(d40c, command);
1319 else
1320 return __d40_execute_command_phy(d40c, command);
1321 }
1322
1323 static u32 d40_get_prmo(struct d40_chan *d40c)
1324 {
1325 static const unsigned int phy_map[] = {
1326 [STEDMA40_PCHAN_BASIC_MODE]
1327 = D40_DREG_PRMO_PCHAN_BASIC,
1328 [STEDMA40_PCHAN_MODULO_MODE]
1329 = D40_DREG_PRMO_PCHAN_MODULO,
1330 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1331 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1332 };
1333 static const unsigned int log_map[] = {
1334 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1335 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1336 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1337 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1338 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1339 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1340 };
1341
1342 if (chan_is_physical(d40c))
1343 return phy_map[d40c->dma_cfg.mode_opt];
1344 else
1345 return log_map[d40c->dma_cfg.mode_opt];
1346 }
1347
1348 static void d40_config_write(struct d40_chan *d40c)
1349 {
1350 u32 addr_base;
1351 u32 var;
1352
1353 /* Odd addresses are even addresses + 4 */
1354 addr_base = (d40c->phy_chan->num % 2) * 4;
1355 /* Setup channel mode to logical or physical */
1356 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1357 D40_CHAN_POS(d40c->phy_chan->num);
1358 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1359
1360 /* Setup operational mode option register */
1361 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1362
1363 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1364
1365 if (chan_is_logical(d40c)) {
1366 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1367 & D40_SREG_ELEM_LOG_LIDX_MASK;
1368 void __iomem *chanbase = chan_base(d40c);
1369
1370 /* Set default config for CFG reg */
1371 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1372 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1373
1374 /* Set LIDX for lcla */
1375 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1376 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1377
1378 /* Clear LNK which will be used by d40_chan_has_events() */
1379 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1380 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1381 }
1382 }
1383
1384 static u32 d40_residue(struct d40_chan *d40c)
1385 {
1386 u32 num_elt;
1387
1388 if (chan_is_logical(d40c))
1389 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1390 >> D40_MEM_LCSP2_ECNT_POS;
1391 else {
1392 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1393 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1394 >> D40_SREG_ELEM_PHY_ECNT_POS;
1395 }
1396
1397 return num_elt * d40c->dma_cfg.dst_info.data_width;
1398 }
1399
1400 static bool d40_tx_is_linked(struct d40_chan *d40c)
1401 {
1402 bool is_link;
1403
1404 if (chan_is_logical(d40c))
1405 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1406 else
1407 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1408 & D40_SREG_LNK_PHYS_LNK_MASK;
1409
1410 return is_link;
1411 }
1412
1413 static int d40_pause(struct dma_chan *chan)
1414 {
1415 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1416 int res = 0;
1417 unsigned long flags;
1418
1419 if (d40c->phy_chan == NULL) {
1420 chan_err(d40c, "Channel is not allocated!\n");
1421 return -EINVAL;
1422 }
1423
1424 if (!d40c->busy)
1425 return 0;
1426
1427 spin_lock_irqsave(&d40c->lock, flags);
1428 pm_runtime_get_sync(d40c->base->dev);
1429
1430 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1431
1432 pm_runtime_mark_last_busy(d40c->base->dev);
1433 pm_runtime_put_autosuspend(d40c->base->dev);
1434 spin_unlock_irqrestore(&d40c->lock, flags);
1435 return res;
1436 }
1437
1438 static int d40_resume(struct dma_chan *chan)
1439 {
1440 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1441 int res = 0;
1442 unsigned long flags;
1443
1444 if (d40c->phy_chan == NULL) {
1445 chan_err(d40c, "Channel is not allocated!\n");
1446 return -EINVAL;
1447 }
1448
1449 if (!d40c->busy)
1450 return 0;
1451
1452 spin_lock_irqsave(&d40c->lock, flags);
1453 pm_runtime_get_sync(d40c->base->dev);
1454
1455 /* If bytes left to transfer or linked tx resume job */
1456 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1457 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1458
1459 pm_runtime_mark_last_busy(d40c->base->dev);
1460 pm_runtime_put_autosuspend(d40c->base->dev);
1461 spin_unlock_irqrestore(&d40c->lock, flags);
1462 return res;
1463 }
1464
1465 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1466 {
1467 struct d40_chan *d40c = container_of(tx->chan,
1468 struct d40_chan,
1469 chan);
1470 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1471 unsigned long flags;
1472 dma_cookie_t cookie;
1473
1474 spin_lock_irqsave(&d40c->lock, flags);
1475 cookie = dma_cookie_assign(tx);
1476 d40_desc_queue(d40c, d40d);
1477 spin_unlock_irqrestore(&d40c->lock, flags);
1478
1479 return cookie;
1480 }
1481
1482 static int d40_start(struct d40_chan *d40c)
1483 {
1484 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1485 }
1486
1487 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1488 {
1489 struct d40_desc *d40d;
1490 int err;
1491
1492 /* Start queued jobs, if any */
1493 d40d = d40_first_queued(d40c);
1494
1495 if (d40d != NULL) {
1496 if (!d40c->busy) {
1497 d40c->busy = true;
1498 pm_runtime_get_sync(d40c->base->dev);
1499 }
1500
1501 /* Remove from queue */
1502 d40_desc_remove(d40d);
1503
1504 /* Add to active queue */
1505 d40_desc_submit(d40c, d40d);
1506
1507 /* Initiate DMA job */
1508 d40_desc_load(d40c, d40d);
1509
1510 /* Start dma job */
1511 err = d40_start(d40c);
1512
1513 if (err)
1514 return NULL;
1515 }
1516
1517 return d40d;
1518 }
1519
1520 /* called from interrupt context */
1521 static void dma_tc_handle(struct d40_chan *d40c)
1522 {
1523 struct d40_desc *d40d;
1524
1525 /* Get first active entry from list */
1526 d40d = d40_first_active_get(d40c);
1527
1528 if (d40d == NULL)
1529 return;
1530
1531 if (d40d->cyclic) {
1532 /*
1533 * If this was a paritially loaded list, we need to reloaded
1534 * it, and only when the list is completed. We need to check
1535 * for done because the interrupt will hit for every link, and
1536 * not just the last one.
1537 */
1538 if (d40d->lli_current < d40d->lli_len
1539 && !d40_tx_is_linked(d40c)
1540 && !d40_residue(d40c)) {
1541 d40_lcla_free_all(d40c, d40d);
1542 d40_desc_load(d40c, d40d);
1543 (void) d40_start(d40c);
1544
1545 if (d40d->lli_current == d40d->lli_len)
1546 d40d->lli_current = 0;
1547 }
1548 } else {
1549 d40_lcla_free_all(d40c, d40d);
1550
1551 if (d40d->lli_current < d40d->lli_len) {
1552 d40_desc_load(d40c, d40d);
1553 /* Start dma job */
1554 (void) d40_start(d40c);
1555 return;
1556 }
1557
1558 if (d40_queue_start(d40c) == NULL) {
1559 d40c->busy = false;
1560
1561 pm_runtime_mark_last_busy(d40c->base->dev);
1562 pm_runtime_put_autosuspend(d40c->base->dev);
1563 }
1564
1565 d40_desc_remove(d40d);
1566 d40_desc_done(d40c, d40d);
1567 }
1568
1569 d40c->pending_tx++;
1570 tasklet_schedule(&d40c->tasklet);
1571
1572 }
1573
1574 static void dma_tasklet(unsigned long data)
1575 {
1576 struct d40_chan *d40c = (struct d40_chan *) data;
1577 struct d40_desc *d40d;
1578 unsigned long flags;
1579 bool callback_active;
1580 struct dmaengine_desc_callback cb;
1581
1582 spin_lock_irqsave(&d40c->lock, flags);
1583
1584 /* Get first entry from the done list */
1585 d40d = d40_first_done(d40c);
1586 if (d40d == NULL) {
1587 /* Check if we have reached here for cyclic job */
1588 d40d = d40_first_active_get(d40c);
1589 if (d40d == NULL || !d40d->cyclic)
1590 goto check_pending_tx;
1591 }
1592
1593 if (!d40d->cyclic)
1594 dma_cookie_complete(&d40d->txd);
1595
1596 /*
1597 * If terminating a channel pending_tx is set to zero.
1598 * This prevents any finished active jobs to return to the client.
