]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/ste_dma40.c
ste_dma40: Move two assignments in d40_prep_sg()
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
61
62 #define D40_MEMCPY_MAX_CHANS 8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
71
72 static int dma40_memcpy_channels[] = {
73 DB8500_DMA_MEMCPY_EV_0,
74 DB8500_DMA_MEMCPY_EV_1,
75 DB8500_DMA_MEMCPY_EV_2,
76 DB8500_DMA_MEMCPY_EV_3,
77 DB8500_DMA_MEMCPY_EV_4,
78 DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83 .mode = STEDMA40_MODE_PHYSICAL,
84 .dir = DMA_MEM_TO_MEM,
85
86 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87 .src_info.psize = STEDMA40_PSIZE_PHY_1,
88 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91 .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97 .mode = STEDMA40_MODE_LOGICAL,
98 .dir = DMA_MEM_TO_MEM,
99
100 .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101 .src_info.psize = STEDMA40_PSIZE_LOG_1,
102 .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104 .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105 .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106 .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110 * enum 40_command - The different commands and/or statuses.
111 *
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116 */
117 enum d40_command {
118 D40_DMA_STOP = 0,
119 D40_DMA_RUN = 1,
120 D40_DMA_SUSPEND_REQ = 2,
121 D40_DMA_SUSPENDED = 3
122 };
123
124 /*
125 * enum d40_events - The different Event Enables for the event lines.
126 *
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
131 */
132
133 enum d40_events {
134 D40_DEACTIVATE_EVENTLINE = 0,
135 D40_ACTIVATE_EVENTLINE = 1,
136 D40_SUSPEND_REQ_EVENTLINE = 2,
137 D40_ROUND_EVENTLINE = 3
138 };
139
140 /*
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144 */
145 static u32 d40_backup_regs[] = {
146 D40_DREG_LCPA,
147 D40_DREG_LCLA,
148 D40_DREG_PRMSE,
149 D40_DREG_PRMSO,
150 D40_DREG_PRMOE,
151 D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
160 * HW revision:
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167 */
168 static u32 d40_backup_regs_v4a[] = {
169 D40_DREG_PSEG1,
170 D40_DREG_PSEG2,
171 D40_DREG_PSEG3,
172 D40_DREG_PSEG4,
173 D40_DREG_PCEG1,
174 D40_DREG_PCEG2,
175 D40_DREG_PCEG3,
176 D40_DREG_PCEG4,
177 D40_DREG_RSEG1,
178 D40_DREG_RSEG2,
179 D40_DREG_RSEG3,
180 D40_DREG_RSEG4,
181 D40_DREG_RCEG1,
182 D40_DREG_RCEG2,
183 D40_DREG_RCEG3,
184 D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190 D40_DREG_CPSEG1,
191 D40_DREG_CPSEG2,
192 D40_DREG_CPSEG3,
193 D40_DREG_CPSEG4,
194 D40_DREG_CPSEG5,
195 D40_DREG_CPCEG1,
196 D40_DREG_CPCEG2,
197 D40_DREG_CPCEG3,
198 D40_DREG_CPCEG4,
199 D40_DREG_CPCEG5,
200 D40_DREG_CRSEG1,
201 D40_DREG_CRSEG2,
202 D40_DREG_CRSEG3,
203 D40_DREG_CRSEG4,
204 D40_DREG_CRSEG5,
205 D40_DREG_CRCEG1,
206 D40_DREG_CRCEG2,
207 D40_DREG_CRCEG3,
208 D40_DREG_CRCEG4,
209 D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static u32 d40_backup_regs_chan[] = {
215 D40_CHAN_REG_SSCFG,
216 D40_CHAN_REG_SSELT,
217 D40_CHAN_REG_SSPTR,
218 D40_CHAN_REG_SSLNK,
219 D40_CHAN_REG_SDCFG,
220 D40_CHAN_REG_SDELT,
221 D40_CHAN_REG_SDPTR,
222 D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
230 *
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236 */
237 struct d40_interrupt_lookup {
238 u32 src;
239 u32 clr;
240 bool is_error;
241 int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
247 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
251 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
252 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
253 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
254 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
255 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259 {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
260 {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261 {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262 {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263 {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264 {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
265 {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
266 {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
267 {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
268 {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
269 {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
270 {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
271 };
272
273 /**
274 * struct d40_reg_val - simple lookup struct
275 *
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
278 */
279 struct d40_reg_val {
280 unsigned int reg;
281 unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
287
288 /* Interrupts on all logical channels */
289 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
305
306 /* Interrupts on all logical channels */
307 { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308 { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309 { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310 { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311 { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312 { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313 { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314 { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315 { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316 { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317 { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318 { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319 { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320 { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321 { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
326 *
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
334 */
335 struct d40_lli_pool {
336 void *base;
337 int size;
338 dma_addr_t dma_addr;
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344 * struct d40_desc - A descriptor is one DMA job.
345 *
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
355 * during a transfer.
356 * @node: List entry.
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
359 *
360 * This descriptor is used for both logical and physical transfers.
361 */
362 struct d40_desc {
363 /* LLI physical */
364 struct d40_phy_lli_bidir lli_phy;
365 /* LLI logical */
366 struct d40_log_lli_bidir lli_log;
367
368 struct d40_lli_pool lli_pool;
369 int lli_len;
370 int lli_current;
371 int lcla_alloc;
372
373 struct dma_async_tx_descriptor txd;
374 struct list_head node;
375
376 bool is_in_client_list;
377 bool cyclic;
378 };
379
380 /**
381 * struct d40_lcla_pool - LCLA pool settings and data.
382 *
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
390 */
391 struct d40_lcla_pool {
392 void *base;
393 dma_addr_t dma_addr;
394 void *base_unaligned;
395 int pages;
396 spinlock_t lock;
397 struct d40_desc **alloc_map;
398 };
399
400 /**
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
402 * channels.
403 *
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411 * event line number.
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413 */
414 struct d40_phy_res {
415 spinlock_t lock;
416 bool reserved;
417 int num;
418 u32 allocated_src;
419 u32 allocated_dst;
420 bool use_soft_lli;
421 };
422
423 struct d40_base;
424
425 /**
426 * struct d40_chan - Struct that describes a channel.
427 *
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
431 * and tasklet.
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
453 *
454 * This struct can either "be" a logical or a physical channel.
455 */
456 struct d40_chan {
457 spinlock_t lock;
458 int log_num;
459 int pending_tx;
460 bool busy;
461 struct d40_phy_res *phy_chan;
462 struct dma_chan chan;
463 struct tasklet_struct tasklet;
464 struct list_head client;
465 struct list_head pending_queue;
466 struct list_head active;
467 struct list_head done;
468 struct list_head queue;
469 struct list_head prepare_queue;
470 struct stedma40_chan_cfg dma_cfg;
471 bool configured;
472 struct d40_base *base;
473 /* Default register configurations */
474 u32 src_def_cfg;
475 u32 dst_def_cfg;
476 struct d40_def_lcsp log_def;
477 struct d40_log_lli_full *lcpa;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr;
480 enum dma_transfer_direction runtime_direction;
481 };
482
483 /**
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485 * controller
486 *
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
499 */
500 struct d40_gen_dmac {
501 u32 *backup;
502 u32 backup_size;
503 u32 realtime_en;
504 u32 realtime_clear;
505 u32 high_prio_en;
506 u32 high_prio_clear;
507 u32 interrupt_en;
508 u32 interrupt_clear;
509 struct d40_interrupt_lookup *il;
510 u32 il_size;
511 struct d40_reg_val *init_reg;
512 u32 init_reg_size;
513 };
514
515 /**
516 * struct d40_base - The big global struct, one for each probe'd instance.
517 *
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529 * transfers).
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
534 * num_phy_chans.
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
545 * configuration.
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556 * later
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @gen_dmac: the struct for generic registers values to represent u8500/8540
560 * DMA controller
561 */
562 struct d40_base {
563 spinlock_t interrupt_lock;
564 spinlock_t execmd_lock;
565 struct device *dev;
566 void __iomem *virtbase;
567 u8 rev:4;
568 struct clk *clk;
569 phys_addr_t phy_start;
570 resource_size_t phy_size;
571 int irq;
572 int num_memcpy_chans;
573 int num_phy_chans;
574 int num_log_chans;
575 struct device_dma_parameters dma_parms;
576 struct dma_device dma_both;
577 struct dma_device dma_slave;
578 struct dma_device dma_memcpy;
579 struct d40_chan *phy_chans;
580 struct d40_chan *log_chans;
581 struct d40_chan **lookup_log_chans;
582 struct d40_chan **lookup_phy_chans;
583 struct stedma40_platform_data *plat_data;
584 struct regulator *lcpa_regulator;
585 /* Physical half channels */
586 struct d40_phy_res *phy_res;
587 struct d40_lcla_pool lcla_pool;
588 void *lcpa_base;
589 dma_addr_t phy_lcpa;
590 resource_size_t lcpa_size;
591 struct kmem_cache *desc_slab;
592 u32 reg_val_backup[BACKUP_REGS_SZ];
593 u32 reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
594 u32 *reg_val_backup_chan;
595 u16 gcc_pwr_off_mask;
596 struct d40_gen_dmac gen_dmac;
597 };
598
599 static struct device *chan2dev(struct d40_chan *d40c)
600 {
601 return &d40c->chan.dev->device;
602 }
603
604 static bool chan_is_physical(struct d40_chan *chan)
605 {
606 return chan->log_num == D40_PHY_CHAN;
607 }
608
609 static bool chan_is_logical(struct d40_chan *chan)
610 {
611 return !chan_is_physical(chan);
612 }
613
614 static void __iomem *chan_base(struct d40_chan *chan)
615 {
616 return chan->base->virtbase + D40_DREG_PCBASE +
617 chan->phy_chan->num * D40_DREG_PCDELTA;
618 }
619
620 #define d40_err(dev, format, arg...) \
621 dev_err(dev, "[%s] " format, __func__, ## arg)
622
623 #define chan_err(d40c, format, arg...) \
624 d40_err(chan2dev(d40c), format, ## arg)
625
626 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
627 int lli_len)
628 {
629 bool is_log = chan_is_logical(d40c);
630 u32 align;
631 void *base;
632
633 if (is_log)
634 align = sizeof(struct d40_log_lli);
635 else
636 align = sizeof(struct d40_phy_lli);
637
638 if (lli_len == 1) {
639 base = d40d->lli_pool.pre_alloc_lli;
640 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
641 d40d->lli_pool.base = NULL;
642 } else {
643 d40d->lli_pool.size = lli_len * 2 * align;
644
645 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
646 d40d->lli_pool.base = base;
647
648 if (d40d->lli_pool.base == NULL)
649 return -ENOMEM;
650 }
651
652 if (is_log) {
653 d40d->lli_log.src = PTR_ALIGN(base, align);
654 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
655
656 d40d->lli_pool.dma_addr = 0;
657 } else {
658 d40d->lli_phy.src = PTR_ALIGN(base, align);
659 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
660
661 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
662 d40d->lli_phy.src,
663 d40d->lli_pool.size,
664 DMA_TO_DEVICE);
665
666 if (dma_mapping_error(d40c->base->dev,
667 d40d->lli_pool.dma_addr)) {
668 kfree(d40d->lli_pool.base);
669 d40d->lli_pool.base = NULL;
670 d40d->lli_pool.dma_addr = 0;
671 return -ENOMEM;
672 }
673 }
674
675 return 0;
676 }
677
678 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
679 {
680 if (d40d->lli_pool.dma_addr)
681 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
682 d40d->lli_pool.size, DMA_TO_DEVICE);
683
684 kfree(d40d->lli_pool.base);
685 d40d->lli_pool.base = NULL;
686 d40d->lli_pool.size = 0;
687 d40d->lli_log.src = NULL;
688 d40d->lli_log.dst = NULL;
689 d40d->lli_phy.src = NULL;
690 d40d->lli_phy.dst = NULL;
691 }
692
693 static int d40_lcla_alloc_one(struct d40_chan *d40c,
694 struct d40_desc *d40d)
695 {
696 unsigned long flags;
697 int i;
698 int ret = -EINVAL;
699
700 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
701
702 /*
703 * Allocate both src and dst at the same time, therefore the half
704 * start on 1 since 0 can't be used since zero is used as end marker.
