]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/dma/stm32-dma.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / drivers / dma / stm32-dma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for STM32 DMA controller
4 *
5 * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6 *
7 * Copyright (C) M'boumba Cedric Madianga 2015
8 * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9 * Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10 */
11
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/jiffies.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/of_dma.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/slab.h>
29
30 #include "virt-dma.h"
31
32 #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */
33 #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */
34 #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */
35 #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */
36 #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */
37 #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */
38 #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */
39 #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */
40 #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */
41 #define STM32_DMA_MASKI (STM32_DMA_TCI \
42 | STM32_DMA_TEI \
43 | STM32_DMA_DMEI \
44 | STM32_DMA_FEI)
45
46 /* DMA Stream x Configuration Register */
47 #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */
48 #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25)
49 #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23)
50 #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23)
51 #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21)
52 #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21)
53 #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16)
54 #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16)
55 #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13)
56 #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13)
57 #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11)
58 #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11)
59 #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
60 #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6)
61 #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6)
62 #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */
63 #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */
64 #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */
65 #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */
66 #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */
67 #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */
68 #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */
69 #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable
70 */
71 #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */
72 #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */
73 #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */
74 #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \
75 | STM32_DMA_SCR_MINC \
76 | STM32_DMA_SCR_PINCOS \
77 | STM32_DMA_SCR_PL_MASK)
78 #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \
79 | STM32_DMA_SCR_TEIE \
80 | STM32_DMA_SCR_DMEIE)
81
82 /* DMA Stream x number of data register */
83 #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x))
84
85 /* DMA stream peripheral address register */
86 #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x))
87
88 /* DMA stream x memory 0 address register */
89 #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x))
90
91 /* DMA stream x memory 1 address register */
92 #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x))
93
94 /* DMA stream x FIFO control register */
95 #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x))
96 #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0)
97 #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK)
98 #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */
99 #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */
100 #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \
101 | STM32_DMA_SFCR_DMDIS)
102
103 /* DMA direction */
104 #define STM32_DMA_DEV_TO_MEM 0x00
105 #define STM32_DMA_MEM_TO_DEV 0x01
106 #define STM32_DMA_MEM_TO_MEM 0x02
107
108 /* DMA priority level */
109 #define STM32_DMA_PRIORITY_LOW 0x00
110 #define STM32_DMA_PRIORITY_MEDIUM 0x01
111 #define STM32_DMA_PRIORITY_HIGH 0x02
112 #define STM32_DMA_PRIORITY_VERY_HIGH 0x03
113
114 /* DMA FIFO threshold selection */
115 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00
116 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01
117 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02
118 #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03
119
120 #define STM32_DMA_MAX_DATA_ITEMS 0xffff
121 /*
122 * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
123 * gather at boundary. Thus it's safer to round down this value on FIFO
124 * size (16 Bytes)
125 */
126 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \
127 ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
128 #define STM32_DMA_MAX_CHANNELS 0x08
129 #define STM32_DMA_MAX_REQUEST_ID 0x08
130 #define STM32_DMA_MAX_DATA_PARAM 0x03
131 #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */
132 #define STM32_DMA_MIN_BURST 4
133 #define STM32_DMA_MAX_BURST 16
134
135 /* DMA Features */
136 #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0)
137 #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK)
138
139 enum stm32_dma_width {
140 STM32_DMA_BYTE,
141 STM32_DMA_HALF_WORD,
142 STM32_DMA_WORD,
143 };
144
145 enum stm32_dma_burst_size {
146 STM32_DMA_BURST_SINGLE,
147 STM32_DMA_BURST_INCR4,
148 STM32_DMA_BURST_INCR8,
149 STM32_DMA_BURST_INCR16,
150 };
151
152 /**
153 * struct stm32_dma_cfg - STM32 DMA custom configuration