1599 */
1600 if (d40c->pending_tx == 0) {
1601 spin_unlock_irqrestore(&d40c->lock, flags);
1602 return;
1603 }
1604
1605 /* Callback to client */
1606 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1607 dmaengine_desc_get_callback(&d40d->txd, &cb);
1608
1609 if (!d40d->cyclic) {
1610 if (async_tx_test_ack(&d40d->txd)) {
1611 d40_desc_remove(d40d);
1612 d40_desc_free(d40c, d40d);
1613 } else if (!d40d->is_in_client_list) {
1614 d40_desc_remove(d40d);
1615 d40_lcla_free_all(d40c, d40d);
1616 list_add_tail(&d40d->node, &d40c->client);
1617 d40d->is_in_client_list = true;
1618 }
1619 }
1620
1621 d40c->pending_tx--;
1622
1623 if (d40c->pending_tx)
1624 tasklet_schedule(&d40c->tasklet);
1625
1626 spin_unlock_irqrestore(&d40c->lock, flags);
1627
1628 if (callback_active)
1629 dmaengine_desc_callback_invoke(&cb, NULL);
1630
1631 return;
1632 check_pending_tx:
1633 /* Rescue manouver if receiving double interrupts */
1634 if (d40c->pending_tx > 0)
1635 d40c->pending_tx--;
1636 spin_unlock_irqrestore(&d40c->lock, flags);
1637 }
1638
1639 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1640 {
1641 int i;
1642 u32 idx;
1643 u32 row;
1644 long chan = -1;
1645 struct d40_chan *d40c;
1646 unsigned long flags;
1647 struct d40_base *base = data;
1648 u32 *regs = base->regs_interrupt;
1649 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1650 u32 il_size = base->gen_dmac.il_size;
1651
1652 spin_lock_irqsave(&base->interrupt_lock, flags);
1653
1654 /* Read interrupt status of both logical and physical channels */
1655 for (i = 0; i < il_size; i++)
1656 regs[i] = readl(base->virtbase + il[i].src);
1657
1658 for (;;) {
1659
1660 chan = find_next_bit((unsigned long *)regs,
1661 BITS_PER_LONG * il_size, chan + 1);
1662
1663 /* No more set bits found? */
1664 if (chan == BITS_PER_LONG * il_size)
1665 break;
1666
1667 row = chan / BITS_PER_LONG;
1668 idx = chan & (BITS_PER_LONG - 1);
1669
1670 if (il[row].offset == D40_PHY_CHAN)
1671 d40c = base->lookup_phy_chans[idx];
1672 else
1673 d40c = base->lookup_log_chans[il[row].offset + idx];
1674
1675 if (!d40c) {
1676 /*
1677 * No error because this can happen if something else
1678 * in the system is using the channel.
1679 */
1680 continue;
1681 }
1682
1683 /* ACK interrupt */
1684 writel(BIT(idx), base->virtbase + il[row].clr);
1685
1686 spin_lock(&d40c->lock);
1687
1688 if (!il[row].is_error)
1689 dma_tc_handle(d40c);
1690 else
1691 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1692 chan, il[row].offset, idx);
1693
1694 spin_unlock(&d40c->lock);
1695 }
1696
1697 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1698
1699 return IRQ_HANDLED;
1700 }
1701
1702 static int d40_validate_conf(struct d40_chan *d40c,
1703 struct stedma40_chan_cfg *conf)
1704 {
1705 int res = 0;
1706 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1707
1708 if (!conf->dir) {
1709 chan_err(d40c, "Invalid direction.\n");
1710 res = -EINVAL;
1711 }
1712
1713 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1714 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1715 (conf->dev_type < 0)) {
1716 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1717 res = -EINVAL;
1718 }
1719
1720 if (conf->dir == DMA_DEV_TO_DEV) {
1721 /*
1722 * DMAC HW supports it. Will be added to this driver,
1723 * in case any dma client requires it.
1724 */
1725 chan_err(d40c, "periph to periph not supported\n");
1726 res = -EINVAL;
1727 }
1728
1729 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1730 conf->src_info.data_width !=
1731 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1732 conf->dst_info.data_width) {
1733 /*
1734 * The DMAC hardware only supports
1735 * src (burst x width) == dst (burst x width)
1736 */
1737
1738 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1739 res = -EINVAL;
1740 }
1741
1742 return res;
1743 }
1744
1745 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1746 bool is_src, int log_event_line, bool is_log,
1747 bool *first_user)
1748 {
1749 unsigned long flags;
1750 spin_lock_irqsave(&phy->lock, flags);
1751
1752 *first_user = ((phy->allocated_src | phy->allocated_dst)
1753 == D40_ALLOC_FREE);
1754
1755 if (!is_log) {
1756 /* Physical interrupts are masked per physical full channel */
1757 if (phy->allocated_src == D40_ALLOC_FREE &&
1758 phy->allocated_dst == D40_ALLOC_FREE) {
1759 phy->allocated_dst = D40_ALLOC_PHY;
1760 phy->allocated_src = D40_ALLOC_PHY;
1761 goto found_unlock;
1762 } else
1763 goto not_found_unlock;
1764 }
1765
1766 /* Logical channel */
1767 if (is_src) {
1768 if (phy->allocated_src == D40_ALLOC_PHY)
1769 goto not_found_unlock;
1770
1771 if (phy->allocated_src == D40_ALLOC_FREE)
1772 phy->allocated_src = D40_ALLOC_LOG_FREE;
1773
1774 if (!(phy->allocated_src & BIT(log_event_line))) {
1775 phy->allocated_src |= BIT(log_event_line);
1776 goto found_unlock;
1777 } else
1778 goto not_found_unlock;
1779 } else {
1780 if (phy->allocated_dst == D40_ALLOC_PHY)
1781 goto not_found_unlock;
1782
1783 if (phy->allocated_dst == D40_ALLOC_FREE)
1784 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1785
1786 if (!(phy->allocated_dst & BIT(log_event_line))) {
1787 phy->allocated_dst |= BIT(log_event_line);
1788 goto found_unlock;
1789 }
1790 }
1791 not_found_unlock:
1792 spin_unlock_irqrestore(&phy->lock, flags);
1793 return false;
1794 found_unlock:
1795 spin_unlock_irqrestore(&phy->lock, flags);
1796 return true;
1797 }
1798
1799 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1800 int log_event_line)
1801 {
1802 unsigned long flags;
1803 bool is_free = false;
1804
1805 spin_lock_irqsave(&phy->lock, flags);
1806 if (!log_event_line) {
1807 phy->allocated_dst = D40_ALLOC_FREE;
1808 phy->allocated_src = D40_ALLOC_FREE;
1809 is_free = true;
1810 goto unlock;
1811 }
1812
1813 /* Logical channel */
1814 if (is_src) {
1815 phy->allocated_src &= ~BIT(log_event_line);
1816 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1817 phy->allocated_src = D40_ALLOC_FREE;
1818 } else {
1819 phy->allocated_dst &= ~BIT(log_event_line);
1820 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1821 phy->allocated_dst = D40_ALLOC_FREE;
1822 }
1823
1824 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1825 D40_ALLOC_FREE);
1826 unlock:
1827 spin_unlock_irqrestore(&phy->lock, flags);
1828
1829 return is_free;
1830 }
1831
1832 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1833 {
1834 int dev_type = d40c->dma_cfg.dev_type;
1835 int event_group;
1836 int event_line;
1837 struct d40_phy_res *phys;
1838 int i;
1839 int j;
1840 int log_num;
1841 int num_phy_chans;
1842 bool is_src;
1843 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1844
1845 phys = d40c->base->phy_res;
1846 num_phy_chans = d40c->base->num_phy_chans;
1847
1848 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1849 log_num = 2 * dev_type;
1850 is_src = true;
1851 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1852 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1853 /* dst event lines are used for logical memcpy */
1854 log_num = 2 * dev_type + 1;
1855 is_src = false;
1856 } else
1857 return -EINVAL;
1858
1859 event_group = D40_TYPE_TO_GROUP(dev_type);
1860 event_line = D40_TYPE_TO_EVENT(dev_type);
1861
1862 if (!is_log) {
1863 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1864 /* Find physical half channel */
1865 if (d40c->dma_cfg.use_fixed_channel) {
1866 i = d40c->dma_cfg.phy_channel;
1867 if (d40_alloc_mask_set(&phys[i], is_src,
1868 0, is_log,
1869 first_phy_user))
1870 goto found_phy;
1871 } else {
1872 for (i = 0; i < num_phy_chans; i++) {
1873 if (d40_alloc_mask_set(&phys[i], is_src,
1874 0, is_log,
1875 first_phy_user))
1876 goto found_phy;
1877 }
1878 }
1879 } else
1880 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1881 int phy_num = j + event_group * 2;
1882 for (i = phy_num; i < phy_num + 2; i++) {
1883 if (d40_alloc_mask_set(&phys[i],
1884 is_src,
1885 0,
1886 is_log,
1887 first_phy_user))
1888 goto found_phy;
1889 }
1890 }
1891 return -EINVAL;
1892 found_phy:
1893 d40c->phy_chan = &phys[i];
1894 d40c->log_num = D40_PHY_CHAN;
1895 goto out;
1896 }
1897 if (dev_type == -1)
1898 return -EINVAL;
1899
1900 /* Find logical channel */
1901 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1902 int phy_num = j + event_group * 2;
1903
1904 if (d40c->dma_cfg.use_fixed_channel) {
1905 i = d40c->dma_cfg.phy_channel;
1906
1907 if ((i != phy_num) && (i != phy_num + 1)) {
1908 dev_err(chan2dev(d40c),
1909 "invalid fixed phy channel %d\n", i);
1910 return -EINVAL;
1911 }
1912
1913 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1914 is_log, first_phy_user))
1915 goto found_log;
1916
1917 dev_err(chan2dev(d40c),
1918 "could not allocate fixed phy channel %d\n", i);
1919 return -EINVAL;
1920 }
1921
1922 /*
1923 * Spread logical channels across all available physical rather
1924 * than pack every logical channel at the first available phy
1925 * channels.
