]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/dma/stm32-dma.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30
31 #include "virt-dma.h"
32
33 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI (STM32_DMA_TCI \
43 | STM32_DMA_TEI \
44 | STM32_DMA_DMEI \
45 | STM32_DMA_FEI)
46
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
63 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
64 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
65 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
66 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
67 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
68 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
69 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
70 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
71 */
72 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
73 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
74 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
75 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
76 | STM32_DMA_SCR_MINC \
77 | STM32_DMA_SCR_PINCOS \
78 | STM32_DMA_SCR_PL_MASK)
79 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
80 | STM32_DMA_SCR_TEIE \
81 | STM32_DMA_SCR_DMEIE)
82
83 /* DMA Stream x number of data register */
84 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
85
86 /* DMA stream peripheral address register */
87 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
88
89 /* DMA stream x memory 0 address register */
90 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
91
92 /* DMA stream x memory 1 address register */
93 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
94
95 /* DMA stream x FIFO control register */
96 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
97 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
98 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
99 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
100 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
101 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
102 | STM32_DMA_SFCR_DMDIS)
103
104 /* DMA direction */
105 #define STM32_DMA_DEV_TO_MEM 0x00
106 #define STM32_DMA_MEM_TO_DEV 0x01
107 #define STM32_DMA_MEM_TO_MEM 0x02
108
109 /* DMA priority level */
110 #define STM32_DMA_PRIORITY_LOW 0x00
111 #define STM32_DMA_PRIORITY_MEDIUM 0x01
112 #define STM32_DMA_PRIORITY_HIGH 0x02
113 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
114
115 /* DMA FIFO threshold selection */
116 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
117 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
118 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
119 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
120 #define STM32_DMA_FIFO_THRESHOLD_NONE 0x04
121
122 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
123 /*
124 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
125 * gather at boundary. Thus it's safer to round down this value on FIFO
126 * size (16 Bytes)
127 */
128 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
129 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
130 #define STM32_DMA_MAX_CHANNELS 0x08
131 #define STM32_DMA_MAX_REQUEST_ID 0x08
132 #define STM32_DMA_MAX_DATA_PARAM 0x03
133 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
134 #define STM32_DMA_MIN_BURST 4
135 #define STM32_DMA_MAX_BURST 16
136
137 /* DMA Features */
138 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
139 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
140 #define STM32_DMA_DIRECT_MODE_MASK BIT(2)
141 #define STM32_DMA_DIRECT_MODE_GET(n) (((n) & STM32_DMA_DIRECT_MODE_MASK) \
142 >> 2)
143
144 enum stm32_dma_width {
145 STM32_DMA_BYTE,
146 STM32_DMA_HALF_WORD,
147 STM32_DMA_WORD,
148 };
149
150 enum stm32_dma_burst_size {
151 STM32_DMA_BURST_SINGLE,
152 STM32_DMA_BURST_INCR4,
153 STM32_DMA_BURST_INCR8,
154 STM32_DMA_BURST_INCR16,
155 };
156
157 /**
158 * struct stm32_dma_cfg - STM32 DMA custom configuration
159 * @channel_id: channel ID
160 * @request_line: DMA request
161 * @stream_config: 32bit mask specifying the DMA channel configuration
162 * @features: 32bit mask specifying the DMA Feature list
163 */
164 struct stm32_dma_cfg {
165 u32 channel_id;
166 u32 request_line;
167 u32 stream_config;
168 u32 features;
169 };
170
171 struct stm32_dma_chan_reg {
172 u32 dma_lisr;
173 u32 dma_hisr;
174 u32 dma_lifcr;
175 u32 dma_hifcr;
176 u32 dma_scr;
177 u32 dma_sndtr;
178 u32 dma_spar;
179 u32 dma_sm0ar;
180 u32 dma_sm1ar;
181 u32 dma_sfcr;
182 };
183
184 struct stm32_dma_sg_req {
185 u32 len;
186 struct stm32_dma_chan_reg chan_reg;
187 };
188
189 struct stm32_dma_desc {
190 struct virt_dma_desc vdesc;
191 bool cyclic;
192 u32 num_sgs;
193 struct stm32_dma_sg_req sg_req[];
194 };
195
196 struct stm32_dma_chan {
197 struct virt_dma_chan vchan;
198 bool config_init;
199 bool busy;
200 u32 id;
201 u32 irq;
202 struct stm32_dma_desc *desc;
203 u32 next_sg;
204 struct dma_slave_config dma_sconfig;
205 struct stm32_dma_chan_reg chan_reg;
206 u32 threshold;
207 u32 mem_burst;
208 u32 mem_width;
209 };
210
211 struct stm32_dma_device {
212 struct dma_device ddev;
213 void __iomem *base;
214 struct clk *clk;
215 bool mem2mem;
216 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
217 };
218
219 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
220 {
221 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