154 * @channel_id: channel ID
155 * @request_line: DMA request
156 * @stream_config: 32bit mask specifying the DMA channel configuration
157 * @features: 32bit mask specifying the DMA Feature list
158 */
159 struct stm32_dma_cfg {
160 u32 channel_id;
161 u32 request_line;
162 u32 stream_config;
163 u32 features;
164 };
165
166 struct stm32_dma_chan_reg {
167 u32 dma_lisr;
168 u32 dma_hisr;
169 u32 dma_lifcr;
170 u32 dma_hifcr;
171 u32 dma_scr;
172 u32 dma_sndtr;
173 u32 dma_spar;
174 u32 dma_sm0ar;
175 u32 dma_sm1ar;
176 u32 dma_sfcr;
177 };
178
179 struct stm32_dma_sg_req {
180 u32 len;
181 struct stm32_dma_chan_reg chan_reg;
182 };
183
184 struct stm32_dma_desc {
185 struct virt_dma_desc vdesc;
186 bool cyclic;
187 u32 num_sgs;
188 struct stm32_dma_sg_req sg_req[];
189 };
190
191 struct stm32_dma_chan {
192 struct virt_dma_chan vchan;
193 bool config_init;
194 bool busy;
195 u32 id;
196 u32 irq;
197 struct stm32_dma_desc *desc;
198 u32 next_sg;
199 struct dma_slave_config dma_sconfig;
200 struct stm32_dma_chan_reg chan_reg;
201 u32 threshold;
202 u32 mem_burst;
203 u32 mem_width;
204 };
205
206 struct stm32_dma_device {
207 struct dma_device ddev;
208 void __iomem *base;
209 struct clk *clk;
210 struct reset_control *rst;
211 bool mem2mem;
212 struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
213 };
214
215 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
216 {
217 return container_of(chan->vchan.chan.device, struct stm32_dma_device,
218 ddev);
219 }
220
221 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
222 {
223 return container_of(c, struct stm32_dma_chan, vchan.chan);
224 }
225
226 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
227 {
228 return container_of(vdesc, struct stm32_dma_desc, vdesc);
229 }
230
231 static struct device *chan2dev(struct stm32_dma_chan *chan)
232 {
233 return &chan->vchan.chan.dev->device;
234 }
235
236 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
237 {
238 return readl_relaxed(dmadev->base + reg);
239 }
240
241 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
242 {
243 writel_relaxed(val, dmadev->base + reg);
244 }
245
246 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
247 enum dma_slave_buswidth width)
248 {
249 switch (width) {
250 case DMA_SLAVE_BUSWIDTH_1_BYTE:
251 return STM32_DMA_BYTE;
252 case DMA_SLAVE_BUSWIDTH_2_BYTES:
253 return STM32_DMA_HALF_WORD;
254 case DMA_SLAVE_BUSWIDTH_4_BYTES:
255 return STM32_DMA_WORD;
256 default:
257 dev_err(chan2dev(chan), "Dma bus width not supported\n");
258 return -EINVAL;
259 }
260 }
261
262 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
263 u32 threshold)
264 {
265 enum dma_slave_buswidth max_width;
266
267 if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
268 max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
269 else
270 max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
271
272 while ((buf_len < max_width || buf_len % max_width) &&
273 max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
274 max_width = max_width >> 1;
275
276 return max_width;
277 }
278
279 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
280 enum dma_slave_buswidth width)
281 {
282 u32 remaining;
283
284 if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
285 if (burst != 0) {
286 /*
287 * If number of beats fit in several whole bursts
288 * this configuration is allowed.
289 */
290 remaining = ((STM32_DMA_FIFO_SIZE / width) *
291 (threshold + 1) / 4) % burst;
292
293 if (remaining == 0)
294 return true;
295 } else {
296 return true;
297 }
298 }
299
300 return false;
301 }
302
303 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
304 {
305 /*
306 * Buffer or period length has to be aligned on FIFO depth.
307 * Otherwise bytes may be stuck within FIFO at buffer or period
308 * length.
309 */
310 return ((buf_len % ((threshold + 1) * 4)) == 0);
311 }
312
313 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
314 enum dma_slave_buswidth width)
315 {
316 u32 best_burst = max_burst;
317
318 if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
319 return 0;
320
321 while ((buf_len < best_burst * width && best_burst > 1) ||
322 !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
323 width)) {
324 if (best_burst > STM32_DMA_MIN_BURST)
325 best_burst = best_burst >> 1;
326 else
327 best_burst = 0;
328 }
329
330 return best_burst;
331 }
332
333 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
334 {
335 switch (maxburst) {
336 case 0:
337 case 1:
338 return STM32_DMA_BURST_SINGLE;
339 case 4:
340 return STM32_DMA_BURST_INCR4;
341 case 8:
342 return STM32_DMA_BURST_INCR8;
343 case 16:
344 return STM32_DMA_BURST_INCR16;
345 default:
346 dev_err(chan2dev(chan), "Dma burst size not supported\n");
347 return -EINVAL;
348 }
349 }
350
351 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
352 u32 src_burst, u32 dst_burst)
353 {
354 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
355 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
356
357 if (!src_burst && !dst_burst) {
358 /* Using direct mode */
359 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
360 } else {
361 /* Using FIFO mode */
362 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
363 }
364 }
365
366 static int stm32_dma_slave_config(struct dma_chan *c,
367 struct dma_slave_config *config)
368 {
369 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
370
371 memcpy(&chan->dma_sconfig, config, sizeof(*config));
372
373 chan->config_init = true;
374
375 return 0;
376 }
377
378 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
379 {
380 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
381 u32 flags, dma_isr;
382
383 /*
384 * Read "flags" from DMA_xISR register corresponding to the selected
385 * DMA channel at the correct bit offset inside that register.