1926 */
1927 if (is_src) {
1928 for (i = phy_num; i < phy_num + 2; i++) {
1929 if (d40_alloc_mask_set(&phys[i], is_src,
1930 event_line, is_log,
1931 first_phy_user))
1932 goto found_log;
1933 }
1934 } else {
1935 for (i = phy_num + 1; i >= phy_num; i--) {
1936 if (d40_alloc_mask_set(&phys[i], is_src,
1937 event_line, is_log,
1938 first_phy_user))
1939 goto found_log;
1940 }
1941 }
1942 }
1943 return -EINVAL;
1944
1945 found_log:
1946 d40c->phy_chan = &phys[i];
1947 d40c->log_num = log_num;
1948 out:
1949
1950 if (is_log)
1951 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1952 else
1953 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1954
1955 return 0;
1956
1957 }
1958
1959 static int d40_config_memcpy(struct d40_chan *d40c)
1960 {
1961 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1962
1963 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1964 d40c->dma_cfg = dma40_memcpy_conf_log;
1965 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1966
1967 d40_log_cfg(&d40c->dma_cfg,
1968 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1969
1970 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1971 dma_has_cap(DMA_SLAVE, cap)) {
1972 d40c->dma_cfg = dma40_memcpy_conf_phy;
1973
1974 /* Generate interrrupt at end of transfer or relink. */
1975 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1976
1977 /* Generate interrupt on error. */
1978 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1979 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
1980
1981 } else {
1982 chan_err(d40c, "No memcpy\n");
1983 return -EINVAL;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int d40_free_dma(struct d40_chan *d40c)
1990 {
1991
1992 int res = 0;
1993 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1994 struct d40_phy_res *phy = d40c->phy_chan;
1995 bool is_src;
1996
1997 /* Terminate all queued and active transfers */
1998 d40_term_all(d40c);
1999
2000 if (phy == NULL) {
2001 chan_err(d40c, "phy == null\n");
2002 return -EINVAL;
2003 }
2004
2005 if (phy->allocated_src == D40_ALLOC_FREE &&
2006 phy->allocated_dst == D40_ALLOC_FREE) {
2007 chan_err(d40c, "channel already free\n");
2008 return -EINVAL;
2009 }
2010
2011 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2012 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2013 is_src = false;
2014 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2015 is_src = true;
2016 else {
2017 chan_err(d40c, "Unknown direction\n");
2018 return -EINVAL;
2019 }
2020
2021 pm_runtime_get_sync(d40c->base->dev);
2022 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2023 if (res) {
2024 chan_err(d40c, "stop failed\n");
2025 goto mark_last_busy;
2026 }
2027
2028 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2029
2030 if (chan_is_logical(d40c))
2031 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2032 else
2033 d40c->base->lookup_phy_chans[phy->num] = NULL;
2034
2035 if (d40c->busy) {
2036 pm_runtime_mark_last_busy(d40c->base->dev);
2037 pm_runtime_put_autosuspend(d40c->base->dev);
2038 }
2039
2040 d40c->busy = false;
2041 d40c->phy_chan = NULL;
2042 d40c->configured = false;
2043 mark_last_busy:
2044 pm_runtime_mark_last_busy(d40c->base->dev);
2045 pm_runtime_put_autosuspend(d40c->base->dev);
2046 return res;
2047 }
2048
2049 static bool d40_is_paused(struct d40_chan *d40c)
2050 {
2051 void __iomem *chanbase = chan_base(d40c);
2052 bool is_paused = false;
2053 unsigned long flags;
2054 void __iomem *active_reg;
2055 u32 status;
2056 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2057
2058 spin_lock_irqsave(&d40c->lock, flags);
2059
2060 if (chan_is_physical(d40c)) {
2061 if (d40c->phy_chan->num % 2 == 0)
2062 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2063 else
2064 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2065
2066 status = (readl(active_reg) &
2067 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2068 D40_CHAN_POS(d40c->phy_chan->num);
2069 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2070 is_paused = true;
2071 goto unlock;
2072 }
2073
2074 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2075 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2076 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2077 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2078 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2079 } else {
2080 chan_err(d40c, "Unknown direction\n");
2081 goto unlock;
2082 }
2083
2084 status = (status & D40_EVENTLINE_MASK(event)) >>
2085 D40_EVENTLINE_POS(event);
2086
2087 if (status != D40_DMA_RUN)
2088 is_paused = true;
2089 unlock:
2090 spin_unlock_irqrestore(&d40c->lock, flags);
2091 return is_paused;
2092
2093 }
2094
2095 static u32 stedma40_residue(struct dma_chan *chan)
2096 {
2097 struct d40_chan *d40c =
2098 container_of(chan, struct d40_chan, chan);
2099 u32 bytes_left;
2100 unsigned long flags;
2101
2102 spin_lock_irqsave(&d40c->lock, flags);
2103 bytes_left = d40_residue(d40c);
2104 spin_unlock_irqrestore(&d40c->lock, flags);
2105
2106 return bytes_left;
2107 }
2108
2109 static int
2110 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2111 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2112 unsigned int sg_len, dma_addr_t src_dev_addr,
2113 dma_addr_t dst_dev_addr)
2114 {
2115 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2116 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2117 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2118 int ret;
2119
2120 ret = d40_log_sg_to_lli(sg_src, sg_len,
2121 src_dev_addr,
2122 desc->lli_log.src,
2123 chan->log_def.lcsp1,
2124 src_info->data_width,
2125 dst_info->data_width);
2126
2127 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2128 dst_dev_addr,
2129 desc->lli_log.dst,
2130 chan->log_def.lcsp3,
2131 dst_info->data_width,
2132 src_info->data_width);
2133
2134 return ret < 0 ? ret : 0;
2135 }
2136
2137 static int
2138 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2139 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2140 unsigned int sg_len, dma_addr_t src_dev_addr,
2141 dma_addr_t dst_dev_addr)
2142 {
2143 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2144 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2145 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2146 unsigned long flags = 0;
2147 int ret;
2148
2149 if (desc->cyclic)
2150 flags |= LLI_CYCLIC | LLI_TERM_INT;
2151
2152 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2153 desc->lli_phy.src,
2154 virt_to_phys(desc->lli_phy.src),
2155 chan->src_def_cfg,
2156 src_info, dst_info, flags);
2157
2158 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2159 desc->lli_phy.dst,
2160 virt_to_phys(desc->lli_phy.dst),
2161 chan->dst_def_cfg,
2162 dst_info, src_info, flags);
2163
2164 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2165 desc->lli_pool.size, DMA_TO_DEVICE);
2166
2167 return ret < 0 ? ret : 0;
2168 }
2169
2170 static struct d40_desc *
2171 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2172 unsigned int sg_len, unsigned long dma_flags)
2173 {
2174 struct stedma40_chan_cfg *cfg;
2175 struct d40_desc *desc;
2176 int ret;
2177
2178 desc = d40_desc_get(chan);
2179 if (!desc)
2180 return NULL;
2181
2182 cfg = &chan->dma_cfg;
2183 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2184 cfg->dst_info.data_width);
2185 if (desc->lli_len < 0) {
2186 chan_err(chan, "Unaligned size\n");
2187 goto free_desc;
2188 }
2189
2190 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2191 if (ret < 0) {
2192 chan_err(chan, "Could not allocate lli\n");
2193 goto free_desc;
2194 }
2195
2196 desc->lli_current = 0;
2197 desc->txd.flags = dma_flags;
2198 desc->txd.tx_submit = d40_tx_submit;
2199
2200 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2201
2202 return desc;
2203 free_desc:
2204 d40_desc_free(chan, desc);
2205 return NULL;
2206 }
2207
2208 static struct dma_async_tx_descriptor *
2209 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2210 struct scatterlist *sg_dst, unsigned int sg_len,
2211 enum dma_transfer_direction direction, unsigned long dma_flags)
2212 {
2213 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2214 dma_addr_t src_dev_addr;
2215 dma_addr_t dst_dev_addr;
2216 struct d40_desc *desc;
2217 unsigned long flags;
2218 int ret;
2219
2220 if (!chan->phy_chan) {
2221 chan_err(chan, "Cannot prepare unallocated channel\n");
2222 return NULL;
2223 }
2224
2225 d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2226
2227 spin_lock_irqsave(&chan->lock, flags);
2228
2229 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2230 if (desc == NULL)
2231 goto unlock;
2232
2233 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2234 desc->cyclic = true;
2235
2236 src_dev_addr = 0;
2237 dst_dev_addr = 0;
2238 if (direction == DMA_DEV_TO_MEM)
2239 src_dev_addr = chan->runtime_addr;
2240 else if (direction == DMA_MEM_TO_DEV)
2241 dst_dev_addr = chan->runtime_addr;
2242
2243 if (chan_is_logical(chan))
2244 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2245 sg_len, src_dev_addr, dst_dev_addr);
2246 else
2247 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2248 sg_len, src_dev_addr, dst_dev_addr);
2249
2250 if (ret) {
2251 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2252 chan_is_logical(chan) ? "log" : "phy", ret);
2253 goto free_desc;
2254 }
2255
2256 /*
2257 * add descriptor to the prepare queue in order to be able
2258 * to free them later in terminate_all
2259 */
2260 list_add_tail(&desc->node, &chan->prepare_queue);
2261
2262 spin_unlock_irqrestore(&chan->lock, flags);
2263
2264 return &desc->txd;
2265 free_desc:
2266 d40_desc_free(chan, desc);
2267 unlock:
2268 spin_unlock_irqrestore(&chan->lock, flags);
2269 return NULL;
2270 }
2271
2272 bool stedma40_filter(struct dma_chan *chan, void *data)
2273 {
2274 struct stedma40_chan_cfg *info = data;
2275 struct d40_chan *d40c =
2276 container_of(chan, struct d40_chan, chan);
2277 int err;
2278
2279 if (data) {
2280 err = d40_validate_conf(d40c, info);
2281 if (!err)
2282 d40c->dma_cfg = *info;
2283 } else
2284 err = d40_config_memcpy(d40c);
2285
2286 if (!err)
2287 d40c->configured = true;
2288
2289 return err == 0;
2290 }
2291 EXPORT_SYMBOL(stedma40_filter);
2292
2293 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2294 {
2295 bool realtime = d40c->dma_cfg.realtime;
2296 bool highprio = d40c->dma_cfg.high_priority;
2297 u32 rtreg;
2298 u32 event = D40_TYPE_TO_EVENT(dev_type);
2299 u32 group = D40_TYPE_TO_GROUP(dev_type);
2300 u32 bit = BIT(event);
2301 u32 prioreg;
2302 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2303
2304 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2305 /*
2306 * Due to a hardware bug, in some cases a logical channel triggered by
2307 * a high priority destination event line can generate extra packet
2308 * transactions.