705 */
706 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
707 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
708
709 if (!d40c->base->lcla_pool.alloc_map[idx]) {
710 d40c->base->lcla_pool.alloc_map[idx] = d40d;
711 d40d->lcla_alloc++;
712 ret = i;
713 break;
714 }
715 }
716
717 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
718
719 return ret;
720 }
721
722 static int d40_lcla_free_all(struct d40_chan *d40c,
723 struct d40_desc *d40d)
724 {
725 unsigned long flags;
726 int i;
727 int ret = -EINVAL;
728
729 if (chan_is_physical(d40c))
730 return 0;
731
732 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
733
734 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
735 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
736
737 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
738 d40c->base->lcla_pool.alloc_map[idx] = NULL;
739 d40d->lcla_alloc--;
740 if (d40d->lcla_alloc == 0) {
741 ret = 0;
742 break;
743 }
744 }
745 }
746
747 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
748
749 return ret;
750
751 }
752
753 static void d40_desc_remove(struct d40_desc *d40d)
754 {
755 list_del(&d40d->node);
756 }
757
758 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
759 {
760 struct d40_desc *desc = NULL;
761
762 if (!list_empty(&d40c->client)) {
763 struct d40_desc *d;
764 struct d40_desc *_d;
765
766 list_for_each_entry_safe(d, _d, &d40c->client, node) {
767 if (async_tx_test_ack(&d->txd)) {
768 d40_desc_remove(d);
769 desc = d;
770 memset(desc, 0, sizeof(*desc));
771 break;
772 }
773 }
774 }
775
776 if (!desc)
777 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
778
779 if (desc)
780 INIT_LIST_HEAD(&desc->node);
781
782 return desc;
783 }
784
785 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
786 {
787
788 d40_pool_lli_free(d40c, d40d);
789 d40_lcla_free_all(d40c, d40d);
790 kmem_cache_free(d40c->base->desc_slab, d40d);
791 }
792
793 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
794 {
795 list_add_tail(&desc->node, &d40c->active);
796 }
797
798 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
799 {
800 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
801 struct d40_phy_lli *lli_src = desc->lli_phy.src;
802 void __iomem *base = chan_base(chan);
803
804 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
805 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
806 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
807 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
808
809 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
810 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
811 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
812 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
813 }
814
815 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
816 {
817 list_add_tail(&desc->node, &d40c->done);
818 }
819
820 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
821 {
822 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
823 struct d40_log_lli_bidir *lli = &desc->lli_log;
824 int lli_current = desc->lli_current;
825 int lli_len = desc->lli_len;
826 bool cyclic = desc->cyclic;
827 int curr_lcla = -EINVAL;
828 int first_lcla = 0;
829 bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
830 bool linkback;
831
832 /*
833 * We may have partially running cyclic transfers, in case we did't get
834 * enough LCLA entries.
835 */
836 linkback = cyclic && lli_current == 0;
837
838 /*
839 * For linkback, we need one LCLA even with only one link, because we
840 * can't link back to the one in LCPA space
841 */
842 if (linkback || (lli_len - lli_current > 1)) {
843 /*
844 * If the channel is expected to use only soft_lli don't
845 * allocate a lcla. This is to avoid a HW issue that exists
846 * in some controller during a peripheral to memory transfer
847 * that uses linked lists.
848 */
849 if (!(chan->phy_chan->use_soft_lli &&
850 chan->dma_cfg.dir == DMA_DEV_TO_MEM))
851 curr_lcla = d40_lcla_alloc_one(chan, desc);
852
853 first_lcla = curr_lcla;
854 }
855
856 /*
857 * For linkback, we normally load the LCPA in the loop since we need to
858 * link it to the second LCLA and not the first. However, if we
859 * couldn't even get a first LCLA, then we have to run in LCPA and
860 * reload manually.
861 */
862 if (!linkback || curr_lcla == -EINVAL) {
863 unsigned int flags = 0;
864
865 if (curr_lcla == -EINVAL)
866 flags |= LLI_TERM_INT;
867
868 d40_log_lli_lcpa_write(chan->lcpa,
869 &lli->dst[lli_current],
870 &lli->src[lli_current],
871 curr_lcla,
872 flags);
873 lli_current++;
874 }
875
876 if (curr_lcla < 0)
877 goto out;
878
879 for (; lli_current < lli_len; lli_current++) {
880 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
881 8 * curr_lcla * 2;
882 struct d40_log_lli *lcla = pool->base + lcla_offset;
883 unsigned int flags = 0;
884 int next_lcla;
885
886 if (lli_current + 1 < lli_len)
887 next_lcla = d40_lcla_alloc_one(chan, desc);
888 else
889 next_lcla = linkback ? first_lcla : -EINVAL;
890
891 if (cyclic || next_lcla == -EINVAL)
892 flags |= LLI_TERM_INT;
893
894 if (linkback && curr_lcla == first_lcla) {
895 /* First link goes in both LCPA and LCLA */
896 d40_log_lli_lcpa_write(chan->lcpa,
897 &lli->dst[lli_current],
898 &lli->src[lli_current],
899 next_lcla, flags);
900 }
901
902 /*
903 * One unused LCLA in the cyclic case if the very first
904 * next_lcla fails...
905 */
906 d40_log_lli_lcla_write(lcla,
907 &lli->dst[lli_current],
908 &lli->src[lli_current],
909 next_lcla, flags);
910
911 /*
912 * Cache maintenance is not needed if lcla is
913 * mapped in esram
914 */
915 if (!use_esram_lcla) {
916 dma_sync_single_range_for_device(chan->base->dev,
917 pool->dma_addr, lcla_offset,
918 2 * sizeof(struct d40_log_lli),
919 DMA_TO_DEVICE);
920 }
921 curr_lcla = next_lcla;
922
923 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
924 lli_current++;
925 break;
926 }
927 }
928
929 out:
930 desc->lli_current = lli_current;
931 }
932
933 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
934 {
935 if (chan_is_physical(d40c)) {
936 d40_phy_lli_load(d40c, d40d);
937 d40d->lli_current = d40d->lli_len;
938 } else
939 d40_log_lli_to_lcxa(d40c, d40d);
940 }
941
942 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
943 {
944 struct d40_desc *d;
945
946 if (list_empty(&d40c->active))
947 return NULL;
948
949 d = list_first_entry(&d40c->active,
950 struct d40_desc,
951 node);
952 return d;
953 }
954
955 /* remove desc from current queue and add it to the pending_queue */
956 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
957 {
958 d40_desc_remove(desc);
959 desc->is_in_client_list = false;
960 list_add_tail(&desc->node, &d40c->pending_queue);
961 }
962
963 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
964 {
965 struct d40_desc *d;
966
967 if (list_empty(&d40c->pending_queue))
968 return NULL;
969
970 d = list_first_entry(&d40c->pending_queue,
971 struct d40_desc,
972 node);
973 return d;
974 }
975
976 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
977 {
978 struct d40_desc *d;
979
980 if (list_empty(&d40c->queue))
981 return NULL;
982
983 d = list_first_entry(&d40c->queue,
984 struct d40_desc,
985 node);
986 return d;
987 }
988
989 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
990 {
991 if (list_empty(&d40c->done))
992 return NULL;
993
994 return list_first_entry(&d40c->done, struct d40_desc, node);
995 }
996
997 static int d40_psize_2_burst_size(bool is_log, int psize)
998 {
999 if (is_log) {
1000 if (psize == STEDMA40_PSIZE_LOG_1)
1001 return 1;
1002 } else {
1003 if (psize == STEDMA40_PSIZE_PHY_1)
1004 return 1;
1005 }
1006
1007 return 2 << psize;
1008 }
1009
1010 /*
1011 * The dma only supports transmitting packages up to
1012 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1013 *
1014 * Calculate the total number of dma elements required to send the entire sg list.
1015 */
1016 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1017 {
1018 int dmalen;
1019 u32 max_w = max(data_width1, data_width2);
1020 u32 min_w = min(data_width1, data_width2);
1021 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1022
1023 if (seg_max > STEDMA40_MAX_SEG_SIZE)
1024 seg_max -= max_w;
1025
1026 if (!IS_ALIGNED(size, max_w))
1027 return -EINVAL;
1028
1029 if (size <= seg_max)
1030 dmalen = 1;
1031 else {
1032 dmalen = size / seg_max;
1033 if (dmalen * seg_max < size)
1034 dmalen++;
1035 }
1036 return dmalen;
1037 }
1038
1039 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1040 u32 data_width1, u32 data_width2)
1041 {
1042 struct scatterlist *sg;
1043 int i;
1044 int len = 0;
1045 int ret;
1046
1047 for_each_sg(sgl, sg, sg_len, i) {
1048 ret = d40_size_2_dmalen(sg_dma_len(sg),
1049 data_width1, data_width2);
1050 if (ret < 0)
1051 return ret;
1052 len += ret;
1053 }
1054 return len;
1055 }
1056
1057 static int __d40_execute_command_phy(struct d40_chan *d40c,
1058 enum d40_command command)
1059 {
1060 u32 status;
1061 int i;
1062 void __iomem *active_reg;
1063 int ret = 0;
1064 unsigned long flags;
1065 u32 wmask;
1066
1067 if (command == D40_DMA_STOP) {
1068 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1069 if (ret)
1070 return ret;
1071 }
1072
1073 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1074
1075 if (d40c->phy_chan->num % 2 == 0)
1076 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1077 else
1078 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1079
1080 if (command == D40_DMA_SUSPEND_REQ) {
1081 status = (readl(active_reg) &
1082 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1083 D40_CHAN_POS(d40c->phy_chan->num);
1084
1085 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1086 goto done;
1087 }
1088
1089 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1090 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1091 active_reg);
1092
1093 if (command == D40_DMA_SUSPEND_REQ) {
1094
1095 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1096 status = (readl(active_reg) &
1097 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1098 D40_CHAN_POS(d40c->phy_chan->num);
1099
1100 cpu_relax();
1101 /*
1102 * Reduce the number of bus accesses while
1103 * waiting for the DMA to suspend.
1104 */
1105 udelay(3);
1106
1107 if (status == D40_DMA_STOP ||
1108 status == D40_DMA_SUSPENDED)
1109 break;
1110 }
1111
1112 if (i == D40_SUSPEND_MAX_IT) {
1113 chan_err(d40c,
1114 "unable to suspend the chl %d (log: %d) status %x\n",
1115 d40c->phy_chan->num, d40c->log_num,
1116 status);
1117 dump_stack();
1118 ret = -EBUSY;
1119 }
1120
1121 }
1122 done:
1123 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1124 return ret;
1125 }
1126
1127 static void d40_term_all(struct d40_chan *d40c)
1128 {
1129 struct d40_desc *d40d;
1130 struct d40_desc *_d;
1131
1132 /* Release completed descriptors */
1133 while ((d40d = d40_first_done(d40c))) {
1134 d40_desc_remove(d40d);
1135 d40_desc_free(d40c, d40d);
1136 }
1137
1138 /* Release active descriptors */
1139 while ((d40d = d40_first_active_get(d40c))) {
1140 d40_desc_remove(d40d);
1141 d40_desc_free(d40c, d40d);
1142 }
1143
1144 /* Release queued descriptors waiting for transfer */
1145 while ((d40d = d40_first_queued(d40c))) {
1146 d40_desc_remove(d40d);
1147 d40_desc_free(d40c, d40d);
1148 }
1149
1150 /* Release pending descriptors */
1151 while ((d40d = d40_first_pending(d40c))) {
1152 d40_desc_remove(d40d);
1153 d40_desc_free(d40c, d40d);
1154 }
1155
1156 /* Release client owned descriptors */
1157 if (!list_empty(&d40c->client))
1158 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1159 d40_desc_remove(d40d);
1160 d40_desc_free(d40c, d40d);
1161 }
1162
1163 /* Release descriptors in prepare queue */
1164 if (!list_empty(&d40c->prepare_queue))
1165 list_for_each_entry_safe(d40d, _d,
1166 &d40c->prepare_queue, node) {
1167 d40_desc_remove(d40d);
1168 d40_desc_free(d40c, d40d);
1169 }
1170
1171 d40c->pending_tx = 0;
1172 }
1173
1174 static void __d40_config_set_event(struct d40_chan *d40c,
1175 enum d40_events event_type, u32 event,
1176 int reg)
1177 {
1178 void __iomem *addr = chan_base(d40c) + reg;
1179 int tries;
1180 u32 status;
1181
1182 switch (event_type) {
1183
1184 case D40_DEACTIVATE_EVENTLINE:
1185
1186 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1187 | ~D40_EVENTLINE_MASK(event), addr);
1188 break;
1189
1190 case D40_SUSPEND_REQ_EVENTLINE:
1191 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1192 D40_EVENTLINE_POS(event);
1193
1194 if (status == D40_DEACTIVATE_EVENTLINE ||
1195 status == D40_SUSPEND_REQ_EVENTLINE)
1196 break;
1197
1198 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1199 | ~D40_EVENTLINE_MASK(event), addr);
1200
1201 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1202
1203 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1204 D40_EVENTLINE_POS(event);
1205
1206 cpu_relax();
1207 /*
1208 * Reduce the number of bus accesses while
1209 * waiting for the DMA to suspend.