386 *
387 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
388 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
389 */
390
391 if (chan->id & 4)
392 dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
393 else
394 dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
395
396 flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
397
398 return flags & STM32_DMA_MASKI;
399 }
400
401 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
402 {
403 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
404 u32 dma_ifcr;
405
406 /*
407 * Write "flags" to the DMA_xIFCR register corresponding to the selected
408 * DMA channel at the correct bit offset inside that register.
409 *
410 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
411 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
412 */
413 flags &= STM32_DMA_MASKI;
414 dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
415
416 if (chan->id & 4)
417 stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
418 else
419 stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
420 }
421
422 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
423 {
424 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
425 unsigned long timeout = jiffies + msecs_to_jiffies(5000);
426 u32 dma_scr, id;
427
428 id = chan->id;
429 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
430
431 if (dma_scr & STM32_DMA_SCR_EN) {
432 dma_scr &= ~STM32_DMA_SCR_EN;
433 stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr);
434
435 do {
436 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
437 dma_scr &= STM32_DMA_SCR_EN;
438 if (!dma_scr)
439 break;
440
441 if (time_after_eq(jiffies, timeout)) {
442 dev_err(chan2dev(chan), "%s: timeout!\n",
443 __func__);
444 return -EBUSY;
445 }
446 cond_resched();
447 } while (1);
448 }
449
450 return 0;
451 }
452
453 static void stm32_dma_stop(struct stm32_dma_chan *chan)
454 {
455 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
456 u32 dma_scr, dma_sfcr, status;
457 int ret;
458
459 /* Disable interrupts */
460 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
461 dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
462 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
463 dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
464 dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
465 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
466
467 /* Disable DMA */
468 ret = stm32_dma_disable_chan(chan);
469 if (ret < 0)
470 return;
471
472 /* Clear interrupt status if it is there */
473 status = stm32_dma_irq_status(chan);
474 if (status) {
475 dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
476 __func__, status);
477 stm32_dma_irq_clear(chan, status);
478 }
479
480 chan->busy = false;
481 }
482
483 static int stm32_dma_terminate_all(struct dma_chan *c)
484 {
485 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
486 unsigned long flags;
487 LIST_HEAD(head);
488
489 spin_lock_irqsave(&chan->vchan.lock, flags);
490
491 if (chan->desc) {
492 vchan_terminate_vdesc(&chan->desc->vdesc);
493 if (chan->busy)
494 stm32_dma_stop(chan);
495 chan->desc = NULL;
496 }
497
498 vchan_get_all_descriptors(&chan->vchan, &head);
499 spin_unlock_irqrestore(&chan->vchan.lock, flags);
500 vchan_dma_desc_free_list(&chan->vchan, &head);
501
502 return 0;
503 }
504
505 static void stm32_dma_synchronize(struct dma_chan *c)
506 {
507 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
508
509 vchan_synchronize(&chan->vchan);
510 }
511
512 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
513 {
514 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
515 u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
516 u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
517 u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
518 u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
519 u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
520 u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
521
522 dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr);
523 dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr);
524 dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar);
525 dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
526 dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
527 dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr);
528 }
529
530 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
531
532 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
533 {
534 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
535 struct virt_dma_desc *vdesc;
536 struct stm32_dma_sg_req *sg_req;
537 struct stm32_dma_chan_reg *reg;
538 u32 status;
539 int ret;
540
541 ret = stm32_dma_disable_chan(chan);
542 if (ret < 0)
543 return;
544
545 if (!chan->desc) {
546 vdesc = vchan_next_desc(&chan->vchan);
547 if (!vdesc)
548 return;
549
550 list_del(&vdesc->node);
551
552 chan->desc = to_stm32_dma_desc(vdesc);
553 chan->next_sg = 0;
554 }
555
556 if (chan->next_sg == chan->desc->num_sgs)
557 chan->next_sg = 0;
558
559 sg_req = &chan->desc->sg_req[chan->next_sg];
560 reg = &sg_req->chan_reg;
561
562 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
563 stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
564 stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
565 stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
566 stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
567 stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
568