2309 *
2310 * The workaround is to not set the high priority level for the
2311 * destination event lines that trigger logical channels.
2312 */
2313 if (!src && chan_is_logical(d40c))
2314 highprio = false;
2315
2316 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2317
2318 /* Destination event lines are stored in the upper halfword */
2319 if (!src)
2320 bit <<= 16;
2321
2322 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2323 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2324 }
2325
2326 static void d40_set_prio_realtime(struct d40_chan *d40c)
2327 {
2328 if (d40c->base->rev < 3)
2329 return;
2330
2331 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2332 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2333 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2334
2335 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2336 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2337 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2338 }
2339
2340 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2341 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2342 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2343 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2344 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2345
2346 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2347 struct of_dma *ofdma)
2348 {
2349 struct stedma40_chan_cfg cfg;
2350 dma_cap_mask_t cap;
2351 u32 flags;
2352
2353 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2354
2355 dma_cap_zero(cap);
2356 dma_cap_set(DMA_SLAVE, cap);
2357
2358 cfg.dev_type = dma_spec->args[0];
2359 flags = dma_spec->args[2];
2360
2361 switch (D40_DT_FLAGS_MODE(flags)) {
2362 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2363 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2364 }
2365
2366 switch (D40_DT_FLAGS_DIR(flags)) {
2367 case 0:
2368 cfg.dir = DMA_MEM_TO_DEV;
2369 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2370 break;
2371 case 1:
2372 cfg.dir = DMA_DEV_TO_MEM;
2373 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2374 break;
2375 }
2376
2377 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2378 cfg.phy_channel = dma_spec->args[1];
2379 cfg.use_fixed_channel = true;
2380 }
2381
2382 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2383 cfg.high_priority = true;
2384
2385 return dma_request_channel(cap, stedma40_filter, &cfg);
2386 }
2387
2388 /* DMA ENGINE functions */
2389 static int d40_alloc_chan_resources(struct dma_chan *chan)
2390 {
2391 int err;
2392 unsigned long flags;
2393 struct d40_chan *d40c =
2394 container_of(chan, struct d40_chan, chan);
2395 bool is_free_phy;
2396 spin_lock_irqsave(&d40c->lock, flags);
2397
2398 dma_cookie_init(chan);
2399
2400 /* If no dma configuration is set use default configuration (memcpy) */
2401 if (!d40c->configured) {
2402 err = d40_config_memcpy(d40c);
2403 if (err) {
2404 chan_err(d40c, "Failed to configure memcpy channel\n");
2405 goto mark_last_busy;
2406 }
2407 }
2408
2409 err = d40_allocate_channel(d40c, &is_free_phy);
2410 if (err) {
2411 chan_err(d40c, "Failed to allocate channel\n");
2412 d40c->configured = false;
2413 goto mark_last_busy;
2414 }
2415
2416 pm_runtime_get_sync(d40c->base->dev);
2417
2418 d40_set_prio_realtime(d40c);
2419
2420 if (chan_is_logical(d40c)) {
2421 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2422 d40c->lcpa = d40c->base->lcpa_base +
2423 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2424 else
2425 d40c->lcpa = d40c->base->lcpa_base +
2426 d40c->dma_cfg.dev_type *
2427 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2428
2429 /* Unmask the Global Interrupt Mask. */
2430 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2431 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2432 }
2433
2434 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2435 chan_is_logical(d40c) ? "logical" : "physical",
2436 d40c->phy_chan->num,
2437 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2438
2439
2440 /*
2441 * Only write channel configuration to the DMA if the physical
2442 * resource is free. In case of multiple logical channels
2443 * on the same physical resource, only the first write is necessary.
2444 */
2445 if (is_free_phy)
2446 d40_config_write(d40c);
2447 mark_last_busy:
2448 pm_runtime_mark_last_busy(d40c->base->dev);
2449 pm_runtime_put_autosuspend(d40c->base->dev);
2450 spin_unlock_irqrestore(&d40c->lock, flags);
2451 return err;
2452 }
2453
2454 static void d40_free_chan_resources(struct dma_chan *chan)
2455 {
2456 struct d40_chan *d40c =
2457 container_of(chan, struct d40_chan, chan);
2458 int err;
2459 unsigned long flags;
2460
2461 if (d40c->phy_chan == NULL) {
2462 chan_err(d40c, "Cannot free unallocated channel\n");
2463 return;
2464 }
2465
2466 spin_lock_irqsave(&d40c->lock, flags);
2467
2468 err = d40_free_dma(d40c);
2469
2470 if (err)
2471 chan_err(d40c, "Failed to free channel\n");
2472 spin_unlock_irqrestore(&d40c->lock, flags);
2473 }
2474
2475 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2476 dma_addr_t dst,
2477 dma_addr_t src,
2478 size_t size,
2479 unsigned long dma_flags)
2480 {
2481 struct scatterlist dst_sg;
2482 struct scatterlist src_sg;
2483
2484 sg_init_table(&dst_sg, 1);
2485 sg_init_table(&src_sg, 1);
2486
2487 sg_dma_address(&dst_sg) = dst;
2488 sg_dma_address(&src_sg) = src;
2489
2490 sg_dma_len(&dst_sg) = size;
2491 sg_dma_len(&src_sg) = size;
2492
2493 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2494 DMA_MEM_TO_MEM, dma_flags);
2495 }
2496
2497 static struct dma_async_tx_descriptor *
2498 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2499 unsigned int sg_len, enum dma_transfer_direction direction,
2500 unsigned long dma_flags, void *context)
2501 {
2502 if (!is_slave_direction(direction))
2503 return NULL;
2504
2505 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2506 }
2507
2508 static struct dma_async_tx_descriptor *
2509 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2510 size_t buf_len, size_t period_len,
2511 enum dma_transfer_direction direction, unsigned long flags)
2512 {
2513 unsigned int periods = buf_len / period_len;
2514 struct dma_async_tx_descriptor *txd;
2515 struct scatterlist *sg;
2516 int i;
2517
2518 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2519 if (!sg)
2520 return NULL;
2521
2522 for (i = 0; i < periods; i++) {
2523 sg_dma_address(&sg[i]) = dma_addr;
2524 sg_dma_len(&sg[i]) = period_len;
2525 dma_addr += period_len;
2526 }
2527
2528 sg_chain(sg, periods + 1, sg);
2529
2530 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2531 DMA_PREP_INTERRUPT);
2532
2533 kfree(sg);
2534
2535 return txd;
2536 }
2537
2538 static enum dma_status d40_tx_status(struct dma_chan *chan,
2539 dma_cookie_t cookie,
2540 struct dma_tx_state *txstate)
2541 {
2542 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2543 enum dma_status ret;
2544
2545 if (d40c->phy_chan == NULL) {
2546 chan_err(d40c, "Cannot read status of unallocated channel\n");
2547 return -EINVAL;
2548 }
2549
2550 ret = dma_cookie_status(chan, cookie, txstate);
2551 if (ret != DMA_COMPLETE && txstate)
2552 dma_set_residue(txstate, stedma40_residue(chan));
2553
2554 if (d40_is_paused(d40c))
2555 ret = DMA_PAUSED;
2556
2557 return ret;
2558 }
2559
2560 static void d40_issue_pending(struct dma_chan *chan)
2561 {
2562 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2563 unsigned long flags;
2564
2565 if (d40c->phy_chan == NULL) {
2566 chan_err(d40c, "Channel is not allocated!\n");
2567 return;
2568 }
2569
2570 spin_lock_irqsave(&d40c->lock, flags);
2571
2572 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2573