1210 */
1211 udelay(3);
1212
1213 if (status == D40_DEACTIVATE_EVENTLINE)
1214 break;
1215 }
1216
1217 if (tries == D40_SUSPEND_MAX_IT) {
1218 chan_err(d40c,
1219 "unable to stop the event_line chl %d (log: %d)"
1220 "status %x\n", d40c->phy_chan->num,
1221 d40c->log_num, status);
1222 }
1223 break;
1224
1225 case D40_ACTIVATE_EVENTLINE:
1226 /*
1227 * The hardware sometimes doesn't register the enable when src and dst
1228 * event lines are active on the same logical channel. Retry to ensure
1229 * it does. Usually only one retry is sufficient.
1230 */
1231 tries = 100;
1232 while (--tries) {
1233 writel((D40_ACTIVATE_EVENTLINE <<
1234 D40_EVENTLINE_POS(event)) |
1235 ~D40_EVENTLINE_MASK(event), addr);
1236
1237 if (readl(addr) & D40_EVENTLINE_MASK(event))
1238 break;
1239 }
1240
1241 if (tries != 99)
1242 dev_dbg(chan2dev(d40c),
1243 "[%s] workaround enable S%cLNK (%d tries)\n",
1244 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1245 100 - tries);
1246
1247 WARN_ON(!tries);
1248 break;
1249
1250 case D40_ROUND_EVENTLINE:
1251 BUG();
1252 break;
1253
1254 }
1255 }
1256
1257 static void d40_config_set_event(struct d40_chan *d40c,
1258 enum d40_events event_type)
1259 {
1260 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1261
1262 /* Enable event line connected to device (or memcpy) */
1263 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1264 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1265 __d40_config_set_event(d40c, event_type, event,
1266 D40_CHAN_REG_SSLNK);
1267
1268 if (d40c->dma_cfg.dir != DMA_DEV_TO_MEM)
1269 __d40_config_set_event(d40c, event_type, event,
1270 D40_CHAN_REG_SDLNK);
1271 }
1272
1273 static u32 d40_chan_has_events(struct d40_chan *d40c)
1274 {
1275 void __iomem *chanbase = chan_base(d40c);
1276 u32 val;
1277
1278 val = readl(chanbase + D40_CHAN_REG_SSLNK);
1279 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1280
1281 return val;
1282 }
1283
1284 static int
1285 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1286 {
1287 unsigned long flags;
1288 int ret = 0;
1289 u32 active_status;
1290 void __iomem *active_reg;
1291
1292 if (d40c->phy_chan->num % 2 == 0)
1293 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1294 else
1295 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1296
1297
1298 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1299
1300 switch (command) {
1301 case D40_DMA_STOP:
1302 case D40_DMA_SUSPEND_REQ:
1303
1304 active_status = (readl(active_reg) &
1305 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1306 D40_CHAN_POS(d40c->phy_chan->num);
1307
1308 if (active_status == D40_DMA_RUN)
1309 d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1310 else
1311 d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1312
1313 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1314 ret = __d40_execute_command_phy(d40c, command);
1315
1316 break;
1317
1318 case D40_DMA_RUN:
1319
1320 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1321 ret = __d40_execute_command_phy(d40c, command);
1322 break;
1323
1324 case D40_DMA_SUSPENDED:
1325 BUG();
1326 break;
1327 }
1328
1329 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1330 return ret;
1331 }
1332
1333 static int d40_channel_execute_command(struct d40_chan *d40c,
1334 enum d40_command command)
1335 {
1336 if (chan_is_logical(d40c))
1337 return __d40_execute_command_log(d40c, command);
1338 else
1339 return __d40_execute_command_phy(d40c, command);
1340 }
1341
1342 static u32 d40_get_prmo(struct d40_chan *d40c)
1343 {
1344 static const unsigned int phy_map[] = {
1345 [STEDMA40_PCHAN_BASIC_MODE]
1346 = D40_DREG_PRMO_PCHAN_BASIC,
1347 [STEDMA40_PCHAN_MODULO_MODE]
1348 = D40_DREG_PRMO_PCHAN_MODULO,
1349 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1350 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1351 };
1352 static const unsigned int log_map[] = {
1353 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1354 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1355 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1356 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1357 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1358 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1359 };
1360
1361 if (chan_is_physical(d40c))
1362 return phy_map[d40c->dma_cfg.mode_opt];
1363 else
1364 return log_map[d40c->dma_cfg.mode_opt];
1365 }
1366
1367 static void d40_config_write(struct d40_chan *d40c)
1368 {
1369 u32 addr_base;
1370 u32 var;
1371
1372 /* Odd addresses are even addresses + 4 */
1373 addr_base = (d40c->phy_chan->num % 2) * 4;
1374 /* Setup channel mode to logical or physical */
1375 var = ((u32)(chan_is_logical(d40c)) + 1) <<
1376 D40_CHAN_POS(d40c->phy_chan->num);
1377 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1378
1379 /* Setup operational mode option register */
1380 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1381
1382 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1383
1384 if (chan_is_logical(d40c)) {
1385 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1386 & D40_SREG_ELEM_LOG_LIDX_MASK;
1387 void __iomem *chanbase = chan_base(d40c);
1388
1389 /* Set default config for CFG reg */
1390 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1391 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1392
1393 /* Set LIDX for lcla */
1394 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1395 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1396
1397 /* Clear LNK which will be used by d40_chan_has_events() */
1398 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1399 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1400 }
1401 }
1402
1403 static u32 d40_residue(struct d40_chan *d40c)
1404 {
1405 u32 num_elt;
1406
1407 if (chan_is_logical(d40c))
1408 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1409 >> D40_MEM_LCSP2_ECNT_POS;
1410 else {
1411 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1412 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1413 >> D40_SREG_ELEM_PHY_ECNT_POS;
1414 }
1415
1416 return num_elt * d40c->dma_cfg.dst_info.data_width;
1417 }
1418
1419 static bool d40_tx_is_linked(struct d40_chan *d40c)
1420 {
1421 bool is_link;
1422
1423 if (chan_is_logical(d40c))
1424 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1425 else
1426 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1427 & D40_SREG_LNK_PHYS_LNK_MASK;
1428
1429 return is_link;
1430 }
1431
1432 static int d40_pause(struct dma_chan *chan)
1433 {
1434 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1435 int res = 0;
1436 unsigned long flags;
1437
1438 if (d40c->phy_chan == NULL) {
1439 chan_err(d40c, "Channel is not allocated!\n");
1440 return -EINVAL;
1441 }
1442
1443 if (!d40c->busy)
1444 return 0;
1445
1446 spin_lock_irqsave(&d40c->lock, flags);
1447 pm_runtime_get_sync(d40c->base->dev);
1448
1449 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1450
1451 pm_runtime_mark_last_busy(d40c->base->dev);
1452 pm_runtime_put_autosuspend(d40c->base->dev);
1453 spin_unlock_irqrestore(&d40c->lock, flags);
1454 return res;
1455 }
1456
1457 static int d40_resume(struct dma_chan *chan)
1458 {
1459 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1460 int res = 0;
1461 unsigned long flags;
1462
1463 if (d40c->phy_chan == NULL) {
1464 chan_err(d40c, "Channel is not allocated!\n");
1465 return -EINVAL;
1466 }
1467
1468 if (!d40c->busy)
1469 return 0;
1470
1471 spin_lock_irqsave(&d40c->lock, flags);
1472 pm_runtime_get_sync(d40c->base->dev);
1473
1474 /* If bytes left to transfer or linked tx resume job */
1475 if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1476 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1477
1478 pm_runtime_mark_last_busy(d40c->base->dev);
1479 pm_runtime_put_autosuspend(d40c->base->dev);
1480 spin_unlock_irqrestore(&d40c->lock, flags);
1481 return res;
1482 }
1483
1484 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1485 {
1486 struct d40_chan *d40c = container_of(tx->chan,
1487 struct d40_chan,
1488 chan);
1489 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1490 unsigned long flags;
1491 dma_cookie_t cookie;
1492
1493 spin_lock_irqsave(&d40c->lock, flags);
1494 cookie = dma_cookie_assign(tx);
1495 d40_desc_queue(d40c, d40d);
1496 spin_unlock_irqrestore(&d40c->lock, flags);
1497
1498 return cookie;
1499 }
1500
1501 static int d40_start(struct d40_chan *d40c)
1502 {
1503 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1504 }
1505
1506 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1507 {
1508 struct d40_desc *d40d;
1509 int err;
1510
1511 /* Start queued jobs, if any */
1512 d40d = d40_first_queued(d40c);
1513
1514 if (d40d != NULL) {
1515 if (!d40c->busy) {
1516 d40c->busy = true;
1517 pm_runtime_get_sync(d40c->base->dev);
1518 }
1519
1520 /* Remove from queue */
1521 d40_desc_remove(d40d);
1522
1523 /* Add to active queue */
1524 d40_desc_submit(d40c, d40d);
1525
1526 /* Initiate DMA job */
1527 d40_desc_load(d40c, d40d);
1528
1529 /* Start dma job */
1530 err = d40_start(d40c);
1531
1532 if (err)
1533 return NULL;
1534 }
1535
1536 return d40d;
1537 }
1538
1539 /* called from interrupt context */
1540 static void dma_tc_handle(struct d40_chan *d40c)
1541 {
1542 struct d40_desc *d40d;
1543
1544 /* Get first active entry from list */
1545 d40d = d40_first_active_get(d40c);
1546
1547 if (d40d == NULL)
1548 return;
1549
1550 if (d40d->cyclic) {
1551 /*
1552 * If this was a paritially loaded list, we need to reloaded
1553 * it, and only when the list is completed. We need to check
1554 * for done because the interrupt will hit for every link, and
1555 * not just the last one.
1556 */
1557 if (d40d->lli_current < d40d->lli_len
1558 && !d40_tx_is_linked(d40c)
1559 && !d40_residue(d40c)) {
1560 d40_lcla_free_all(d40c, d40d);
1561 d40_desc_load(d40c, d40d);
1562 (void) d40_start(d40c);
1563
1564 if (d40d->lli_current == d40d->lli_len)
1565 d40d->lli_current = 0;
1566 }
1567 } else {
1568 d40_lcla_free_all(d40c, d40d);
1569
1570 if (d40d->lli_current < d40d->lli_len) {
1571 d40_desc_load(d40c, d40d);
1572 /* Start dma job */
1573 (void) d40_start(d40c);
1574 return;
1575 }
1576
1577 if (d40_queue_start(d40c) == NULL) {
1578 d40c->busy = false;
1579
1580 pm_runtime_mark_last_busy(d40c->base->dev);
1581 pm_runtime_put_autosuspend(d40c->base->dev);
1582 }
1583
1584 d40_desc_remove(d40d);
1585 d40_desc_done(d40c, d40d);
1586 }
1587
1588 d40c->pending_tx++;
1589 tasklet_schedule(&d40c->tasklet);
1590
1591 }
1592
1593 static void dma_tasklet(unsigned long data)
1594 {
1595 struct d40_chan *d40c = (struct d40_chan *) data;
1596 struct d40_desc *d40d;
1597 unsigned long flags;
1598 bool callback_active;
1599 dma_async_tx_callback callback;
1600 void *callback_param;
1601
1602 spin_lock_irqsave(&d40c->lock, flags);
1603
1604 /* Get first entry from the done list */
1605 d40d = d40_first_done(d40c);
1606 if (d40d == NULL) {
1607 /* Check if we have reached here for cyclic job */
1608 d40d = d40_first_active_get(d40c);
1609 if (d40d == NULL || !d40d->cyclic)
1610 goto err;
1611 }
1612
1613 if (!d40d->cyclic)
1614 dma_cookie_complete(&d40d->txd);
1615
1616 /*
1617 * If terminating a channel pending_tx is set to zero.
1618 * This prevents any finished active jobs to return to the client.