222 ddev);
223 }
224
225 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
226 {
227 return container_of(c, struct stm32_dma_chan, vchan.chan);
228 }
229
230 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
231 {
232 return container_of(vdesc, struct stm32_dma_desc, vdesc);
233 }
234
235 static struct device *chan2dev(struct stm32_dma_chan *chan)
236 {
237 return &chan->vchan.chan.dev->device;
238 }
239
240 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
241 {
242 return readl_relaxed(dmadev->base + reg);
243 }
244
245 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
246 {
247 writel_relaxed(val, dmadev->base + reg);
248 }
249
250 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
251 enum dma_slave_buswidth width)
252 {
253 switch (width) {
254 case DMA_SLAVE_BUSWIDTH_1_BYTE:
255 return STM32_DMA_BYTE;
256 case DMA_SLAVE_BUSWIDTH_2_BYTES:
257 return STM32_DMA_HALF_WORD;
258 case DMA_SLAVE_BUSWIDTH_4_BYTES:
259 return STM32_DMA_WORD;
260 default:
261 dev_err(chan2dev(chan), "Dma bus width not supported\n");
262 return -EINVAL;
263 }
264 }
265
266 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
267 dma_addr_t buf_addr,
268 u32 threshold)
269 {
270 enum dma_slave_buswidth max_width;
271 u64 addr = buf_addr;
272
273 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
274 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
275 else
276 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
277
278 while ((buf_len < max_width || buf_len % max_width) &&
279 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
280 max_width = max_width >> 1;
281
282 if (do_div(addr, max_width))
283 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
284
285 return max_width;
286 }
287
288 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
289 enum dma_slave_buswidth width)
290 {
291 u32 remaining;
292
293 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
294 return false;
295
296 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
297 if (burst != 0) {
298 /*
299 * If number of beats fit in several whole bursts
300 * this configuration is allowed.
301 */
302 remaining = ((STM32_DMA_FIFO_SIZE / width) *
303 (threshold + 1) / 4) % burst;
304
305 if (remaining == 0)
306 return true;
307 } else {
308 return true;
309 }
310 }
311
312 return false;
313 }
314
315 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
316 {
317 /* If FIFO direct mode, burst is not possible */
318 if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
319 return false;
320
321 /*
322 * Buffer or period length has to be aligned on FIFO depth.
323 * Otherwise bytes may be stuck within FIFO at buffer or period
324 * length.
325 */
326 return ((buf_len % ((threshold + 1) * 4)) == 0);
327 }
328
329 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
330 enum dma_slave_buswidth width)
331 {
332 u32 best_burst = max_burst;
333
334 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
335 return 0;
336
337 while ((buf_len < best_burst * width && best_burst > 1) ||
338 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
339 width)) {
340 if (best_burst > STM32_DMA_MIN_BURST)
341 best_burst = best_burst >> 1;
342 else
343 best_burst = 0;
344 }
345
346 return best_burst;
347 }
348
349 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
350 {
351 switch (maxburst) {
352 case 0:
353 case 1:
354 return STM32_DMA_BURST_SINGLE;
355 case 4:
356 return STM32_DMA_BURST_INCR4;
357 case 8:
358 return STM32_DMA_BURST_INCR8;
359 case 16:
360 return STM32_DMA_BURST_INCR16;
361 default:
362 dev_err(chan2dev(chan), "Dma burst size not supported\n");
363 return -EINVAL;
364 }
365 }
366
367 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
368 u32 src_burst, u32 dst_burst)
369 {
370 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
371 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
372
373 if (!src_burst && !dst_burst) {
374 /* Using direct mode */
375 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
376 } else {
377 /* Using FIFO mode */
378 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
379 }
380 }
381
382 static int stm32_dma_slave_config(struct dma_chan *c,
383 struct dma_slave_config *config)
384 {
385 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
386
387 memcpy(&chan->dma_sconfig, config, sizeof(*config));
388
389 chan->config_init = true;
390
391 return 0;
392 }
393
394 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
395 {
396 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
397 u32 flags, dma_isr;
398
399 /*
400 * Read "flags" from DMA_xISR register corresponding to the selected
401 * DMA channel at the correct bit offset inside that register.
402 *
403 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
404 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
405 */
406
407 if (chan->id & 4)
408 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
409 else
410 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
411
412 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
413
414 return flags & STM32_DMA_MASKI;
415 }
416
417 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
418 {
419 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
420 u32 dma_ifcr;
421
422 /*
423 * Write "flags" to the DMA_xIFCR register corresponding to the selected
424 * DMA channel at the correct bit offset inside that register.