2574 /* Busy means that queued jobs are already being processed */
2575 if (!d40c->busy)
2576 (void) d40_queue_start(d40c);
2577
2578 spin_unlock_irqrestore(&d40c->lock, flags);
2579 }
2580
2581 static int d40_terminate_all(struct dma_chan *chan)
2582 {
2583 unsigned long flags;
2584 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2585 int ret;
2586
2587 if (d40c->phy_chan == NULL) {
2588 chan_err(d40c, "Channel is not allocated!\n");
2589 return -EINVAL;
2590 }
2591
2592 spin_lock_irqsave(&d40c->lock, flags);
2593
2594 pm_runtime_get_sync(d40c->base->dev);
2595 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2596 if (ret)
2597 chan_err(d40c, "Failed to stop channel\n");
2598
2599 d40_term_all(d40c);
2600 pm_runtime_mark_last_busy(d40c->base->dev);
2601 pm_runtime_put_autosuspend(d40c->base->dev);
2602 if (d40c->busy) {
2603 pm_runtime_mark_last_busy(d40c->base->dev);
2604 pm_runtime_put_autosuspend(d40c->base->dev);
2605 }
2606 d40c->busy = false;
2607
2608 spin_unlock_irqrestore(&d40c->lock, flags);
2609 return 0;
2610 }
2611
2612 static int
2613 dma40_config_to_halfchannel(struct d40_chan *d40c,
2614 struct stedma40_half_channel_info *info,
2615 u32 maxburst)
2616 {
2617 int psize;
2618
2619 if (chan_is_logical(d40c)) {
2620 if (maxburst >= 16)
2621 psize = STEDMA40_PSIZE_LOG_16;
2622 else if (maxburst >= 8)
2623 psize = STEDMA40_PSIZE_LOG_8;
2624 else if (maxburst >= 4)
2625 psize = STEDMA40_PSIZE_LOG_4;
2626 else
2627 psize = STEDMA40_PSIZE_LOG_1;
2628 } else {
2629 if (maxburst >= 16)
2630 psize = STEDMA40_PSIZE_PHY_16;
2631 else if (maxburst >= 8)
2632 psize = STEDMA40_PSIZE_PHY_8;
2633 else if (maxburst >= 4)
2634 psize = STEDMA40_PSIZE_PHY_4;
2635 else
2636 psize = STEDMA40_PSIZE_PHY_1;
2637 }
2638
2639 info->psize = psize;
2640 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2641
2642 return 0;
2643 }
2644
2645 static int d40_set_runtime_config(struct dma_chan *chan,
2646 struct dma_slave_config *config)
2647 {
2648 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2649
2650 memcpy(&d40c->slave_config, config, sizeof(*config));
2651
2652 return 0;
2653 }
2654
2655 /* Runtime reconfiguration extension */
2656 static int d40_set_runtime_config_write(struct dma_chan *chan,
2657 struct dma_slave_config *config,
2658 enum dma_transfer_direction direction)
2659 {
2660 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2661 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2662 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2663 dma_addr_t config_addr;
2664 u32 src_maxburst, dst_maxburst;
2665 int ret;
2666
2667 if (d40c->phy_chan == NULL) {
2668 chan_err(d40c, "Channel is not allocated!\n");
2669 return -EINVAL;
2670 }
2671
2672 src_addr_width = config->src_addr_width;
2673 src_maxburst = config->src_maxburst;
2674 dst_addr_width = config->dst_addr_width;
2675 dst_maxburst = config->dst_maxburst;
2676
2677 if (direction == DMA_DEV_TO_MEM) {
2678 config_addr = config->src_addr;
2679
2680 if (cfg->dir != DMA_DEV_TO_MEM)
2681 dev_dbg(d40c->base->dev,
2682 "channel was not configured for peripheral "
2683 "to memory transfer (%d) overriding\n",
2684 cfg->dir);
2685 cfg->dir = DMA_DEV_TO_MEM;
2686
2687 /* Configure the memory side */
2688 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2689 dst_addr_width = src_addr_width;
2690 if (dst_maxburst == 0)
2691 dst_maxburst = src_maxburst;
2692
2693 } else if (direction == DMA_MEM_TO_DEV) {
2694 config_addr = config->dst_addr;
2695
2696 if (cfg->dir != DMA_MEM_TO_DEV)
2697 dev_dbg(d40c->base->dev,
2698 "channel was not configured for memory "
2699 "to peripheral transfer (%d) overriding\n",
2700 cfg->dir);
2701 cfg->dir = DMA_MEM_TO_DEV;
2702
2703 /* Configure the memory side */
2704 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2705 src_addr_width = dst_addr_width;
2706 if (src_maxburst == 0)
2707 src_maxburst = dst_maxburst;
2708 } else {
2709 dev_err(d40c->base->dev,
2710 "unrecognized channel direction %d\n",
2711 direction);
2712 return -EINVAL;
2713 }
2714
2715 if (config_addr <= 0) {
2716 dev_err(d40c->base->dev, "no address supplied\n");
2717 return -EINVAL;
2718 }
2719
2720 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2721 dev_err(d40c->base->dev,
2722 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2723 src_maxburst,
2724 src_addr_width,
2725 dst_maxburst,
2726 dst_addr_width);
2727 return -EINVAL;
2728 }
2729
2730 if (src_maxburst > 16) {
2731 src_maxburst = 16;
2732 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2733 } else if (dst_maxburst > 16) {
2734 dst_maxburst = 16;
2735 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2736 }
2737
2738 /* Only valid widths are; 1, 2, 4 and 8. */
2739 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2740 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2741 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2742 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2743 !is_power_of_2(src_addr_width) ||
2744 !is_power_of_2(dst_addr_width))
2745 return -EINVAL;
2746
2747 cfg->src_info.data_width = src_addr_width;
2748 cfg->dst_info.data_width = dst_addr_width;
2749
2750 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2751 src_maxburst);
2752 if (ret)
2753 return ret;
2754
2755 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2756 dst_maxburst);
2757 if (ret)
2758 return ret;
2759
2760 /* Fill in register values */
2761 if (chan_is_logical(d40c))
2762 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2763 else
2764 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2765
2766 /* These settings will take precedence later */
2767 d40c->runtime_addr = config_addr;
2768 d40c->runtime_direction = direction;
2769 dev_dbg(d40c->base->dev,
2770 "configured channel %s for %s, data width %d/%d, "
2771 "maxburst %d/%d elements, LE, no flow control\n",
2772 dma_chan_name(chan),
2773 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2774 src_addr_width, dst_addr_width,
2775 src_maxburst, dst_maxburst);
2776
2777 return 0;
2778 }
2779
2780 /* Initialization functions */
2781
2782 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2783 struct d40_chan *chans, int offset,
2784 int num_chans)
2785 {
2786 int i = 0;
2787 struct d40_chan *d40c;
2788
2789 INIT_LIST_HEAD(&dma->channels);
2790
2791 for (i = offset; i < offset + num_chans; i++) {
2792 d40c = &chans[i];
2793 d40c->base = base;
2794 d40c->chan.device = dma;
2795
2796 spin_lock_init(&d40c->lock);
2797
2798 d40c->log_num = D40_PHY_CHAN;
2799
2800 INIT_LIST_HEAD(&d40c->done);
2801 INIT_LIST_HEAD(&d40c->active);
2802 INIT_LIST_HEAD(&d40c->queue);
2803 INIT_LIST_HEAD(&d40c->pending_queue);
2804 INIT_LIST_HEAD(&d40c->client);
2805 INIT_LIST_HEAD(&d40c->prepare_queue);
2806
2807 tasklet_init(&d40c->tasklet, dma_tasklet,
2808 (unsigned long) d40c);
2809
2810 list_add_tail(&d40c->chan.device_node,
2811 &dma->channels);
2812 }
2813 }
2814
2815 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2816 {
2817 if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2818 dev->device_prep_slave_sg = d40_prep_slave_sg;
2819 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2820 }
2821
2822 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2823 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2824 dev->directions = BIT(DMA_MEM_TO_MEM);
2825 /*
2826 * This controller can only access address at even
2827 * 32bit boundaries, i.e. 2^2
2828 */
2829 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2830 }
2831
2832 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2833 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2834
2835 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2836 dev->device_free_chan_resources = d40_free_chan_resources;