1619 */
1620 if (d40c->pending_tx == 0) {
1621 spin_unlock_irqrestore(&d40c->lock, flags);
1622 return;
1623 }
1624
1625 /* Callback to client */
1626 callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1627 callback = d40d->txd.callback;
1628 callback_param = d40d->txd.callback_param;
1629
1630 if (!d40d->cyclic) {
1631 if (async_tx_test_ack(&d40d->txd)) {
1632 d40_desc_remove(d40d);
1633 d40_desc_free(d40c, d40d);
1634 } else if (!d40d->is_in_client_list) {
1635 d40_desc_remove(d40d);
1636 d40_lcla_free_all(d40c, d40d);
1637 list_add_tail(&d40d->node, &d40c->client);
1638 d40d->is_in_client_list = true;
1639 }
1640 }
1641
1642 d40c->pending_tx--;
1643
1644 if (d40c->pending_tx)
1645 tasklet_schedule(&d40c->tasklet);
1646
1647 spin_unlock_irqrestore(&d40c->lock, flags);
1648
1649 if (callback_active && callback)
1650 callback(callback_param);
1651
1652 return;
1653
1654 err:
1655 /* Rescue manouver if receiving double interrupts */
1656 if (d40c->pending_tx > 0)
1657 d40c->pending_tx--;
1658 spin_unlock_irqrestore(&d40c->lock, flags);
1659 }
1660
1661 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1662 {
1663 int i;
1664 u32 idx;
1665 u32 row;
1666 long chan = -1;
1667 struct d40_chan *d40c;
1668 unsigned long flags;
1669 struct d40_base *base = data;
1670 u32 regs[base->gen_dmac.il_size];
1671 struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672 u32 il_size = base->gen_dmac.il_size;
1673
1674 spin_lock_irqsave(&base->interrupt_lock, flags);
1675
1676 /* Read interrupt status of both logical and physical channels */
1677 for (i = 0; i < il_size; i++)
1678 regs[i] = readl(base->virtbase + il[i].src);
1679
1680 for (;;) {
1681
1682 chan = find_next_bit((unsigned long *)regs,
1683 BITS_PER_LONG * il_size, chan + 1);
1684
1685 /* No more set bits found? */
1686 if (chan == BITS_PER_LONG * il_size)
1687 break;
1688
1689 row = chan / BITS_PER_LONG;
1690 idx = chan & (BITS_PER_LONG - 1);
1691
1692 if (il[row].offset == D40_PHY_CHAN)
1693 d40c = base->lookup_phy_chans[idx];
1694 else
1695 d40c = base->lookup_log_chans[il[row].offset + idx];
1696
1697 if (!d40c) {
1698 /*
1699 * No error because this can happen if something else
1700 * in the system is using the channel.
1701 */
1702 continue;
1703 }
1704
1705 /* ACK interrupt */
1706 writel(BIT(idx), base->virtbase + il[row].clr);
1707
1708 spin_lock(&d40c->lock);
1709
1710 if (!il[row].is_error)
1711 dma_tc_handle(d40c);
1712 else
1713 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714 chan, il[row].offset, idx);
1715
1716 spin_unlock(&d40c->lock);
1717 }
1718
1719 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1720
1721 return IRQ_HANDLED;
1722 }
1723
1724 static int d40_validate_conf(struct d40_chan *d40c,
1725 struct stedma40_chan_cfg *conf)
1726 {
1727 int res = 0;
1728 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729
1730 if (!conf->dir) {
1731 chan_err(d40c, "Invalid direction.\n");
1732 res = -EINVAL;
1733 }
1734
1735 if ((is_log && conf->dev_type > d40c->base->num_log_chans) ||
1736 (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737 (conf->dev_type < 0)) {
1738 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739 res = -EINVAL;
1740 }
1741
1742 if (conf->dir == DMA_DEV_TO_DEV) {
1743 /*
1744 * DMAC HW supports it. Will be added to this driver,
1745 * in case any dma client requires it.
1746 */
1747 chan_err(d40c, "periph to periph not supported\n");
1748 res = -EINVAL;
1749 }
1750
1751 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752 conf->src_info.data_width !=
1753 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754 conf->dst_info.data_width) {
1755 /*
1756 * The DMAC hardware only supports
1757 * src (burst x width) == dst (burst x width)
1758 */
1759
1760 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761 res = -EINVAL;
1762 }
1763
1764 return res;
1765 }
1766
1767 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768 bool is_src, int log_event_line, bool is_log,
1769 bool *first_user)
1770 {
1771 unsigned long flags;
1772 spin_lock_irqsave(&phy->lock, flags);
1773
1774 *first_user = ((phy->allocated_src | phy->allocated_dst)
1775 == D40_ALLOC_FREE);
1776
1777 if (!is_log) {
1778 /* Physical interrupts are masked per physical full channel */
1779 if (phy->allocated_src == D40_ALLOC_FREE &&
1780 phy->allocated_dst == D40_ALLOC_FREE) {
1781 phy->allocated_dst = D40_ALLOC_PHY;
1782 phy->allocated_src = D40_ALLOC_PHY;
1783 goto found;
1784 } else
1785 goto not_found;
1786 }
1787
1788 /* Logical channel */
1789 if (is_src) {
1790 if (phy->allocated_src == D40_ALLOC_PHY)
1791 goto not_found;
1792
1793 if (phy->allocated_src == D40_ALLOC_FREE)
1794 phy->allocated_src = D40_ALLOC_LOG_FREE;
1795
1796 if (!(phy->allocated_src & BIT(log_event_line))) {
1797 phy->allocated_src |= BIT(log_event_line);
1798 goto found;
1799 } else
1800 goto not_found;
1801 } else {
1802 if (phy->allocated_dst == D40_ALLOC_PHY)
1803 goto not_found;
1804
1805 if (phy->allocated_dst == D40_ALLOC_FREE)
1806 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807
1808 if (!(phy->allocated_dst & BIT(log_event_line))) {
1809 phy->allocated_dst |= BIT(log_event_line);
1810 goto found;
1811 } else
1812 goto not_found;
1813 }
1814
1815 not_found:
1816 spin_unlock_irqrestore(&phy->lock, flags);
1817 return false;
1818 found:
1819 spin_unlock_irqrestore(&phy->lock, flags);
1820 return true;
1821 }
1822
1823 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1824 int log_event_line)
1825 {
1826 unsigned long flags;
1827 bool is_free = false;
1828
1829 spin_lock_irqsave(&phy->lock, flags);
1830 if (!log_event_line) {
1831 phy->allocated_dst = D40_ALLOC_FREE;
1832 phy->allocated_src = D40_ALLOC_FREE;
1833 is_free = true;
1834 goto out;
1835 }
1836
1837 /* Logical channel */
1838 if (is_src) {
1839 phy->allocated_src &= ~BIT(log_event_line);
1840 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1841 phy->allocated_src = D40_ALLOC_FREE;
1842 } else {
1843 phy->allocated_dst &= ~BIT(log_event_line);
1844 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1845 phy->allocated_dst = D40_ALLOC_FREE;
1846 }
1847
1848 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1849 D40_ALLOC_FREE);
1850
1851 out:
1852 spin_unlock_irqrestore(&phy->lock, flags);
1853
1854 return is_free;
1855 }
1856
1857 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1858 {
1859 int dev_type = d40c->dma_cfg.dev_type;
1860 int event_group;
1861 int event_line;
1862 struct d40_phy_res *phys;
1863 int i;
1864 int j;
1865 int log_num;
1866 int num_phy_chans;
1867 bool is_src;
1868 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1869
1870 phys = d40c->base->phy_res;
1871 num_phy_chans = d40c->base->num_phy_chans;
1872
1873 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1874 log_num = 2 * dev_type;
1875 is_src = true;
1876 } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1877 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1878 /* dst event lines are used for logical memcpy */
1879 log_num = 2 * dev_type + 1;
1880 is_src = false;
1881 } else
1882 return -EINVAL;
1883
1884 event_group = D40_TYPE_TO_GROUP(dev_type);
1885 event_line = D40_TYPE_TO_EVENT(dev_type);
1886
1887 if (!is_log) {
1888 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1889 /* Find physical half channel */
1890 if (d40c->dma_cfg.use_fixed_channel) {
1891 i = d40c->dma_cfg.phy_channel;
1892 if (d40_alloc_mask_set(&phys[i], is_src,
1893 0, is_log,
1894 first_phy_user))
1895 goto found_phy;
1896 } else {
1897 for (i = 0; i < num_phy_chans; i++) {
1898 if (d40_alloc_mask_set(&phys[i], is_src,
1899 0, is_log,
1900 first_phy_user))
1901 goto found_phy;
1902 }
1903 }
1904 } else
1905 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1906 int phy_num = j + event_group * 2;
1907 for (i = phy_num; i < phy_num + 2; i++) {
1908 if (d40_alloc_mask_set(&phys[i],
1909 is_src,
1910 0,
1911 is_log,
1912 first_phy_user))
1913 goto found_phy;
1914 }
1915 }
1916 return -EINVAL;
1917 found_phy:
1918 d40c->phy_chan = &phys[i];
1919 d40c->log_num = D40_PHY_CHAN;
1920 goto out;
1921 }
1922 if (dev_type == -1)
1923 return -EINVAL;
1924
1925 /* Find logical channel */
1926 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1927 int phy_num = j + event_group * 2;
1928
1929 if (d40c->dma_cfg.use_fixed_channel) {
1930 i = d40c->dma_cfg.phy_channel;
1931
1932 if ((i != phy_num) && (i != phy_num + 1)) {
1933 dev_err(chan2dev(d40c),
1934 "invalid fixed phy channel %d\n", i);
1935 return -EINVAL;
1936 }
1937
1938 if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1939 is_log, first_phy_user))
1940 goto found_log;
1941
1942 dev_err(chan2dev(d40c),
1943 "could not allocate fixed phy channel %d\n", i);
1944 return -EINVAL;
1945 }
1946
1947 /*
1948 * Spread logical channels across all available physical rather
1949 * than pack every logical channel at the first available phy
1950 * channels.
