]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/dma/tegra20-apb-dma.c
dmaengine: tegra: avoid overflow of byte tracking
[mirror_ubuntu-bionic-kernel.git] / drivers / dma / tegra20-apb-dma.c
1 /*
2 * DMA driver for Nvidia's Tegra20 APB DMA controller.
3 *
4 * Copyright (c) 2012-2013, NVIDIA CORPORATION. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/err.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/reset.h>
37 #include <linux/slab.h>
38
39 #include "dmaengine.h"
40
41 #define TEGRA_APBDMA_GENERAL 0x0
42 #define TEGRA_APBDMA_GENERAL_ENABLE BIT(31)
43
44 #define TEGRA_APBDMA_CONTROL 0x010
45 #define TEGRA_APBDMA_IRQ_MASK 0x01c
46 #define TEGRA_APBDMA_IRQ_MASK_SET 0x020
47
48 /* CSR register */
49 #define TEGRA_APBDMA_CHAN_CSR 0x00
50 #define TEGRA_APBDMA_CSR_ENB BIT(31)
51 #define TEGRA_APBDMA_CSR_IE_EOC BIT(30)
52 #define TEGRA_APBDMA_CSR_HOLD BIT(29)
53 #define TEGRA_APBDMA_CSR_DIR BIT(28)
54 #define TEGRA_APBDMA_CSR_ONCE BIT(27)
55 #define TEGRA_APBDMA_CSR_FLOW BIT(21)
56 #define TEGRA_APBDMA_CSR_REQ_SEL_SHIFT 16
57 #define TEGRA_APBDMA_CSR_REQ_SEL_MASK 0x1F
58 #define TEGRA_APBDMA_CSR_WCOUNT_MASK 0xFFFC
59
60 /* STATUS register */
61 #define TEGRA_APBDMA_CHAN_STATUS 0x004
62 #define TEGRA_APBDMA_STATUS_BUSY BIT(31)
63 #define TEGRA_APBDMA_STATUS_ISE_EOC BIT(30)
64 #define TEGRA_APBDMA_STATUS_HALT BIT(29)
65 #define TEGRA_APBDMA_STATUS_PING_PONG BIT(28)
66 #define TEGRA_APBDMA_STATUS_COUNT_SHIFT 2
67 #define TEGRA_APBDMA_STATUS_COUNT_MASK 0xFFFC
68
69 #define TEGRA_APBDMA_CHAN_CSRE 0x00C
70 #define TEGRA_APBDMA_CHAN_CSRE_PAUSE (1 << 31)
71
72 /* AHB memory address */
73 #define TEGRA_APBDMA_CHAN_AHBPTR 0x010
74
75 /* AHB sequence register */
76 #define TEGRA_APBDMA_CHAN_AHBSEQ 0x14
77 #define TEGRA_APBDMA_AHBSEQ_INTR_ENB BIT(31)
78 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_8 (0 << 28)
79 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_16 (1 << 28)
80 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32 (2 << 28)
81 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_64 (3 << 28)
82 #define TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_128 (4 << 28)
83 #define TEGRA_APBDMA_AHBSEQ_DATA_SWAP BIT(27)
84 #define TEGRA_APBDMA_AHBSEQ_BURST_1 (4 << 24)
85 #define TEGRA_APBDMA_AHBSEQ_BURST_4 (5 << 24)
86 #define TEGRA_APBDMA_AHBSEQ_BURST_8 (6 << 24)
87 #define TEGRA_APBDMA_AHBSEQ_DBL_BUF BIT(19)
88 #define TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT 16
89 #define TEGRA_APBDMA_AHBSEQ_WRAP_NONE 0
90
91 /* APB address */
92 #define TEGRA_APBDMA_CHAN_APBPTR 0x018
93
94 /* APB sequence register */
95 #define TEGRA_APBDMA_CHAN_APBSEQ 0x01c
96 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8 (0 << 28)
97 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16 (1 << 28)
98 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32 (2 << 28)
99 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64 (3 << 28)
100 #define TEGRA_APBDMA_APBSEQ_BUS_WIDTH_128 (4 << 28)
101 #define TEGRA_APBDMA_APBSEQ_DATA_SWAP BIT(27)
102 #define TEGRA_APBDMA_APBSEQ_WRAP_WORD_1 (1 << 16)
103
104 /* Tegra148 specific registers */
105 #define TEGRA_APBDMA_CHAN_WCOUNT 0x20
106
107 #define TEGRA_APBDMA_CHAN_WORD_TRANSFER 0x24
108
109 /*
110 * If any burst is in flight and DMA paused then this is the time to complete
111 * on-flight burst and update DMA status register.
112 */
113 #define TEGRA_APBDMA_BURST_COMPLETE_TIME 20
114
115 /* Channel base address offset from APBDMA base address */
116 #define TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET 0x1000
117
118 #define TEGRA_APBDMA_SLAVE_ID_INVALID (TEGRA_APBDMA_CSR_REQ_SEL_MASK + 1)
119
120 struct tegra_dma;
121
122 /*
123 * tegra_dma_chip_data Tegra chip specific DMA data
124 * @nr_channels: Number of channels available in the controller.
125 * @channel_reg_size: Channel register size/stride.
126 * @max_dma_count: Maximum DMA transfer count supported by DMA controller.
127 * @support_channel_pause: Support channel wise pause of dma.
128 * @support_separate_wcount_reg: Support separate word count register.
129 */
130 struct tegra_dma_chip_data {
131 int nr_channels;
132 int channel_reg_size;
133 int max_dma_count;
134 bool support_channel_pause;
135 bool support_separate_wcount_reg;
136 };
137
138 /* DMA channel registers */
139 struct tegra_dma_channel_regs {
140 unsigned long csr;
141 unsigned long ahb_ptr;
142 unsigned long apb_ptr;
143 unsigned long ahb_seq;
144 unsigned long apb_seq;
145 unsigned long wcount;
146 };
147
148 /*
149 * tegra_dma_sg_req: Dma request details to configure hardware. This
150 * contains the details for one transfer to configure DMA hw.
151 * The client's request for data transfer can be broken into multiple
152 * sub-transfer as per requester details and hw support.
153 * This sub transfer get added in the list of transfer and point to Tegra
154 * DMA descriptor which manages the transfer details.
155 */
156 struct tegra_dma_sg_req {
157 struct tegra_dma_channel_regs ch_regs;
158 int req_len;
159 bool configured;
160 bool last_sg;
161 struct list_head node;
162 struct tegra_dma_desc *dma_desc;
163 };
164
165 /*
166 * tegra_dma_desc: Tegra DMA descriptors which manages the client requests.
167 * This descriptor keep track of transfer status, callbacks and request
168 * counts etc.
169 */
170 struct tegra_dma_desc {
171 struct dma_async_tx_descriptor txd;
172 int bytes_requested;
173 int bytes_transferred;
174 enum dma_status dma_status;
175 struct list_head node;
176 struct list_head tx_list;
177 struct list_head cb_node;
178 int cb_count;
179 };
180
181 struct tegra_dma_channel;
182
183 typedef void (*dma_isr_handler)(struct tegra_dma_channel *tdc,
184 bool to_terminate);
185
186 /* tegra_dma_channel: Channel specific information */
187 struct tegra_dma_channel {
188 struct dma_chan dma_chan;
189 char name[30];
190 bool config_init;
191 int id;
192 int irq;
193 void __iomem *chan_addr;
194 spinlock_t lock;
195 bool busy;
196 struct tegra_dma *tdma;
197 bool cyclic;
198
199 /* Different lists for managing the requests */
200 struct list_head free_sg_req;
201 struct list_head pending_sg_req;
202 struct list_head free_dma_desc;
203 struct list_head cb_desc;
204
205 /* ISR handler and tasklet for bottom half of isr handling */
206 dma_isr_handler isr_handler;
207 struct tasklet_struct tasklet;
208
209 /* Channel-slave specific configuration */
210 unsigned int slave_id;
211 struct dma_slave_config dma_sconfig;
212 struct tegra_dma_channel_regs channel_reg;
213 };
214
215 /* tegra_dma: Tegra DMA specific information */
216 struct tegra_dma {
217 struct dma_device dma_dev;
218 struct device *dev;
219 struct clk *dma_clk;
220 struct reset_control *rst;
221 spinlock_t global_lock;
222 void __iomem *base_addr;
223 const struct tegra_dma_chip_data *chip_data;
224
225 /*
226 * Counter for managing global pausing of the DMA controller.