425 *
426 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
427 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
428 */
429 flags &= STM32_DMA_MASKI;
430 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
431
432 if (chan->id & 4)
433 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
434 else
435 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
436 }
437
438 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
439 {
440 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
441 u32 dma_scr, id, reg;
442
443 id = chan->id;
444 reg = STM32_DMA_SCR(id);
445 dma_scr = stm32_dma_read(dmadev, reg);
446
447 if (dma_scr & STM32_DMA_SCR_EN) {
448 dma_scr &= ~STM32_DMA_SCR_EN;
449 stm32_dma_write(dmadev, reg, dma_scr);
450
451 return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
452 dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
453 10, 1000000);
454 }
455
456 return 0;
457 }
458
459 static void stm32_dma_stop(struct stm32_dma_chan *chan)
460 {
461 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
462 u32 dma_scr, dma_sfcr, status;
463 int ret;
464
465 /* Disable interrupts */
466 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
467 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
468 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
469 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
470 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
471 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
472
473 /* Disable DMA */
474 ret = stm32_dma_disable_chan(chan);
475 if (ret < 0)
476 return;
477
478 /* Clear interrupt status if it is there */
479 status = stm32_dma_irq_status(chan);
480 if (status) {
481 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
482 __func__, status);
483 stm32_dma_irq_clear(chan, status);
484 }
485
486 chan->busy = false;
487 }
488
489 static int stm32_dma_terminate_all(struct dma_chan *c)
490 {
491 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
492 unsigned long flags;
493 LIST_HEAD(head);
494
495 spin_lock_irqsave(&chan->vchan.lock, flags);
496
497 if (chan->desc) {
498 vchan_terminate_vdesc(&chan->desc->vdesc);
499 if (chan->busy)
500 stm32_dma_stop(chan);
501 chan->desc = NULL;
502 }
503
504 vchan_get_all_descriptors(&chan->vchan, &head);
505 spin_unlock_irqrestore(&chan->vchan.lock, flags);
506 vchan_dma_desc_free_list(&chan->vchan, &head);
507
508 return 0;
509 }
510
511 static void stm32_dma_synchronize(struct dma_chan *c)
512 {
513 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
514
515 vchan_synchronize(&chan->vchan);
516 }
517
518 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
519 {
520 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
521 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
522 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
523 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
524 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
525 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
526 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
527
528 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
529 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
530 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
531 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
532 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
533 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
534 }
535
536 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
537
538 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
539 {
540 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
541 struct virt_dma_desc *vdesc;
542 struct stm32_dma_sg_req *sg_req;
543 struct stm32_dma_chan_reg *reg;
544 u32 status;
545 int ret;
546
547 ret = stm32_dma_disable_chan(chan);
548 if (ret < 0)
549 return;
550
551 if (!chan->desc) {
552 vdesc = vchan_next_desc(&chan->vchan);
553 if (!vdesc)
554 return;
555
556 list_del(&vdesc->node);
557
558 chan->desc = to_stm32_dma_desc(vdesc);
559 chan->next_sg = 0;
560 }
561
562 if (chan->next_sg == chan->desc->num_sgs)
563 chan->next_sg = 0;
564
565 sg_req = &chan->desc->sg_req[chan->next_sg];
566 reg = &sg_req->chan_reg;
567
568 reg->dma_scr &= ~STM32_DMA_SCR_EN;
569 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
570 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
571 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
572 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
573 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
574 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
575
576 chan->next_sg++;
577
578 /* Clear interrupt status if it is there */
579 status = stm32_dma_irq_status(chan);
580 if (status)
581 stm32_dma_irq_clear(chan, status);
582
583 if (chan->desc->cyclic)
584 stm32_dma_configure_next_sg(chan);
585
586 stm32_dma_dump_reg(chan);
587
588 /* Start DMA */
589 reg->dma_scr |= STM32_DMA_SCR_EN;
590 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
591
592 chan->busy = true;
593
594 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
595 }
596
597 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
598 {
599 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
600 struct stm32_dma_sg_req *sg_req;
601 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
602
603 id = chan->id;