1951 */
1952 if (is_src) {
1953 for (i = phy_num; i < phy_num + 2; i++) {
1954 if (d40_alloc_mask_set(&phys[i], is_src,
1955 event_line, is_log,
1956 first_phy_user))
1957 goto found_log;
1958 }
1959 } else {
1960 for (i = phy_num + 1; i >= phy_num; i--) {
1961 if (d40_alloc_mask_set(&phys[i], is_src,
1962 event_line, is_log,
1963 first_phy_user))
1964 goto found_log;
1965 }
1966 }
1967 }
1968 return -EINVAL;
1969
1970 found_log:
1971 d40c->phy_chan = &phys[i];
1972 d40c->log_num = log_num;
1973 out:
1974
1975 if (is_log)
1976 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1977 else
1978 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1979
1980 return 0;
1981
1982 }
1983
1984 static int d40_config_memcpy(struct d40_chan *d40c)
1985 {
1986 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1987
1988 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1989 d40c->dma_cfg = dma40_memcpy_conf_log;
1990 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1991
1992 d40_log_cfg(&d40c->dma_cfg,
1993 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1994
1995 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1996 dma_has_cap(DMA_SLAVE, cap)) {
1997 d40c->dma_cfg = dma40_memcpy_conf_phy;
1998
1999 /* Generate interrrupt at end of transfer or relink. */
2000 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2001
2002 /* Generate interrupt on error. */
2003 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2004 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2005
2006 } else {
2007 chan_err(d40c, "No memcpy\n");
2008 return -EINVAL;
2009 }
2010
2011 return 0;
2012 }
2013
2014 static int d40_free_dma(struct d40_chan *d40c)
2015 {
2016
2017 int res = 0;
2018 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2019 struct d40_phy_res *phy = d40c->phy_chan;
2020 bool is_src;
2021
2022 /* Terminate all queued and active transfers */
2023 d40_term_all(d40c);
2024
2025 if (phy == NULL) {
2026 chan_err(d40c, "phy == null\n");
2027 return -EINVAL;
2028 }
2029
2030 if (phy->allocated_src == D40_ALLOC_FREE &&
2031 phy->allocated_dst == D40_ALLOC_FREE) {
2032 chan_err(d40c, "channel already free\n");
2033 return -EINVAL;
2034 }
2035
2036 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2037 d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2038 is_src = false;
2039 else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2040 is_src = true;
2041 else {
2042 chan_err(d40c, "Unknown direction\n");
2043 return -EINVAL;
2044 }
2045
2046 pm_runtime_get_sync(d40c->base->dev);
2047 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2048 if (res) {
2049 chan_err(d40c, "stop failed\n");
2050 goto out;
2051 }
2052
2053 d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2054
2055 if (chan_is_logical(d40c))
2056 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2057 else
2058 d40c->base->lookup_phy_chans[phy->num] = NULL;
2059
2060 if (d40c->busy) {
2061 pm_runtime_mark_last_busy(d40c->base->dev);
2062 pm_runtime_put_autosuspend(d40c->base->dev);
2063 }
2064
2065 d40c->busy = false;
2066 d40c->phy_chan = NULL;
2067 d40c->configured = false;
2068 out:
2069
2070 pm_runtime_mark_last_busy(d40c->base->dev);
2071 pm_runtime_put_autosuspend(d40c->base->dev);
2072 return res;
2073 }
2074
2075 static bool d40_is_paused(struct d40_chan *d40c)
2076 {
2077 void __iomem *chanbase = chan_base(d40c);
2078 bool is_paused = false;
2079 unsigned long flags;
2080 void __iomem *active_reg;
2081 u32 status;
2082 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2083
2084 spin_lock_irqsave(&d40c->lock, flags);
2085
2086 if (chan_is_physical(d40c)) {
2087 if (d40c->phy_chan->num % 2 == 0)
2088 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2089 else
2090 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2091
2092 status = (readl(active_reg) &
2093 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2094 D40_CHAN_POS(d40c->phy_chan->num);
2095 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2096 is_paused = true;
2097
2098 goto _exit;
2099 }
2100
2101 if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2102 d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2103 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2104 } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2105 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2106 } else {
2107 chan_err(d40c, "Unknown direction\n");
2108 goto _exit;
2109 }
2110
2111 status = (status & D40_EVENTLINE_MASK(event)) >>
2112 D40_EVENTLINE_POS(event);
2113
2114 if (status != D40_DMA_RUN)
2115 is_paused = true;
2116 _exit:
2117 spin_unlock_irqrestore(&d40c->lock, flags);
2118 return is_paused;
2119
2120 }
2121
2122 static u32 stedma40_residue(struct dma_chan *chan)
2123 {
2124 struct d40_chan *d40c =
2125 container_of(chan, struct d40_chan, chan);
2126 u32 bytes_left;
2127 unsigned long flags;
2128
2129 spin_lock_irqsave(&d40c->lock, flags);
2130 bytes_left = d40_residue(d40c);
2131 spin_unlock_irqrestore(&d40c->lock, flags);
2132
2133 return bytes_left;
2134 }
2135
2136 static int
2137 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2138 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2139 unsigned int sg_len, dma_addr_t src_dev_addr,
2140 dma_addr_t dst_dev_addr)
2141 {
2142 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2143 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2144 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2145 int ret;
2146
2147 ret = d40_log_sg_to_lli(sg_src, sg_len,
2148 src_dev_addr,
2149 desc->lli_log.src,
2150 chan->log_def.lcsp1,
2151 src_info->data_width,
2152 dst_info->data_width);
2153
2154 ret = d40_log_sg_to_lli(sg_dst, sg_len,
2155 dst_dev_addr,
2156 desc->lli_log.dst,
2157 chan->log_def.lcsp3,
2158 dst_info->data_width,
2159 src_info->data_width);
2160
2161 return ret < 0 ? ret : 0;
2162 }
2163
2164 static int
2165 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2166 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2167 unsigned int sg_len, dma_addr_t src_dev_addr,
2168 dma_addr_t dst_dev_addr)
2169 {
2170 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2171 struct stedma40_half_channel_info *src_info = &cfg->src_info;
2172 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2173 unsigned long flags = 0;
2174 int ret;
2175
2176 if (desc->cyclic)
2177 flags |= LLI_CYCLIC | LLI_TERM_INT;
2178
2179 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2180 desc->lli_phy.src,
2181 virt_to_phys(desc->lli_phy.src),
2182 chan->src_def_cfg,
2183 src_info, dst_info, flags);
2184
2185 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2186 desc->lli_phy.dst,
2187 virt_to_phys(desc->lli_phy.dst),
2188 chan->dst_def_cfg,
2189 dst_info, src_info, flags);
2190
2191 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2192 desc->lli_pool.size, DMA_TO_DEVICE);
2193
2194 return ret < 0 ? ret : 0;
2195 }
2196
2197 static struct d40_desc *
2198 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2199 unsigned int sg_len, unsigned long dma_flags)
2200 {
2201 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2202 struct d40_desc *desc;
2203 int ret;
2204
2205 desc = d40_desc_get(chan);
2206 if (!desc)
2207 return NULL;
2208
2209 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2210 cfg->dst_info.data_width);
2211 if (desc->lli_len < 0) {
2212 chan_err(chan, "Unaligned size\n");
2213 goto err;
2214 }
2215
2216 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2217 if (ret < 0) {
2218 chan_err(chan, "Could not allocate lli\n");
2219 goto err;
2220 }
2221
2222 desc->lli_current = 0;
2223 desc->txd.flags = dma_flags;
2224 desc->txd.tx_submit = d40_tx_submit;
2225
2226 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2227
2228 return desc;
2229
2230 err:
2231 d40_desc_free(chan, desc);
2232 return NULL;
2233 }
2234
2235 static struct dma_async_tx_descriptor *
2236 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2237 struct scatterlist *sg_dst, unsigned int sg_len,
2238 enum dma_transfer_direction direction, unsigned long dma_flags)
2239 {
2240 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2241 dma_addr_t src_dev_addr;
2242 dma_addr_t dst_dev_addr;
2243 struct d40_desc *desc;
2244 unsigned long flags;
2245 int ret;
2246
2247 if (!chan->phy_chan) {
2248 chan_err(chan, "Cannot prepare unallocated channel\n");
2249 return NULL;
2250 }
2251
2252 spin_lock_irqsave(&chan->lock, flags);
2253
2254 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2255 if (desc == NULL)
2256 goto unlock;
2257
2258 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2259 desc->cyclic = true;
2260
2261 src_dev_addr = 0;
2262 dst_dev_addr = 0;
2263 if (direction == DMA_DEV_TO_MEM)
2264 src_dev_addr = chan->runtime_addr;
2265 else if (direction == DMA_MEM_TO_DEV)
2266 dst_dev_addr = chan->runtime_addr;
2267
2268 if (chan_is_logical(chan))
2269 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2270 sg_len, src_dev_addr, dst_dev_addr);
2271 else
2272 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2273 sg_len, src_dev_addr, dst_dev_addr);
2274
2275 if (ret) {
2276 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2277 chan_is_logical(chan) ? "log" : "phy", ret);
2278 goto free_desc;
2279 }
2280
2281 /*
2282 * add descriptor to the prepare queue in order to be able
2283 * to free them later in terminate_all
2284 */
2285 list_add_tail(&desc->node, &chan->prepare_queue);
2286
2287 spin_unlock_irqrestore(&chan->lock, flags);
2288
2289 return &desc->txd;
2290 free_desc:
2291 d40_desc_free(chan, desc);
2292 unlock:
2293 spin_unlock_irqrestore(&chan->lock, flags);
2294 return NULL;
2295 }
2296
2297 bool stedma40_filter(struct dma_chan *chan, void *data)
2298 {
2299 struct stedma40_chan_cfg *info = data;
2300 struct d40_chan *d40c =
2301 container_of(chan, struct d40_chan, chan);
2302 int err;
2303
2304 if (data) {
2305 err = d40_validate_conf(d40c, info);
2306 if (!err)
2307 d40c->dma_cfg = *info;
2308 } else
2309 err = d40_config_memcpy(d40c);
2310
2311 if (!err)
2312 d40c->configured = true;
2313
2314 return err == 0;
2315 }
2316 EXPORT_SYMBOL(stedma40_filter);
2317
2318 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2319 {
2320 bool realtime = d40c->dma_cfg.realtime;
2321 bool highprio = d40c->dma_cfg.high_priority;
2322 u32 rtreg;
2323 u32 event = D40_TYPE_TO_EVENT(dev_type);
2324 u32 group = D40_TYPE_TO_GROUP(dev_type);
2325 u32 bit = BIT(event);
2326 u32 prioreg;
2327 struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2328
2329 rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2330 /*
2331 * Due to a hardware bug, in some cases a logical channel triggered by
2332 * a high priority destination event line can generate extra packet
2333 * transactions.
2334 *
2335 * The workaround is to not set the high priority level for the
2336 * destination event lines that trigger logical channels.
2337 */
2338 if (!src && chan_is_logical(d40c))
2339 highprio = false;
2340
2341 prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2342
2343 /* Destination event lines are stored in the upper halfword */
2344 if (!src)
2345 bit <<= 16;
2346
2347 writel(bit, d40c->base->virtbase + prioreg + group * 4);
2348 writel(bit, d40c->base->virtbase + rtreg + group * 4);
2349 }
2350
2351 static void d40_set_prio_realtime(struct d40_chan *d40c)
2352 {
2353 if (d40c->base->rev < 3)
2354 return;
2355
2356 if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
2357 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2358 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2359
2360 if ((d40c->dma_cfg.dir == DMA_MEM_TO_DEV) ||
2361 (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2362 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2363 }
2364
2365 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2366 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2367 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2368 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2369 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2370
2371 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2372 struct of_dma *ofdma)
2373 {
2374 struct stedma40_chan_cfg cfg;
2375 dma_cap_mask_t cap;
2376 u32 flags;
2377
2378 memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2379
2380 dma_cap_zero(cap);
2381 dma_cap_set(DMA_SLAVE, cap);
2382
2383 cfg.dev_type = dma_spec->args[0];
2384 flags = dma_spec->args[2];
2385
2386 switch (D40_DT_FLAGS_MODE(flags)) {
2387 case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2388 case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2389 }
2390
2391 switch (D40_DT_FLAGS_DIR(flags)) {
2392 case 0:
2393 cfg.dir = DMA_MEM_TO_DEV;
2394 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2395 break;
2396 case 1:
2397 cfg.dir = DMA_DEV_TO_MEM;
2398 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2399 break;
2400 }
2401
2402 if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2403 cfg.phy_channel = dma_spec->args[1];
2404 cfg.use_fixed_channel = true;
2405 }
2406
2407 if (D40_DT_FLAGS_HIGH_PRIO(flags))
2408 cfg.high_priority = true;
2409
2410 return dma_request_channel(cap, stedma40_filter, &cfg);
2411 }
2412
2413 /* DMA ENGINE functions */
2414 static int d40_alloc_chan_resources(struct dma_chan *chan)
2415 {
2416 int err;
2417 unsigned long flags;
2418 struct d40_chan *d40c =
2419 container_of(chan, struct d40_chan, chan);
2420 bool is_free_phy;
2421 spin_lock_irqsave(&d40c->lock, flags);
2422
2423 dma_cookie_init(chan);
2424
2425 /* If no dma configuration is set use default configuration (memcpy) */
2426 if (!d40c->configured) {
2427 err = d40_config_memcpy(d40c);
2428 if (err) {
2429 chan_err(d40c, "Failed to configure memcpy channel\n");
2430 goto mark_last_busy;
2431 }
2432 }
2433
2434 err = d40_allocate_channel(d40c, &is_free_phy);
2435 if (err) {
2436 chan_err(d40c, "Failed to allocate channel\n");
2437 d40c->configured = false;
2438 goto mark_last_busy;
2439 }
2440
2441 pm_runtime_get_sync(d40c->base->dev);
2442
2443 d40_set_prio_realtime(d40c);
2444
2445 if (chan_is_logical(d40c)) {
2446 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2447 d40c->lcpa = d40c->base->lcpa_base +
2448 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2449 else
2450 d40c->lcpa = d40c->base->lcpa_base +
2451 d40c->dma_cfg.dev_type *
2452 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2453
2454 /* Unmask the Global Interrupt Mask. */
2455 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2456 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2457 }
2458
2459 dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2460 chan_is_logical(d40c) ? "logical" : "physical",
2461 d40c->phy_chan->num,
2462 d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2463
2464
2465 /*
2466 * Only write channel configuration to the DMA if the physical
2467 * resource is free. In case of multiple logical channels
2468 * on the same physical resource, only the first write is necessary.