227 * Only applicable for devices that don't support individual
228 * channel pausing.
229 */
230 u32 global_pause_count;
231
232 /* Some register need to be cache before suspend */
233 u32 reg_gen;
234
235 /* Last member of the structure */
236 struct tegra_dma_channel channels[0];
237 };
238
239 static inline void tdma_write(struct tegra_dma *tdma, u32 reg, u32 val)
240 {
241 writel(val, tdma->base_addr + reg);
242 }
243
244 static inline u32 tdma_read(struct tegra_dma *tdma, u32 reg)
245 {
246 return readl(tdma->base_addr + reg);
247 }
248
249 static inline void tdc_write(struct tegra_dma_channel *tdc,
250 u32 reg, u32 val)
251 {
252 writel(val, tdc->chan_addr + reg);
253 }
254
255 static inline u32 tdc_read(struct tegra_dma_channel *tdc, u32 reg)
256 {
257 return readl(tdc->chan_addr + reg);
258 }
259
260 static inline struct tegra_dma_channel *to_tegra_dma_chan(struct dma_chan *dc)
261 {
262 return container_of(dc, struct tegra_dma_channel, dma_chan);
263 }
264
265 static inline struct tegra_dma_desc *txd_to_tegra_dma_desc(
266 struct dma_async_tx_descriptor *td)
267 {
268 return container_of(td, struct tegra_dma_desc, txd);
269 }
270
271 static inline struct device *tdc2dev(struct tegra_dma_channel *tdc)
272 {
273 return &tdc->dma_chan.dev->device;
274 }
275
276 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *tx);
277 static int tegra_dma_runtime_suspend(struct device *dev);
278 static int tegra_dma_runtime_resume(struct device *dev);
279
280 /* Get DMA desc from free list, if not there then allocate it. */
281 static struct tegra_dma_desc *tegra_dma_desc_get(
282 struct tegra_dma_channel *tdc)
283 {
284 struct tegra_dma_desc *dma_desc;
285 unsigned long flags;
286
287 spin_lock_irqsave(&tdc->lock, flags);
288
289 /* Do not allocate if desc are waiting for ack */
290 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
291 if (async_tx_test_ack(&dma_desc->txd)) {
292 list_del(&dma_desc->node);
293 spin_unlock_irqrestore(&tdc->lock, flags);
294 dma_desc->txd.flags = 0;
295 return dma_desc;
296 }
297 }
298
299 spin_unlock_irqrestore(&tdc->lock, flags);
300
301 /* Allocate DMA desc */
302 dma_desc = kzalloc(sizeof(*dma_desc), GFP_NOWAIT);
303 if (!dma_desc)
304 return NULL;
305
306 dma_async_tx_descriptor_init(&dma_desc->txd, &tdc->dma_chan);
307 dma_desc->txd.tx_submit = tegra_dma_tx_submit;
308 dma_desc->txd.flags = 0;
309 return dma_desc;
310 }
311
312 static void tegra_dma_desc_put(struct tegra_dma_channel *tdc,
313 struct tegra_dma_desc *dma_desc)
314 {
315 unsigned long flags;
316
317 spin_lock_irqsave(&tdc->lock, flags);
318 if (!list_empty(&dma_desc->tx_list))
319 list_splice_init(&dma_desc->tx_list, &tdc->free_sg_req);
320 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
321 spin_unlock_irqrestore(&tdc->lock, flags);
322 }
323
324 static struct tegra_dma_sg_req *tegra_dma_sg_req_get(
325 struct tegra_dma_channel *tdc)
326 {
327 struct tegra_dma_sg_req *sg_req = NULL;
328 unsigned long flags;
329
330 spin_lock_irqsave(&tdc->lock, flags);
331 if (!list_empty(&tdc->free_sg_req)) {
332 sg_req = list_first_entry(&tdc->free_sg_req,
333 typeof(*sg_req), node);
334 list_del(&sg_req->node);
335 spin_unlock_irqrestore(&tdc->lock, flags);
336 return sg_req;
337 }
338 spin_unlock_irqrestore(&tdc->lock, flags);
339
340 sg_req = kzalloc(sizeof(struct tegra_dma_sg_req), GFP_NOWAIT);
341
342 return sg_req;
343 }
344
345 static int tegra_dma_slave_config(struct dma_chan *dc,
346 struct dma_slave_config *sconfig)
347 {
348 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
349
350 if (!list_empty(&tdc->pending_sg_req)) {
351 dev_err(tdc2dev(tdc), "Configuration not allowed\n");
352 return -EBUSY;
353 }
354
355 memcpy(&tdc->dma_sconfig, sconfig, sizeof(*sconfig));
356 if (tdc->slave_id == TEGRA_APBDMA_SLAVE_ID_INVALID) {
357 if (sconfig->slave_id > TEGRA_APBDMA_CSR_REQ_SEL_MASK)
358 return -EINVAL;
359 tdc->slave_id = sconfig->slave_id;
360 }
361 tdc->config_init = true;
362 return 0;
363 }
364
365 static void tegra_dma_global_pause(struct tegra_dma_channel *tdc,
366 bool wait_for_burst_complete)
367 {
368 struct tegra_dma *tdma = tdc->tdma;
369
370 spin_lock(&tdma->global_lock);
371
372 if (tdc->tdma->global_pause_count == 0) {
373 tdma_write(tdma, TEGRA_APBDMA_GENERAL, 0);
374 if (wait_for_burst_complete)
375 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
376 }
377
378 tdc->tdma->global_pause_count++;
379
380 spin_unlock(&tdma->global_lock);
381 }
382
383 static void tegra_dma_global_resume(struct tegra_dma_channel *tdc)
384 {
385 struct tegra_dma *tdma = tdc->tdma;
386
387 spin_lock(&tdma->global_lock);
388
389 if (WARN_ON(tdc->tdma->global_pause_count == 0))
390 goto out;
391
392 if (--tdc->tdma->global_pause_count == 0)
393 tdma_write(tdma, TEGRA_APBDMA_GENERAL,
394 TEGRA_APBDMA_GENERAL_ENABLE);
395
396 out:
397 spin_unlock(&tdma->global_lock);
398 }
399
400 static void tegra_dma_pause(struct tegra_dma_channel *tdc,
401 bool wait_for_burst_complete)
402 {
403 struct tegra_dma *tdma = tdc->tdma;
404
405 if (tdma->chip_data->support_channel_pause) {
406 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE,
407 TEGRA_APBDMA_CHAN_CSRE_PAUSE);
408 if (wait_for_burst_complete)
409 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
410 } else {
411 tegra_dma_global_pause(tdc, wait_for_burst_complete);
412 }
413 }
414
415 static void tegra_dma_resume(struct tegra_dma_channel *tdc)
416 {
417 struct tegra_dma *tdma = tdc->tdma;
418
419 if (tdma->chip_data->support_channel_pause) {
420 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSRE, 0);
421 } else {
422 tegra_dma_global_resume(tdc);
423 }
424 }
425
426 static void tegra_dma_stop(struct tegra_dma_channel *tdc)
427 {
428 u32 csr;
429 u32 status;
430
431 /* Disable interrupts */
432 csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
433 csr &= ~TEGRA_APBDMA_CSR_IE_EOC;
434 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
435
436 /* Disable DMA */
437 csr &= ~TEGRA_APBDMA_CSR_ENB;
438 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, csr);
439
440 /* Clear interrupt status if it is there */
441 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
442 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
443 dev_dbg(tdc2dev(tdc), "%s():clearing interrupt\n", __func__);
444 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
445 }
446 tdc->busy = false;
447 }
448
449 static void tegra_dma_start(struct tegra_dma_channel *tdc,
450 struct tegra_dma_sg_req *sg_req)
451 {
452 struct tegra_dma_channel_regs *ch_regs = &sg_req->ch_regs;
453
454 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR, ch_regs->csr);
455 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_regs->apb_seq);
456 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_regs->apb_ptr);
457 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_regs->ahb_seq);
458 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_regs->ahb_ptr);
459 if (tdc->tdma->chip_data->support_separate_wcount_reg)
460 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT, ch_regs->wcount);
461
462 /* Start DMA */
463 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
464 ch_regs->csr | TEGRA_APBDMA_CSR_ENB);
465 }
466
467 static void tegra_dma_configure_for_next(struct tegra_dma_channel *tdc,
468 struct tegra_dma_sg_req *nsg_req)
469 {
470 unsigned long status;
471
472 /*
473 * The DMA controller reloads the new configuration for next transfer
474 * after last burst of current transfer completes.