2837 dev->device_issue_pending = d40_issue_pending;
2838 dev->device_tx_status = d40_tx_status;
2839 dev->device_config = d40_set_runtime_config;
2840 dev->device_pause = d40_pause;
2841 dev->device_resume = d40_resume;
2842 dev->device_terminate_all = d40_terminate_all;
2843 dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2844 dev->dev = base->dev;
2845 }
2846
2847 static int __init d40_dmaengine_init(struct d40_base *base,
2848 int num_reserved_chans)
2849 {
2850 int err ;
2851
2852 d40_chan_init(base, &base->dma_slave, base->log_chans,
2853 0, base->num_log_chans);
2854
2855 dma_cap_zero(base->dma_slave.cap_mask);
2856 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2857 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2858
2859 d40_ops_init(base, &base->dma_slave);
2860
2861 err = dmaenginem_async_device_register(&base->dma_slave);
2862
2863 if (err) {
2864 d40_err(base->dev, "Failed to register slave channels\n");
2865 goto exit;
2866 }
2867
2868 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2869 base->num_log_chans, base->num_memcpy_chans);
2870
2871 dma_cap_zero(base->dma_memcpy.cap_mask);
2872 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2873
2874 d40_ops_init(base, &base->dma_memcpy);
2875
2876 err = dmaenginem_async_device_register(&base->dma_memcpy);
2877
2878 if (err) {
2879 d40_err(base->dev,
2880 "Failed to register memcpy only channels\n");
2881 goto exit;
2882 }
2883
2884 d40_chan_init(base, &base->dma_both, base->phy_chans,
2885 0, num_reserved_chans);
2886
2887 dma_cap_zero(base->dma_both.cap_mask);
2888 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2889 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2890 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2891
2892 d40_ops_init(base, &base->dma_both);
2893 err = dmaenginem_async_device_register(&base->dma_both);
2894
2895 if (err) {
2896 d40_err(base->dev,
2897 "Failed to register logical and physical capable channels\n");
2898 goto exit;
2899 }
2900 return 0;
2901 exit:
2902 return err;
2903 }
2904
2905 /* Suspend resume functionality */
2906 #ifdef CONFIG_PM_SLEEP
2907 static int dma40_suspend(struct device *dev)
2908 {
2909 struct d40_base *base = dev_get_drvdata(dev);
2910 int ret;
2911
2912 ret = pm_runtime_force_suspend(dev);
2913 if (ret)
2914 return ret;
2915
2916 if (base->lcpa_regulator)
2917 ret = regulator_disable(base->lcpa_regulator);
2918 return ret;
2919 }
2920
2921 static int dma40_resume(struct device *dev)
2922 {
2923 struct d40_base *base = dev_get_drvdata(dev);
2924 int ret = 0;
2925
2926 if (base->lcpa_regulator) {
2927 ret = regulator_enable(base->lcpa_regulator);
2928 if (ret)
2929 return ret;
2930 }
2931
2932 return pm_runtime_force_resume(dev);
2933 }
2934 #endif
2935
2936 #ifdef CONFIG_PM
2937 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2938 u32 *regaddr, int num, bool save)
2939 {
2940 int i;
2941
2942 for (i = 0; i < num; i++) {
2943 void __iomem *addr = baseaddr + regaddr[i];
2944
2945 if (save)
2946 backup[i] = readl_relaxed(addr);
2947 else
2948 writel_relaxed(backup[i], addr);
2949 }
2950 }
2951
2952 static void d40_save_restore_registers(struct d40_base *base, bool save)
2953 {
2954 int i;
2955
2956 /* Save/Restore channel specific registers */
2957 for (i = 0; i < base->num_phy_chans; i++) {
2958 void __iomem *addr;
2959 int idx;
2960
2961 if (base->phy_res[i].reserved)
2962 continue;
2963
2964 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2965 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2966
2967 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2968 d40_backup_regs_chan,
2969 ARRAY_SIZE(d40_backup_regs_chan),
2970 save);
2971 }
2972
2973 /* Save/Restore global registers */
2974 dma40_backup(base->virtbase, base->reg_val_backup,
2975 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2976 save);
2977
2978 /* Save/Restore registers only existing on dma40 v3 and later */
2979 if (base->gen_dmac.backup)
2980 dma40_backup(base->virtbase, base->reg_val_backup_v4,
2981 base->gen_dmac.backup,
2982 base->gen_dmac.backup_size,
2983 save);
2984 }
2985
2986 static int dma40_runtime_suspend(struct device *dev)
2987 {
2988 struct d40_base *base = dev_get_drvdata(dev);
2989
2990 d40_save_restore_registers(base, true);
2991
2992 /* Don't disable/enable clocks for v1 due to HW bugs */
2993 if (base->rev != 1)
2994 writel_relaxed(base->gcc_pwr_off_mask,
2995 base->virtbase + D40_DREG_GCC);
2996
2997 return 0;
2998 }
2999
3000 static int dma40_runtime_resume(struct device *dev)
3001 {
3002 struct d40_base *base = dev_get_drvdata(dev);
3003
3004 d40_save_restore_registers(base, false);
3005
3006 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3007 base->virtbase + D40_DREG_GCC);
3008 return 0;
3009 }
3010 #endif
3011
3012 static const struct dev_pm_ops dma40_pm_ops = {
3013 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3014 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3015 dma40_runtime_resume,
3016 NULL)
3017 };
3018
3019 /* Initialization functions. */
3020
3021 static int __init d40_phy_res_init(struct d40_base *base)
3022 {
3023 int i;
3024 int num_phy_chans_avail = 0;
3025 u32 val[2];
3026 int odd_even_bit = -2;
3027 int gcc = D40_DREG_GCC_ENA;
3028
3029 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3030 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3031
3032 for (i = 0; i < base->num_phy_chans; i++) {
3033 base->phy_res[i].num = i;
3034 odd_even_bit += 2 * ((i % 2) == 0);
3035 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3036 /* Mark security only channels as occupied */
3037 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3038 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3039 base->phy_res[i].reserved = true;
3040 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3041 D40_DREG_GCC_SRC);
3042 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3043 D40_DREG_GCC_DST);
3044
3045
3046 } else {
3047 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3048 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3049 base->phy_res[i].reserved = false;
3050 num_phy_chans_avail++;
3051 }
3052 spin_lock_init(&base->phy_res[i].lock);
3053 }
3054
3055 /* Mark disabled channels as occupied */
3056 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3057 int chan = base->plat_data->disabled_channels[i];
3058
3059 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3060 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3061 base->phy_res[chan].reserved = true;
3062 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3063 D40_DREG_GCC_SRC);
3064 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3065 D40_DREG_GCC_DST);
3066 num_phy_chans_avail--;
3067 }
3068
3069 /* Mark soft_lli channels */
3070 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3071 int chan = base->plat_data->soft_lli_chans[i];
3072
3073 base->phy_res[chan].use_soft_lli = true;
3074 }
3075
3076 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3077 num_phy_chans_avail, base->num_phy_chans);
3078
3079 /* Verify settings extended vs standard */
3080 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3081
3082 for (i = 0; i < base->num_phy_chans; i++) {
3083
3084 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3085 (val[0] & 0x3) != 1)
3086 dev_info(base->dev,
3087 "[%s] INFO: channel %d is misconfigured (%d)\n",
3088 __func__, i, val[0] & 0x3);
3089
3090 val[0] = val[0] >> 2;
3091 }
3092
3093 /*
3094 * To keep things simple, Enable all clocks initially.
3095 * The clocks will get managed later post channel allocation.
3096 * The clocks for the event lines on which reserved channels exists
3097 * are not managed here.