2469 */
2470 if (is_free_phy)
2471 d40_config_write(d40c);
2472 mark_last_busy:
2473 pm_runtime_mark_last_busy(d40c->base->dev);
2474 pm_runtime_put_autosuspend(d40c->base->dev);
2475 spin_unlock_irqrestore(&d40c->lock, flags);
2476 return err;
2477 }
2478
2479 static void d40_free_chan_resources(struct dma_chan *chan)
2480 {
2481 struct d40_chan *d40c =
2482 container_of(chan, struct d40_chan, chan);
2483 int err;
2484 unsigned long flags;
2485
2486 if (d40c->phy_chan == NULL) {
2487 chan_err(d40c, "Cannot free unallocated channel\n");
2488 return;
2489 }
2490
2491 spin_lock_irqsave(&d40c->lock, flags);
2492
2493 err = d40_free_dma(d40c);
2494
2495 if (err)
2496 chan_err(d40c, "Failed to free channel\n");
2497 spin_unlock_irqrestore(&d40c->lock, flags);
2498 }
2499
2500 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2501 dma_addr_t dst,
2502 dma_addr_t src,
2503 size_t size,
2504 unsigned long dma_flags)
2505 {
2506 struct scatterlist dst_sg;
2507 struct scatterlist src_sg;
2508
2509 sg_init_table(&dst_sg, 1);
2510 sg_init_table(&src_sg, 1);
2511
2512 sg_dma_address(&dst_sg) = dst;
2513 sg_dma_address(&src_sg) = src;
2514
2515 sg_dma_len(&dst_sg) = size;
2516 sg_dma_len(&src_sg) = size;
2517
2518 return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2519 DMA_MEM_TO_MEM, dma_flags);
2520 }
2521
2522 static struct dma_async_tx_descriptor *
2523 d40_prep_memcpy_sg(struct dma_chan *chan,
2524 struct scatterlist *dst_sg, unsigned int dst_nents,
2525 struct scatterlist *src_sg, unsigned int src_nents,
2526 unsigned long dma_flags)
2527 {
2528 if (dst_nents != src_nents)
2529 return NULL;
2530
2531 return d40_prep_sg(chan, src_sg, dst_sg, src_nents,
2532 DMA_MEM_TO_MEM, dma_flags);
2533 }
2534
2535 static struct dma_async_tx_descriptor *
2536 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2537 unsigned int sg_len, enum dma_transfer_direction direction,
2538 unsigned long dma_flags, void *context)
2539 {
2540 if (!is_slave_direction(direction))
2541 return NULL;
2542
2543 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2544 }
2545
2546 static struct dma_async_tx_descriptor *
2547 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2548 size_t buf_len, size_t period_len,
2549 enum dma_transfer_direction direction, unsigned long flags)
2550 {
2551 unsigned int periods = buf_len / period_len;
2552 struct dma_async_tx_descriptor *txd;
2553 struct scatterlist *sg;
2554 int i;
2555
2556 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2557 if (!sg)
2558 return NULL;
2559
2560 for (i = 0; i < periods; i++) {
2561 sg_dma_address(&sg[i]) = dma_addr;
2562 sg_dma_len(&sg[i]) = period_len;
2563 dma_addr += period_len;
2564 }
2565
2566 sg[periods].offset = 0;
2567 sg_dma_len(&sg[periods]) = 0;
2568 sg[periods].page_link =
2569 ((unsigned long)sg | 0x01) & ~0x02;
2570
2571 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2572 DMA_PREP_INTERRUPT);
2573
2574 kfree(sg);
2575
2576 return txd;
2577 }
2578
2579 static enum dma_status d40_tx_status(struct dma_chan *chan,
2580 dma_cookie_t cookie,
2581 struct dma_tx_state *txstate)
2582 {
2583 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584 enum dma_status ret;
2585
2586 if (d40c->phy_chan == NULL) {
2587 chan_err(d40c, "Cannot read status of unallocated channel\n");
2588 return -EINVAL;
2589 }
2590
2591 ret = dma_cookie_status(chan, cookie, txstate);
2592 if (ret != DMA_COMPLETE && txstate)
2593 dma_set_residue(txstate, stedma40_residue(chan));
2594
2595 if (d40_is_paused(d40c))
2596 ret = DMA_PAUSED;
2597
2598 return ret;
2599 }
2600
2601 static void d40_issue_pending(struct dma_chan *chan)
2602 {
2603 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2604 unsigned long flags;
2605
2606 if (d40c->phy_chan == NULL) {
2607 chan_err(d40c, "Channel is not allocated!\n");
2608 return;
2609 }
2610
2611 spin_lock_irqsave(&d40c->lock, flags);
2612
2613 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2614
2615 /* Busy means that queued jobs are already being processed */
2616 if (!d40c->busy)
2617 (void) d40_queue_start(d40c);
2618
2619 spin_unlock_irqrestore(&d40c->lock, flags);
2620 }
2621
2622 static int d40_terminate_all(struct dma_chan *chan)
2623 {
2624 unsigned long flags;
2625 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2626 int ret;
2627
2628 if (d40c->phy_chan == NULL) {
2629 chan_err(d40c, "Channel is not allocated!\n");
2630 return -EINVAL;
2631 }
2632
2633 spin_lock_irqsave(&d40c->lock, flags);
2634
2635 pm_runtime_get_sync(d40c->base->dev);
2636 ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2637 if (ret)
2638 chan_err(d40c, "Failed to stop channel\n");
2639
2640 d40_term_all(d40c);
2641 pm_runtime_mark_last_busy(d40c->base->dev);
2642 pm_runtime_put_autosuspend(d40c->base->dev);
2643 if (d40c->busy) {
2644 pm_runtime_mark_last_busy(d40c->base->dev);
2645 pm_runtime_put_autosuspend(d40c->base->dev);
2646 }
2647 d40c->busy = false;
2648
2649 spin_unlock_irqrestore(&d40c->lock, flags);
2650 return 0;
2651 }
2652
2653 static int
2654 dma40_config_to_halfchannel(struct d40_chan *d40c,
2655 struct stedma40_half_channel_info *info,
2656 u32 maxburst)
2657 {
2658 int psize;
2659
2660 if (chan_is_logical(d40c)) {
2661 if (maxburst >= 16)
2662 psize = STEDMA40_PSIZE_LOG_16;
2663 else if (maxburst >= 8)
2664 psize = STEDMA40_PSIZE_LOG_8;
2665 else if (maxburst >= 4)
2666 psize = STEDMA40_PSIZE_LOG_4;
2667 else
2668 psize = STEDMA40_PSIZE_LOG_1;
2669 } else {
2670 if (maxburst >= 16)
2671 psize = STEDMA40_PSIZE_PHY_16;
2672 else if (maxburst >= 8)
2673 psize = STEDMA40_PSIZE_PHY_8;
2674 else if (maxburst >= 4)
2675 psize = STEDMA40_PSIZE_PHY_4;
2676 else
2677 psize = STEDMA40_PSIZE_PHY_1;
2678 }
2679
2680 info->psize = psize;
2681 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2682
2683 return 0;
2684 }
2685
2686 /* Runtime reconfiguration extension */
2687 static int d40_set_runtime_config(struct dma_chan *chan,
2688 struct dma_slave_config *config)
2689 {
2690 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2691 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2692 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2693 dma_addr_t config_addr;
2694 u32 src_maxburst, dst_maxburst;
2695 int ret;
2696
2697 if (d40c->phy_chan == NULL) {
2698 chan_err(d40c, "Channel is not allocated!\n");
2699 return -EINVAL;
2700 }
2701
2702 src_addr_width = config->src_addr_width;
2703 src_maxburst = config->src_maxburst;
2704 dst_addr_width = config->dst_addr_width;
2705 dst_maxburst = config->dst_maxburst;
2706
2707 if (config->direction == DMA_DEV_TO_MEM) {
2708 config_addr = config->src_addr;
2709
2710 if (cfg->dir != DMA_DEV_TO_MEM)
2711 dev_dbg(d40c->base->dev,
2712 "channel was not configured for peripheral "
2713 "to memory transfer (%d) overriding\n",
2714 cfg->dir);
2715 cfg->dir = DMA_DEV_TO_MEM;
2716
2717 /* Configure the memory side */
2718 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2719 dst_addr_width = src_addr_width;
2720 if (dst_maxburst == 0)
2721 dst_maxburst = src_maxburst;
2722
2723 } else if (config->direction == DMA_MEM_TO_DEV) {
2724 config_addr = config->dst_addr;
2725
2726 if (cfg->dir != DMA_MEM_TO_DEV)
2727 dev_dbg(d40c->base->dev,
2728 "channel was not configured for memory "
2729 "to peripheral transfer (%d) overriding\n",
2730 cfg->dir);
2731 cfg->dir = DMA_MEM_TO_DEV;
2732
2733 /* Configure the memory side */
2734 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2735 src_addr_width = dst_addr_width;
2736 if (src_maxburst == 0)
2737 src_maxburst = dst_maxburst;
2738 } else {
2739 dev_err(d40c->base->dev,
2740 "unrecognized channel direction %d\n",
2741 config->direction);
2742 return -EINVAL;
2743 }
2744
2745 if (config_addr <= 0) {
2746 dev_err(d40c->base->dev, "no address supplied\n");
2747 return -EINVAL;
2748 }
2749
2750 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2751 dev_err(d40c->base->dev,
2752 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2753 src_maxburst,
2754 src_addr_width,
2755 dst_maxburst,
2756 dst_addr_width);
2757 return -EINVAL;
2758 }
2759
2760 if (src_maxburst > 16) {
2761 src_maxburst = 16;
2762 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2763 } else if (dst_maxburst > 16) {
2764 dst_maxburst = 16;
2765 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2766 }
2767
2768 /* Only valid widths are; 1, 2, 4 and 8. */
2769 if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2770 src_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2771 dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2772 dst_addr_width > DMA_SLAVE_BUSWIDTH_8_BYTES ||
2773 !is_power_of_2(src_addr_width) ||
2774 !is_power_of_2(dst_addr_width))
2775 return -EINVAL;
2776
2777 cfg->src_info.data_width = src_addr_width;
2778 cfg->dst_info.data_width = dst_addr_width;
2779
2780 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2781 src_maxburst);
2782 if (ret)
2783 return ret;
2784
2785 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2786 dst_maxburst);
2787 if (ret)
2788 return ret;
2789
2790 /* Fill in register values */
2791 if (chan_is_logical(d40c))
2792 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2793 else
2794 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2795
2796 /* These settings will take precedence later */
2797 d40c->runtime_addr = config_addr;
2798 d40c->runtime_direction = config->direction;
2799 dev_dbg(d40c->base->dev,
2800 "configured channel %s for %s, data width %d/%d, "
2801 "maxburst %d/%d elements, LE, no flow control\n",
2802 dma_chan_name(chan),
2803 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2804 src_addr_width, dst_addr_width,
2805 src_maxburst, dst_maxburst);
2806
2807 return 0;
2808 }
2809
2810 /* Initialization functions */
2811
2812 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2813 struct d40_chan *chans, int offset,
2814 int num_chans)
2815 {
2816 int i = 0;
2817 struct d40_chan *d40c;
2818
2819 INIT_LIST_HEAD(&dma->channels);
2820
2821 for (i = offset; i < offset + num_chans; i++) {
2822 d40c = &chans[i];
2823 d40c->base = base;
2824 d40c->chan.device = dma;
2825
2826 spin_lock_init(&d40c->lock);
2827
2828 d40c->log_num = D40_PHY_CHAN;
2829
2830 INIT_LIST_HEAD(&d40c->done);
2831 INIT_LIST_HEAD(&d40c->active);
2832 INIT_LIST_HEAD(&d40c->queue);
2833 INIT_LIST_HEAD(&d40c->pending_queue);
2834 INIT_LIST_HEAD(&d40c->client);
2835 INIT_LIST_HEAD(&d40c->prepare_queue);
2836
2837 tasklet_init(&d40c->tasklet, dma_tasklet,
2838 (unsigned long) d40c);
2839
2840 list_add_tail(&d40c->chan.device_node,
2841 &dma->channels);
2842 }
2843 }
2844
2845 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2846 {
2847 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2848 dev->device_prep_slave_sg = d40_prep_slave_sg;
2849
2850 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2851 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2852
2853 /*
2854 * This controller can only access address at even
2855 * 32bit boundaries, i.e. 2^2
2856 */
2857 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2858 }
2859
2860 if (dma_has_cap(DMA_SG, dev->cap_mask))
2861 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2862
2863 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2864 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2865
2866 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2867 dev->device_free_chan_resources = d40_free_chan_resources;
2868 dev->device_issue_pending = d40_issue_pending;
2869 dev->device_tx_status = d40_tx_status;
2870 dev->device_config = d40_set_runtime_config;
2871 dev->device_pause = d40_pause;
2872 dev->device_resume = d40_resume;
2873 dev->device_terminate_all = d40_terminate_all;
2874 dev->dev = base->dev;
2875 }
2876
2877 static int __init d40_dmaengine_init(struct d40_base *base,
2878 int num_reserved_chans)
2879 {
2880 int err ;
2881
2882 d40_chan_init(base, &base->dma_slave, base->log_chans,
2883 0, base->num_log_chans);
2884
2885 dma_cap_zero(base->dma_slave.cap_mask);
2886 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2887 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2888
2889 d40_ops_init(base, &base->dma_slave);
2890
2891 err = dma_async_device_register(&base->dma_slave);
2892
2893 if (err) {
2894 d40_err(base->dev, "Failed to register slave channels\n");
2895 goto exit;
2896 }
2897
2898 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2899 base->num_log_chans, base->num_memcpy_chans);
2900
2901 dma_cap_zero(base->dma_memcpy.cap_mask);
2902 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2903 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2904
2905 d40_ops_init(base, &base->dma_memcpy);
2906
2907 err = dma_async_device_register(&base->dma_memcpy);
2908
2909 if (err) {
2910 d40_err(base->dev,
2911 "Failed to register memcpy only channels\n");
2912 goto unregister_slave;
2913 }
2914
2915 d40_chan_init(base, &base->dma_both, base->phy_chans,
2916 0, num_reserved_chans);
2917
2918 dma_cap_zero(base->dma_both.cap_mask);
2919 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2920 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2921 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2922 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2923
2924 d40_ops_init(base, &base->dma_both);
2925 err = dma_async_device_register(&base->dma_both);
2926
2927 if (err) {
2928 d40_err(base->dev,
2929 "Failed to register logical and physical capable channels\n");
2930 goto unregister_memcpy;
2931 }
2932 return 0;
2933 unregister_memcpy:
2934 dma_async_device_unregister(&base->dma_memcpy);
2935 unregister_slave:
2936 dma_async_device_unregister(&base->dma_slave);
2937 exit:
2938 return err;
2939 }
2940
2941 /* Suspend resume functionality */
2942 #ifdef CONFIG_PM_SLEEP
2943 static int dma40_suspend(struct device *dev)
2944 {
2945 struct platform_device *pdev = to_platform_device(dev);
2946 struct d40_base *base = platform_get_drvdata(pdev);
2947 int ret;
2948
2949 ret = pm_runtime_force_suspend(dev);
2950 if (ret)
2951 return ret;
2952
2953 if (base->lcpa_regulator)
2954 ret = regulator_disable(base->lcpa_regulator);
2955 return ret;