475 * If there is no IEC status then this makes sure that last burst
476 * has not be completed. There may be case that last burst is on
477 * flight and so it can complete but because DMA is paused, it
478 * will not generates interrupt as well as not reload the new
479 * configuration.
480 * If there is already IEC status then interrupt handler need to
481 * load new configuration.
482 */
483 tegra_dma_pause(tdc, false);
484 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
485
486 /*
487 * If interrupt is pending then do nothing as the ISR will handle
488 * the programing for new request.
489 */
490 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
491 dev_err(tdc2dev(tdc),
492 "Skipping new configuration as interrupt is pending\n");
493 tegra_dma_resume(tdc);
494 return;
495 }
496
497 /* Safe to program new configuration */
498 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, nsg_req->ch_regs.apb_ptr);
499 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, nsg_req->ch_regs.ahb_ptr);
500 if (tdc->tdma->chip_data->support_separate_wcount_reg)
501 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
502 nsg_req->ch_regs.wcount);
503 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
504 nsg_req->ch_regs.csr | TEGRA_APBDMA_CSR_ENB);
505 nsg_req->configured = true;
506
507 tegra_dma_resume(tdc);
508 }
509
510 static void tdc_start_head_req(struct tegra_dma_channel *tdc)
511 {
512 struct tegra_dma_sg_req *sg_req;
513
514 if (list_empty(&tdc->pending_sg_req))
515 return;
516
517 sg_req = list_first_entry(&tdc->pending_sg_req,
518 typeof(*sg_req), node);
519 tegra_dma_start(tdc, sg_req);
520 sg_req->configured = true;
521 tdc->busy = true;
522 }
523
524 static void tdc_configure_next_head_desc(struct tegra_dma_channel *tdc)
525 {
526 struct tegra_dma_sg_req *hsgreq;
527 struct tegra_dma_sg_req *hnsgreq;
528
529 if (list_empty(&tdc->pending_sg_req))
530 return;
531
532 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
533 if (!list_is_last(&hsgreq->node, &tdc->pending_sg_req)) {
534 hnsgreq = list_first_entry(&hsgreq->node,
535 typeof(*hnsgreq), node);
536 tegra_dma_configure_for_next(tdc, hnsgreq);
537 }
538 }
539
540 static inline int get_current_xferred_count(struct tegra_dma_channel *tdc,
541 struct tegra_dma_sg_req *sg_req, unsigned long status)
542 {
543 return sg_req->req_len - (status & TEGRA_APBDMA_STATUS_COUNT_MASK) - 4;
544 }
545
546 static void tegra_dma_abort_all(struct tegra_dma_channel *tdc)
547 {
548 struct tegra_dma_sg_req *sgreq;
549 struct tegra_dma_desc *dma_desc;
550
551 while (!list_empty(&tdc->pending_sg_req)) {
552 sgreq = list_first_entry(&tdc->pending_sg_req,
553 typeof(*sgreq), node);
554 list_move_tail(&sgreq->node, &tdc->free_sg_req);
555 if (sgreq->last_sg) {
556 dma_desc = sgreq->dma_desc;
557 dma_desc->dma_status = DMA_ERROR;
558 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
559
560 /* Add in cb list if it is not there. */
561 if (!dma_desc->cb_count)
562 list_add_tail(&dma_desc->cb_node,
563 &tdc->cb_desc);
564 dma_desc->cb_count++;
565 }
566 }
567 tdc->isr_handler = NULL;
568 }
569
570 static bool handle_continuous_head_request(struct tegra_dma_channel *tdc,
571 struct tegra_dma_sg_req *last_sg_req, bool to_terminate)
572 {
573 struct tegra_dma_sg_req *hsgreq = NULL;
574
575 if (list_empty(&tdc->pending_sg_req)) {
576 dev_err(tdc2dev(tdc), "Dma is running without req\n");
577 tegra_dma_stop(tdc);
578 return false;
579 }
580
581 /*
582 * Check that head req on list should be in flight.
583 * If it is not in flight then abort transfer as
584 * looping of transfer can not continue.