604 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
605
606 if (dma_scr & STM32_DMA_SCR_DBM) {
607 if (chan->next_sg == chan->desc->num_sgs)
608 chan->next_sg = 0;
609
610 sg_req = &chan->desc->sg_req[chan->next_sg];
611
612 if (dma_scr & STM32_DMA_SCR_CT) {
613 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
614 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
615 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
616 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
617 } else {
618 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
619 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
620 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
621 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
622 }
623 }
624 }
625
626 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
627 {
628 if (chan->desc) {
629 if (chan->desc->cyclic) {
630 vchan_cyclic_callback(&chan->desc->vdesc);
631 chan->next_sg++;
632 stm32_dma_configure_next_sg(chan);
633 } else {
634 chan->busy = false;
635 if (chan->next_sg == chan->desc->num_sgs) {
636 vchan_cookie_complete(&chan->desc->vdesc);
637 chan->desc = NULL;
638 }
639 stm32_dma_start_transfer(chan);
640 }
641 }
642 }
643
644 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
645 {
646 struct stm32_dma_chan *chan = devid;
647 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
648 u32 status, scr, sfcr;
649
650 spin_lock(&chan->vchan.lock);
651
652 status = stm32_dma_irq_status(chan);
653 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
654 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
655
656 if (status & STM32_DMA_FEI) {
657 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
658 status &= ~STM32_DMA_FEI;
659 if (sfcr & STM32_DMA_SFCR_FEIE) {
660 if (!(scr & STM32_DMA_SCR_EN) &&
661 !(status & STM32_DMA_TCI))
662 dev_err(chan2dev(chan), "FIFO Error\n");
663 else
664 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
665 }
666 }
667 if (status & STM32_DMA_DMEI) {
668 stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
669 status &= ~STM32_DMA_DMEI;
670 if (sfcr & STM32_DMA_SCR_DMEIE)
671 dev_dbg(chan2dev(chan), "Direct mode overrun\n");
672 }
673
674 if (status & STM32_DMA_TCI) {
675 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
676 if (scr & STM32_DMA_SCR_TCIE)
677 stm32_dma_handle_chan_done(chan);
678 status &= ~STM32_DMA_TCI;
679 }
680
681 if (status & STM32_DMA_HTI) {
682 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
683 status &= ~STM32_DMA_HTI;
684 }
685
686 if (status) {
687 stm32_dma_irq_clear(chan, status);
688 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
689 if (!(scr & STM32_DMA_SCR_EN))
690 dev_err(chan2dev(chan), "chan disabled by HW\n");
691 }
692
693 spin_unlock(&chan->vchan.lock);
694
695 return IRQ_HANDLED;
696 }
697
698 static void stm32_dma_issue_pending(struct dma_chan *c)
699 {
700 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
701 unsigned long flags;
702
703 spin_lock_irqsave(&chan->vchan.lock, flags);
704 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
705 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
706 stm32_dma_start_transfer(chan);
707
708 }
709 spin_unlock_irqrestore(&chan->vchan.lock, flags);
710 }
711
712 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
713 enum dma_transfer_direction direction,
714 enum dma_slave_buswidth *buswidth,
715 u32 buf_len, dma_addr_t buf_addr)
716 {
717 enum dma_slave_buswidth src_addr_width, dst_addr_width;
718 int src_bus_width, dst_bus_width;
719 int src_burst_size, dst_burst_size;
720 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
721 u32 dma_scr, fifoth;
722
723 src_addr_width = chan->dma_sconfig.src_addr_width;
724 dst_addr_width = chan->dma_sconfig.dst_addr_width;
725 src_maxburst = chan->dma_sconfig.src_maxburst;
726 dst_maxburst = chan->dma_sconfig.dst_maxburst;
727 fifoth = chan->threshold;
728
729 switch (direction) {
730 case DMA_MEM_TO_DEV:
731 /* Set device data size */
732 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
733 if (dst_bus_width < 0)
734 return dst_bus_width;
735
736 /* Set device burst size */
737 dst_best_burst = stm32_dma_get_best_burst(buf_len,
738 dst_maxburst,
739 fifoth,
740 dst_addr_width);
741
742 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
743 if (dst_burst_size < 0)
744 return dst_burst_size;
745
746 /* Set memory data size */
747 src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
748 fifoth);
749 chan->mem_width = src_addr_width;
750 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
751 if (src_bus_width < 0)
752 return src_bus_width;
753
754 /* Set memory burst size */
755 src_maxburst = STM32_DMA_MAX_BURST;
756 src_best_burst = stm32_dma_get_best_burst(buf_len,
757 src_maxburst,
758 fifoth,
759 src_addr_width);
760 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
761 if (src_burst_size < 0)
762 return src_burst_size;
763
764 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
765 STM32_DMA_SCR_PSIZE(dst_bus_width) |
766 STM32_DMA_SCR_MSIZE(src_bus_width) |
767 STM32_DMA_SCR_PBURST(dst_burst_size) |
768 STM32_DMA_SCR_MBURST(src_burst_size);
769
770 /* Set FIFO threshold */
771 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
772 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
773 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