569 chan->next_sg++;
570
571 /* Clear interrupt status if it is there */
572 status = stm32_dma_irq_status(chan);
573 if (status)
574 stm32_dma_irq_clear(chan, status);
575
576 if (chan->desc->cyclic)
577 stm32_dma_configure_next_sg(chan);
578
579 stm32_dma_dump_reg(chan);
580
581 /* Start DMA */
582 reg->dma_scr |= STM32_DMA_SCR_EN;
583 stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
584
585 chan->busy = true;
586
587 dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
588 }
589
590 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
591 {
592 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
593 struct stm32_dma_sg_req *sg_req;
594 u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
595
596 id = chan->id;
597 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
598
599 if (dma_scr & STM32_DMA_SCR_DBM) {
600 if (chan->next_sg == chan->desc->num_sgs)
601 chan->next_sg = 0;
602
603 sg_req = &chan->desc->sg_req[chan->next_sg];
604
605 if (dma_scr & STM32_DMA_SCR_CT) {
606 dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
607 stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
608 dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
609 stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
610 } else {
611 dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
612 stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
613 dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
614 stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
615 }
616 }
617 }
618
619 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
620 {
621 if (chan->desc) {
622 if (chan->desc->cyclic) {
623 vchan_cyclic_callback(&chan->desc->vdesc);
624 chan->next_sg++;
625 stm32_dma_configure_next_sg(chan);
626 } else {
627 chan->busy = false;
628 if (chan->next_sg == chan->desc->num_sgs) {
629 vchan_cookie_complete(&chan->desc->vdesc);
630 chan->desc = NULL;
631 }
632 stm32_dma_start_transfer(chan);
633 }
634 }
635 }
636
637 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
638 {
639 struct stm32_dma_chan *chan = devid;
640 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
641 u32 status, scr, sfcr;
642
643 spin_lock(&chan->vchan.lock);
644
645 status = stm32_dma_irq_status(chan);
646 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
647 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
648
649 if (status & STM32_DMA_TCI) {
650 stm32_dma_irq_clear(chan, STM32_DMA_TCI);
651 if (scr & STM32_DMA_SCR_TCIE)
652 stm32_dma_handle_chan_done(chan);
653 status &= ~STM32_DMA_TCI;
654 }
655 if (status & STM32_DMA_HTI) {
656 stm32_dma_irq_clear(chan, STM32_DMA_HTI);
657 status &= ~STM32_DMA_HTI;
658 }
659 if (status & STM32_DMA_FEI) {
660 stm32_dma_irq_clear(chan, STM32_DMA_FEI);
661 status &= ~STM32_DMA_FEI;
662 if (sfcr & STM32_DMA_SFCR_FEIE) {
663 if (!(scr & STM32_DMA_SCR_EN))
664 dev_err(chan2dev(chan), "FIFO Error\n");
665 else
666 dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
667 }
668 }
669 if (status) {
670 stm32_dma_irq_clear(chan, status);
671 dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
672 if (!(scr & STM32_DMA_SCR_EN))
673 dev_err(chan2dev(chan), "chan disabled by HW\n");
674 }
675
676 spin_unlock(&chan->vchan.lock);
677
678 return IRQ_HANDLED;
679 }
680
681 static void stm32_dma_issue_pending(struct dma_chan *c)
682 {
683 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
684 unsigned long flags;
685
686 spin_lock_irqsave(&chan->vchan.lock, flags);
687 if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
688 dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
689 stm32_dma_start_transfer(chan);
690
691 }
692 spin_unlock_irqrestore(&chan->vchan.lock, flags);
693 }
694
695 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
696 enum dma_transfer_direction direction,
697 enum dma_slave_buswidth *buswidth,
698 u32 buf_len)
699 {
700 enum dma_slave_buswidth src_addr_width, dst_addr_width;
701 int src_bus_width, dst_bus_width;
702 int src_burst_size, dst_burst_size;
703 u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
704 u32 dma_scr, threshold;
705
706 src_addr_width = chan->dma_sconfig.src_addr_width;
707 dst_addr_width = chan->dma_sconfig.dst_addr_width;
708 src_maxburst = chan->dma_sconfig.src_maxburst;
709 dst_maxburst = chan->dma_sconfig.dst_maxburst;
710 threshold = chan->threshold;
711
712 switch (direction) {
713 case DMA_MEM_TO_DEV:
714 /* Set device data size */
715 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
716 if (dst_bus_width < 0)
717 return dst_bus_width;
718
719 /* Set device burst size */
720 dst_best_burst = stm32_dma_get_best_burst(buf_len,
721 dst_maxburst,
722 threshold,
723 dst_addr_width);
724
725 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
726 if (dst_burst_size < 0)
727 return dst_burst_size;
728
729 /* Set memory data size */
730 src_addr_width = stm32_dma_get_max_width(buf_len, threshold);
731 chan->mem_width = src_addr_width;
732 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
733 if (src_bus_width < 0)
734 return src_bus_width;
735
736 /* Set memory burst size */
737 src_maxburst = STM32_DMA_MAX_BURST;
738 src_best_burst = stm32_dma_get_best_burst(buf_len,
739 src_maxburst,
740 threshold,
741 src_addr_width);
742 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
743 if (src_burst_size < 0)
744 return src_burst_size;
745
746 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
747 STM32_DMA_SCR_PSIZE(dst_bus_width) |
748 STM32_DMA_SCR_MSIZE(src_bus_width) |