585 */
586 hsgreq = list_first_entry(&tdc->pending_sg_req, typeof(*hsgreq), node);
587 if (!hsgreq->configured) {
588 tegra_dma_stop(tdc);
589 dev_err(tdc2dev(tdc), "Error in dma transfer, aborting dma\n");
590 tegra_dma_abort_all(tdc);
591 return false;
592 }
593
594 /* Configure next request */
595 if (!to_terminate)
596 tdc_configure_next_head_desc(tdc);
597 return true;
598 }
599
600 static void handle_once_dma_done(struct tegra_dma_channel *tdc,
601 bool to_terminate)
602 {
603 struct tegra_dma_sg_req *sgreq;
604 struct tegra_dma_desc *dma_desc;
605
606 tdc->busy = false;
607 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
608 dma_desc = sgreq->dma_desc;
609 dma_desc->bytes_transferred += sgreq->req_len;
610
611 list_del(&sgreq->node);
612 if (sgreq->last_sg) {
613 dma_desc->dma_status = DMA_COMPLETE;
614 dma_cookie_complete(&dma_desc->txd);
615 if (!dma_desc->cb_count)
616 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
617 dma_desc->cb_count++;
618 list_add_tail(&dma_desc->node, &tdc->free_dma_desc);
619 }
620 list_add_tail(&sgreq->node, &tdc->free_sg_req);
621
622 /* Do not start DMA if it is going to be terminate */
623 if (to_terminate || list_empty(&tdc->pending_sg_req))
624 return;
625
626 tdc_start_head_req(tdc);
627 }
628
629 static void handle_cont_sngl_cycle_dma_done(struct tegra_dma_channel *tdc,
630 bool to_terminate)
631 {
632 struct tegra_dma_sg_req *sgreq;
633 struct tegra_dma_desc *dma_desc;
634 bool st;
635
636 sgreq = list_first_entry(&tdc->pending_sg_req, typeof(*sgreq), node);
637 dma_desc = sgreq->dma_desc;
638 /* if we dma for long enough the transfer count will wrap */
639 dma_desc->bytes_transferred =
640 (dma_desc->bytes_transferred + sgreq->req_len) %
641 dma_desc->bytes_requested;
642
643 /* Callback need to be call */
644 if (!dma_desc->cb_count)
645 list_add_tail(&dma_desc->cb_node, &tdc->cb_desc);
646 dma_desc->cb_count++;
647
648 /* If not last req then put at end of pending list */
649 if (!list_is_last(&sgreq->node, &tdc->pending_sg_req)) {
650 list_move_tail(&sgreq->node, &tdc->pending_sg_req);
651 sgreq->configured = false;
652 st = handle_continuous_head_request(tdc, sgreq, to_terminate);
653 if (!st)
654 dma_desc->dma_status = DMA_ERROR;
655 }
656 }
657
658 static void tegra_dma_tasklet(unsigned long data)
659 {
660 struct tegra_dma_channel *tdc = (struct tegra_dma_channel *)data;
661 struct dmaengine_desc_callback cb;
662 struct tegra_dma_desc *dma_desc;
663 unsigned long flags;
664 int cb_count;
665
666 spin_lock_irqsave(&tdc->lock, flags);
667 while (!list_empty(&tdc->cb_desc)) {
668 dma_desc = list_first_entry(&tdc->cb_desc,
669 typeof(*dma_desc), cb_node);
670 list_del(&dma_desc->cb_node);
671 dmaengine_desc_get_callback(&dma_desc->txd, &cb);
672 cb_count = dma_desc->cb_count;
673 dma_desc->cb_count = 0;
674 spin_unlock_irqrestore(&tdc->lock, flags);
675 while (cb_count--)
676 dmaengine_desc_callback_invoke(&cb, NULL);
677 spin_lock_irqsave(&tdc->lock, flags);
678 }
679 spin_unlock_irqrestore(&tdc->lock, flags);
680 }
681
682 static irqreturn_t tegra_dma_isr(int irq, void *dev_id)
683 {
684 struct tegra_dma_channel *tdc = dev_id;
685 unsigned long status;
686 unsigned long flags;
687
688 spin_lock_irqsave(&tdc->lock, flags);
689
690 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
691 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
692 tdc_write(tdc, TEGRA_APBDMA_CHAN_STATUS, status);
693 tdc->isr_handler(tdc, false);
694 tasklet_schedule(&tdc->tasklet);
695 spin_unlock_irqrestore(&tdc->lock, flags);
696 return IRQ_HANDLED;
697 }
698
699 spin_unlock_irqrestore(&tdc->lock, flags);
700 dev_info(tdc2dev(tdc),
701 "Interrupt already served status 0x%08lx\n", status);
702 return IRQ_NONE;
703 }
704
705 static dma_cookie_t tegra_dma_tx_submit(struct dma_async_tx_descriptor *txd)
706 {
707 struct tegra_dma_desc *dma_desc = txd_to_tegra_dma_desc(txd);
708 struct tegra_dma_channel *tdc = to_tegra_dma_chan(txd->chan);
709 unsigned long flags;
710 dma_cookie_t cookie;
711
712 spin_lock_irqsave(&tdc->lock, flags);
713 dma_desc->dma_status = DMA_IN_PROGRESS;
714 cookie = dma_cookie_assign(&dma_desc->txd);
715 list_splice_tail_init(&dma_desc->tx_list, &tdc->pending_sg_req);
716 spin_unlock_irqrestore(&tdc->lock, flags);
717 return cookie;
718 }
719
720 static void tegra_dma_issue_pending(struct dma_chan *dc)
721 {
722 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
723 unsigned long flags;
724
725 spin_lock_irqsave(&tdc->lock, flags);
726 if (list_empty(&tdc->pending_sg_req)) {
727 dev_err(tdc2dev(tdc), "No DMA request\n");
728 goto end;
729 }
730 if (!tdc->busy) {
731 tdc_start_head_req(tdc);
732
733 /* Continuous single mode: Configure next req */
734 if (tdc->cyclic) {
735 /*
736 * Wait for 1 burst time for configure DMA for
737 * next transfer.
738 */
739 udelay(TEGRA_APBDMA_BURST_COMPLETE_TIME);
740 tdc_configure_next_head_desc(tdc);
741 }
742 }
743 end:
744 spin_unlock_irqrestore(&tdc->lock, flags);
745 }
746
747 static int tegra_dma_terminate_all(struct dma_chan *dc)
748 {
749 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
750 struct tegra_dma_sg_req *sgreq;
751 struct tegra_dma_desc *dma_desc;
752 unsigned long flags;
753 unsigned long status;
754 unsigned long wcount;
755 bool was_busy;
756
757 spin_lock_irqsave(&tdc->lock, flags);
758 if (list_empty(&tdc->pending_sg_req)) {
759 spin_unlock_irqrestore(&tdc->lock, flags);
760 return 0;
761 }
762
763 if (!tdc->busy)
764 goto skip_dma_stop;
765
766 /* Pause DMA before checking the queue status */
767 tegra_dma_pause(tdc, true);
768
769 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
770 if (status & TEGRA_APBDMA_STATUS_ISE_EOC) {
771 dev_dbg(tdc2dev(tdc), "%s():handling isr\n", __func__);
772 tdc->isr_handler(tdc, true);
773 status = tdc_read(tdc, TEGRA_APBDMA_CHAN_STATUS);
774 }
775 if (tdc->tdma->chip_data->support_separate_wcount_reg)
776 wcount = tdc_read(tdc, TEGRA_APBDMA_CHAN_WORD_TRANSFER);
777 else
778 wcount = status;
779
780 was_busy = tdc->busy;
781 tegra_dma_stop(tdc);
782
783 if (!list_empty(&tdc->pending_sg_req) && was_busy) {
784 sgreq = list_first_entry(&tdc->pending_sg_req,
785 typeof(*sgreq), node);
786 sgreq->dma_desc->bytes_transferred +=
787 get_current_xferred_count(tdc, sgreq, wcount);
788 }
789 tegra_dma_resume(tdc);
790
791 skip_dma_stop:
792 tegra_dma_abort_all(tdc);
793
794 while (!list_empty(&tdc->cb_desc)) {
795 dma_desc = list_first_entry(&tdc->cb_desc,
796 typeof(*dma_desc), cb_node);
797 list_del(&dma_desc->cb_node);
798 dma_desc->cb_count = 0;
799 }
800 spin_unlock_irqrestore(&tdc->lock, flags);
801 return 0;
802 }
803
804 static enum dma_status tegra_dma_tx_status(struct dma_chan *dc,
805 dma_cookie_t cookie, struct dma_tx_state *txstate)
806 {
807 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
808 struct tegra_dma_desc *dma_desc;
809 struct tegra_dma_sg_req *sg_req;
810 enum dma_status ret;
811 unsigned long flags;
812 unsigned int residual;
813
814 ret = dma_cookie_status(dc, cookie, txstate);
815 if (ret == DMA_COMPLETE)
816 return ret;
817
818 spin_lock_irqsave(&tdc->lock, flags);
819
820 /* Check on wait_ack desc status */
821 list_for_each_entry(dma_desc, &tdc->free_dma_desc, node) {
822 if (dma_desc->txd.cookie == cookie) {
823 ret = dma_desc->dma_status;
824 goto found;
825 }
826 }
827
828 /* Check in pending list */
829 list_for_each_entry(sg_req, &tdc->pending_sg_req, node) {
830 dma_desc = sg_req->dma_desc;
831 if (dma_desc->txd.cookie == cookie) {
832 ret = dma_desc->dma_status;
833 goto found;
834 }
835 }
836
837 dev_dbg(tdc2dev(tdc), "cookie %d not found\n", cookie);
838 dma_desc = NULL;
839
840 found:
841 if (dma_desc && txstate) {
842 residual = dma_desc->bytes_requested -
843 (dma_desc->bytes_transferred %
844 dma_desc->bytes_requested);
845 dma_set_residue(txstate, residual);
846 }
847
848 spin_unlock_irqrestore(&tdc->lock, flags);
849 return ret;
850 }
851
852 static inline int get_bus_width(struct tegra_dma_channel *tdc,
853 enum dma_slave_buswidth slave_bw)
854 {
855 switch (slave_bw) {
856 case DMA_SLAVE_BUSWIDTH_1_BYTE:
857 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_8;
858 case DMA_SLAVE_BUSWIDTH_2_BYTES:
859 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_16;
860 case DMA_SLAVE_BUSWIDTH_4_BYTES:
861 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
862 case DMA_SLAVE_BUSWIDTH_8_BYTES:
863 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_64;
864 default:
865 dev_warn(tdc2dev(tdc),
866 "slave bw is not supported, using 32bits\n");
867 return TEGRA_APBDMA_APBSEQ_BUS_WIDTH_32;
868 }
869 }
870
871 static inline int get_burst_size(struct tegra_dma_channel *tdc,
872 u32 burst_size, enum dma_slave_buswidth slave_bw, int len)
873 {
874 int burst_byte;
875 int burst_ahb_width;
876
877 /*
878 * burst_size from client is in terms of the bus_width.