2956 }
2957
2958 static int dma40_resume(struct device *dev)
2959 {
2960 struct platform_device *pdev = to_platform_device(dev);
2961 struct d40_base *base = platform_get_drvdata(pdev);
2962 int ret = 0;
2963
2964 if (base->lcpa_regulator) {
2965 ret = regulator_enable(base->lcpa_regulator);
2966 if (ret)
2967 return ret;
2968 }
2969
2970 return pm_runtime_force_resume(dev);
2971 }
2972 #endif
2973
2974 #ifdef CONFIG_PM
2975 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2976 u32 *regaddr, int num, bool save)
2977 {
2978 int i;
2979
2980 for (i = 0; i < num; i++) {
2981 void __iomem *addr = baseaddr + regaddr[i];
2982
2983 if (save)
2984 backup[i] = readl_relaxed(addr);
2985 else
2986 writel_relaxed(backup[i], addr);
2987 }
2988 }
2989
2990 static void d40_save_restore_registers(struct d40_base *base, bool save)
2991 {
2992 int i;
2993
2994 /* Save/Restore channel specific registers */
2995 for (i = 0; i < base->num_phy_chans; i++) {
2996 void __iomem *addr;
2997 int idx;
2998
2999 if (base->phy_res[i].reserved)
3000 continue;
3001
3002 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
3003 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
3004
3005 dma40_backup(addr, &base->reg_val_backup_chan[idx],
3006 d40_backup_regs_chan,
3007 ARRAY_SIZE(d40_backup_regs_chan),
3008 save);
3009 }
3010
3011 /* Save/Restore global registers */
3012 dma40_backup(base->virtbase, base->reg_val_backup,
3013 d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
3014 save);
3015
3016 /* Save/Restore registers only existing on dma40 v3 and later */
3017 if (base->gen_dmac.backup)
3018 dma40_backup(base->virtbase, base->reg_val_backup_v4,
3019 base->gen_dmac.backup,
3020 base->gen_dmac.backup_size,
3021 save);
3022 }
3023
3024 static int dma40_runtime_suspend(struct device *dev)
3025 {
3026 struct platform_device *pdev = to_platform_device(dev);
3027 struct d40_base *base = platform_get_drvdata(pdev);
3028
3029 d40_save_restore_registers(base, true);
3030
3031 /* Don't disable/enable clocks for v1 due to HW bugs */
3032 if (base->rev != 1)
3033 writel_relaxed(base->gcc_pwr_off_mask,
3034 base->virtbase + D40_DREG_GCC);
3035
3036 return 0;
3037 }
3038
3039 static int dma40_runtime_resume(struct device *dev)
3040 {
3041 struct platform_device *pdev = to_platform_device(dev);
3042 struct d40_base *base = platform_get_drvdata(pdev);
3043
3044 d40_save_restore_registers(base, false);
3045
3046 writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3047 base->virtbase + D40_DREG_GCC);
3048 return 0;
3049 }
3050 #endif
3051
3052 static const struct dev_pm_ops dma40_pm_ops = {
3053 SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3054 SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3055 dma40_runtime_resume,
3056 NULL)
3057 };
3058
3059 /* Initialization functions. */
3060
3061 static int __init d40_phy_res_init(struct d40_base *base)
3062 {
3063 int i;
3064 int num_phy_chans_avail = 0;
3065 u32 val[2];
3066 int odd_even_bit = -2;
3067 int gcc = D40_DREG_GCC_ENA;
3068
3069 val[0] = readl(base->virtbase + D40_DREG_PRSME);
3070 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3071
3072 for (i = 0; i < base->num_phy_chans; i++) {
3073 base->phy_res[i].num = i;
3074 odd_even_bit += 2 * ((i % 2) == 0);
3075 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3076 /* Mark security only channels as occupied */
3077 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3078 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3079 base->phy_res[i].reserved = true;
3080 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3081 D40_DREG_GCC_SRC);
3082 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3083 D40_DREG_GCC_DST);
3084
3085
3086 } else {
3087 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3088 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3089 base->phy_res[i].reserved = false;
3090 num_phy_chans_avail++;
3091 }
3092 spin_lock_init(&base->phy_res[i].lock);
3093 }
3094
3095 /* Mark disabled channels as occupied */
3096 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3097 int chan = base->plat_data->disabled_channels[i];
3098
3099 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3100 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3101 base->phy_res[chan].reserved = true;
3102 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3103 D40_DREG_GCC_SRC);
3104 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3105 D40_DREG_GCC_DST);
3106 num_phy_chans_avail--;
3107 }
3108
3109 /* Mark soft_lli channels */
3110 for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3111 int chan = base->plat_data->soft_lli_chans[i];
3112
3113 base->phy_res[chan].use_soft_lli = true;
3114 }
3115
3116 dev_info(base->dev, "%d of %d physical DMA channels available\n",
3117 num_phy_chans_avail, base->num_phy_chans);
3118
3119 /* Verify settings extended vs standard */
3120 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3121
3122 for (i = 0; i < base->num_phy_chans; i++) {
3123
3124 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3125 (val[0] & 0x3) != 1)
3126 dev_info(base->dev,
3127 "[%s] INFO: channel %d is misconfigured (%d)\n",
3128 __func__, i, val[0] & 0x3);
3129
3130 val[0] = val[0] >> 2;
3131 }
3132
3133 /*
3134 * To keep things simple, Enable all clocks initially.
3135 * The clocks will get managed later post channel allocation.
3136 * The clocks for the event lines on which reserved channels exists
3137 * are not managed here.
3138 */
3139 writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3140 base->gcc_pwr_off_mask = gcc;
3141
3142 return num_phy_chans_avail;
3143 }
3144
3145 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3146 {
3147 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3148 struct clk *clk;
3149 void __iomem *virtbase;
3150 struct resource *res;
3151 struct d40_base *base;
3152 int num_log_chans;
3153 int num_phy_chans;
3154 int num_memcpy_chans;
3155 int clk_ret = -EINVAL;
3156 int i;
3157 u32 pid;
3158 u32 cid;
3159 u8 rev;
3160
3161 clk = clk_get(&pdev->dev, NULL);
3162 if (IS_ERR(clk)) {
3163 d40_err(&pdev->dev, "No matching clock found\n");
3164 goto check_prepare_enabled;
3165 }
3166
3167 clk_ret = clk_prepare_enable(clk);
3168 if (clk_ret) {
3169 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3170 goto disable_unprepare;
3171 }
3172
3173 /* Get IO for DMAC base address */
3174 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3175 if (!res)
3176 goto disable_unprepare;
3177
3178 if (request_mem_region(res->start, resource_size(res),
3179 D40_NAME " I/O base") == NULL)
3180 goto release_region;
3181
3182 virtbase = ioremap(res->start, resource_size(res));
3183 if (!virtbase)
3184 goto release_region;
3185
3186 /* This is just a regular AMBA PrimeCell ID actually */
3187 for (pid = 0, i = 0; i < 4; i++)
3188 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3189 & 255) << (i * 8);
3190 for (cid = 0, i = 0; i < 4; i++)
3191 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3192 & 255) << (i * 8);
3193
3194 if (cid != AMBA_CID) {
3195 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3196 goto unmap_io;
3197 }
3198 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3199 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3200 AMBA_MANF_BITS(pid),
3201 AMBA_VENDOR_ST);
3202 goto unmap_io;
3203 }
3204 /*
3205 * HW revision:
3206 * DB8500ed has revision 0
3207 * ? has revision 1
3208 * DB8500v1 has revision 2
3209 * DB8500v2 has revision 3
3210 * AP9540v1 has revision 4
3211 * DB8540v1 has revision 4
3212 */
3213 rev = AMBA_REV_BITS(pid);
3214 if (rev < 2) {
3215 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3216 goto unmap_io;
3217 }
3218
3219 /* The number of physical channels on this HW */
3220 if (plat_data->num_of_phy_chans)
3221 num_phy_chans = plat_data->num_of_phy_chans;
3222 else
3223 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3224
3225 /* The number of channels used for memcpy */
3226 if (plat_data->num_of_memcpy_chans)
3227 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3228 else
3229 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3230
3231 num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3232
3233 dev_info(&pdev->dev,
3234 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3235 rev, &res->start, num_phy_chans, num_log_chans);
3236
3237 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3238 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3239 sizeof(struct d40_chan), GFP_KERNEL);
3240
3241 if (base == NULL)
3242 goto unmap_io;
3243
3244 base->rev = rev;
3245 base->clk = clk;
3246 base->num_memcpy_chans = num_memcpy_chans;
3247 base->num_phy_chans = num_phy_chans;
3248 base->num_log_chans = num_log_chans;
3249 base->phy_start = res->start;
3250 base->phy_size = resource_size(res);
3251 base->virtbase = virtbase;
3252 base->plat_data = plat_data;
3253 base->dev = &pdev->dev;
3254 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3255 base->log_chans = &base->phy_chans[num_phy_chans];
3256
3257 if (base->plat_data->num_of_phy_chans == 14) {
3258 base->gen_dmac.backup = d40_backup_regs_v4b;
3259 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3260 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3261 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3262 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3263 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3264 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3265 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3266 base->gen_dmac.il = il_v4b;
3267 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3268 base->gen_dmac.init_reg = dma_init_reg_v4b;
3269 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3270 } else {
3271 if (base->rev >= 3) {
3272 base->gen_dmac.backup = d40_backup_regs_v4a;
3273 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3274 }
3275 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3276 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3277 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3278 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3279 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3280 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3281 base->gen_dmac.il = il_v4a;
3282 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3283 base->gen_dmac.init_reg = dma_init_reg_v4a;
3284 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3285 }
3286
3287 base->phy_res = kcalloc(num_phy_chans,
3288 sizeof(*base->phy_res),
3289 GFP_KERNEL);
3290 if (!base->phy_res)
3291 goto free_base;
3292
3293 base->lookup_phy_chans = kcalloc(num_phy_chans,
3294 sizeof(*base->lookup_phy_chans),
3295 GFP_KERNEL);
3296 if (!base->lookup_phy_chans)
3297 goto free_phy_res;
3298
3299 base->lookup_log_chans = kcalloc(num_log_chans,
3300 sizeof(*base->lookup_log_chans),
3301 GFP_KERNEL);
3302 if (!base->lookup_log_chans)
3303 goto free_phy_chans;
3304
3305 base->reg_val_backup_chan = kmalloc_array(base->num_phy_chans,
3306 sizeof(d40_backup_regs_chan),
3307 GFP_KERNEL);
3308 if (!base->reg_val_backup_chan)
3309 goto free_log_chans;
3310
3311 base->lcla_pool.alloc_map = kcalloc(num_phy_chans
3312 * D40_LCLA_LINK_PER_EVENT_GRP,
3313 sizeof(*base->lcla_pool.alloc_map),
3314 GFP_KERNEL);
3315 if (!base->lcla_pool.alloc_map)
3316 goto free_backup_chan;
3317
3318 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3319 0, SLAB_HWCACHE_ALIGN,
3320 NULL);
3321 if (base->desc_slab == NULL)
3322 goto free_map;
3323
3324 return base;
3325 free_map:
3326 kfree(base->lcla_pool.alloc_map);
3327 free_backup_chan:
3328 kfree(base->reg_val_backup_chan);
3329 free_log_chans:
3330 kfree(base->lookup_log_chans);
3331 free_phy_chans:
3332 kfree(base->lookup_phy_chans);
3333 free_phy_res:
3334 kfree(base->phy_res);
3335 free_base:
3336 kfree(base);
3337 unmap_io:
3338 iounmap(virtbase);
3339 release_region:
3340 release_mem_region(res->start, resource_size(res));
3341 check_prepare_enabled:
3342 if (!clk_ret)
3343 disable_unprepare:
3344 clk_disable_unprepare(clk);
3345 if (!IS_ERR(clk))
3346 clk_put(clk);
3347 return NULL;
3348 }
3349
3350 static void __init d40_hw_init(struct d40_base *base)
3351 {
3352
3353 int i;
3354 u32 prmseo[2] = {0, 0};
3355 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3356 u32 pcmis = 0;
3357 u32 pcicr = 0;
3358 struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3359 u32 reg_size = base->gen_dmac.init_reg_size;
3360
3361 for (i = 0; i < reg_size; i++)
3362 writel(dma_init_reg[i].val,
3363 base->virtbase + dma_init_reg[i].reg);
3364
3365 /* Configure all our dma channels to default settings */
3366 for (i = 0; i < base->num_phy_chans; i++) {
3367
3368 activeo[i % 2] = activeo[i % 2] << 2;
3369
3370 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3371 == D40_ALLOC_PHY) {
3372 activeo[i % 2] |= 3;
3373 continue;
3374 }
3375
3376 /* Enable interrupt # */
3377 pcmis = (pcmis << 1) | 1;
3378
3379 /* Clear interrupt # */
3380 pcicr = (pcicr << 1) | 1;
3381
3382 /* Set channel to physical mode */
3383 prmseo[i % 2] = prmseo[i % 2] << 2;
3384 prmseo[i % 2] |= 1;
3385
3386 }
3387
3388 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3389 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3390 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3391 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3392
3393 /* Write which interrupt to enable */
3394 writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3395
3396 /* Write which interrupt to clear */
3397 writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3398
3399 /* These are __initdata and cannot be accessed after init */
3400 base->gen_dmac.init_reg = NULL;
3401 base->gen_dmac.init_reg_size = 0;
3402 }
3403
3404 static int __init d40_lcla_allocate(struct d40_base *base)
3405 {
3406 struct d40_lcla_pool *pool = &base->lcla_pool;
3407 unsigned long *page_list;
3408 int i, j;
3409 int ret;
3410
3411 /*
3412 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3413 * To full fill this hardware requirement without wasting 256 kb
3414 * we allocate pages until we get an aligned one.