749 STM32_DMA_SCR_PBURST(dst_burst_size) |
750 STM32_DMA_SCR_MBURST(src_burst_size);
751
752 /* Set FIFO threshold */
753 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
754 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
755
756 /* Set peripheral address */
757 chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
758 *buswidth = dst_addr_width;
759 break;
760
761 case DMA_DEV_TO_MEM:
762 /* Set device data size */
763 src_bus_width = stm32_dma_get_width(chan, src_addr_width);
764 if (src_bus_width < 0)
765 return src_bus_width;
766
767 /* Set device burst size */
768 src_best_burst = stm32_dma_get_best_burst(buf_len,
769 src_maxburst,
770 threshold,
771 src_addr_width);
772 chan->mem_burst = src_best_burst;
773 src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
774 if (src_burst_size < 0)
775 return src_burst_size;
776
777 /* Set memory data size */
778 dst_addr_width = stm32_dma_get_max_width(buf_len, threshold);
779 chan->mem_width = dst_addr_width;
780 dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
781 if (dst_bus_width < 0)
782 return dst_bus_width;
783
784 /* Set memory burst size */
785 dst_maxburst = STM32_DMA_MAX_BURST;
786 dst_best_burst = stm32_dma_get_best_burst(buf_len,
787 dst_maxburst,
788 threshold,
789 dst_addr_width);
790 chan->mem_burst = dst_best_burst;
791 dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
792 if (dst_burst_size < 0)
793 return dst_burst_size;
794
795 dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
796 STM32_DMA_SCR_PSIZE(src_bus_width) |
797 STM32_DMA_SCR_MSIZE(dst_bus_width) |
798 STM32_DMA_SCR_PBURST(src_burst_size) |
799 STM32_DMA_SCR_MBURST(dst_burst_size);
800
801 /* Set FIFO threshold */
802 chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
803 chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold);
804
805 /* Set peripheral address */
806 chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
807 *buswidth = chan->dma_sconfig.src_addr_width;
808 break;
809
810 default:
811 dev_err(chan2dev(chan), "Dma direction is not supported\n");
812 return -EINVAL;
813 }
814
815 stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
816
817 /* Set DMA control register */
818 chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
819 STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
820 STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
821 chan->chan_reg.dma_scr |= dma_scr;
822
823 return 0;
824 }
825
826 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
827 {
828 memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
829 }
830
831 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
832 struct dma_chan *c, struct scatterlist *sgl,
833 u32 sg_len, enum dma_transfer_direction direction,
834 unsigned long flags, void *context)
835 {
836 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
837 struct stm32_dma_desc *desc;
838 struct scatterlist *sg;
839 enum dma_slave_buswidth buswidth;
840 u32 nb_data_items;
841 int i, ret;
842
843 if (!chan->config_init) {
844 dev_err(chan2dev(chan), "dma channel is not configured\n");
845 return NULL;
846 }
847
848 if (sg_len < 1) {
849 dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
850 return NULL;
851 }
852
853 desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
854 if (!desc)
855 return NULL;
856
857 /* Set peripheral flow controller */
858 if (chan->dma_sconfig.device_fc)
859 chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
860 else
861 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
862
863 for_each_sg(sgl, sg, sg_len, i) {
864 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
865 sg_dma_len(sg));
866 if (ret < 0)
867 goto err;
868
869 desc->sg_req[i].len = sg_dma_len(sg);
870
871 nb_data_items = desc->sg_req[i].len / buswidth;
872 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
873 dev_err(chan2dev(chan), "nb items not supported\n");
874 goto err;
875 }
876
877 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
878 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
879 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
880 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
881 desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
882 desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
883 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
884 }
885
886 desc->num_sgs = sg_len;
887 desc->cyclic = false;
888
889 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
890
891 err:
892 kfree(desc);
893 return NULL;
894 }
895
896 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
897 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
898 size_t period_len, enum dma_transfer_direction direction,
899 unsigned long flags)
900 {
901 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
902 struct stm32_dma_desc *desc;
903 enum dma_slave_buswidth buswidth;
904 u32 num_periods, nb_data_items;
905 int i, ret;
906
907 if (!buf_len || !period_len) {
908 dev_err(chan2dev(chan), "Invalid buffer/period len\n");
909 return NULL;
910 }
911
912 if (!chan->config_init) {
913 dev_err(chan2dev(chan), "dma channel is not configured\n");
914 return NULL;
915 }
916
917 if (buf_len % period_len) {
918 dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
919 return NULL;
920 }
921
922 /*
923 * We allow to take more number of requests till DMA is
924 * not started. The driver will loop over all requests.
925 * Once DMA is started then new requests can be queued only after
926 * terminating the DMA.