879 * convert them into AHB memory width which is 4 byte.
880 */
881 burst_byte = burst_size * slave_bw;
882 burst_ahb_width = burst_byte / 4;
883
884 /* If burst size is 0 then calculate the burst size based on length */
885 if (!burst_ahb_width) {
886 if (len & 0xF)
887 return TEGRA_APBDMA_AHBSEQ_BURST_1;
888 else if ((len >> 4) & 0x1)
889 return TEGRA_APBDMA_AHBSEQ_BURST_4;
890 else
891 return TEGRA_APBDMA_AHBSEQ_BURST_8;
892 }
893 if (burst_ahb_width < 4)
894 return TEGRA_APBDMA_AHBSEQ_BURST_1;
895 else if (burst_ahb_width < 8)
896 return TEGRA_APBDMA_AHBSEQ_BURST_4;
897 else
898 return TEGRA_APBDMA_AHBSEQ_BURST_8;
899 }
900
901 static int get_transfer_param(struct tegra_dma_channel *tdc,
902 enum dma_transfer_direction direction, unsigned long *apb_addr,
903 unsigned long *apb_seq, unsigned long *csr, unsigned int *burst_size,
904 enum dma_slave_buswidth *slave_bw)
905 {
906 switch (direction) {
907 case DMA_MEM_TO_DEV:
908 *apb_addr = tdc->dma_sconfig.dst_addr;
909 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.dst_addr_width);
910 *burst_size = tdc->dma_sconfig.dst_maxburst;
911 *slave_bw = tdc->dma_sconfig.dst_addr_width;
912 *csr = TEGRA_APBDMA_CSR_DIR;
913 return 0;
914
915 case DMA_DEV_TO_MEM:
916 *apb_addr = tdc->dma_sconfig.src_addr;
917 *apb_seq = get_bus_width(tdc, tdc->dma_sconfig.src_addr_width);
918 *burst_size = tdc->dma_sconfig.src_maxburst;
919 *slave_bw = tdc->dma_sconfig.src_addr_width;
920 *csr = 0;
921 return 0;
922
923 default:
924 dev_err(tdc2dev(tdc), "Dma direction is not supported\n");
925 return -EINVAL;
926 }
927 return -EINVAL;
928 }
929
930 static void tegra_dma_prep_wcount(struct tegra_dma_channel *tdc,
931 struct tegra_dma_channel_regs *ch_regs, u32 len)
932 {
933 u32 len_field = (len - 4) & 0xFFFC;
934
935 if (tdc->tdma->chip_data->support_separate_wcount_reg)
936 ch_regs->wcount = len_field;
937 else
938 ch_regs->csr |= len_field;
939 }
940
941 static struct dma_async_tx_descriptor *tegra_dma_prep_slave_sg(
942 struct dma_chan *dc, struct scatterlist *sgl, unsigned int sg_len,
943 enum dma_transfer_direction direction, unsigned long flags,
944 void *context)
945 {
946 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
947 struct tegra_dma_desc *dma_desc;
948 unsigned int i;
949 struct scatterlist *sg;
950 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
951 struct list_head req_list;
952 struct tegra_dma_sg_req *sg_req = NULL;
953 u32 burst_size;
954 enum dma_slave_buswidth slave_bw;
955
956 if (!tdc->config_init) {
957 dev_err(tdc2dev(tdc), "dma channel is not configured\n");
958 return NULL;
959 }
960 if (sg_len < 1) {
961 dev_err(tdc2dev(tdc), "Invalid segment length %d\n", sg_len);
962 return NULL;
963 }
964
965 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
966 &burst_size, &slave_bw) < 0)
967 return NULL;
968
969 INIT_LIST_HEAD(&req_list);
970
971 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
972 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
973 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
974 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
975
976 csr |= TEGRA_APBDMA_CSR_ONCE | TEGRA_APBDMA_CSR_FLOW;
977 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
978 if (flags & DMA_PREP_INTERRUPT)
979 csr |= TEGRA_APBDMA_CSR_IE_EOC;
980
981 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
982
983 dma_desc = tegra_dma_desc_get(tdc);
984 if (!dma_desc) {
985 dev_err(tdc2dev(tdc), "Dma descriptors not available\n");
986 return NULL;
987 }
988 INIT_LIST_HEAD(&dma_desc->tx_list);
989 INIT_LIST_HEAD(&dma_desc->cb_node);
990 dma_desc->cb_count = 0;
991 dma_desc->bytes_requested = 0;
992 dma_desc->bytes_transferred = 0;
993 dma_desc->dma_status = DMA_IN_PROGRESS;
994
995 /* Make transfer requests */
996 for_each_sg(sgl, sg, sg_len, i) {
997 u32 len, mem;
998
999 mem = sg_dma_address(sg);
1000 len = sg_dma_len(sg);
1001
1002 if ((len & 3) || (mem & 3) ||
1003 (len > tdc->tdma->chip_data->max_dma_count)) {
1004 dev_err(tdc2dev(tdc),
1005 "Dma length/memory address is not supported\n");
1006 tegra_dma_desc_put(tdc, dma_desc);
1007 return NULL;
1008 }
1009
1010 sg_req = tegra_dma_sg_req_get(tdc);
1011 if (!sg_req) {
1012 dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1013 tegra_dma_desc_put(tdc, dma_desc);
1014 return NULL;
1015 }
1016
1017 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1018 dma_desc->bytes_requested += len;
1019
1020 sg_req->ch_regs.apb_ptr = apb_ptr;
1021 sg_req->ch_regs.ahb_ptr = mem;
1022 sg_req->ch_regs.csr = csr;
1023 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1024 sg_req->ch_regs.apb_seq = apb_seq;
1025 sg_req->ch_regs.ahb_seq = ahb_seq;
1026 sg_req->configured = false;
1027 sg_req->last_sg = false;
1028 sg_req->dma_desc = dma_desc;
1029 sg_req->req_len = len;
1030
1031 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1032 }
1033 sg_req->last_sg = true;
1034 if (flags & DMA_CTRL_ACK)
1035 dma_desc->txd.flags = DMA_CTRL_ACK;
1036
1037 /*
1038 * Make sure that mode should not be conflicting with currently
1039 * configured mode.