3098 */
3099 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3100 base->gcc_pwr_off_mask = gcc;
3101
3102 return num_phy_chans_avail;
3103 }
3104
3105 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3106 {
3107 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3108 struct clk *clk;
3109 void __iomem *virtbase;
3110 struct resource *res;
3111 struct d40_base *base;
3112 int num_log_chans;
3113 int num_phy_chans;
3114 int num_memcpy_chans;
3115 int clk_ret = -EINVAL;
3116 int i;
3117 u32 pid;
3118 u32 cid;
3119 u8 rev;
3120
3121 clk = clk_get(&pdev->dev, NULL);
3122 if (IS_ERR(clk)) {
3123 d40_err(&pdev->dev, "No matching clock found\n");
3124 goto check_prepare_enabled;
3125 }
3126
3127 clk_ret = clk_prepare_enable(clk);
3128 if (clk_ret) {
3129 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3130 goto disable_unprepare;
3131 }
3132
3133 /* Get IO for DMAC base address */
3134 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3135 if (!res)
3136 goto disable_unprepare;
3137
3138 if (request_mem_region(res->start, resource_size(res),
3139 D40_NAME " I/O base") == NULL)
3140 goto release_region;
3141
3142 virtbase = ioremap(res->start, resource_size(res));
3143 if (!virtbase)
3144 goto release_region;
3145
3146 /* This is just a regular AMBA PrimeCell ID actually */
3147 for (pid = 0, i = 0; i < 4; i++)
3148 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3149 & 255) << (i * 8);
3150 for (cid = 0, i = 0; i < 4; i++)
3151 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3152 & 255) << (i * 8);
3153
3154 if (cid != AMBA_CID) {
3155 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3156 goto unmap_io;
3157 }
3158 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3159 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3160 AMBA_MANF_BITS(pid),
3161 AMBA_VENDOR_ST);
3162 goto unmap_io;
3163 }
3164 /*
3165 * HW revision:
3166 * DB8500ed has revision 0
3167 * ? has revision 1
3168 * DB8500v1 has revision 2
3169 * DB8500v2 has revision 3
3170 * AP9540v1 has revision 4
3171 * DB8540v1 has revision 4
3172 */
3173 rev = AMBA_REV_BITS(pid);
3174 if (rev < 2) {
3175 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3176 goto unmap_io;
3177 }
3178
3179 /* The number of physical channels on this HW */
3180 if (plat_data->num_of_phy_chans)
3181 num_phy_chans = plat_data->num_of_phy_chans;
3182 else
3183 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3184
3185 /* The number of channels used for memcpy */
3186 if (plat_data->num_of_memcpy_chans)
3187 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3188 else
3189 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3190
3191 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3192
3193 dev_info(&pdev->dev,
3194 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3195 rev, &res->start, num_phy_chans, num_log_chans);
3196
3197 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3198 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3199 sizeof(struct d40_chan), GFP_KERNEL);
3200
3201 if (base == NULL)
3202 goto unmap_io;
3203
3204 base->rev = rev;
3205 base->clk = clk;
3206 base->num_memcpy_chans = num_memcpy_chans;
3207 base->num_phy_chans = num_phy_chans;
3208 base->num_log_chans = num_log_chans;
3209 base->phy_start = res->start;
3210 base->phy_size = resource_size(res);
3211 base->virtbase = virtbase;
3212 base->plat_data = plat_data;
3213 base->dev = &pdev->dev;
3214 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3215 base->log_chans = &base->phy_chans[num_phy_chans];
3216
3217 if (base->plat_data->num_of_phy_chans == 14) {
3218 base->gen_dmac.backup = d40_backup_regs_v4b;
3219 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3220 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3221 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3222 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3223 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3224 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3225 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3226 base->gen_dmac.il = il_v4b;
3227 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3228 base->gen_dmac.init_reg = dma_init_reg_v4b;
3229 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3230 } else {
3231 if (base->rev >= 3) {
3232 base->gen_dmac.backup = d40_backup_regs_v4a;
3233 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3234 }
3235 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3236 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3237 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3238 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3239 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3240 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3241 base->gen_dmac.il = il_v4a;
3242 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3243 base->gen_dmac.init_reg = dma_init_reg_v4a;
3244 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3245 }
3246
3247 base->phy_res = kcalloc(num_phy_chans,
3248 sizeof(*base->phy_res),
3249 GFP_KERNEL);
3250 if (!base->phy_res)
3251 goto free_base;
3252
3253 base->lookup_phy_chans = kcalloc(num_phy_chans,
3254 sizeof(*base->lookup_phy_chans),
3255 GFP_KERNEL);
3256 if (!base->lookup_phy_chans)
3257 goto free_phy_res;
3258
3259 base->lookup_log_chans = kcalloc(num_log_chans,
3260 sizeof(*base->lookup_log_chans),
3261 GFP_KERNEL);
3262 if (!base->lookup_log_chans)
3263 goto free_phy_chans;
3264
3265 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3266 sizeof(d40_backup_regs_chan),
3267 GFP_KERNEL);
3268 if (!base->reg_val_backup_chan)
3269 goto free_log_chans;
3270
3271 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3272 * D40_LCLA_LINK_PER_EVENT_GRP,
3273 sizeof(*base->lcla_pool.alloc_map),
3274 GFP_KERNEL);
3275 if (!base->lcla_pool.alloc_map)
3276 goto free_backup_chan;
3277
3278 base->regs_interrupt = kmalloc_array(base->gen_dmac.il_size,
3279 sizeof(*base->regs_interrupt),
3280 GFP_KERNEL);
3281 if (!base->regs_interrupt)
3282 goto free_map;
3283
3284 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3285 0, SLAB_HWCACHE_ALIGN,
3286 NULL);
3287 if (base->desc_slab == NULL)
3288 goto free_regs;
3289
3290
3291 return base;
3292 free_regs:
3293 kfree(base->regs_interrupt);
3294 free_map:
3295 kfree(base->lcla_pool.alloc_map);
3296 free_backup_chan:
3297 kfree(base->reg_val_backup_chan);
3298 free_log_chans:
3299 kfree(base->lookup_log_chans);
3300 free_phy_chans:
3301 kfree(base->lookup_phy_chans);
3302 free_phy_res:
3303 kfree(base->phy_res);
3304 free_base:
3305 kfree(base);
3306 unmap_io:
3307 iounmap(virtbase);
3308 release_region:
3309 release_mem_region(res->start, resource_size(res));
3310 check_prepare_enabled:
3311 if (!clk_ret)
3312 disable_unprepare:
3313 clk_disable_unprepare(clk);
3314 if (!IS_ERR(clk))
3315 clk_put(clk);
3316 return NULL;
3317 }
3318
3319 static void __init d40_hw_init(struct d40_base *base)
3320 {
3321
3322 int i;
3323 u32 prmseo[2] = {0, 0};
3324 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3325 u32 pcmis = 0;
3326 u32 pcicr = 0;
3327 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3328 u32 reg_size = base->gen_dmac.init_reg_size;
3329
3330 for (i = 0; i < reg_size; i++)
3331 writel(dma_init_reg[i].val,
3332 base->virtbase + dma_init_reg[i].reg);
3333
3334 /* Configure all our dma channels to default settings */
3335 for (i = 0; i < base->num_phy_chans; i++) {
3336
3337 activeo[i % 2] = activeo[i % 2] << 2;
3338
3339 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3340 == D40_ALLOC_PHY) {
3341 activeo[i % 2] |= 3;
3342 continue;
3343 }
3344
3345 /* Enable interrupt # */
3346 pcmis = (pcmis << 1) | 1;
3347
3348 /* Clear interrupt # */
3349 pcicr = (pcicr << 1) | 1;
3350
3351 /* Set channel to physical mode */
3352 prmseo[i % 2] = prmseo[i % 2] << 2;
3353 prmseo[i % 2] |= 1;
3354
3355 }
3356
3357 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3358 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3359 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3360 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3361
3362 /* Write which interrupt to enable */
3363 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3364
3365 /* Write which interrupt to clear */
3366 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3367
3368 /* These are __initdata and cannot be accessed after init */
3369 base->gen_dmac.init_reg = NULL;
3370 base->gen_dmac.init_reg_size = 0;
3371 }
3372
3373 static int __init d40_lcla_allocate(struct d40_base *base)
3374 {
3375 struct d40_lcla_pool *pool = &base->lcla_pool;
3376 unsigned long *page_list;
3377 int i, j;
3378 int ret;
3379
3380 /*
3381 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3382 * To full fill this hardware requirement without wasting 256 kb
3383 * we allocate pages until we get an aligned one.
3384 */
3385 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3386 sizeof(*page_list),
3387 GFP_KERNEL);
3388 if (!page_list)
3389 return -ENOMEM;
3390
3391 /* Calculating how many pages that are required */
3392 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3393
3394 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3395 page_list[i] = __get_free_pages(GFP_KERNEL,
3396 base->lcla_pool.pages);
3397 if (!page_list[i]) {
3398
3399 d40_err(base->dev, "Failed to allocate %d pages.\n",
3400 base->lcla_pool.pages);
3401 ret = -ENOMEM;
3402
3403 for (j = 0; j < i; j++)
3404 free_pages(page_list[j], base->lcla_pool.pages);
3405 goto free_page_list;
3406 }
3407
3408 if ((virt_to_phys((void *)page_list[i]) &
3409 (LCLA_ALIGNMENT - 1)) == 0)
3410 break;
3411 }
3412
3413 for (j = 0; j < i; j++)
3414 free_pages(page_list[j], base->lcla_pool.pages);
3415
3416 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3417 base->lcla_pool.base = (void *)page_list[i];
3418 } else {
3419 /*
3420 * After many attempts and no succees with finding the correct
3421 * alignment, try with allocating a big buffer.