927 */
928 if (chan->busy) {
929 dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
930 return NULL;
931 }
932
933 ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len);
934 if (ret < 0)
935 return NULL;
936
937 nb_data_items = period_len / buswidth;
938 if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
939 dev_err(chan2dev(chan), "number of items not supported\n");
940 return NULL;
941 }
942
943 /* Enable Circular mode or double buffer mode */
944 if (buf_len == period_len)
945 chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
946 else
947 chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
948
949 /* Clear periph ctrl if client set it */
950 chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
951
952 num_periods = buf_len / period_len;
953
954 desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
955 if (!desc)
956 return NULL;
957
958 for (i = 0; i < num_periods; i++) {
959 desc->sg_req[i].len = period_len;
960
961 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
962 desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
963 desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
964 desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
965 desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
966 desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
967 desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
968 buf_addr += period_len;
969 }
970
971 desc->num_sgs = num_periods;
972 desc->cyclic = true;
973
974 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
975 }
976
977 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
978 struct dma_chan *c, dma_addr_t dest,
979 dma_addr_t src, size_t len, unsigned long flags)
980 {
981 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
982 enum dma_slave_buswidth max_width;
983 struct stm32_dma_desc *desc;
984 size_t xfer_count, offset;
985 u32 num_sgs, best_burst, dma_burst, threshold;
986 int i;
987
988 num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
989 desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
990 if (!desc)
991 return NULL;
992
993 threshold = chan->threshold;
994
995 for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
996 xfer_count = min_t(size_t, len - offset,
997 STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
998
999 /* Compute best burst size */
1000 max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1001 best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1002 threshold, max_width);
1003 dma_burst = stm32_dma_get_burst(chan, best_burst);
1004
1005 stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1006 desc->sg_req[i].chan_reg.dma_scr =
1007 STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1008 STM32_DMA_SCR_PBURST(dma_burst) |
1009 STM32_DMA_SCR_MBURST(dma_burst) |
1010 STM32_DMA_SCR_MINC |
1011 STM32_DMA_SCR_PINC |
1012 STM32_DMA_SCR_TCIE |
1013 STM32_DMA_SCR_TEIE;
1014 desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1015 desc->sg_req[i].chan_reg.dma_sfcr |=
1016 STM32_DMA_SFCR_FTH(threshold);
1017 desc->sg_req[i].chan_reg.dma_spar = src + offset;
1018 desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1019 desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1020 desc->sg_req[i].len = xfer_count;
1021 }
1022
1023 desc->num_sgs = num_sgs;
1024 desc->cyclic = false;
1025
1026 return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1027 }
1028
1029 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1030 {
1031 u32 dma_scr, width, ndtr;
1032 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1033
1034 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1035 width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1036 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1037
1038 return ndtr << width;
1039 }
1040
1041 /**
1042 * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1043 * @chan: dma channel
1044 *
1045 * This function called when IRQ are disable, checks that the hardware has not
1046 * switched on the next transfer in double buffer mode. The test is done by
1047 * comparing the next_sg memory address with the hardware related register
1048 * (based on CT bit value).
1049 *
1050 * Returns true if expected current transfer is still running or double
1051 * buffer mode is not activated.
1052 */
1053 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1054 {
1055 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1056 struct stm32_dma_sg_req *sg_req;
1057 u32 dma_scr, dma_smar, id;
1058
1059 id = chan->id;
1060 dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1061
1062 if (!(dma_scr & STM32_DMA_SCR_DBM))
1063 return true;
1064
1065 sg_req = &chan->desc->sg_req[chan->next_sg];
1066
1067 if (dma_scr & STM32_DMA_SCR_CT) {
1068 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1069 return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1070 }
1071
1072 dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1073
1074 return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1075 }
1076
1077 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1078 struct stm32_dma_desc *desc,
1079 u32 next_sg)
1080 {
1081 u32 modulo, burst_size;
1082 u32 residue;
1083 u32 n_sg = next_sg;
1084 struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1085 int i;
1086
1087 /*
1088 * Calculate the residue means compute the descriptors
1089 * information:
1090 * - the sg_req currently transferred
1091 * - the Hardware remaining position in this sg (NDTR bits field).
1092 *
1093 * A race condition may occur if DMA is running in cyclic or double
1094 * buffer mode, since the DMA register are automatically reloaded at end
1095 * of period transfer. The hardware may have switched to the next
1096 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1097 * read.
1098 * In this case the SxNDTR reg could (or not) correspond to the new
1099 * transfer position, and not the expected one.
1100 * The strategy implemented in the stm32 driver is to:
1101 * - read the SxNDTR register
1102 * - crosscheck that hardware is still in current transfer.
1103 * In case of switch, we can assume that the DMA is at the beginning of
1104 * the next transfer. So we approximate the residue in consequence, by
1105 * pointing on the beginning of next transfer.
1106 *
1107 * This race condition doesn't apply for none cyclic mode, as double
1108 * buffer is not used. In such situation registers are updated by the
1109 * software.