1040 */
1041 if (!tdc->isr_handler) {
1042 tdc->isr_handler = handle_once_dma_done;
1043 tdc->cyclic = false;
1044 } else {
1045 if (tdc->cyclic) {
1046 dev_err(tdc2dev(tdc), "DMA configured in cyclic mode\n");
1047 tegra_dma_desc_put(tdc, dma_desc);
1048 return NULL;
1049 }
1050 }
1051
1052 return &dma_desc->txd;
1053 }
1054
1055 static struct dma_async_tx_descriptor *tegra_dma_prep_dma_cyclic(
1056 struct dma_chan *dc, dma_addr_t buf_addr, size_t buf_len,
1057 size_t period_len, enum dma_transfer_direction direction,
1058 unsigned long flags)
1059 {
1060 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1061 struct tegra_dma_desc *dma_desc = NULL;
1062 struct tegra_dma_sg_req *sg_req = NULL;
1063 unsigned long csr, ahb_seq, apb_ptr, apb_seq;
1064 int len;
1065 size_t remain_len;
1066 dma_addr_t mem = buf_addr;
1067 u32 burst_size;
1068 enum dma_slave_buswidth slave_bw;
1069
1070 if (!buf_len || !period_len) {
1071 dev_err(tdc2dev(tdc), "Invalid buffer/period len\n");
1072 return NULL;
1073 }
1074
1075 if (!tdc->config_init) {
1076 dev_err(tdc2dev(tdc), "DMA slave is not configured\n");
1077 return NULL;
1078 }
1079
1080 /*
1081 * We allow to take more number of requests till DMA is
1082 * not started. The driver will loop over all requests.
1083 * Once DMA is started then new requests can be queued only after
1084 * terminating the DMA.
1085 */
1086 if (tdc->busy) {
1087 dev_err(tdc2dev(tdc), "Request not allowed when dma running\n");
1088 return NULL;
1089 }
1090
1091 /*
1092 * We only support cycle transfer when buf_len is multiple of
1093 * period_len.
1094 */
1095 if (buf_len % period_len) {
1096 dev_err(tdc2dev(tdc), "buf_len is not multiple of period_len\n");
1097 return NULL;
1098 }
1099
1100 len = period_len;
1101 if ((len & 3) || (buf_addr & 3) ||
1102 (len > tdc->tdma->chip_data->max_dma_count)) {
1103 dev_err(tdc2dev(tdc), "Req len/mem address is not correct\n");
1104 return NULL;
1105 }
1106
1107 if (get_transfer_param(tdc, direction, &apb_ptr, &apb_seq, &csr,
1108 &burst_size, &slave_bw) < 0)
1109 return NULL;
1110
1111 ahb_seq = TEGRA_APBDMA_AHBSEQ_INTR_ENB;
1112 ahb_seq |= TEGRA_APBDMA_AHBSEQ_WRAP_NONE <<
1113 TEGRA_APBDMA_AHBSEQ_WRAP_SHIFT;
1114 ahb_seq |= TEGRA_APBDMA_AHBSEQ_BUS_WIDTH_32;
1115
1116 csr |= TEGRA_APBDMA_CSR_FLOW;
1117 if (flags & DMA_PREP_INTERRUPT)
1118 csr |= TEGRA_APBDMA_CSR_IE_EOC;
1119 csr |= tdc->slave_id << TEGRA_APBDMA_CSR_REQ_SEL_SHIFT;
1120
1121 apb_seq |= TEGRA_APBDMA_APBSEQ_WRAP_WORD_1;
1122
1123 dma_desc = tegra_dma_desc_get(tdc);
1124 if (!dma_desc) {
1125 dev_err(tdc2dev(tdc), "not enough descriptors available\n");
1126 return NULL;
1127 }
1128
1129 INIT_LIST_HEAD(&dma_desc->tx_list);
1130 INIT_LIST_HEAD(&dma_desc->cb_node);
1131 dma_desc->cb_count = 0;
1132
1133 dma_desc->bytes_transferred = 0;
1134 dma_desc->bytes_requested = buf_len;
1135 remain_len = buf_len;
1136
1137 /* Split transfer equal to period size */
1138 while (remain_len) {
1139 sg_req = tegra_dma_sg_req_get(tdc);
1140 if (!sg_req) {
1141 dev_err(tdc2dev(tdc), "Dma sg-req not available\n");
1142 tegra_dma_desc_put(tdc, dma_desc);
1143 return NULL;
1144 }
1145
1146 ahb_seq |= get_burst_size(tdc, burst_size, slave_bw, len);
1147 sg_req->ch_regs.apb_ptr = apb_ptr;
1148 sg_req->ch_regs.ahb_ptr = mem;
1149 sg_req->ch_regs.csr = csr;
1150 tegra_dma_prep_wcount(tdc, &sg_req->ch_regs, len);
1151 sg_req->ch_regs.apb_seq = apb_seq;
1152 sg_req->ch_regs.ahb_seq = ahb_seq;
1153 sg_req->configured = false;
1154 sg_req->last_sg = false;
1155 sg_req->dma_desc = dma_desc;
1156 sg_req->req_len = len;
1157
1158 list_add_tail(&sg_req->node, &dma_desc->tx_list);
1159 remain_len -= len;
1160 mem += len;
1161 }
1162 sg_req->last_sg = true;
1163 if (flags & DMA_CTRL_ACK)
1164 dma_desc->txd.flags = DMA_CTRL_ACK;
1165
1166 /*
1167 * Make sure that mode should not be conflicting with currently
1168 * configured mode.
1169 */
1170 if (!tdc->isr_handler) {
1171 tdc->isr_handler = handle_cont_sngl_cycle_dma_done;
1172 tdc->cyclic = true;
1173 } else {
1174 if (!tdc->cyclic) {
1175 dev_err(tdc2dev(tdc), "DMA configuration conflict\n");
1176 tegra_dma_desc_put(tdc, dma_desc);
1177 return NULL;
1178 }
1179 }
1180
1181 return &dma_desc->txd;
1182 }
1183
1184 static int tegra_dma_alloc_chan_resources(struct dma_chan *dc)
1185 {
1186 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1187 struct tegra_dma *tdma = tdc->tdma;
1188 int ret;
1189
1190 dma_cookie_init(&tdc->dma_chan);
1191 tdc->config_init = false;
1192
1193 ret = pm_runtime_get_sync(tdma->dev);
1194 if (ret < 0)
1195 return ret;
1196
1197 return 0;
1198 }
1199
1200 static void tegra_dma_free_chan_resources(struct dma_chan *dc)
1201 {
1202 struct tegra_dma_channel *tdc = to_tegra_dma_chan(dc);
1203 struct tegra_dma *tdma = tdc->tdma;
1204 struct tegra_dma_desc *dma_desc;
1205 struct tegra_dma_sg_req *sg_req;
1206 struct list_head dma_desc_list;
1207 struct list_head sg_req_list;
1208 unsigned long flags;
1209
1210 INIT_LIST_HEAD(&dma_desc_list);
1211 INIT_LIST_HEAD(&sg_req_list);
1212
1213 dev_dbg(tdc2dev(tdc), "Freeing channel %d\n", tdc->id);
1214
1215 if (tdc->busy)
1216 tegra_dma_terminate_all(dc);
1217
1218 spin_lock_irqsave(&tdc->lock, flags);
1219 list_splice_init(&tdc->pending_sg_req, &sg_req_list);
1220 list_splice_init(&tdc->free_sg_req, &sg_req_list);
1221 list_splice_init(&tdc->free_dma_desc, &dma_desc_list);
1222 INIT_LIST_HEAD(&tdc->cb_desc);
1223 tdc->config_init = false;
1224 tdc->isr_handler = NULL;
1225 spin_unlock_irqrestore(&tdc->lock, flags);
1226
1227 while (!list_empty(&dma_desc_list)) {
1228 dma_desc = list_first_entry(&dma_desc_list,
1229 typeof(*dma_desc), node);
1230 list_del(&dma_desc->node);
1231 kfree(dma_desc);
1232 }
1233
1234 while (!list_empty(&sg_req_list)) {
1235 sg_req = list_first_entry(&sg_req_list, typeof(*sg_req), node);
1236 list_del(&sg_req->node);
1237 kfree(sg_req);
1238 }
1239 pm_runtime_put(tdma->dev);
1240
1241 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1242 }