774
775 /* Set peripheral address */
776 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
777 *buswidth = dst_addr_width;
778 break;
779
780 case DMA_DEV_TO_MEM:
781 /* Set device data size */
782 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
783 if (src_bus_width < 0)
784 return src_bus_width;
785
786 /* Set device burst size */
787 src_best_burst = stm32_dma_get_best_burst(buf_len,
788 src_maxburst,
789 fifoth,
790 src_addr_width);
791 chan->mem_burst = src_best_burst;
792 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
793 if (src_burst_size < 0)
794 return src_burst_size;
795
796 /* Set memory data size */
797 dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
798 fifoth);
799 chan->mem_width = dst_addr_width;
800 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
801 if (dst_bus_width < 0)
802 return dst_bus_width;
803
804 /* Set memory burst size */
805 dst_maxburst = STM32_DMA_MAX_BURST;
806 dst_best_burst = stm32_dma_get_best_burst(buf_len,
807 dst_maxburst,
808 fifoth,
809 dst_addr_width);
810 chan->mem_burst = dst_best_burst;
811 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
812 if (dst_burst_size < 0)
813 return dst_burst_size;
814
815 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
816 STM32_DMA_SCR_PSIZE(src_bus_width) |
817 STM32_DMA_SCR_MSIZE(dst_bus_width) |
818 STM32_DMA_SCR_PBURST(src_burst_size) |
819 STM32_DMA_SCR_MBURST(dst_burst_size);
820
821 /* Set FIFO threshold */
822 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
823 if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
824 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
825
826 /* Set peripheral address */
827 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
828 *buswidth = chan->dma_sconfig.src_addr_width;
829 break;
830
831 default:
832 dev_err(chan2dev(chan), "Dma direction is not supported\n");
833 return -EINVAL;
834 }
835
836 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
837
838 /* Set DMA control register */
839 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
840 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
841 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
842 chan->chan_reg.dma_scr |= dma_scr;
843
844 return 0;
845 }
846
847 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
848 {
849 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
850 }
851
852 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
853 struct dma_chan *c, struct scatterlist *sgl,
854 u32 sg_len, enum dma_transfer_direction direction,
855 unsigned long flags, void *context)
856 {
857 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
858 struct stm32_dma_desc *desc;
859 struct scatterlist *sg;
860 enum dma_slave_buswidth buswidth;
861 u32 nb_data_items;
862 int i, ret;
863
864 if (!chan->config_init) {
865 dev_err(chan2dev(chan), "dma channel is not configured\n");
866 return NULL;
867 }
868
869 if (sg_len < 1) {
870 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
871 return NULL;
872 }
873
874 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
875 if (!desc)
876 return NULL;
877
878 /* Set peripheral flow controller */
879 if (chan->dma_sconfig.device_fc)
880 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
881 else
882 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
883
884 for_each_sg(sgl, sg, sg_len, i) {
885 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
886 sg_dma_len(sg),
887 sg_dma_address(sg));
888 if (ret < 0)
889 goto err;
890
891 desc->sg_req[i].len = sg_dma_len(sg);
892
893 nb_data_items = desc->sg_req[i].len / buswidth;
894 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
895 dev_err(chan2dev(chan), "nb items not supported\n");
896 goto err;
897 }
898
899 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
900 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
901 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
902 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
903 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
904 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
905 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
906 }
907
908 desc->num_sgs = sg_len;
909 desc->cyclic = false;
910
911 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
912
913 err:
914 kfree(desc);
915 return NULL;
916 }
917
918 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
919 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
920 size_t period_len, enum dma_transfer_direction direction,
921 unsigned long flags)
922 {
923 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
924 struct stm32_dma_desc *desc;
925 enum dma_slave_buswidth buswidth;
926 u32 num_periods, nb_data_items;
927 int i, ret;
928
929 if (!buf_len || !period_len) {
930 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
931 return NULL;
932 }
933
934 if (!chan->config_init) {
935 dev_err(chan2dev(chan), "dma channel is not configured\n");
936 return NULL;
937 }
938
939 if (buf_len % period_len) {
940 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
941 return NULL;
942 }
943
944 /*
945 * We allow to take more number of requests till DMA is
946 * not started. The driver will loop over all requests.
947 * Once DMA is started then new requests can be queued only after
948 * terminating the DMA.