3422 */
3423 dev_warn(base->dev,
3424 "[%s] Failed to get %d pages @ 18 bit align.\n",
3425 __func__, base->lcla_pool.pages);
3426 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3427 base->num_phy_chans +
3428 LCLA_ALIGNMENT,
3429 GFP_KERNEL);
3430 if (!base->lcla_pool.base_unaligned) {
3431 ret = -ENOMEM;
3432 goto free_page_list;
3433 }
3434
3435 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3436 LCLA_ALIGNMENT);
3437 }
3438
3439 pool->dma_addr = dma_map_single(base->dev, pool->base,
3440 SZ_1K * base->num_phy_chans,
3441 DMA_TO_DEVICE);
3442 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3443 pool->dma_addr = 0;
3444 ret = -ENOMEM;
3445 goto free_page_list;
3446 }
3447
3448 writel(virt_to_phys(base->lcla_pool.base),
3449 base->virtbase + D40_DREG_LCLA);
3450 ret = 0;
3451 free_page_list:
3452 kfree(page_list);
3453 return ret;
3454 }
3455
3456 static int __init d40_of_probe(struct platform_device *pdev,
3457 struct device_node *np)
3458 {
3459 struct stedma40_platform_data *pdata;
3460 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3461 const __be32 *list;
3462
3463 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3464 if (!pdata)
3465 return -ENOMEM;
3466
3467 /* If absent this value will be obtained from h/w. */
3468 of_property_read_u32(np, "dma-channels", &num_phy);
3469 if (num_phy > 0)
3470 pdata->num_of_phy_chans = num_phy;
3471
3472 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3473 num_memcpy /= sizeof(*list);
3474
3475 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3476 d40_err(&pdev->dev,
3477 "Invalid number of memcpy channels specified (%d)\n",
3478 num_memcpy);
3479 return -EINVAL;
3480 }
3481 pdata->num_of_memcpy_chans = num_memcpy;
3482
3483 of_property_read_u32_array(np, "memcpy-channels",
3484 dma40_memcpy_channels,
3485 num_memcpy);
3486
3487 list = of_get_property(np, "disabled-channels", &num_disabled);
3488 num_disabled /= sizeof(*list);
3489
3490 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3491 d40_err(&pdev->dev,
3492 "Invalid number of disabled channels specified (%d)\n",
3493 num_disabled);
3494 return -EINVAL;
3495 }
3496
3497 of_property_read_u32_array(np, "disabled-channels",
3498 pdata->disabled_channels,
3499 num_disabled);
3500 pdata->disabled_channels[num_disabled] = -1;
3501
3502 pdev->dev.platform_data = pdata;
3503
3504 return 0;
3505 }
3506
3507 static int __init d40_probe(struct platform_device *pdev)
3508 {
3509 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3510 struct device_node *np = pdev->dev.of_node;
3511 int ret = -ENOENT;
3512 struct d40_base *base;
3513 struct resource *res;
3514 int num_reserved_chans;
3515 u32 val;
3516
3517 if (!plat_data) {
3518 if (np) {
3519 if (d40_of_probe(pdev, np)) {
3520 ret = -ENOMEM;
3521 goto report_failure;
3522 }
3523 } else {
3524 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3525 goto report_failure;
3526 }
3527 }
3528
3529 base = d40_hw_detect_init(pdev);
3530 if (!base)
3531 goto report_failure;
3532
3533 num_reserved_chans = d40_phy_res_init(base);
3534
3535 platform_set_drvdata(pdev, base);
3536
3537 spin_lock_init(&base->interrupt_lock);
3538 spin_lock_init(&base->execmd_lock);
3539
3540 /* Get IO for logical channel parameter address */
3541 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3542 if (!res) {
3543 ret = -ENOENT;
3544 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3545 goto destroy_cache;
3546 }
3547 base->lcpa_size = resource_size(res);
3548 base->phy_lcpa = res->start;
3549
3550 if (request_mem_region(res->start, resource_size(res),
3551 D40_NAME " I/O lcpa") == NULL) {
3552 ret = -EBUSY;
3553 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3554 goto destroy_cache;
3555 }
3556
3557 /* We make use of ESRAM memory for this. */
3558 val = readl(base->virtbase + D40_DREG_LCPA);
3559 if (res->start != val && val != 0) {
3560 dev_warn(&pdev->dev,
3561 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3562 __func__, val, &res->start);
3563 } else
3564 writel(res->start, base->virtbase + D40_DREG_LCPA);
3565
3566 base->lcpa_base = ioremap(res->start, resource_size(res));
3567 if (!base->lcpa_base) {
3568 ret = -ENOMEM;
3569 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3570 goto destroy_cache;
3571 }
3572 /* If lcla has to be located in ESRAM we don't need to allocate */
3573 if (base->plat_data->use_esram_lcla) {
3574 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3575 "lcla_esram");
3576 if (!res) {
3577 ret = -ENOENT;
3578 d40_err(&pdev->dev,
3579 "No \"lcla_esram\" memory resource\n");
3580 goto destroy_cache;
3581 }
3582 base->lcla_pool.base = ioremap(res->start,
3583 resource_size(res));
3584 if (!base->lcla_pool.base) {
3585 ret = -ENOMEM;
3586 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3587 goto destroy_cache;
3588 }
3589 writel(res->start, base->virtbase + D40_DREG_LCLA);
3590
3591 } else {
3592 ret = d40_lcla_allocate(base);
3593 if (ret) {
3594 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3595 goto destroy_cache;
3596 }
3597 }
3598
3599 spin_lock_init(&base->lcla_pool.lock);
3600
3601 base->irq = platform_get_irq(pdev, 0);
3602
3603 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3604 if (ret) {
3605 d40_err(&pdev->dev, "No IRQ defined\n");
3606 goto destroy_cache;
3607 }
3608
3609 if (base->plat_data->use_esram_lcla) {
3610
3611 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3612 if (IS_ERR(base->lcpa_regulator)) {
3613 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3614 ret = PTR_ERR(base->lcpa_regulator);
3615 base->lcpa_regulator = NULL;
3616 goto destroy_cache;
3617 }
3618
3619 ret = regulator_enable(base->lcpa_regulator);
3620 if (ret) {
3621 d40_err(&pdev->dev,
3622 "Failed to enable lcpa_regulator\n");
3623 regulator_put(base->lcpa_regulator);
3624 base->lcpa_regulator = NULL;
3625 goto destroy_cache;
3626 }
3627 }
3628
3629 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3630
3631 pm_runtime_irq_safe(base->dev);
3632 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3633 pm_runtime_use_autosuspend(base->dev);
3634 pm_runtime_mark_last_busy(base->dev);
3635 pm_runtime_set_active(base->dev);
3636 pm_runtime_enable(base->dev);
3637
3638 ret = d40_dmaengine_init(base, num_reserved_chans);
3639 if (ret)
3640 goto destroy_cache;
3641
3642 base->dev->dma_parms = &base->dma_parms;
3643 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3644 if (ret) {
3645 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3646 goto destroy_cache;
3647 }
3648
3649 d40_hw_init(base);
3650
3651 if (np) {
3652 ret = of_dma_controller_register(np, d40_xlate, NULL);
3653 if (ret)
3654 dev_err(&pdev->dev,
3655 "could not register of_dma_controller\n");
3656 }
3657
3658 dev_info(base->dev, "initialized\n");
3659 return 0;
3660 destroy_cache:
3661 kmem_cache_destroy(base->desc_slab);
3662 if (base->virtbase)
3663 iounmap(base->virtbase);
3664
3665 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3666 iounmap(base->lcla_pool.base);
3667 base->lcla_pool.base = NULL;
3668 }
3669
3670 if (base->lcla_pool.dma_addr)
3671 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3672 SZ_1K * base->num_phy_chans,
3673 DMA_TO_DEVICE);
3674
3675 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3676 free_pages((unsigned long)base->lcla_pool.base,
3677 base->lcla_pool.pages);
3678
3679 kfree(base->lcla_pool.base_unaligned);
3680
3681 if (base->phy_lcpa)
3682 release_mem_region(base->phy_lcpa,
3683 base->lcpa_size);
3684 if (base->phy_start)
3685 release_mem_region(base->phy_start,
3686 base->phy_size);
3687 if (base->clk) {
3688 clk_disable_unprepare(base->clk);
3689 clk_put(base->clk);
3690 }
3691
3692 if (base->lcpa_regulator) {
3693 regulator_disable(base->lcpa_regulator);
3694 regulator_put(base->lcpa_regulator);
3695 }
3696
3697 kfree(base->lcla_pool.alloc_map);
3698 kfree(base->lookup_log_chans);
3699 kfree(base->lookup_phy_chans);
3700 kfree(base->phy_res);
3701 kfree(base);
3702 report_failure:
3703 d40_err(&pdev->dev, "probe failed\n");
3704 return ret;
3705 }
3706
3707 static const struct of_device_id d40_match[] = {
3708 { .compatible = "stericsson,dma40", },
3709 {}
3710 };
3711
3712 static struct platform_driver d40_driver = {
3713 .driver = {
3714 .name = D40_NAME,
3715 .pm = &dma40_pm_ops,
3716 .of_match_table = d40_match,
3717 },
3718 };
3719
3720 static int __init stedma40_init(void)
3721 {
3722 return platform_driver_probe(&d40_driver, d40_probe);
3723 }
3724 subsys_initcall(stedma40_init);