1110 */
1111
1112 residue = stm32_dma_get_remaining_bytes(chan);
1113
1114 if (!stm32_dma_is_current_sg(chan)) {
1115 n_sg++;
1116 if (n_sg == chan->desc->num_sgs)
1117 n_sg = 0;
1118 residue = sg_req->len;
1119 }
1120
1121 /*
1122 * In cyclic mode, for the last period, residue = remaining bytes
1123 * from NDTR,
1124 * else for all other periods in cyclic mode, and in sg mode,
1125 * residue = remaining bytes from NDTR + remaining
1126 * periods/sg to be transferred
1127 */
1128 if (!chan->desc->cyclic || n_sg != 0)
1129 for (i = n_sg; i < desc->num_sgs; i++)
1130 residue += desc->sg_req[i].len;
1131
1132 if (!chan->mem_burst)
1133 return residue;
1134
1135 burst_size = chan->mem_burst * chan->mem_width;
1136 modulo = residue % burst_size;
1137 if (modulo)
1138 residue = residue - modulo + burst_size;
1139
1140 return residue;
1141 }
1142
1143 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1144 dma_cookie_t cookie,
1145 struct dma_tx_state *state)
1146 {
1147 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1148 struct virt_dma_desc *vdesc;
1149 enum dma_status status;
1150 unsigned long flags;
1151 u32 residue = 0;
1152
1153 status = dma_cookie_status(c, cookie, state);
1154 if (status == DMA_COMPLETE || !state)
1155 return status;
1156
1157 spin_lock_irqsave(&chan->vchan.lock, flags);
1158 vdesc = vchan_find_desc(&chan->vchan, cookie);
1159 if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1160 residue = stm32_dma_desc_residue(chan, chan->desc,
1161 chan->next_sg);
1162 else if (vdesc)
1163 residue = stm32_dma_desc_residue(chan,
1164 to_stm32_dma_desc(vdesc), 0);
1165 dma_set_residue(state, residue);
1166
1167 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1168
1169 return status;
1170 }
1171
1172 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1173 {
1174 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1175 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1176 int ret;
1177
1178 chan->config_init = false;
1179
1180 ret = pm_runtime_get_sync(dmadev->ddev.dev);
1181 if (ret < 0)
1182 return ret;
1183
1184 ret = stm32_dma_disable_chan(chan);
1185 if (ret < 0)
1186 pm_runtime_put(dmadev->ddev.dev);
1187
1188 return ret;
1189 }
1190
1191 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1192 {
1193 struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1194 struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1195 unsigned long flags;
1196
1197 dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1198
1199 if (chan->busy) {
1200 spin_lock_irqsave(&chan->vchan.lock, flags);
1201 stm32_dma_stop(chan);
1202 chan->desc = NULL;
1203 spin_unlock_irqrestore(&chan->vchan.lock, flags);
1204 }
1205
1206 pm_runtime_put(dmadev->ddev.dev);
1207
1208 vchan_free_chan_resources(to_virt_chan(c));
1209 }
1210
1211 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1212 {
1213 kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1214 }
1215
1216 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1217 struct stm32_dma_cfg *cfg)
1218 {
1219 stm32_dma_clear_reg(&chan->chan_reg);
1220
1221 chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1222 chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1223
1224 /* Enable Interrupts */
1225 chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1226
1227 chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1228 }
1229
1230 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1231 struct of_dma *ofdma)
1232 {
1233 struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1234 struct device *dev = dmadev->ddev.dev;
1235 struct stm32_dma_cfg cfg;
1236 struct stm32_dma_chan *chan;
1237 struct dma_chan *c;
1238
1239 if (dma_spec->args_count < 4) {
1240 dev_err(dev, "Bad number of cells\n");
1241 return NULL;
1242 }
1243
1244 cfg.channel_id = dma_spec->args[0];
1245 cfg.request_line = dma_spec->args[1];
1246 cfg.stream_config = dma_spec->args[2];
1247 cfg.features = dma_spec->args[3];
1248
1249 if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1250 cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1251 dev_err(dev, "Bad channel and/or request id\n");
1252 return NULL;
1253 }
1254
1255 chan = &dmadev->chan[cfg.channel_id];
1256
1257 c = dma_get_slave_channel(&chan->vchan.chan);
1258 if (!c) {
1259 dev_err(dev, "No more channels available\n");
1260 return NULL;
1261 }
1262
1263 stm32_dma_set_config(chan, &cfg);
1264
1265 return c;
1266 }
1267
1268 static const struct of_device_id stm32_dma_of_match[] = {
1269 { .compatible = "st,stm32-dma", },
1270 { /* sentinel */ },
1271 };
1272 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1273
1274 static int stm32_dma_probe(struct platform_device *pdev)
1275 {
1276 struct stm32_dma_chan *chan;
1277 struct stm32_dma_device *dmadev;
1278 struct dma_device *dd;
1279 const struct of_device_id *match;
1280 struct resource *res;
1281 int i, ret;
1282
1283 match = of_match_device(stm32_dma_of_match, &pdev->dev);
1284 if (!match) {