949 */
950 if (chan->busy) {
951 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
952 return NULL;
953 }
954
955 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
956 buf_addr);
957 if (ret < 0)
958 return NULL;
959
960 nb_data_items = period_len / buswidth;
961 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
962 dev_err(chan2dev(chan), "number of items not supported\n");
963 return NULL;
964 }
965
966 /* Enable Circular mode or double buffer mode */
967 if (buf_len == period_len)
968 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
969 else
970 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
971
972 /* Clear periph ctrl if client set it */
973 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
974
975 num_periods = buf_len / period_len;
976
977 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
978 if (!desc)
979 return NULL;
980
981 for (i = 0; i < num_periods; i++) {
982 desc->sg_req[i].len = period_len;
983
984 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
985 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
986 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
987 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
988 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
989 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
990 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
991 buf_addr += period_len;
992 }
993
994 desc->num_sgs = num_periods;
995 desc->cyclic = true;
996
997 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
998 }
999
1000 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1001 struct dma_chan *c, dma_addr_t dest,
1002 dma_addr_t src, size_t len, unsigned long flags)
1003 {
1004 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1005 enum dma_slave_buswidth max_width;
1006 struct stm32_dma_desc *desc;
1007 size_t xfer_count, offset;
1008 u32 num_sgs, best_burst, dma_burst, threshold;
1009 int i;
1010
1011 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1012 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1013 if (!desc)
1014 return NULL;
1015
1016 threshold = chan->threshold;
1017
1018 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1019 xfer_count = min_t(size_t, len - offset,
1020 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1021
1022 /* Compute best burst size */
1023 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1025 threshold, max_width);
1026 dma_burst = stm32_dma_get_burst(chan, best_burst);
1027
1028 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1029 desc->sg_req[i].chan_reg.dma_scr =
1030 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1031 STM32_DMA_SCR_PBURST(dma_burst) |
1032 STM32_DMA_SCR_MBURST(dma_burst) |
1033 STM32_DMA_SCR_MINC |
1034 STM32_DMA_SCR_PINC |
1035 STM32_DMA_SCR_TCIE |
1036 STM32_DMA_SCR_TEIE;
1037 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1038 desc->sg_req[i].chan_reg.dma_sfcr |=
1039 STM32_DMA_SFCR_FTH(threshold);
1040 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1041 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1042 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1043 desc->sg_req[i].len = xfer_count;
1044 }
1045
1046 desc->num_sgs = num_sgs;
1047 desc->cyclic = false;
1048
1049 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1050 }
1051
1052 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1053 {
1054 u32 dma_scr, width, ndtr;
1055 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056
1057 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1058 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1059 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1060
1061 return ndtr << width;
1062 }
1063
1064 /**
1065 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1066 * @chan: dma channel
1067 *
1068 * This function called when IRQ are disable, checks that the hardware has not
1069 * switched on the next transfer in double buffer mode. The test is done by
1070 * comparing the next_sg memory address with the hardware related register
1071 * (based on CT bit value).
1072 *
1073 * Returns true if expected current transfer is still running or double
1074 * buffer mode is not activated.
1075 */
1076 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1077 {
1078 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1079 struct stm32_dma_sg_req *sg_req;
1080 u32 dma_scr, dma_smar, id;
1081
1082 id = chan->id;
1083 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1084
1085 if (!(dma_scr & STM32_DMA_SCR_DBM))
1086 return true;
1087
1088 sg_req = &chan->desc->sg_req[chan->next_sg];
1089
1090 if (dma_scr & STM32_DMA_SCR_CT) {
1091 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1092 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1093 }
1094
1095 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1096
1097 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1098 }
1099
1100 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1101 struct stm32_dma_desc *desc,
1102 u32 next_sg)
1103 {
1104 u32 modulo, burst_size;
1105 u32 residue;
1106 u32 n_sg = next_sg;
1107 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1108 int i;
1109
1110 /*
1111 * Calculate the residue means compute the descriptors
1112 * information:
1113 * - the sg_req currently transferred
1114 * - the Hardware remaining position in this sg (NDTR bits field).
1115 *
1116 * A race condition may occur if DMA is running in cyclic or double
1117 * buffer mode, since the DMA register are automatically reloaded at end
1118 * of period transfer. The hardware may have switched to the next
1119 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1120 * read.
1121 * In this case the SxNDTR reg could (or not) correspond to the new
1122 * transfer position, and not the expected one.
1123 * The strategy implemented in the stm32 driver is to:
1124 * - read the SxNDTR register
1125 * - crosscheck that hardware is still in current transfer.
1126 * In case of switch, we can assume that the DMA is at the beginning of
1127 * the next transfer. So we approximate the residue in consequence, by
1128 * pointing on the beginning of next transfer.
1129 *
1130 * This race condition doesn't apply for none cyclic mode, as double
1131 * buffer is not used. In such situation registers are updated by the
1132 * software.