1243
1244 static struct dma_chan *tegra_dma_of_xlate(struct of_phandle_args *dma_spec,
1245 struct of_dma *ofdma)
1246 {
1247 struct tegra_dma *tdma = ofdma->of_dma_data;
1248 struct dma_chan *chan;
1249 struct tegra_dma_channel *tdc;
1250
1251 if (dma_spec->args[0] > TEGRA_APBDMA_CSR_REQ_SEL_MASK) {
1252 dev_err(tdma->dev, "Invalid slave id: %d\n", dma_spec->args[0]);
1253 return NULL;
1254 }
1255
1256 chan = dma_get_any_slave_channel(&tdma->dma_dev);
1257 if (!chan)
1258 return NULL;
1259
1260 tdc = to_tegra_dma_chan(chan);
1261 tdc->slave_id = dma_spec->args[0];
1262
1263 return chan;
1264 }
1265
1266 /* Tegra20 specific DMA controller information */
1267 static const struct tegra_dma_chip_data tegra20_dma_chip_data = {
1268 .nr_channels = 16,
1269 .channel_reg_size = 0x20,
1270 .max_dma_count = 1024UL * 64,
1271 .support_channel_pause = false,
1272 .support_separate_wcount_reg = false,
1273 };
1274
1275 /* Tegra30 specific DMA controller information */
1276 static const struct tegra_dma_chip_data tegra30_dma_chip_data = {
1277 .nr_channels = 32,
1278 .channel_reg_size = 0x20,
1279 .max_dma_count = 1024UL * 64,
1280 .support_channel_pause = false,
1281 .support_separate_wcount_reg = false,
1282 };
1283
1284 /* Tegra114 specific DMA controller information */
1285 static const struct tegra_dma_chip_data tegra114_dma_chip_data = {
1286 .nr_channels = 32,
1287 .channel_reg_size = 0x20,
1288 .max_dma_count = 1024UL * 64,
1289 .support_channel_pause = true,
1290 .support_separate_wcount_reg = false,
1291 };
1292
1293 /* Tegra148 specific DMA controller information */
1294 static const struct tegra_dma_chip_data tegra148_dma_chip_data = {
1295 .nr_channels = 32,
1296 .channel_reg_size = 0x40,
1297 .max_dma_count = 1024UL * 64,
1298 .support_channel_pause = true,
1299 .support_separate_wcount_reg = true,
1300 };
1301
1302 static int tegra_dma_probe(struct platform_device *pdev)
1303 {
1304 struct resource *res;
1305 struct tegra_dma *tdma;
1306 int ret;
1307 int i;
1308 const struct tegra_dma_chip_data *cdata;
1309
1310 cdata = of_device_get_match_data(&pdev->dev);
1311 if (!cdata) {
1312 dev_err(&pdev->dev, "Error: No device match data found\n");
1313 return -ENODEV;
1314 }
1315
1316 tdma = devm_kzalloc(&pdev->dev, sizeof(*tdma) + cdata->nr_channels *
1317 sizeof(struct tegra_dma_channel), GFP_KERNEL);
1318 if (!tdma)
1319 return -ENOMEM;
1320
1321 tdma->dev = &pdev->dev;
1322 tdma->chip_data = cdata;
1323 platform_set_drvdata(pdev, tdma);
1324
1325 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1326 tdma->base_addr = devm_ioremap_resource(&pdev->dev, res);
1327 if (IS_ERR(tdma->base_addr))
1328 return PTR_ERR(tdma->base_addr);
1329
1330 tdma->dma_clk = devm_clk_get(&pdev->dev, NULL);
1331 if (IS_ERR(tdma->dma_clk)) {
1332 dev_err(&pdev->dev, "Error: Missing controller clock\n");
1333 return PTR_ERR(tdma->dma_clk);
1334 }
1335
1336 tdma->rst = devm_reset_control_get(&pdev->dev, "dma");
1337 if (IS_ERR(tdma->rst)) {
1338 dev_err(&pdev->dev, "Error: Missing reset\n");
1339 return PTR_ERR(tdma->rst);
1340 }
1341
1342 spin_lock_init(&tdma->global_lock);
1343
1344 pm_runtime_enable(&pdev->dev);
1345 if (!pm_runtime_enabled(&pdev->dev))
1346 ret = tegra_dma_runtime_resume(&pdev->dev);
1347 else
1348 ret = pm_runtime_get_sync(&pdev->dev);
1349
1350 if (ret < 0) {
1351 pm_runtime_disable(&pdev->dev);
1352 return ret;
1353 }
1354
1355 /* Reset DMA controller */
1356 reset_control_assert(tdma->rst);
1357 udelay(2);
1358 reset_control_deassert(tdma->rst);
1359
1360 /* Enable global DMA registers */
1361 tdma_write(tdma, TEGRA_APBDMA_GENERAL, TEGRA_APBDMA_GENERAL_ENABLE);
1362 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1363 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1364
1365 pm_runtime_put(&pdev->dev);
1366
1367 INIT_LIST_HEAD(&tdma->dma_dev.channels);
1368 for (i = 0; i < cdata->nr_channels; i++) {
1369 struct tegra_dma_channel *tdc = &tdma->channels[i];
1370
1371 tdc->chan_addr = tdma->base_addr +
1372 TEGRA_APBDMA_CHANNEL_BASE_ADD_OFFSET +
1373 (i * cdata->channel_reg_size);
1374
1375 res = platform_get_resource(pdev, IORESOURCE_IRQ, i);
1376 if (!res) {
1377 ret = -EINVAL;
1378 dev_err(&pdev->dev, "No irq resource for chan %d\n", i);
1379 goto err_irq;
1380 }
1381 tdc->irq = res->start;
1382 snprintf(tdc->name, sizeof(tdc->name), "apbdma.%d", i);
1383 ret = request_irq(tdc->irq, tegra_dma_isr, 0, tdc->name, tdc);
1384 if (ret) {
1385 dev_err(&pdev->dev,
1386 "request_irq failed with err %d channel %d\n",
1387 ret, i);
1388 goto err_irq;
1389 }
1390
1391 tdc->dma_chan.device = &tdma->dma_dev;
1392 dma_cookie_init(&tdc->dma_chan);
1393 list_add_tail(&tdc->dma_chan.device_node,
1394 &tdma->dma_dev.channels);
1395 tdc->tdma = tdma;
1396 tdc->id = i;
1397 tdc->slave_id = TEGRA_APBDMA_SLAVE_ID_INVALID;
1398
1399 tasklet_init(&tdc->tasklet, tegra_dma_tasklet,
1400 (unsigned long)tdc);
1401 spin_lock_init(&tdc->lock);
1402
1403 INIT_LIST_HEAD(&tdc->pending_sg_req);
1404 INIT_LIST_HEAD(&tdc->free_sg_req);
1405 INIT_LIST_HEAD(&tdc->free_dma_desc);
1406 INIT_LIST_HEAD(&tdc->cb_desc);
1407 }
1408
1409 dma_cap_set(DMA_SLAVE, tdma->dma_dev.cap_mask);
1410 dma_cap_set(DMA_PRIVATE, tdma->dma_dev.cap_mask);
1411 dma_cap_set(DMA_CYCLIC, tdma->dma_dev.cap_mask);
1412
1413 tdma->global_pause_count = 0;
1414 tdma->dma_dev.dev = &pdev->dev;
1415 tdma->dma_dev.device_alloc_chan_resources =
1416 tegra_dma_alloc_chan_resources;
1417 tdma->dma_dev.device_free_chan_resources =
1418 tegra_dma_free_chan_resources;
1419 tdma->dma_dev.device_prep_slave_sg = tegra_dma_prep_slave_sg;
1420 tdma->dma_dev.device_prep_dma_cyclic = tegra_dma_prep_dma_cyclic;
1421 tdma->dma_dev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1422 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1423 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1424 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1425 tdma->dma_dev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1426 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1427 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