3415 */
3416 page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3417 sizeof(*page_list),
3418 GFP_KERNEL);
3419 if (!page_list)
3420 return -ENOMEM;
3421
3422 /* Calculating how many pages that are required */
3423 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3424
3425 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3426 page_list[i] = __get_free_pages(GFP_KERNEL,
3427 base->lcla_pool.pages);
3428 if (!page_list[i]) {
3429
3430 d40_err(base->dev, "Failed to allocate %d pages.\n",
3431 base->lcla_pool.pages);
3432 ret = -ENOMEM;
3433
3434 for (j = 0; j < i; j++)
3435 free_pages(page_list[j], base->lcla_pool.pages);
3436 goto free_page_list;
3437 }
3438
3439 if ((virt_to_phys((void *)page_list[i]) &
3440 (LCLA_ALIGNMENT - 1)) == 0)
3441 break;
3442 }
3443
3444 for (j = 0; j < i; j++)
3445 free_pages(page_list[j], base->lcla_pool.pages);
3446
3447 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3448 base->lcla_pool.base = (void *)page_list[i];
3449 } else {
3450 /*
3451 * After many attempts and no succees with finding the correct
3452 * alignment, try with allocating a big buffer.
3453 */
3454 dev_warn(base->dev,
3455 "[%s] Failed to get %d pages @ 18 bit align.\n",
3456 __func__, base->lcla_pool.pages);
3457 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3458 base->num_phy_chans +
3459 LCLA_ALIGNMENT,
3460 GFP_KERNEL);
3461 if (!base->lcla_pool.base_unaligned) {
3462 ret = -ENOMEM;
3463 goto free_page_list;
3464 }
3465
3466 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3467 LCLA_ALIGNMENT);
3468 }
3469
3470 pool->dma_addr = dma_map_single(base->dev, pool->base,
3471 SZ_1K * base->num_phy_chans,
3472 DMA_TO_DEVICE);
3473 if (dma_mapping_error(base->dev, pool->dma_addr)) {
3474 pool->dma_addr = 0;
3475 ret = -ENOMEM;
3476 goto free_page_list;
3477 }
3478
3479 writel(virt_to_phys(base->lcla_pool.base),
3480 base->virtbase + D40_DREG_LCLA);
3481 ret = 0;
3482 free_page_list:
3483 kfree(page_list);
3484 return ret;
3485 }
3486
3487 static int __init d40_of_probe(struct platform_device *pdev,
3488 struct device_node *np)
3489 {
3490 struct stedma40_platform_data *pdata;
3491 int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3492 const __be32 *list;
3493
3494 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
3495 if (!pdata)
3496 return -ENOMEM;
3497
3498 /* If absent this value will be obtained from h/w. */
3499 of_property_read_u32(np, "dma-channels", &num_phy);
3500 if (num_phy > 0)
3501 pdata->num_of_phy_chans = num_phy;
3502
3503 list = of_get_property(np, "memcpy-channels", &num_memcpy);
3504 num_memcpy /= sizeof(*list);
3505
3506 if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3507 d40_err(&pdev->dev,
3508 "Invalid number of memcpy channels specified (%d)\n",
3509 num_memcpy);
3510 return -EINVAL;
3511 }
3512 pdata->num_of_memcpy_chans = num_memcpy;
3513
3514 of_property_read_u32_array(np, "memcpy-channels",
3515 dma40_memcpy_channels,
3516 num_memcpy);
3517
3518 list = of_get_property(np, "disabled-channels", &num_disabled);
3519 num_disabled /= sizeof(*list);
3520
3521 if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3522 d40_err(&pdev->dev,
3523 "Invalid number of disabled channels specified (%d)\n",
3524 num_disabled);
3525 return -EINVAL;
3526 }
3527
3528 of_property_read_u32_array(np, "disabled-channels",
3529 pdata->disabled_channels,
3530 num_disabled);
3531 pdata->disabled_channels[num_disabled] = -1;
3532
3533 pdev->dev.platform_data = pdata;
3534
3535 return 0;
3536 }
3537
3538 static int __init d40_probe(struct platform_device *pdev)
3539 {
3540 struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3541 struct device_node *np = pdev->dev.of_node;
3542 int ret = -ENOENT;
3543 struct d40_base *base;
3544 struct resource *res;
3545 int num_reserved_chans;
3546 u32 val;
3547
3548 if (!plat_data) {
3549 if (np) {
3550 if (d40_of_probe(pdev, np)) {
3551 ret = -ENOMEM;
3552 goto report_failure;
3553 }
3554 } else {
3555 d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3556 goto report_failure;
3557 }
3558 }
3559
3560 base = d40_hw_detect_init(pdev);
3561 if (!base)
3562 goto report_failure;
3563
3564 num_reserved_chans = d40_phy_res_init(base);
3565
3566 platform_set_drvdata(pdev, base);
3567
3568 spin_lock_init(&base->interrupt_lock);
3569 spin_lock_init(&base->execmd_lock);
3570
3571 /* Get IO for logical channel parameter address */
3572 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3573 if (!res) {
3574 ret = -ENOENT;
3575 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3576 goto destroy_cache;
3577 }
3578 base->lcpa_size = resource_size(res);
3579 base->phy_lcpa = res->start;
3580
3581 if (request_mem_region(res->start, resource_size(res),
3582 D40_NAME " I/O lcpa") == NULL) {
3583 ret = -EBUSY;
3584 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3585 goto destroy_cache;
3586 }
3587
3588 /* We make use of ESRAM memory for this. */
3589 val = readl(base->virtbase + D40_DREG_LCPA);
3590 if (res->start != val && val != 0) {
3591 dev_warn(&pdev->dev,
3592 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3593 __func__, val, &res->start);
3594 } else
3595 writel(res->start, base->virtbase + D40_DREG_LCPA);
3596
3597 base->lcpa_base = ioremap(res->start, resource_size(res));
3598 if (!base->lcpa_base) {
3599 ret = -ENOMEM;
3600 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3601 goto destroy_cache;
3602 }
3603 /* If lcla has to be located in ESRAM we don't need to allocate */
3604 if (base->plat_data->use_esram_lcla) {
3605 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3606 "lcla_esram");
3607 if (!res) {
3608 ret = -ENOENT;
3609 d40_err(&pdev->dev,
3610 "No \"lcla_esram\" memory resource\n");
3611 goto destroy_cache;
3612 }
3613 base->lcla_pool.base = ioremap(res->start,
3614 resource_size(res));
3615 if (!base->lcla_pool.base) {
3616 ret = -ENOMEM;
3617 d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3618 goto destroy_cache;
3619 }
3620 writel(res->start, base->virtbase + D40_DREG_LCLA);
3621
3622 } else {
3623 ret = d40_lcla_allocate(base);
3624 if (ret) {
3625 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3626 goto destroy_cache;
3627 }
3628 }
3629
3630 spin_lock_init(&base->lcla_pool.lock);
3631
3632 base->irq = platform_get_irq(pdev, 0);
3633
3634 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3635 if (ret) {
3636 d40_err(&pdev->dev, "No IRQ defined\n");
3637 goto destroy_cache;
3638 }
3639
3640 if (base->plat_data->use_esram_lcla) {
3641
3642 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3643 if (IS_ERR(base->lcpa_regulator)) {
3644 d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3645 ret = PTR_ERR(base->lcpa_regulator);
3646 base->lcpa_regulator = NULL;
3647 goto destroy_cache;
3648 }
3649
3650 ret = regulator_enable(base->lcpa_regulator);
3651 if (ret) {
3652 d40_err(&pdev->dev,
3653 "Failed to enable lcpa_regulator\n");
3654 regulator_put(base->lcpa_regulator);
3655 base->lcpa_regulator = NULL;
3656 goto destroy_cache;
3657 }
3658 }
3659
3660 writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3661
3662 pm_runtime_irq_safe(base->dev);
3663 pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3664 pm_runtime_use_autosuspend(base->dev);
3665 pm_runtime_mark_last_busy(base->dev);
3666 pm_runtime_set_active(base->dev);
3667 pm_runtime_enable(base->dev);
3668
3669 ret = d40_dmaengine_init(base, num_reserved_chans);
3670 if (ret)
3671 goto destroy_cache;
3672
3673 base->dev->dma_parms = &base->dma_parms;
3674 ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3675 if (ret) {
3676 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3677 goto destroy_cache;
3678 }
3679
3680 d40_hw_init(base);
3681
3682 if (np) {
3683 ret = of_dma_controller_register(np, d40_xlate, NULL);
3684 if (ret)
3685 dev_err(&pdev->dev,
3686 "could not register of_dma_controller\n");
3687 }
3688
3689 dev_info(base->dev, "initialized\n");
3690 return 0;
3691 destroy_cache:
3692 kmem_cache_destroy(base->desc_slab);
3693 if (base->virtbase)
3694 iounmap(base->virtbase);
3695
3696 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3697 iounmap(base->lcla_pool.base);
3698 base->lcla_pool.base = NULL;
3699 }
3700
3701 if (base->lcla_pool.dma_addr)
3702 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3703 SZ_1K * base->num_phy_chans,
3704 DMA_TO_DEVICE);
3705
3706 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3707 free_pages((unsigned long)base->lcla_pool.base,
3708 base->lcla_pool.pages);
3709
3710 kfree(base->lcla_pool.base_unaligned);
3711
3712 if (base->phy_lcpa)
3713 release_mem_region(base->phy_lcpa,
3714 base->lcpa_size);
3715 if (base->phy_start)
3716 release_mem_region(base->phy_start,
3717 base->phy_size);
3718 if (base->clk) {
3719 clk_disable_unprepare(base->clk);
3720 clk_put(base->clk);
3721 }
3722
3723 if (base->lcpa_regulator) {
3724 regulator_disable(base->lcpa_regulator);
3725 regulator_put(base->lcpa_regulator);
3726 }
3727
3728 kfree(base->lcla_pool.alloc_map);
3729 kfree(base->lookup_log_chans);
3730 kfree(base->lookup_phy_chans);
3731 kfree(base->phy_res);
3732 kfree(base);
3733 report_failure:
3734 d40_err(&pdev->dev, "probe failed\n");
3735 return ret;
3736 }
3737
3738 static const struct of_device_id d40_match[] = {
3739 { .compatible = "stericsson,dma40", },
3740 {}
3741 };
3742
3743 static struct platform_driver d40_driver = {
3744 .driver = {
3745 .name = D40_NAME,
3746 .pm = &dma40_pm_ops,
3747 .of_match_table = d40_match,
3748 },
3749 };
3750
3751 static int __init stedma40_init(void)
3752 {
3753 return platform_driver_probe(&d40_driver, d40_probe);
3754 }
3755 subsys_initcall(stedma40_init);