1133 */
1134
1135 residue = stm32_dma_get_remaining_bytes(chan);
1136
1137 if (!stm32_dma_is_current_sg(chan)) {
1138 n_sg++;
1139 if (n_sg == chan->desc->num_sgs)
1140 n_sg = 0;
1141 residue = sg_req->len;
1142 }
1143
1144 /*
1145 * In cyclic mode, for the last period, residue = remaining bytes
1146 * from NDTR,
1147 * else for all other periods in cyclic mode, and in sg mode,
1148 * residue = remaining bytes from NDTR + remaining
1149 * periods/sg to be transferred
1150 */
1151 if (!chan->desc->cyclic || n_sg != 0)
1152 for (i = n_sg; i < desc->num_sgs; i++)
1153 residue += desc->sg_req[i].len;
1154
1155 if (!chan->mem_burst)
1156 return residue;
1157
1158 burst_size = chan->mem_burst * chan->mem_width;
1159 modulo = residue % burst_size;
1160 if (modulo)
1161 residue = residue - modulo + burst_size;
1162
1163 return residue;
1164 }
1165
1166 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1167 dma_cookie_t cookie,
1168 struct dma_tx_state *state)
1169 {
1170 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1171 struct virt_dma_desc *vdesc;
1172 enum dma_status status;
1173 unsigned long flags;
1174 u32 residue = 0;
1175
1176 status = dma_cookie_status(c, cookie, state);
1177 if (status == DMA_COMPLETE || !state)
1178 return status;
1179
1180 spin_lock_irqsave(&chan->vchan.lock, flags);
1181 vdesc = vchan_find_desc(&chan->vchan, cookie);
1182 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1183 residue = stm32_dma_desc_residue(chan, chan->desc,
1184 chan->next_sg);
1185 else if (vdesc)
1186 residue = stm32_dma_desc_residue(chan,
1187 to_stm32_dma_desc(vdesc), 0);
1188 dma_set_residue(state, residue);
1189
1190 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1191
1192 return status;
1193 }
1194
1195 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1196 {
1197 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1198 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1199 int ret;
1200
1201 chan->config_init = false;
1202
1203 ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1204 if (ret < 0)
1205 return ret;
1206
1207 ret = stm32_dma_disable_chan(chan);
1208 if (ret < 0)
1209 pm_runtime_put(dmadev->ddev.dev);
1210
1211 return ret;
1212 }
1213
1214 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1215 {
1216 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1217 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1218 unsigned long flags;
1219
1220 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1221
1222 if (chan->busy) {
1223 spin_lock_irqsave(&chan->vchan.lock, flags);
1224 stm32_dma_stop(chan);
1225 chan->desc = NULL;
1226 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1227 }
1228
1229 pm_runtime_put(dmadev->ddev.dev);
1230
1231 vchan_free_chan_resources(to_virt_chan(c));
1232 stm32_dma_clear_reg(&chan->chan_reg);
1233 chan->threshold = 0;
1234 }
1235
1236 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1237 {
1238 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1239 }
1240
1241 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1242 struct stm32_dma_cfg *cfg)
1243 {
1244 stm32_dma_clear_reg(&chan->chan_reg);
1245
1246 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1247 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1248
1249 /* Enable Interrupts */
1250 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1251
1252 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1253 if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1254 chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1255 }
1256
1257 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1258 struct of_dma *ofdma)
1259 {
1260 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1261 struct device *dev = dmadev->ddev.dev;
1262 struct stm32_dma_cfg cfg;
1263 struct stm32_dma_chan *chan;
1264 struct dma_chan *c;
1265
1266 if (dma_spec->args_count < 4) {
1267 dev_err(dev, "Bad number of cells\n");
1268 return NULL;
1269 }
1270
1271 cfg.channel_id = dma_spec->args[0];
1272 cfg.request_line = dma_spec->args[1];
1273 cfg.stream_config = dma_spec->args[2];
1274 cfg.features = dma_spec->args[3];
1275
1276 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1277 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1278 dev_err(dev, "Bad channel and/or request id\n");
1279 return NULL;
1280 }
1281
1282 chan = &dmadev->chan[cfg.channel_id];
1283
1284 c = dma_get_slave_channel(&chan->vchan.chan);
1285 if (!c) {
1286 dev_err(dev, "No more channels available\n");
1287 return NULL;
1288 }
1289
1290 stm32_dma_set_config(chan, &cfg);
1291
1292 return c;
1293 }
1294
1295 static const struct of_device_id stm32_dma_of_match[] = {
1296 { .compatible = "st,stm32-dma", },
1297 { /* sentinel */ },
1298 };
1299 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1300
1301 static int stm32_dma_probe(struct platform_device *pdev)
1302 {
1303 struct stm32_dma_chan *chan;
1304 struct stm32_dma_device *dmadev;
1305 struct dma_device *dd;
1306 const struct of_device_id *match;
1307 struct resource *res;
1308 struct reset_control *rst;
1309 int i, ret;
1310
1311 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1312 if (!match) {
1313 dev_err(&pdev->dev, "Error: No device match found\n");
1314 return -ENODEV;
1315 }
1316
1317 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1318 if (!dmadev)
1319 return -ENOMEM;
1320
1321 dd = &dmadev->ddev;
1322
1323 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1324 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1325 if (IS_ERR(dmadev->base))
1326 return PTR_ERR(dmadev->base);
1327