1428 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES);
1429 tdma->dma_dev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1430 /*
1431 * XXX The hardware appears to support
1432 * DMA_RESIDUE_GRANULARITY_BURST-level reporting, but it's
1433 * only used by this driver during tegra_dma_terminate_all()
1434 */
1435 tdma->dma_dev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
1436 tdma->dma_dev.device_config = tegra_dma_slave_config;
1437 tdma->dma_dev.device_terminate_all = tegra_dma_terminate_all;
1438 tdma->dma_dev.device_tx_status = tegra_dma_tx_status;
1439 tdma->dma_dev.device_issue_pending = tegra_dma_issue_pending;
1440
1441 ret = dma_async_device_register(&tdma->dma_dev);
1442 if (ret < 0) {
1443 dev_err(&pdev->dev,
1444 "Tegra20 APB DMA driver registration failed %d\n", ret);
1445 goto err_irq;
1446 }
1447
1448 ret = of_dma_controller_register(pdev->dev.of_node,
1449 tegra_dma_of_xlate, tdma);
1450 if (ret < 0) {
1451 dev_err(&pdev->dev,
1452 "Tegra20 APB DMA OF registration failed %d\n", ret);
1453 goto err_unregister_dma_dev;
1454 }
1455
1456 dev_info(&pdev->dev, "Tegra20 APB DMA driver register %d channels\n",
1457 cdata->nr_channels);
1458 return 0;
1459
1460 err_unregister_dma_dev:
1461 dma_async_device_unregister(&tdma->dma_dev);
1462 err_irq:
1463 while (--i >= 0) {
1464 struct tegra_dma_channel *tdc = &tdma->channels[i];
1465
1466 free_irq(tdc->irq, tdc);
1467 tasklet_kill(&tdc->tasklet);
1468 }
1469
1470 pm_runtime_disable(&pdev->dev);
1471 if (!pm_runtime_status_suspended(&pdev->dev))
1472 tegra_dma_runtime_suspend(&pdev->dev);
1473 return ret;
1474 }
1475
1476 static int tegra_dma_remove(struct platform_device *pdev)
1477 {
1478 struct tegra_dma *tdma = platform_get_drvdata(pdev);
1479 int i;
1480 struct tegra_dma_channel *tdc;
1481
1482 dma_async_device_unregister(&tdma->dma_dev);
1483
1484 for (i = 0; i < tdma->chip_data->nr_channels; ++i) {
1485 tdc = &tdma->channels[i];
1486 free_irq(tdc->irq, tdc);
1487 tasklet_kill(&tdc->tasklet);
1488 }
1489
1490 pm_runtime_disable(&pdev->dev);
1491 if (!pm_runtime_status_suspended(&pdev->dev))
1492 tegra_dma_runtime_suspend(&pdev->dev);
1493
1494 return 0;
1495 }
1496
1497 static int tegra_dma_runtime_suspend(struct device *dev)
1498 {
1499 struct tegra_dma *tdma = dev_get_drvdata(dev);
1500 int i;
1501
1502 tdma->reg_gen = tdma_read(tdma, TEGRA_APBDMA_GENERAL);
1503 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1504 struct tegra_dma_channel *tdc = &tdma->channels[i];
1505 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1506
1507 /* Only save the state of DMA channels that are in use */
1508 if (!tdc->config_init)
1509 continue;
1510
1511 ch_reg->csr = tdc_read(tdc, TEGRA_APBDMA_CHAN_CSR);
1512 ch_reg->ahb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBPTR);
1513 ch_reg->apb_ptr = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBPTR);
1514 ch_reg->ahb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_AHBSEQ);
1515 ch_reg->apb_seq = tdc_read(tdc, TEGRA_APBDMA_CHAN_APBSEQ);
1516 if (tdma->chip_data->support_separate_wcount_reg)
1517 ch_reg->wcount = tdc_read(tdc,
1518 TEGRA_APBDMA_CHAN_WCOUNT);
1519 }
1520
1521 clk_disable_unprepare(tdma->dma_clk);
1522
1523 return 0;
1524 }
1525
1526 static int tegra_dma_runtime_resume(struct device *dev)
1527 {
1528 struct tegra_dma *tdma = dev_get_drvdata(dev);
1529 int i, ret;
1530
1531 ret = clk_prepare_enable(tdma->dma_clk);
1532 if (ret < 0) {
1533 dev_err(dev, "clk_enable failed: %d\n", ret);
1534 return ret;
1535 }
1536
1537 tdma_write(tdma, TEGRA_APBDMA_GENERAL, tdma->reg_gen);
1538 tdma_write(tdma, TEGRA_APBDMA_CONTROL, 0);
1539 tdma_write(tdma, TEGRA_APBDMA_IRQ_MASK_SET, 0xFFFFFFFFul);
1540
1541 for (i = 0; i < tdma->chip_data->nr_channels; i++) {
1542 struct tegra_dma_channel *tdc = &tdma->channels[i];
1543 struct tegra_dma_channel_regs *ch_reg = &tdc->channel_reg;
1544
1545 /* Only restore the state of DMA channels that are in use */
1546 if (!tdc->config_init)
1547 continue;
1548
1549 if (tdma->chip_data->support_separate_wcount_reg)
1550 tdc_write(tdc, TEGRA_APBDMA_CHAN_WCOUNT,
1551 ch_reg->wcount);
1552 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBSEQ, ch_reg->apb_seq);
1553 tdc_write(tdc, TEGRA_APBDMA_CHAN_APBPTR, ch_reg->apb_ptr);
1554 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBSEQ, ch_reg->ahb_seq);
1555 tdc_write(tdc, TEGRA_APBDMA_CHAN_AHBPTR, ch_reg->ahb_ptr);
1556 tdc_write(tdc, TEGRA_APBDMA_CHAN_CSR,
1557 (ch_reg->csr & ~TEGRA_APBDMA_CSR_ENB));
1558 }
1559
1560 return 0;
1561 }
1562
1563 static const struct dev_pm_ops tegra_dma_dev_pm_ops = {
1564 SET_RUNTIME_PM_OPS(tegra_dma_runtime_suspend, tegra_dma_runtime_resume,
1565 NULL)
1566 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1567 pm_runtime_force_resume)
1568 };
1569
1570 static const struct of_device_id tegra_dma_of_match[] = {
1571 {
1572 .compatible = "nvidia,tegra148-apbdma",
1573 .data = &tegra148_dma_chip_data,
1574 }, {
1575 .compatible = "nvidia,tegra114-apbdma",
1576 .data = &tegra114_dma_chip_data,
1577 }, {
1578 .compatible = "nvidia,tegra30-apbdma",
1579 .data = &tegra30_dma_chip_data,
1580 }, {
1581 .compatible = "nvidia,tegra20-apbdma",
1582 .data = &tegra20_dma_chip_data,
1583 }, {
1584 },
1585 };
1586 MODULE_DEVICE_TABLE(of, tegra_dma_of_match);
1587
1588 static struct platform_driver tegra_dmac_driver = {
1589 .driver = {
1590 .name = "tegra-apbdma",
1591 .pm = &tegra_dma_dev_pm_ops,
1592 .of_match_table = tegra_dma_of_match,
1593 },
1594 .probe = tegra_dma_probe,
1595 .remove = tegra_dma_remove,
1596 };
1597
1598 module_platform_driver(tegra_dmac_driver);
1599
1600 MODULE_ALIAS("platform:tegra20-apbdma");
1601 MODULE_DESCRIPTION("NVIDIA Tegra APB DMA Controller driver");
1602 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1603 MODULE_LICENSE("GPL v2");