1285 dev_err(&pdev->dev, "Error: No device match found\n");
1286 return -ENODEV;
1287 }
1288
1289 dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1290 if (!dmadev)
1291 return -ENOMEM;
1292
1293 dd = &dmadev->ddev;
1294
1295 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1296 dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1297 if (IS_ERR(dmadev->base))
1298 return PTR_ERR(dmadev->base);
1299
1300 dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1301 if (IS_ERR(dmadev->clk)) {
1302 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1303 return PTR_ERR(dmadev->clk);
1304 }
1305
1306 ret = clk_prepare_enable(dmadev->clk);
1307 if (ret < 0) {
1308 dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1309 return ret;
1310 }
1311
1312 dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1313 "st,mem2mem");
1314
1315 dmadev->rst = devm_reset_control_get(&pdev->dev, NULL);
1316 if (!IS_ERR(dmadev->rst)) {
1317 reset_control_assert(dmadev->rst);
1318 udelay(2);
1319 reset_control_deassert(dmadev->rst);
1320 }
1321
1322 dma_cap_set(DMA_SLAVE, dd->cap_mask);
1323 dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1324 dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1325 dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1326 dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1327 dd->device_tx_status = stm32_dma_tx_status;
1328 dd->device_issue_pending = stm32_dma_issue_pending;
1329 dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1330 dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1331 dd->device_config = stm32_dma_slave_config;
1332 dd->device_terminate_all = stm32_dma_terminate_all;
1333 dd->device_synchronize = stm32_dma_synchronize;
1334 dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1335 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1336 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1337 dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1338 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1339 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1340 dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1341 dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1342 dd->max_burst = STM32_DMA_MAX_BURST;
1343 dd->dev = &pdev->dev;
1344 INIT_LIST_HEAD(&dd->channels);
1345
1346 if (dmadev->mem2mem) {
1347 dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1348 dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1349 dd->directions |= BIT(DMA_MEM_TO_MEM);
1350 }
1351
1352 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1353 chan = &dmadev->chan[i];
1354 chan->id = i;
1355 chan->vchan.desc_free = stm32_dma_desc_free;
1356 vchan_init(&chan->vchan, dd);
1357 }
1358
1359 ret = dma_async_device_register(dd);
1360 if (ret)
1361 goto clk_free;
1362
1363 for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1364 chan = &dmadev->chan[i];
1365 ret = platform_get_irq(pdev, i);
1366 if (ret < 0)
1367 goto err_unregister;
1368 chan->irq = ret;
1369
1370 ret = devm_request_irq(&pdev->dev, chan->irq,
1371 stm32_dma_chan_irq, 0,
1372 dev_name(chan2dev(chan)), chan);
1373 if (ret) {
1374 dev_err(&pdev->dev,
1375 "request_irq failed with err %d channel %d\n",
1376 ret, i);
1377 goto err_unregister;
1378 }
1379 }
1380
1381 ret = of_dma_controller_register(pdev->dev.of_node,
1382 stm32_dma_of_xlate, dmadev);
1383 if (ret < 0) {
1384 dev_err(&pdev->dev,
1385 "STM32 DMA DMA OF registration failed %d\n", ret);
1386 goto err_unregister;
1387 }
1388
1389 platform_set_drvdata(pdev, dmadev);
1390
1391 pm_runtime_set_active(&pdev->dev);
1392 pm_runtime_enable(&pdev->dev);
1393 pm_runtime_get_noresume(&pdev->dev);
1394 pm_runtime_put(&pdev->dev);
1395
1396 dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1397
1398 return 0;
1399
1400 err_unregister:
1401 dma_async_device_unregister(dd);
1402 clk_free:
1403 clk_disable_unprepare(dmadev->clk);
1404
1405 return ret;
1406 }
1407
1408 #ifdef CONFIG_PM
1409 static int stm32_dma_runtime_suspend(struct device *dev)
1410 {
1411 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1412
1413 clk_disable_unprepare(dmadev->clk);
1414
1415 return 0;
1416 }
1417
1418 static int stm32_dma_runtime_resume(struct device *dev)
1419 {
1420 struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1421 int ret;
1422
1423 ret = clk_prepare_enable(dmadev->clk);
1424 if (ret) {
1425 dev_err(dev, "failed to prepare_enable clock\n");
1426 return ret;
1427 }
1428
1429 return 0;
1430 }
1431 #endif
1432
1433 static const struct dev_pm_ops stm32_dma_pm_ops = {
1434 SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1435 stm32_dma_runtime_resume, NULL)
1436 };
1437
1438 static struct platform_driver stm32_dma_driver = {
1439 .driver = {
1440 .name = "stm32-dma",
1441 .of_match_table = stm32_dma_of_match,
1442 .pm = &stm32_dma_pm_ops,
1443 },
1444 };
1445
1446 static int __init stm32_dma_init(void)
1447 {
1448 return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe);
1449 }
1450 subsys_initcall(stm32_dma_init);