1328 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1329 if (IS_ERR(dmadev->clk))
1330 return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1331
1332 ret = clk_prepare_enable(dmadev->clk);
1333 if (ret < 0) {
1334 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1335 return ret;
1336 }
1337
1338 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1339 "st,mem2mem");
1340
1341 rst = devm_reset_control_get(&pdev->dev, NULL);
1342 if (IS_ERR(rst)) {
1343 ret = PTR_ERR(rst);
1344 if (ret == -EPROBE_DEFER)
1345 goto clk_free;
1346 } else {
1347 reset_control_assert(rst);
1348 udelay(2);
1349 reset_control_deassert(rst);
1350 }
1351
1352 dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1353
1354 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1355 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1356 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1357 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1358 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1359 dd->device_tx_status = stm32_dma_tx_status;
1360 dd->device_issue_pending = stm32_dma_issue_pending;
1361 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1362 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1363 dd->device_config = stm32_dma_slave_config;
1364 dd->device_terminate_all = stm32_dma_terminate_all;
1365 dd->device_synchronize = stm32_dma_synchronize;
1366 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1367 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1368 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1369 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1370 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1371 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1372 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1373 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1374 dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1375 dd->max_burst = STM32_DMA_MAX_BURST;
1376 dd->descriptor_reuse = true;
1377 dd->dev = &pdev->dev;
1378 INIT_LIST_HEAD(&dd->channels);
1379
1380 if (dmadev->mem2mem) {
1381 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1382 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1383 dd->directions |= BIT(DMA_MEM_TO_MEM);
1384 }
1385
1386 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1387 chan = &dmadev->chan[i];
1388 chan->id = i;
1389 chan->vchan.desc_free = stm32_dma_desc_free;
1390 vchan_init(&chan->vchan, dd);
1391 }
1392
1393 ret = dma_async_device_register(dd);
1394 if (ret)
1395 goto clk_free;
1396
1397 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1398 chan = &dmadev->chan[i];
1399 ret = platform_get_irq(pdev, i);
1400 if (ret < 0)
1401 goto err_unregister;
1402 chan->irq = ret;
1403
1404 ret = devm_request_irq(&pdev->dev, chan->irq,
1405 stm32_dma_chan_irq, 0,
1406 dev_name(chan2dev(chan)), chan);
1407 if (ret) {
1408 dev_err(&pdev->dev,
1409 "request_irq failed with err %d channel %d\n",
1410 ret, i);
1411 goto err_unregister;
1412 }
1413 }
1414
1415 ret = of_dma_controller_register(pdev->dev.of_node,
1416 stm32_dma_of_xlate, dmadev);
1417 if (ret < 0) {
1418 dev_err(&pdev->dev,
1419 "STM32 DMA DMA OF registration failed %d\n", ret);
1420 goto err_unregister;
1421 }
1422
1423 platform_set_drvdata(pdev, dmadev);
1424
1425 pm_runtime_set_active(&pdev->dev);
1426 pm_runtime_enable(&pdev->dev);
1427 pm_runtime_get_noresume(&pdev->dev);
1428 pm_runtime_put(&pdev->dev);
1429
1430 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1431
1432 return 0;
1433
1434 err_unregister:
1435 dma_async_device_unregister(dd);
1436 clk_free:
1437 clk_disable_unprepare(dmadev->clk);
1438
1439 return ret;
1440 }
1441
1442 #ifdef CONFIG_PM
1443 static int stm32_dma_runtime_suspend(struct device *dev)
1444 {
1445 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1446
1447 clk_disable_unprepare(dmadev->clk);
1448
1449 return 0;
1450 }
1451
1452 static int stm32_dma_runtime_resume(struct device *dev)
1453 {
1454 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1455 int ret;
1456
1457 ret = clk_prepare_enable(dmadev->clk);
1458 if (ret) {
1459 dev_err(dev, "failed to prepare_enable clock\n");
1460 return ret;
1461 }
1462
1463 return 0;
1464 }
1465 #endif
1466
1467 #ifdef CONFIG_PM_SLEEP
1468 static int stm32_dma_suspend(struct device *dev)
1469 {
1470 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1471 int id, ret, scr;
1472
1473 ret = pm_runtime_resume_and_get(dev);
1474 if (ret < 0)
1475 return ret;
1476
1477 for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1478 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1479 if (scr & STM32_DMA_SCR_EN) {
1480 dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1481 return -EBUSY;
1482 }
1483 }
1484
1485 pm_runtime_put_sync(dev);
1486
1487 pm_runtime_force_suspend(dev);
1488
1489 return 0;
1490 }
1491
1492 static int stm32_dma_resume(struct device *dev)
1493 {
1494 return pm_runtime_force_resume(dev);
1495 }
1496 #endif
1497
1498 static const struct dev_pm_ops stm32_dma_pm_ops = {
1499 SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1500 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1501 stm32_dma_runtime_resume, NULL)
1502 };
1503
1504 static struct platform_driver stm32_dma_driver = {
1505 .driver = {
1506 .name = "stm32-dma",
1507 .of_match_table = stm32_dma_of_match,
1508 .pm = &stm32_dma_pm_ops,
1509 },
1510 .probe = stm32_dma_probe,
1511 };
1512
1513 static int __init stm32_dma_init(void)
1514 {
1515 return platform_driver_register(&stm32_dma_driver);
1516 }
1517 subsys_initcall(stm32_dma_init);